1 Supplementary material

2

3 Supplementary methods

4 Systematic review process

5 As we wanted to identify publications that research the interactions between the three components, the MHC, the microbiota, and odor, we carried out a combinatorial 6 7 approach using search strings that included two of the components in different combinations as well as all three of them together. We conducted the search up to 8 9 30th January 2020 in both Web of Science and PubMed, excluded reviews, and selected studies written in English. We excluded human studies as the majority 10 11 focused on single MHC variants or specific microbiota related to diseases. 12 Furthermore, human studies include cultural, technological, and socioeconomic features unique to humans (reviewed in Winternitz and Abbate 2015), such as 13 contraceptives, perfume, and the use of antibiotics, which could influence the 14 microbiota, odor, and behavior of an individual, impeding comparison with other, 15 16 particularly wild, species. Additionally, we focused on vertebrates only (as non-17 vertebrates are not relevant for MHC effects) and excluded non-empirical modelling and ex-vivo studies. We excluded studies investigating only a single or genetically 18 19 modified MHC genotype, except for studies working with knock-out variants, as they 20 enable the investigation of the mechanisms through which the MHC works. In a similar fashion, studies targeting only single microbiota strains were excluded, as 21 22 these studies do not allow determination of the effects of different MHC genotypes on 23 odor or the microbiota to help unravel the relationship between MHC, odor and 24 microbiota. For studies investigating odor, we excluded those that use 25 preference/discrimination experiments providing more cues to the choosing individual

than odor alone as this impedes determination of the role of odor cues. In general, we only kept studies investigating the unidirectional influence of the MHC on the microbiota, of the MHC on odor, and of the microbiota on odor. Studies investigating relationships other than the one-way interactions proposed in Figure 1 have been excluded. For the remaining studies, we recorded study species, MHC locus, odor/microbiota source, methods and study type, hypotheses, results, as well as sample size.

33

34 Systematic review – search strings

35 We used the following search terms:

36 (MHC OR "major histocompatibility complex") AND (odo\$r OR scent OR preen) NOT
 37 human

38 (MHC OR "major histocompatibility complex") AND (microbiome OR microbiota) NOT39 human

40 (odo\$r OR scent OR preen) AND (microbiome OR microbiota) NOT human

41 (MHC OR "major histocompatibility complex") AND ((odo\$r OR scent OR preen)

42 AND (microbiome OR microbiota)) NOT human

43

44 Supplementary results

To validate the comprehensiveness and unbiasedness of our search strings, we carried out additional searches using the snowballing or chain referral method often used in sociological research (reviewed in Biernacki and Waldorf 1981), checking recent reviews and publications on this topic and carried out manual searching on

49 Google Scholar. We retrieved 64 relevant studies by using our search strings and 50 filtering approach. Through further searching, we found nine additional studies that 51 were not retrieved by our search strings. However, we argue that our search strings 52 are sufficiently comprehensive as well as unbiased, since three out of those nine 53 additional publications were neither indexed in PubMed nor Web of Science. Another 54 two of the missing studies were not recovered by our search strings, as they included the word 'human' in their abstract (which led to exclusion due to the search term 55 56 (NOT human). Nonetheless, we argue for comprehensiveness of our search strings, as removing the term 'NOT human' from the search strings increases the number of 57 results from 216 to 515 for all searches combined in PubMed and from 457 to 8601 58 in Web of Science (duplicates between search engines not yet removed). The 59 60 remaining 4 publications could have been retrieved by including additional search terms in three of the four searches (microbiota & odor: add 'OR bacterial', MHC & 61 microbiota: add 'OR 'microbial communities'', MHC & odor: add 'R 'olfactory 62 signals"). However, this would have further increased the results from 515 to 1712 63 for the searches in PubMed and from 860 to 2069 for the searches in Web of 64 65 Science. We argue that it is not feasible to carry out a systematic search with so many hits in a reasonable time span. Consequently, we agree with Nakagawa and 66 Lagisz (2019) that comprehensiveness of a systematic review can be impracticable 67 68 or even impossible to achieve. Instead, requirements of a good systematic review are 69 unbiasedness and transparency in the search process. This can be achieved by 70 conducting the searches in at least two data bases and predefining search and data 71 extraction strategies (Nakagawa et al. 2017). Since we fulfill these prerequisites of a 72 good systematic review, we contend that our systematic search is of appropriate quality and defend the usage of our search strings despite missing six studies. 73

- 74 However, to be comprehensive we included the relevant studies that had not been
- retrieved with our search strings in the tables and marked them with asterisks.

76 Tables and figures

- 77 **Table S1.** Results of the systematic review microbiota and odor. * indicates publications that were not retrieved by the systematic
- search but were included in the table due to relevance.

Article	Study species	Sample size	Odor/ microbiota source	Methods and study type	Hypothesis	Results
Brunetti et al. 2019 *	South American tree frog (<i>Boana</i> <i>prasina</i>)	8 males and one female	Dorsal skin	Solid-phase microextraction (SPME), GC-MS, bacterial culture, experimental study	Microbiota might produce volatiles found in the chemical profile	A symbiotic bacterial species found on the skin produced volatile compounds present in the chemical profile
Whittaker et al. 2019	Dark-eyed junco (Junco hyemalis hyemalis)	4 males and 6 females per treatment	Uropygial gland, preen oil	Antibiotic treatment, GC- MS, 16S rRNA sequencing, correlational and experimental study	Microbiota might be involved in shaping the volatile profile and alteration of the microbiota with antibiotics influence the odor profile	(i) Volatile profile compounds were related to the relative abundance of specific bacterial OTUs, (ii) cultivated bacteria isolated from preen oil produced volatiles present in preen oil, (iii) abundance of volatile compounds differed between treatments
Yamaguchi et al. 2019	Bengal cat (Felis catus × Prionailurus bengalensis)	1	Anal sac secretion	16S rRNA sequencing, bacterial cultivation and volatile analysis via GC- MS, experimental study	Bacteria present in anal sac secretions produce volatiles	Bacteria isolated produce volatile compounds also found in anal sac secretion
Jacob et al. 2018	Great tits (<i>Parus</i> <i>major</i>)	65	Uropygial gland secretions	16S rRNA sequencing using a next generation sequencing approach (NGS), gas chromatography – mass spectrometry (GC-MS), correlational study	 (i) Gland chemicals might either specifically hinder the growth of certain bacteria or support the growth of commensals, (ii) host chemicals might have broadband effects on microbiota 	 (i) No significant effects of chemicals on specific bacterial taxa, (ii) chemical modules did not significantly correlate with overall microbiota composition

Leclaire et al. 2017	Meerkats (Suricata suricatta)	(i) males: n = 15, females n = 15, (ii) 42 samples, (iii) 31 pure and 24 mixed secretions	Anal gland secretions	GC-MS, 16S rRNA sequencing (NGS), correlational study	 (i) Odor cues are linked to microbiota composition, (ii) the microbiota should contain odor producers and fermenting bacteria, (iii) mixed secretions should contain more low molecular weight (LMW) compounds compared to pure secretions due to bacterial degradation/ fermentation 	(i) Chemical composition significantly covaried with bacterial composition in males, (ii) anal gland secretions contained bacteria known from to produce odor, (iii) within individuals, LMW component richness was significantly higher in in mixed secretions compared to pure ones
Buesching et al. 2016 *	European badger (<i>Meles meles</i>)	66	Subcaudal gland secretion	Terminal restriction fragment length polymorphism (T-RFLP), 16S rRNA cloning and sequencing, gas chromatography (GC), correlational study	If the microbiota is involved in generating compounds of the chemical profile, there should be a correlation between microbiota composition and chemical profile	An overall significant correlation between terminal restriction fragments of 16S rRNA genes and chemical composition of the secretions was observed
Goodwin et al. 2016 *	African elephants (<i>Loxodonta</i> africana)	3	Urine	GC-MS, 16S rRNA sequencing, bacterial culture, protein sequencing, experimental study	Investigate the role of bacteria in the increased abundance of certain compounds in exogenously aged urine	Removal of bacteria from the urine stopped exogenous production of chemical compounds previously found to increase during aging
Whittaker et al. 2016	Dark-eyed junco (Junco hyemalis carolinensis)	9 females, 8 males, 27 nestlings	Uropygial gland, cloaca and preen oil	16S rRNA sequencing, GC-MS, correlational study	Microbial and volatile profiles might covary	Volatile profiles did not covary with microbiota profile structure or composition
Theis et al. 2013	Spotted hyenas (<i>Crocuta crocuta</i>), striped hyenas (<i>Hyaena hyaena</i>)	40 spotted and 33 striped hyenas	Subcaudal scent pouch	Volatile fatty acid (VFA) analysis using GC-MS, 16S rRNA gene sequencing, correlational study	 (i) Mammalian scent gland secretions should contain fermentative, odor-producing bacteria, (ii) bacterial and odor profiles should covary 	(i) Both spotted and striped hyena microbiota were dominated by fermentative anaerobes, (ii) VFA and microbiota composition covaried significantly in spotted hyenas
Martín-Vivaldi et al. 2010 *	European hoopoe (<i>Upupa epops</i>), green woodhoopoes	N = 19 in total, 3 treatment groups with 6-7 individuals each	Preen gland secretion	GC-MS, antibiotic treatment, experimental study	Microbes might produce antimicrobial volatiles in preen secretions	Microbial clearance through antibiotic treatment resulted in the depletion of 7 out of 10 volatile compounds in the

	(Phoeniculus purpureus)					chemical profile
Gorman et a 1974 *	I. Indian mongoose (Herpestes auropunctatus)	2 males	Anal pocket	Gas-liquid chromatography, bacterial culture, antibiotic treatment, experimental study	Investigate the role of microbiota in producing scent compounds	The antibiotically treated anal pockets did not contain all chemical compounds that were present in the untreated ones

- **Table S2**. Results of the systematic review of MHC and odor. * indicates publications that were not retrieved by the systematic search
- 82 but were included in the table due to relevance. ** indicates the publication investigating all the link between MHC and odor and MHC
- and microbiota.

Article	Study species	Sample size	Odor source	MHC	Methods	Hypothesis	Results
Grieves et al. 2019	Song sparrow (<i>Melospiza</i> <i>melodia</i>)	36	Preen oil	MHC-II	GC-MS, odor preference tests, MHC genotyping via NGS, correlational study	Similarity of the chemical profile of preen oil is linked to MHC-II similarity	Positive correlation between pairwise dissimilarity of preen oil chemical profile and genetic distance at the MHC ((i) amino acid distance, (ii) chemical dissimilarity)
Grogan et al.	Ring-tailed	57 donor animals	Genital gland	MHC-II	GC-MS, behavioral	Investigate if chemical	(i) Both sexes
2019 *	lemurs (Lemur	and 27 recipients	secretions	DRB	bioassays,	similarity is linked to	signal MHC-II
	catta)				experimental study	MHC-II DRB similarity in	DRB diversity and

						both sexes	pairwise similarity, but in a sex- and season- dependent manner, (ii) the sexes discriminate MHC diversity in genital odors of opposite-sex conspecific
Gahr et al. 2018	Three-spined sticklebacks (Gasterosteus aculeatus)	14 river and 12 lake subject animals	Synthetic MHC peptide ligands	MHC-IIB	Odor preference tests, genotyping via RSCA, experimental study	Test role of MHC peptide ligands as a source of odor in female mate choice	Females prefer synthetic MHC peptide mixtures with the optimal allele number of the population they originated from
Leclaire et al. 2017	Blue petrel (<i>Halobaena</i> <i>caerulea</i>)	Subject animals: Females: 20 individuals and 26 tests; males: 7 individuals and 11 tests. Donor animals: 14 males and 14 females	Back, rump, wings, chest and head	MHC-IIB	Odor preference tests, MHC genotyping via NGS, experimental study	Blue petrels might use odor cues to assess MHC dissimilarity	Incubating males prefer the odor of less MHC-similar females, whereas incubating females prefer the odor of more MHC-similar males
Slade et al. 2016	Song sparrows (<i>Melospiza</i> <i>melodia</i>)	60 (19 females, 41 males)	Preen wax	MHC-II Exon 2	GC-MS, NGS, correlational study	Chemical composition of preen wax correlates with MHC-IIβ genotypes	 (i) pairwise chemical distance reflected amino acid distance for male-female but not for same sex dyads, (ii) chemical diversity and richness did not reflect MHC-IIβ diversity

Leclaire et al. 2014	Black-legged kittiwake (<i>Rissa</i> <i>tridactyla</i>)	Male-male dyads: n = 210, male- female dyads: n = 378, female- female dyads: n = 153	Preen gland secretions	MHC-II DRB	GC-MS, MHC genotyping via PCR, cloning and sequencing, correlational study	Preen gland secretions signal MHC-relatedness	MHC amino acid distance was positively correlated to chemical distance in male-male and male-female dyads
Hinz et al. 2013	Zebrafish (<i>Danio rerio</i>)	42	Synthetic MHC peptides	MHC-I and -II	Olfactory choice test, experimental study	MHC peptides might act as olfactory signals for imprinting in zebrafish	Zebrafish larvae raised with MHC peptides prefer kin over non-kin
Cutrera et al. 2012	Talas tuco tucos (<i>Ctenomys</i> <i>talarum</i>)	16	Urine	MHC-II DRB Exon 2	Odor preference tests, genotyping via PCR, cloning and sequencing, experimental study	Test whether females prefer odors of males that differ more strongly at the MHC from their own genotype	No difference in the preference of male odors regarding amino acid distance detected
Eizaguirre et al. 2011	Three-spined ticklebacks (<i>Gasterosteus</i> <i>aculeatus</i>)	(i), (ii) N = 17/20	Tank water	MHC-IIB	Odor preference tests, genotyping via reference strand-mediated conformation analysis (RSCA), experimental study	River and lake population might have different MHC alleles pools (i) and females might prefer sympatric males (ii)	(i) Individuals from river population carried on average a higher number of MHC alleles and the allele pools between river and lake population show a dissimilarity of 96.2%. (ii) Females prefer the odor of sympatric males
Setchell et al. 2011	Mandrills (<i>Mandrillus</i> <i>sphinx</i>)	88 swab samples (45 individuals, 1 to 4 replicates per individual), 89 hair samples (43 individuals, 1 to 4	Hair and swabs taken from the sternal gland	MHC DRB	GC-MS, MHC- genotyping via NGS, correlational study	Differences in MHC- similarity and overall genetic relatedness are linked to body odor	MHC dissimilarity increases with difference in the chemical profile

		replicates per					
Milinski et al. 2010	Three-spined stickleback (Gasterosteus aculeatus)	(i) 7 pairs in the non-reproductive and (ii) 6 pairs in the nest- maintaining males test	Tank water	MHC-IIB	Odor preference tests, experimental study	Females should prefer MHC-optimal males' odor over MHC-optimal males' odor that has been artificially modified to be super-optimal when MHC composition is signaled via odor	 (i) Females prefer the spiked odor in non-reproductive males over that of an optimal male, (ii) females tend to prefer the optimal, non-spiked odor in males that maintain their nest
Kwak et al. 2009	Laboratory mice	23 and 19 individuals per strain, N _{total} = 42	Urine	H2	GC to extract only volatile components, odor discrimination trials, experimental study	Test evidence for a peptide-free volatile signal of MHC in mouse urine	Mice trained to distinguish between odors of congenic mice can generalize this ability to the peptide-free odor solution
Zomer et al. 2009 **	Laboratory mice (<i>Mus musculus</i> <i>domesticus</i>)	28 mice (from 4 different strains)	Scent marks	H2	GC-MS, denaturing gradient gel electrophoresis, correlational study	MHC- and background genes influence volatile and microbiota profiles of scent marks	Genetic strain influences both microbiota and volatile profile. MHC has a clearly visible but lower trend in influencing microbiota and volatile profile than strain
Kwak et al. 2008	Laboratory mice	16	Urine	H2	Odor discrimination trials, experimental study	MHC odor profiles should remain relatively stable and discriminable despite dietary variation	Differences in dietary odor are more striking than MHC odor differences, but differences in MHC-related odor can be

Radwan et al. 2008	Bank voles (<i>Myodes</i> glareolus)	20 MHC-dissimilar and 20 MHC- similar donor animals	Soiled bedding	MHC-II DRB	Odor preference test, experimental study	Test females for a preference of MHC-dissimilar males	discriminated despite variation in odor caused by dietary changes Females prefer odors of MHC- dissimilar over those of MHC-
Novotny et al. 2007	Laboratory mice (congenic, recombinant, mutant, transgenic)	7 strains, N = 73 (with 5 to 8 individuals per strain)	Urine	both MHC classes	GC-MS, experimental comparison	Variations in the odor profile linked to the MHC are mainly of quantitative nature	similar males Excretion of substances differed significantly even for strains differing in only a few amino acids in the peptide binding region of a single MHC-I gene
Röck et al. 2007	Laboratory mice	50 (15 per strain plus 5 control pools)	Urine	MHC-I	GC-MS, experimental comparison	MHC-I depletion leads to undistinguishable urine volatiles	Urine of MHC-I depleted laboratory mice could still be distinguished, strain differences could be correlated to the provenance and genetic distance rather than the MHC-I
Knapp et al. 2006 *	Ring-tailed lemurs (<i>Lemur</i> <i>catta</i>)	6 adults and 2 juveniles	Brachial gland and tail scent samples	MHC-II DRB	GC-MS, correlational study	MHC sequences and volatile composition of odor correlate	not statistically significant, but relationship between the absence of certain MHC sequences and the concentration of

							volatile compound
Rajakaruna et al. 2006	Atlantic salmon (<i>Salmo salar</i>) and brook trout (<i>Salvelinus</i> fontinalis)	(i) 20 Atlantic salmon (AS), 20 brook trout (BT), (ii) 15 AS, 20 BT, (iii) 16 AS, 20 BT	Tank water	MHC-II b1 exon of the DAB	Odor preference tests, experimental study	Atlantic salmon and brook trout distinguish kin based on differences at the MHC locus	(i) fish prefer kin sharing both alleles over kin sharing none, (ii) fish prefer non-kin sharing alleles over kin sharing none, (iii) fish prefer kin sharing no alleles over non-kin sharing none
Willse et al. 2006	Laboratory mice	6 different genotypes (3 per strain)	Urine	H2	GC-MS, odor discrimination trials, experimental study	MHC-odortypes should be discriminable against a varying genetic background	Laboratory mice were able to generalize the discrimination of MHC with varying genetic background, despite the varying background's influence on odor profiles
Hurst et al. 2005	Laboratory mice	53	Urine	H2	Countermarking experiments, experimental study	Markings from mice differing from the subject at the MHC should elicit a countermarking response	MHC was not used for individual recognition of scent marks in territorial behavior
Willse et al. 2005	Laboratory mice	Two strains with 5 and 6 pools (consisting of samples of 3-4 individuals) respectively	Urine	H2	GC-MS, observational study and method description	MHC-dependent differences in the concentration of volatiles in congenic mice should be detectable via GC-MS	80 compounds discriminating the MHC-congenic samples have been identified and the significant differences were all quantitative

Häberli and Aeschlimann 2004	Three-spined sticklebacks (<i>Gasterosteus</i> <i>aculeatus</i>)	15 subjects, 12 male donor and 13 female donor animals	Tank water	MHC-IIB	Odor preference tests, genotyping via SSCP, experimental study	Gravid females might choose their mate based on MHC-odor preferences	Gravid females preferred males that had not yet built a nest over females when the males had less MHC alleles than females
Wysocki et al. 2004	Laboratory mice	8 treated and 6 sham mice	Urine	H2	Surgical removal of the vomeronasal organ and odor discrimination trials, experimental study	The vomeronasal organ is involved in discrimination of MHC- odortypes	Mice without a vomeronasal organ were able to learn to discriminate the odor of MHC- congenic mice
Aeschlimann et al. 2003	Three-spined sticklebacks (Gasterosteus aculeatus)	11 subject animals	Tank water	MHC-IIB	Odor preference tests, single-strand conformation polymorphism (SSCP), experimental study	Test ability of females to use self-referencing to optimize their offspring's MHC-genotype	Females use a self-referencing mechanism to optimize the number of alleles and prefer MHC- dissimilar males
Olsson et al. 2003	Sand lizard (<i>Lacerta agilis</i>)	20	Femoral pores	MHC-I	Odor preference test, genotyping via restriction fragment- length polymorphism (RFLP), experimental study	Females might be able to assess MHC genotype through odor for precopulatory mate choice	Females did no prefer males with more RFLP bands for the MHC-I over males with less bands
Carroll et al. 2002	Laboratory mice	(i) 19, (ii) 20, 28, 28 (for the different F ₂ segregants)	Urine	H2 class I	Habituation- dishabituation trials, experimental study	 (i) Test ability of untrained mice to distinguish natural variants differing at a single locus (ii) Test for a detection threshold for detecting odor differences 	 (i) Untrained laboratory mice can distinguish between natural variants of class I H2 differing only at a single locus, (ii) F₂ segregants can only be distinguished with

							a minimum amino acid difference at the PBS
Olsén et al. 2002	Arctic char (<i>Salvelinus</i> <i>alpinus</i>)	6 subject animals, 5 donor animals per experiment	Tank water	MHC-II	Odor preference test, MHC genotyping via DGGE, experimental study	Odors important for kin discrimination might be influenced by the MHC and the response could be learned or innate	(i) Fish did not discriminate between the odors of siblings with identical MHC. (ii) The fish preferred MHC-identical siblings over MHC-diffing siblings. (iii) They did not show a discriminative response towards an MHC-identical non-sibling and an MHC-different sibling. (iv) Fish isolated since fertilization did not discriminate between MHC- identical and non- identical siblings.
Schaefer et al. 2002	Laboratory mice	between 8 and 6 for each of the 4 genotypes, 3 for the control, N _{total} = 32	Urine	H-2K class	GC-MS, in situ hybridization of mRNA expression in the main olfactory bulb, experimental study	Single genetic differences might alter the volatile profile and its representation in the main olfactory bulb	Urine odors differing at a single gene evoked unique activation patterns in the olfactory bulb
Ehman and Scott 2001	Laboratory mice	 (i) 20 subject animals (10 animals per strain), 20 different pairs of donors, (ii) 10 subject 	Urine	H2	Odor discrimination trials, experimental	 (i) Test MHC-preferences of females in urinary odors in female conspecifics, (ii) test a female preference for MHC- disparate males 	 (i) Females did not show a preference for MHC-similar or MHC-disparate females, (ii) No preference

		animals (5 per strain), 20 different pairs of donors					for MHC-disparate or MHC-similar males detected
Janssen et al. 2001	Laboratory rats (Lewis rats, Brown Norway rats)	(i) 16, (ii) 4	Urine	MHC-I	(i) Habituation- dishabituation trials, (ii) GC-MS, experimental study	Injection of recombinant allogenic soluble MHC molecules might alter urinary odor	Brown Norway rats were able to discriminate between urinary odors of Lewis rats with different recombinant soluble MHC molecules
Reusch et al. 2001	Three-spined stickleback (<i>Gasterosteus</i> <i>aculeatus</i>)	(i) 29, (ii) 21	Tank water	MHC-IIB	Odor preference tests, genotyping via SSCP, experimental study	Females might prefer males with higher numbers of MHC alleles (i) and odors of MHC- dissimilar males (ii)	(i) Females showed a preference for males with a higher number of MHC alleles over those that only have few alleles, (ii) There was no female preference of MHC-dissimilar over MHC-similar males
Bard et al. 2000	Laboratory mice	5 sensor mice	Urine	MHC I	Odor discrimination trials, experimental study	MHC I molecules have a role in shaping odor profiles	MHC-I influences odor, as loss of MHC-I expression makes odor of laboratory mice distinguishable from otherwise genetically identical conspecific
Yamazaki et al. 2000	Laboratory mice	(i) 19 (105 pups) and 21 (122 pups) litters per strain	Soiled bedding	H2	Odor discrimination trials, experimental study	Pups discriminate familiar MHC-odortypes from another MHC-	(i) Pups discriminate their familiar, syngenic

		respectively (two strains), (ii) 20 (102 pups) and 15 (79 pups) litter per strain (two strains)				congenic odor and cross- fostering might impact this preference	odor from MHC- congenic odor and (ii) cross-fostering impacts their preference
Eklund 1998	House mice (<i>Mus</i> <i>musculus</i>)	10 female and 19 male subject animals, 2 MHC- congenic donor strains	Soiled bedding	H2	Odor preference tests, genotypes known for lab strains serving as odor donors, experimental study	Test for MHC-based mate choice preference (only initial testing for experiments)	No odor preference for either strain by males or females.
Olsén et al. 1998	Arctic char (Salvelinus alpinus)	31	Tank water	MHC-IIB	Odor preference test, MHC genotyping via denaturing gradient gel electrophoresis (DGGE), experimental study	Kin recognition and sibling discrimination might be influenced by the MHC	Juvenile arctic char can discriminate between self and non-self MHC genotypes of siblings
Pearse-Pratt et al. 1998	Laboratory rats	2 per genotype, N _{total} = 6	Urine	MHC-I	(i) Habituation- dishabituation trials, (ii) X-ray crystallography, experimental study	Injection of purified MHC- I molecules into the circulation of laboratory rats should alter the urinary odor and render it discriminable	(i) Laboratory rats were able to discriminate between the odors of injected and non-injected congenic rats, (ii) structural changes in the MHC molecule occur between membrane bound state and soluble state in urine
Penn and Potts 1998	House mice (<i>Mus</i> <i>musculus</i> <i>domesticus</i>)	5 subjects, 30 odor donors	Urine	H2	 (i) Odor discrimination trials, (i) habituation- dishabituation trials, experimental study 	 (i) Wild mice should be able to distinguish odors of MHC-congenic mice after training, (ii) Untrained wild mice should be able to distinguish different MHC 	(i) Wild mice could learn discrimination of MHC-congenic odors, (ii) wild mice could discriminate MHC-

						types	congenic odors without prior training, but they also discriminated between individuals of the same strain
Schellinck et al. 1997	Long-Evans rats, PVG rats	6 and 7 subject rats for experiment 1 and 2 respectively, 8 and 7 donor rats for each of the two strains respectively, N _{total} = 15	Urine	MHC class la	Odor discrimination trials, experimental study	Dietary cues might influence the ability of Long-Evans rats to discriminate between odors of MHC-congenic rats	Strain differences did not disrupt discrimination of diet, but when both strain and diet differed then rats trained to distinguish odor fail
Singer et al. 1997	Laboratory mice	12 urine samples from each of two congenic panels	Urine	H2	Anion exchange chromatography and odor discrimination trials with the fractions obtained via gas chromatography, experimental study	MHC-determined urinary odor is produced by a mixture of volatile carboxylic acids and their relative concentration	Mice could distinguish between the retained ion exchange fractions
Brown et al. 1996	Long-Evans rats	6	Urine	MHC-IA	Odor discrimination trials, experimental study	MHC-dependent odor cues should be stable and distinguishable over dietary changes	Long-Evans rats can distinguish dietary cues in mice urine more easily than MHC- dependent cues
Beauchamp et al. 1994	Laboratory mice	5 for the maternal and 3 for the paternal fetal genotype	Urine	H2	Odor discrimination trials, experimental study	MHC molecules expressed in utero can be sensed in urine of the pregnant mouse before birth	The fetal haplotype is present from at least day 9-12 of fetal age and enables urine discrimination
Yamazaki et al. 1994	Laboratory mice	109 (split into 4 strains)	Urine	H2	Odor discrimination trials, experimental	Background genetic effects influence	Mice were able to discriminate MHC

					study	discrimination of MHC- odortypes by mice	differences in outbred mice
Schellinck et al. 1993	Long-Evans rats/laboratory mice	4 subject rats, 8 donor individuals for each of the three strains, N _{total} = 24	Urine	H-2K locus	Odor discrimination trials, experimental study	Long-Evans rats should be able to discriminate the odors of MHC- and Y-congenic mice	Changing the diet in the donor rats disrupted the ability of the subject rats to discriminate the learned odor
Singer et al. 1993	Laboratory mice	40-60 MHC- congenic donor pairs	Urine	H2	Odor discrimination trials, dialysis, and lyophilisation for the fractioning of urine samples, experimental study	Volatile compounds of the odors of MHC- congenic mice play an important role in discrimination	Protein-free MHC- congenic urine odors can still be distinguished by mice
Yamazaki et al. 1992	Laboratory mice	4 adult mice (2 males, 2 females)	Litter odor and urine	H2	Odor discrimination trials, experimental study	MHC-odortypes are already expressed by infants	Adult mice were able to discriminate the urine of infant mice differing at the MHC from day 1 and litter odor from day 14 onwards
Schellinck et al. 1991	Laboratory rats (Long-Evans rats and PVG rats)	8 subject animals, 5 donor animals per condition	Urine	MHC-IA	Odor discrimination trials, experimental study	MHC and microbiota influence odors and rats can be trained to detect odor differences between (i) outbred conspecifics, (ii) MHC-congenic rats, (iii) two germ-free raised rat strains, and (iv) individuals of the same conventionally housed rat strains	All four odor combinations (i-iv) were discriminable but learning patterns differed. Task (iii) and (iv) were most difficult, tasks (ii) was discriminated most easily.
Yamazaki et al. 1990	Laboratory mice	3 mice of each of the two strains	Urine	H2	Odor discrimination trials, experimental study	Microbiota should be necessary for the production and discrimination of MHC-	Germ-free rearing of donor mice did not disrupt the discrimination of

						dependent odors	their odor
Brown et al. 1989	Laboratory rats (PVG)	(i) 32, (ii) 24, (iii) 24, (iv) 16, (v) 16	Urine	all three regions (IA, II B/D, I C/E)	Habituation- dishabituation trials, experimental study	Rats should be able to distinguish differences in the different MHC loci of MHC-congenic rats via odor	MHC dissimilarity increases with difference in the chemical profile
Brown et al. 1987	Laboratory rats (Lister hooded, PVG, and Wistar albino rats)	10 donor animals per strain, n _{total} = 20; subject animals: PVG n = 24, Wistar = 8, Lister = 11 and 36	Urine	MHC-IA	Habituation- dishabituation trials, experimental study	The MHC might control cues important for odor discrimination	MHC-congenic PVG rat odors could be discriminated, however this could not be repeated in a second round. Serum of MHC- congenic mice could not be distinguished, nor the isolated MHC- IA protein. Urine with the MHC-IA protein removed could be distinguished
Beauchamp et al. 1985	Laboratory mice and rats (Wistar/Furth)	5 males and 3 female subject rats	Urine	H2	Odor discrimination trials, experimental study	MHC-based odor signals might be discriminable across species barriers	Rats can discriminate odors of MHC-congenic mice

Yamazaki et al. 1982	Laboratory mice	5	Urine	Н2-К	Odor discrimination trials, experimental study	Genetic differences at the K end of the H2 region of mice might be discriminable by conspecifics	Genetic differences at the K end of the H2 region can be discriminated by mice
Yamaguchi et al. 1981	Laboratory mice	4	Urine	H2	Odor discrimination trials, experimental study	Urine might signal MHC- dissimilarity in mice	Mice could discriminate MHC- congenic mice based on urine as an odor source

- **Table S3.** Results of the systematic review MHC and microbiota. * indicates publications that were not retrieved by the systematic
- 89 search but were included in the table due to relevance.

Article	Study species	Sample size	МНС	Microbiota source	Methods and study type	Hypothesis	Results
Leclaire et al. 2019	Blue petrel (<i>Halobaena</i> <i>caerulea</i>)	36	MHC-IIB	feather microbiota samples at 4 different body sites	Genotyping and 16s rRNA sequencing via NGS, correlational study	(i) MHC dissimilarity positively correlates with dissimilarity of microbiota, (ii) higher MHC diversity should result in lower microbiota diversity	(i) Distance in microbial community varied with MHC diversity among individuals, (ii) higher MHC diversity was linked to lower microbiota diversity in preen feathers, but not in ventral, dorsal, or neck feathers
Wadud Khan et al. 2019	Laboratory mice	6 genotypes with 5 animals each	H2	Fecal samples	16S rRNA sequencing, experimental study	MHC heterozygosity influences taxonomic composition and functional gene content of the microbiota	 (i) Microbiota diversity differed between hetero- and homozygotes, (ii) microbiota composition was more dissimilar in heterozygotes compared to homozygotes, (iii) no difference in alpha and phylogenetic diversity, (iv) no difference

							between homo- and heterozygotes in the functional gene content of the overall microbiota
Derakhshani et al. 2018	Holstein dairy cows	24 and 25 cows for each variant	BoLA-DRB3 Exon 2	Mammary gland (colostrum and milk)	Genotyping via PCR-RFLP, 16S rRNA sequencing via Next Generation Sequencing (NGS), correlational study	Relationship between BoLA- DRB3 polymorphism and intramammary microbiota composition in cows during the first week of lactation	Significant difference in microbiota diversity and composition between the two variants only on day 0
Hernández- Gómez et al. 2018	Ozark hellbenders (<i>Cryptobranchus</i> <i>alleganiensis</i> <i>bishopi</i>), eastern hellbenders (<i>C. a.</i> <i>alleganiensis</i>)	21 eastern and 28 Ozark hellbenders	MHC-IIB	Skin	16S rRNA sequencing and MHC genotyping via NGS, correlational study	Skin microbial community might be linked to the diversity of MHC-II genes	Relationship between MHC-II amino acid distance and skin community richness: positive for the eastern hellbender and not significant for the Ozark hellbender
Pearce et al. 2017 *	Leach's storm petrel (<i>Oceanodroma</i> <i>leucorhoa</i>)	22	MHC-IIB DAB2	Skin and feathers near uropygial gland	16s rRNA gene sequencing, MHC genotyping, correlational study	MHC diversity influences microbiota diversity	In males, DAB2 homozygosity explains 72% of variation in microbial community structure
Kubinak et al. 2015	Laboratory mice	(i) Flow cytometry: n = 6-8 per genotype (n _{total} =21) ELISA: n = 11 per	H2	Fecal samples	16S rRNA sequencing, experimental study	MHC polymorphism influences the microbial community	(i) MHC genotype significantly influenced antibody responses against

		genotype, httotal = 33 (ii)+(iii) WT (n = 4), B2M ^{-/-} (n = 6), and MHCII ^{-/-} (n = 6), (iv) 5 heterozygotes and 5 homozygotes of each genotype					bacteria in the gut, (ii) Lack of MHC class I and II- mediated antigen presentation led to alterations in microbiota composition and structure, (iii) Class II plays a more important role in forming the microbial community, (iv) MHC heterozygotes do not have a more diverse microbiota, but heterozygosity influences microbiota composition
Bolnick et al. 2014	Three-spined sticklebacks (<i>Gasterosteus</i> <i>aculeatus</i>)	150	MHC-IIb	Gut	16s rRNA gene sequencing, MHC genotyping, correlational study	Association between MHC and microbiota composition: individuals with different MHC-II genotypes can recognize different microbiota causing covariation of gut microbiota composition and MHC	Individuals with more divergent MHC motifs had less diverse microbiota, small number of significant pairwise associations between MHC and microbial families was observed
Wegner et al. 2012	European plaice (<i>Pleuronectes</i>	40	MHC-IIB	Gills	Genotyping and 16s rRNA	There might be a link between MHC	Significant weak overall correlation

	platessa)				sequencing via NGS, correlational study	genotype and bacterial colonization	between MHC matrix and pathogen abundance matrix
Lanyon et al. 2007 *	Laboratory mice	9 per strain, N _{total} = 36	H2	Scent marks	16S rRNA sequencing using DGGE, experimental study	MHC and background genotype contribute to microbiota community regulation	DGGE profiles of scent mark microbiota can be distinguished between the congenic strains and both MHC and background genotype influence it

Table S4. Components and processes involved in immune response. Presented are the humoral and cellular components and immunological processes and their corresponding involvement in immune response. Components can either act in both elimination and tolerance or affect only one outcome.

Component	Role in inflammation	Role in tolerance
Antigen presenting cells (APC)	 Antigen recognition, processing, and presentation Influence peptide recognition causing elimination of the peptide 	 Antigen recognition, processing, and presentation Influence peptide recognition causing tolerance to the peptide
B cell	Can act as APCs and produce antibodies Influence peptide recognition and can facilitate inflammation 	Can act as APCs and produce antibodies Influence peptide recognition and can temper inflammation
Immunoglobulin A (IgA)	 Neutralize, coat and agglutinate peptides Causing inactivation and elimination of the peptide 	 Coat peptides Facilitate passage through epithelium and thus production of bacteria specific IgA Neutralizes toxins and bacterial epitope expression Reduces immunogenicity

Innate lymphoid cells (ILCs)	Produce cytokines that orchestrate immune response	Promote homeostasis by inducing cell death of T cells acting against commensal bacteria
Regulatory T cell (Treg cell)		Regulate IgA diversity Temper inflammatory response
Major histocompatibility complex class II (MHC-II)	Present peptides to T cells MHC-II-peptide complex causes elimination in the presence of costimulation Might influence the T cell receptor repertoire and thus peptide recognition	Present peptides to T cells MHC-II-peptide complex causes tolerance in the absence of costimulation Might influence the T cell receptor repertoire and thus peptide recognition
Microbiota diversity	Can cause inflammatory responses that facilitate clearance from the antigenic source	Influences Treg reg cells and thus IgA Can promote itself by feeding into this positive feedback loop

98 Table S5. Glossary of key terms

Abbreviation/term	Meaning
APC	Antigen presenting cell, initiate immune response
B cell	Immune cell bearing MHC-II molecules, B stands for bone
	marrow
CD4	Cluster of differentiation 4, receptor on the surface of immune
	cells, such as T helper cells
Congenic	Describes organisms that differ genetically only at a single
	locus
Cytotoxic T cell	T cells that can initiate the death of malignant, infected, or damaged cells
DGGE	Denaturing gradient gel electrophoresis
GC-MS	Gas chromatography – mass spectrometry
H2	Mice equivalent of the MHC
IgA	Immunoglobulin A, antibody type that is prevalent at mucous
0	body surfaces
ILC	Innate lymphoid cell
MHC	Major histocompatibility complex
NGS	Next generation sequencing, high throughput sequencing
	method
RSCA	Reference strand-mediated conformation analysis
PBS	Peptide binding site
T cell	immune cell, T stands for thymus, includes Th cells
TCR	T cell receptor, receptor on the surface of T cells
Th cell	T helper cell, facilitates inflammation, CD4+ (cluster of
	differentiation, describes surface glycoproteins)
Treg cells	Regulatory T cell, temper inflammation
RFLP	Restriction fragment-length polymorphism
SSCP	Single-strand conformation polymorphism
Syngenic	Describes genetically identical organisms

102 Figure S1. PRISMA flowchart for the systematic review on microbiota and odor

103 interaction.

Figure S2. PRISMA flowchart for the systematic review on MHC and odor 107 interaction.

109 Figure S3. PRISMA flowchart for the systematic review on MHC and microbiota

110 interaction.

- **Figure S4.** PRISMA flowchart for the systematic review on MHC, microbiota, and
- 114 odor interaction.

processes cellular/humoral components of the immune system

115

Figure S5. Agents of the immune system affecting microbiota diversity. Arrows 116 117 indicate the direction of the agent's effect with + or - describing whether higher diversity/amount of the agent is enhancing or limiting to the component being 118 affected by the agent. Both + and – simultaneously (+/-) describes that the effect an 119 agent has on another component has not yet been fully revealed or can have both 120 outcomes, depending on other factors. Peptide recognition might both limit or 121 increase inflammatory responses, depending on the mechanism acting between 122 MHC-II and the commensal microbes, and MHC-II diversity could theoretically both 123 reduce or increase the T cell repertoire during thymic selection. Processes are 124 represented in blue, whereas cellular and humoral components are depicted in 125 green. Microbiota diversity is presented in yellow. The dashed line marks the 126 regulatory symbiotic loop governing inflammation and thus microbiota diversity. 127

128

129 References

- 130 Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M. 2003. Female
- 131 sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele
- number during mate selection. Behav Ecol Sociobiol. doi:10.1007/s00265-003-0611-

133 6.

- 134 Bard J, Yamazaki K, Curran M, Boyse EA, Beauchamp GK. 2000. Effect of B2m
- 135 gene disruption on MHC-determined odortypes. Immunogenetics.
- 136 doi:10.1007/s002510000165.
- 137 Beauchamp GK, Yamazaki K, Curran M, Bard J, Boyse EA. 1994. Fetal H-2

138 odortypes are evident in the urine of pregnant female mice. Immunogenetics.

139 doi:10.1007/BF00188613.

140 Beauchamp GK, Yamazaki K, Wysocki CJ, Slotnick BM, Thomas L, Boyse EA. 1985.

141 Chemosensory recognition of mouse major histocompatibility types by another

species. Proc Natl Acad Sci U S A. doi:10.1073/pnas.82.12.4186.

- 143 Biernacki P, Waldorf D. 1981. Snowball Sampling: Problems and Techniques of
- 144 Chain Referral Sampling. Sociol Methods Res. doi:10.1177/004912418101000205.
- Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, Stutz WE. 2014. Major

146 Histocompatibility Complex class IIb polymorphism influences gut microbiota

- 147 composition and diversity. Mol Ecol. doi:10.1111/mec.12846.
- 148 Brown RE, Roser B, Singh PB. 1989. Class I and class II regions of the major
- 149 histocompatibility complex both contribute to individual odors in congenic inbred
- strains of rats. Behav Genet. doi:10.1007/BF01066029.
- Brown RE, Schellinck HMI, West AM. 1996. The influence of dietary and genetic
- 152 cues on the ability of rats to discriminate between the urinary odors of MHC-congenic

- 153 mice. Physiol Behav. doi:10.1016/0031-9384(96)00030-3.
- Brown RE, Singh PB, Roser B. 1987. The Major Histocompatibility Complex and the
- chemosensory recognition of individuality in rats. Physiol Behav. doi:10.1016/0031-
- 156 9384(87)90186-7.
- 157 Brunetti AE, Lyra ML, Melo WGP, Andrade LE, Palacios-Rodríguez P, Prado BM,
- 158 Haddad CFB, Pupo MT, Lopes NP. 2019. Symbiotic skin bacteria as a source for
- 159 sex-specific scents in frogs. Proc Natl Acad Sci U S A.
- 160 doi:10.1073/pnas.1806834116.
- Buesching CD, Tinnesand HV, Sin Y, Rosell F, Burke T, Macdonald DW. 2016.
- 162 Coding of Group Odor in the Subcaudal Gland Secretion of the European Badger
- 163 Meles meles: Chemical Composition and Pouch Microbiota. In: Chemical Signals in
- 164 Vertebrates 13.
- 165 Carroll LS, Penn DJ, Potts WK. 2002. Discrimination of MHC-derived odors by
- 166 untrained mice is consistent with divergence in peptide-binding region residues. Proc
- 167 Natl Acad Sci U S A. doi:10.1073/pnas.042244899.
- 168 Cutrera AP, Fanjul MS, Zenuto RR. 2012. Females prefer good genes: MHC-
- associated mate choice in wild and captive tuco-tucos. Anim Behav.
- 170 doi:10.1016/j.anbehav.2012.01.006.
- 171 Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. 2018.
- 172 Association of bovine major histocompatibility complex (BoLA) gene polymorphism
- 173 with colostrum and milk microbiota of dairy cows during the first week of lactation.
- 174 Microbiome. doi:10.1186/s40168-018-0586-1.
- 175 Ehman KD, Scott ME. 2001. Urinary odour preferences of MHC congenic female
- 176 mice, Mus domesticus: Implications for kin recognition and detection of parasitized

- 177 males. Anim Behav. doi:10.1006/anbe.2001.1805.
- 178 Eizaguirre C, Lenz TL, Sommerfeld RD, Harrod C, Kalbe M, Milinski M. 2011.
- 179 Parasite diversity, patterns of MHC II variation and olfactory based mate choice in
- diverging three-spined stickleback ecotypes. Evol Ecol. doi:10.1007/s10682-010-
- 181 9424-z.
- 182 Eklund AC. 1998. Use of the MHC for mate choice in wild house mice (Mus
- domesticus). Genetica. doi:10.1023/A:1026417522110.
- 184 Gahr CL, Boehm T, Milinski M. 2018. Female assortative mate choice functionally
- validates synthesized male odours of evolving stickleback river-lake ecotypes. Biol
- 186 Lett. doi:10.1098/rsbl.2018.0730.
- 187 Goodwin TE, Harelimana IH, MacDonald LJ, Mark DB, Juru AU, Yin Q, Engman JA,
- 188 Kopper RA, Lichti CF, Mackintosh SG, et al. 2016. The Role of Bacteria in Chemical
- 189 Signals of Elephant Musth: Proximate Causes and Biochemical Pathways. In:
- 190 Chemical Signals in Vertebrates 13.
- 191 Gorman ML, Nedwell DB, Smith RM. 1974. An analysis of the contents of the anal
- scent pockets of Herpestes auropunctatus (Carnivora: Viverridae). J Zool.
- 193 doi:10.1111/j.1469-7998.1974.tb04115.x.
- 194 Grieves LA, Gloor GB, Bernards MA, MacDougall-Shackleton EA. 2019. Songbirds
- 195 show odour-based discrimination of similarity and diversity at the major
- histocompatibility complex. Anim Behav. doi:10.1016/j.anbehav.2019.10.005.
- 197 Grogan KE, Harris RL, Boulet M, Drea CM. 2019. Genetic variation at MHC class II
- 198 loci influences both olfactory signals and scent discrimination in ring-tailed lemurs.
- 199 BMC Evol Biol. doi:10.1186/s12862-019-1486-0.
- 200 Häberli MA, Aeschlimann PB. 2004. Male traits influence odour-based mate choice in

- the three-spined stickleback. J Fish Biol. doi:10.1111/j.1095-8649.2004.00338.x.
- 202 Hernández-Gómez O, Briggler JT, Williams RN. 2018. Influence of immunogenetics,
- 203 sex and body condition on the cutaneous microbial communities of two giant
- salamanders. Mol Ecol. doi:10.1111/mec.14500.
- Hinz C, Namekawa R, Behrmann-Godel J, Oppelt C, Jaeschke A, Müller A, Friedrich
- 206 RW, Gerlach G. 2013. Olfactory imprinting is triggered by MHC peptide ligands. Sci
- 207 Rep. doi:10.1038/srep02800.
- Hurst JL, Thom MD, Nevison CM, Humphries RE, Beynon RJ. 2005. MHC odours
- 209 are not required or sufficient for recognition of individual scent owners. Proc R Soc B
- 210 Biol Sci. doi:10.1098/rspb.2004.3004.
- Jacob S, Sallé L, Zinger L, Chaine AS, Ducamp C, Boutault L, Russell AF, Heeb P.
- 212 2018. Chemical regulation of body feather microbiota in a wild bird. Mol Ecol.
- 213 doi:10.1111/mec.14551.
- Janssen E, Göhlen B, Behrens D, Richter K, Zavazava N. 2001. Allogeneic
- recombinant soluble MHC class I molecules modify urinary odor cues in rats. Physiol
- 216 Behav. doi:10.1016/S0031-9384(00)00389-9.
- 217 Knapp LA, Robson J, Waterhouse JS. 2006. Olfactory signals and the MHC: A
- review and a case study in Lemur catta. In: American Journal of Primatology.
- 219 Kubinak JL, Stephens WZ, Soto R, Petersen C, Chiaro T, Gogokhia L, Bell R, Ajami
- 220 NJ, Petrosino JF, Morrison L, et al. 2015. MHC variation sculpts individualized
- 221 microbial communities that control susceptibility to enteric infection. Nat Commun.
- doi:10.1038/ncomms9642.
- 223 Kwak J, Opiekun MC, Matsumura K, Preti G, Yamazaki K, Beauchamp GK. 2009.
- 224 Major histocompatibility complex-regulated odortypes: Peptide-free urinary volatile

- signals. Physiol Behav. doi:10.1016/j.physbeh.2008.10.003.
- 226 Kwak J, Willse A, Matsumura K, Opiekun MC, Yi W, Preti G, Yamazaki K,
- 227 Beauchamp GK. 2008. Genetically-based olfactory signatures persist despite dietary
- variation. PLoS One. doi:10.1371/journal.pone.0003591.
- Lanyon C V., Rushton SP, O'Donnell AG, Goodfellow M, Ward AC, Petrie M, Jensen
- 230 SP, Morris Gosling L, Penn DJ. 2007. Murine scent mark microbial communities are
- 231 genetically determined. FEMS Microbiol Ecol. doi:10.1111/j.1574-
- 232 6941.2006.00252.x.
- Leclaire S, Van Dongen WFD, Voccia S, Merkling T, Ducamp C, Hatch SA,
- Blanchard P, Danchin É, Wagner RH. 2014. Preen secretions encode information on
- 235 MHC similarity in certain sex-dyads in a monogamous seabird. Sci Rep.
- 236 doi:10.1038/srep06920.
- Leclaire S, Jacob S, Greene LK, Dubay GR, Drea CM. 2017. Social odours covary
- with bacterial community in the anal secretions of wild meerkats. Sci Rep.
- 239 doi:10.1038/s41598-017-03356-x.
- Leclaire S, Strandh M, Dell'Ariccia G, Gabirot M, Westerdahl H, Bonadonna F. 2019.
- 241 Plumage microbiota covaries with the major histocompatibility complex in blue
- 242 petrels. Mol Ecol. doi:10.1111/mec.14993.
- Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F. 2017. Odour-based
- 244 discrimination of similarity at the major histocompatibility complex in birds. Proc R
- 245 Soc B Biol Sci. doi:10.1098/rspb.2016.2466.
- 246 Martín-Vivaldi M, Peña A, Peralta-Sánchez JM, Sánchez L, Ananou S, Ruiz-
- 247 Rodríguez M, Soler JJ. 2010. Antimicrobial chemicals in hoopoe preen secretions are
- produced by symbiotic bacteria. Proc R Soc B Biol Sci. doi:10.1098/rspb.2009.1377.

- 249 Milinski M, Griffiths SW, Reusch TBH, Boehm T. 2010. Costly major
- 250 histocompatibility complex signals produced only by reproductively active males, but
- not females, must be validated by a "maleness signal" in three-spined sticklebacks.
- 252 Proc R Soc B Biol Sci. doi:10.1098/rspb.2009.1501.
- 253 Nakagawa S, Lagisz M. 2019. How good does our map of knowledge have to be?: A
- comment on Berger-Tal et al. Behav Ecol. doi:10.1093/beheco/ary137.
- 255 Nakagawa S, Noble DWA, Senior AM, Lagisz M. 2017. Meta-evaluation of meta-
- analysis: Ten appraisal questions for biologists. BMC Biol. doi:10.1186/s12915-017-
- 257 0357-7.
- 258 Novotny M V., Soini HA, Koyama S, Wiesler D, Bruce KE, Penn DJ. 2007. Chemical
- 259 identification of MHC-influenced volatile compounds in mouse urine. I: Quantitative
- proportions of major chemosignals. J Chem Ecol. doi:10.1007/s10886-006-9230-9.
- 261 Olsén KH, Grahn M, Lohm J. 2002. Influence of MHC on sibling discrimination in
- arctic char, Salvelinus alpinus (L.). J Chem Ecol. doi:10.1023/A:1015240810676.
- 263 Olsén KH, Grahn M, Lohm J, Langefors Å. 1998. MHC and kin discrimination in
- 264 juvenile Arctic chart, Salvelinus alpinus (L.). Anim Behav.
- 265 doi:10.1006/anbe.1998.0837.
- Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H. 2003. Major
- 267 histocompatibility complex and mate choice in sand lizards. Proc R Soc B Biol Sci.
- 268 doi:10.1098/rsbl.2003.0079.
- 269 Pearce DS, Hoover BA, Jennings S, Nevitt GA, Docherty KM. 2017. Morphological
- 270 and genetic factors shape the microbiome of a seabird species (Oceanodroma
- 271 leucorhoa) more than environmental and social factors. Microbiome.
- 272 doi:10.1186/s40168-017-0365-4.

- 273 Pearse-Pratt R, Schellinck H, Brown R, Singh PB, Roser B. 1998. Soluble MHC
- antigens and olfactory recognition of genetic individuality: The mechanism. Genetica.
- 275 doi:10.1023/A:1026489524199.
- 276 Penn D, Potts WK. 1998. Untrained mice discriminate MHC-determined odors.
- 277 Physiol Behav. doi:10.1016/S0031-9384(98)00052-3.
- 278 Radwan J, Tkacz A, Kloch A. 2008. MHC and preferences for male odour in the bank
- vole. Ethology. doi:10.1111/j.1439-0310.2008.01528.x.
- 280 Rajakaruna RS, Brown JA, Kaukinen KH, Miller KM. 2006. Major histocompatibility
- 281 complex and kin discrimination in Atlantic salmon and brook trout. Mol Ecol.
- 282 doi:10.1111/j.1365-294X.2006.03113.x.
- 283 Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M. 2001. Female sticklebacks
- count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature.
- 285 doi:10.1038/35104547.
- 286 Röck F, Hadeler KP, Rammensee HG, Overath P. 2007. Quantitative analysis of
- 287 mouse urine volatiles: In search of MHC-dependent differences. PLoS One.
- 288 doi:10.1371/journal.pone.0000429.
- 289 Schaefer ML, Yamazaki K, Osada K, Restrepo D, Beauchamp GK. 2002. Olfactory
- 290 fingerprints for major histocompatibility complex-determined body odors II:
- 291 Relationship among odor maps, genetics, odor composition, and behavior. J
- 292 Neurosci. doi:10.1523/jneurosci.22-21-09513.2002.
- 293 Schellinck HM, Brown RE, Slotnick BM. 1991. Training rats to discriminate between
- the odors of individual conspecifics. Anim Learn Behav. doi:10.3758/BF03197880.
- 295 Schellinck HM, Monahan E, Brown RE, Maxson SC. 1993. A comparison of the
- 296 contribution of the major histocompatibility complex (MHC) and Y chromosomes to

- the discriminability of individual urine odors of mice by Long-Evans rats. Behav
- 298 Genet. doi:10.1007/BF01082464.
- 299 Schellinck HM, Slotnick BM, Brown RE. 1997. Odors of individuality originating from
- the major histocompatibility complex are masked by diet cues in the urine of rats.
- 301 Anim Learn Behav. doi:10.3758/BF03199058.
- 302 Setchell JM, Vaglio S, Abbott KM, Moggi-Cecchi J, Boscaro F, Pieraccini G, Knapp
- 303 LA. 2011. Odour signals major histocompatibility complex genotype in an Old World
- 304 monkey. In: Proceedings of the Royal Society B: Biological Sciences.
- 305 Singer AG, Beauchamp GK, Yamazaki K. 1997. Volatile signals of the major
- 306 histocompatibility complex in male mouse urine. Proc Natl Acad Sci U S A.
- 307 doi:10.1073/pnas.94.6.2210.
- 308 Singer AG, Tsuchiya H, Wellington JL, Beauchamp GK, Yamazaki K. 1993.
- 309 Chemistry of odortypes in mice: Fractionation and bioassay. J Chem Ecol.
- 310 doi:10.1007/BF00994326.
- 311 Slade JWG, Watson MJ, Kelly TR, Gloor GB, Bernards MA, Macdougall-Shackleton
- 312 EA. 2016. Chemical composition of preen wax reflects major histocompatibility
- 313 complex similarity in songbirds. Proc R Soc B Biol Sci. doi:10.1098/rspb.2016.1966.
- 314 Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP,
- 315 Holekamp KE, Schmidt TM. 2013. Symbiotic bacteria appear to mediate hyena social
- odors. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1306477110.
- 317 Wadud Khan MA, Zac Stephens W, Mohammed AD, Round JL, Kubinak JL. 2019.
- 318 Does MHC heterozygosity influence microbiota form and function? PLoS One.
- 319 doi:10.1371/journal.pone.0215946.
- 320 Wegner KM, Shama LNS, Kellnreitner F, Pockberger M. 2012. Diversity of immune

- 321 genes and associated gill microbes of European plaice Pleuronectes platessa. Estuar
- 322 Coast Shelf Sci. doi:10.1016/j.ecss.2011.09.001.
- 323 Whittaker DJ, Gerlach NM, Slowinski SP, Corcoran KP, Winters AD, Soini HA,
- 324 Novotny M V., Ketterson ED, Theis KR. 2016. Social environment has a primary
- 325 influence on the microbial and odor profiles of a chemically signaling songbird. Front
- 326 Ecol Evol. doi:10.3389/fevo.2016.00090.
- 327 Whittaker DJ, Slowinski SP, Greenberg JM, Alian O, Winters AD, Ahmad MM, Burrell
- 328 MJE, Soini HA, Novotny MV., Ketterson ED, et al. 2019. Experimental evidence that
- 329 symbiotic bacteria produce chemical cues in a songbird. J Exp Biol.
- 330 doi:10.1242/jeb.202978.
- 331 Willse A, Belcher AM, Preti G, Wahl JH, Thresher M, Yang P, Yamazaki K,
- 332 Beauchamp GK. 2005. Identification of major histocompatibility complex-regulated
- body odorants by statistical analysis of a comparative gas chromatography/mass

334 spectrometry experiment. Anal Chem. doi:10.1021/ac048711t.

- 335 Willse A, Kwak J, Yamazaki K, Preti G, Wahl JH, Beauchamp GK. 2006. Individual
- 336 odortypes: Interaction of MHC and background genes. Immunogenetics.
- 337 doi:10.1007/s00251-006-0162-x.
- 338 Winternitz J, Abbate J. 2015. Examining the evidence for major histocompatibility
- 339 complex-dependent mate selection in humans and nonhuman primates. Res Rep
- Biol. doi:10.2147/rrb.s58514.
- 341 Wysocki CJ, Yamazaki K, Curran M, Wysocki LM, Beauchamp GK. 2004. Mice (Mus
- 342 musculus) lacking a vomeronasal organ can discriminate MHC-determined
- 343 odortypes. Horm Behav. doi:10.1016/j.yhbeh.2004.02.010.
- 344 Yamaguchi M, Yamazaki K, Beauchamp GK, Bard J, Thomas L, Boyse EA. 1981.

- 345 Distinctive urinary odors governed by the major histocompatibility locus of the mouse.
- 346 Proc Natl Acad Sci U S A. doi:10.1073/pnas.78.9.5817.
- 347 Yamaguchi MS, Ganz HH, Cho AW, Zaw TH, Jospin G, McCartney MM, Davis CE,
- 348 Eisen JA, Coil DA. 2019. Bacteria isolated from Bengal cat (Felis catus × Prionailurus
- bengalensis) anal sac secretions produce volatile compounds potentially associated
- with animal signaling. PLoS One. doi:10.1371/journal.pone.0216846.
- 351 Yamazaki K, Beauchamp GK, Bard J, Thomas L, Boyse EA. 1982. Chemosensory
- 352 recognition of phenotypes determined by the Tla and H-2K regions of chromosome
- 17 of the mouse. Proc Natl Acad Sci U S A. doi:10.1073/pnas.79.24.7828.
- 354 Yamazaki K, Beauchamp GK, Curran M, Bard J, Boyse EA. 2000. Parent-progeny
- recognition as a function of MHC odortype identity. Proc Natl Acad Sci U S A.
- 356 doi:10.1073/pnas.180320997.
- 357 Yamazaki K, Beauchamp GK, Imai Y, Bard J, Boyse EA. 1992. Expression of urinary
- H-2 odortypes by infant mice. Proc Natl Acad Sci U S A. doi:10.1073/pnas.89.7.2756.
- 359 Yamazaki K, Beauchamp GK, Imai Y, Bard J, Phelan SP, Thomas L, Boyse EA.
- 360 1990. Odortypes determined by the major histocompatibility complex in germfree
- 361 mice. Proc Natl Acad Sci U S A. doi:10.1073/pnas.87.21.8413.
- 362 Yamazaki K, Beauchamp GK, Shen FW, Bard J, Boyse EA. 1994. Discrimination of
- 363 odortypes determined by the major histocompatibility complex among outbred mice.
- 364 Proc Natl Acad Sci U S A. doi:10.1073/pnas.91.9.3735.
- Zomer S, Dixon SJ, Xu Y, Jensen SP, Wang H, Lanyon C V., O'Donnell AG, Clare
- AS, Gosling LM, Penn DJ, et al. 2009. Consensus multivariate methods in gas
- 367 chromatography mass spectrometry and denaturing gradient gel electrophoresis:
- 368 MHC-congenic and other strains of mice can be classified according to the profiles of

volatiles and microflora in their scent-marks. Analyst. doi:10.1039/b807061j.