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Abstract 

Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal 

delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm 

to 79.6 ±3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation 

of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. 

Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, 

and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation 

studies using full-thickness human skin showed that the permeation of gamma-T3 from the 

TRF ethosomal formulations was significantly higher (P<0.05) than from the control. The 

cumulative amount of gamma-T3 permeated from TRF ethosome after 48 hours was 1.03 ± 

0.24 µg cm-2  with a flux of 0.03 ± 0.01 µg cm-2 h-1. Furthermore, the flux of gamma-T3 across 

the Strat-M® and the epidermal membrane was significantly higher than that across full-

thickness human skin (p < 0.05). In vitro cytotoxicity studies on HaCat cells showed 

significantly higher cell viability than the pure drug solution (p < 0.05). The enhanced skin 

permeation and high cell viability associated with this formulation suggest a promising carrier 

for the transdermal delivery. 

Keywords: transdermal, TRF, ethosomes, human skin, permeation, cell-viability. 
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Introduction 

Palm oil is extracted from the fruit of the oil palm plant (Elaies guineensis and Elaeis oleifera). 

The use of fats and oils as food supplements and in cosmetics and medicines is widespread and 

palm oil is one of the predominant members of the fats and oils family. More than 90% of palm 

oil produced is used in the food industry (Mba et al. 2015). Palm oil derivatives are also heavily 

used, and these include palm olein, palm stearin, purified fatty acids, and fatty acid derivatives. 

Palm olein and palm stearin are used as bases in the formulation and manufacture of semisolid 

pharmaceutical dosage forms. Whereas the fatty acids present in palm oil have been shown to 

elicit permeation enhancement in transdermal drug delivery (TDD) and have been employed 

in transdermal therapeutic systems (skin patches) (Barry 2001). Palm tocotrienol-rich fractions 

(TRF)  has a long history of safe use as a natural vitamin E source and as an antioxidant in the 

food industry and is certified by the US FDA as generally recognised as safe (GRAS). TRF 

contains ˃80% tocotrienols with gamma-T3 being the predominant isomer. Studies report a 

nano-emulsified tocotrienol formulation for dermal photoprotection and were found skin-

compatible indicating its potential for topical and transdermal use (Brownlow et al. 2015; 

Hasan et al. 2018).  The stratum corneum (SC) layer which can significantly control the 

permeation of relatively high molecular weight compounds and is considered the major 

limiting factor for the transdermal delivery of many drugs. Therefore, to enhance transdermal 

delivery, it may be necessary to employ various enhancement techniques such as chemical or 

physical methods or by using nanocarrier systems. Nanocarrier systems such as nanoparticles 

or nanovesicles possess advantages over the other methods as they promote transdermal 

permeation without affecting the skin’s structure (Williams and Barry 2004; Manickam et al. 

2019). Although nanoparticles have shown some success in transdermal delivery, the tough SC 

layer is still a challenging barrier (Nair Rajesh Sreedharan et al. 2019). Rapid attainment of 

therapeutic blood levels with a sufficient flux to maintain those concentrations remains out of 
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reach for many drugs. Lipid vesicles such as liposomes have shown some success in topical 

and transdermal delivery (Jose et al. 2018), however, liposomes are effective primarily for 

topical delivery with evidence of their skin permeation being limited. Given that liposomes 

rarely permeate much deeper than the SC, ethosomes are being evaluated as delivery systems 

for improving the permeation of both hydrophilic and hydrophobic drugs (Nainwal et al. 2019). 

A majority of studies with tocotrienols have been aimed at improving bioavailability following 

oral administration (Alqahtani et al. 2013, 2014). Permeation studies of  TRF nanoformulations 

utilising human skin or similar models such as Strat-M® membrane have received much less 

research attention. Because of its hydrophobicity (Log P = 8.9) and relatively high molecular 

weight (410.6 g/mol) the passive diffusion of gamma-T3 through skin is extremely difficult. 

Studies have shown that gamma-T3 from TRF nanoemulsions can permeate across a cellulose-

ester membrane (CM) (Pham et al. 2016). However, the flux values may not be directly 

comparable to those obtained using Strat-M® membranes (Haq et al. 2018) or human skin. CM 

is employed in many permeation studies but they are simple porous membranes with no 

inherent rate controlling property. Our research group previously reported that a TRF vehicle 

possessed promising skin permeation enhancing effects for the moderately lipophilic drug 

ibuprofen  (Singh et al. 2018). TRF has been shown to possess anticancer activities against 

many types of cancers including melanoma (Aggarwal et al. 2003; Ling et al. 2012), and their 

poor aqueous solubility hinder their passage across the skin. Reports suggest that ethosomes 

can reach deeper skin layers due to their enhanced permeability, and this property would be 

beneficial in melanoma treatment (Yu et al. 2015). Hence, it was considered worth developing 

a suitable TRF containing ethosomes aimed at melanoma treatment and evaluate in vitro before 

commencing any biological evaluations. The main objective of this work was to assess the in 

vitro permeation profiles of TRF-ethosome formulations using specific models such as 
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synthetic Strat-M® membrane and excised full-thickness human skin that can provide insight 

into the behaviour of formulation in vivo. 

Materials and Methods 

Materials 

TRF and the gamma-T3 standard were obtained from ExcelVite Sdn Bhd, Perak, Malaysia. 

Phosphatidylcholine from Soy Lecithin was purchased from MP Biomedicals, USA 

Cholesterol was purchased from Sigma Aldrich, USA. Ethanol, phosphate buffered saline 

(PBS-pH 7.4 Tablets) and methanol (HPLC grade) were purchased from Fisher Scientific, UK. 

The Strat-M® membrane and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide] reagent were purchased from Millipore, Merck Germany. Dulbecco’s modified 

Eagle’s medium (DMEM), polysorbate 80, penicillin-streptomycin (1%) and foetal bovine 

serum were purchased from Nacalai Tesque, Japan. The HaCat cells were obtained from the 

Center for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, 

Malaysia. 

Methods 

Formulation of tocotrienol containing ethosomes. 

Ethosomes were synthesised using the thin film evaporation method with some modifications 

(Zhai et al. 2015). The composition of ethosomal formulations is given in Table 1. The vesicle 

size and the zeta potential (ZP) of ethosomes were optimised by modulating the phospholipid 

content, alcohol composition and sonication parameters. Firstly, Soya phosphatidylcholine 

(SPC)), cholesterol and polysorbate 80 were dissolved in chloroform and methanol (2:1 v/v) in 

a 25 mL round-bottom flask. To this mixture, TRF (10mg) was added and the binary solvent 

mixture allowed to evaporate using a rotary evaporator (Büchi Rotavapor® R-200, Switzerland) 

at 40 ˚C and 50 rpm for 30 minutes. A thin film was formed on the walls of the flask, which 

was redispersed in PBS containing 30 - 50% ethanol at 40 ˚C whilst rotating at 50 rpm for a 
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further hour and the final volume was adjusted to 10 mL. The vesicles obtained were transferred 

into a 50 mL centrifuge tube, kept in an ice bath (Watson, Japan) and sonicated using a probe 

ultrasonicator (Q Sonica, Newtown, USA) at 20% amplitude for 1 min with a pulse of 2 sec 

ON and 5 sec OFF sequence.  

Determination of vesicle size, polydispersity index (PDI) and ZP  

The average diameter, PDI and the ZP of ethosome formulations were determined using the 

Zetasizer Nano ZS® (Malvern Instruments, Malvern, UK) after appropriate dilution using 

deionised water (1:3), n=3. Although Zetasizer® is commonly used for size analysis, it does 

not provide details on the morphological characteristics of particles. 

Scanning Transmission Electron Microscopy (STEM)  

Surface morphology was studied by using a Field Emission Scanning Electron Microscope 

(Quanta 400F, FEI, USA) at a voltage of 5 kV and a magnification of 20,000 x. Ethosomal 

dispersion were placed on a copper grid using a micropipette and allowed to dry overnight at 

25°C. The STEM images were recorded for the drug-loaded ethosomes and the blank 

preparations.  

Determination of the Encapsulation efficiency (EE%)  

The EE was determined by ultracentrifugation methods based on that of Heeremans et al. with 

some modification (Heeremans et al. 1995). The drug-loaded ethosomes kept overnight at 

refrigerator were ultracentrifuged (Beckman Coulter, Allegra® 64R Centrifuge) at 25,000 rpm 

at 4 °C for 45 minutes. The supernatant was removed and the gamma-T3 present in the 

supernatant, i.e. the unentrapped drug, was determined by injecting 30 µL of the sample into 

the HPLC system (Agilent 1290 series). A reverse phase column (Hypersil Gold C18, 250 mm 

length × 4.6 mm diameter), maintained at 30 °C was used for the analysis. An isocratic elution 

was employed with a mobile phase composition of 95:05 (methanol: water) at a flow rate of 

1.1 ml/min, and the detection wavelength set at 295 nm. The total amount of drug in the 
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formulation was determined by lysing the ethosomes with Triton X (10%) and the resultant 

mixture was filtered through a 0.45 µm nylon syringe filter prior to HPLC analysis (n=3). The 

encapsulation efficiency was determined using equation 1: 

EE% = T - U
T

× 100   ………………………………………………………………. equation 1 

  

T- Total amount of gamma-T3 in the formulation 

U- Unentrapped gamma-T3 

Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

The FTIR spectra were recorded for cholesterol, SPC, blank ethosomes, TRF, and the drug-

loaded ethosome using a Perkin-Elmer ATR-FTIR spectrophotometer (Perkin Elmer, USA). 

The crystal surface was cleaned using acetone to remove contaminants, which would have 

caused interference on the spectrum. A background scan was run first and then a pinch of 

sample was placed on the diamond crystal surface and scanned from 4000-400 cm-1 over 36 

scans having a resolution of 4 cm-1 at an interval of 1 cm-1. 

In vitro permeation experiments 

Permeant solubility studies in the receptor phase  

The saturation solubility of TRF was determined in PBS pH 7.4, PBS pH 7.4 containing 1% 

polysorbate 80 and PBS pH 7.4 with 40% ethanol. The solubility of the permeant in these 

vehicles was determined by adding an excess quantity to the vehicle and shaking in a 

thermoregulated incubator shaker at 37 °C and 200 rpm for 72 hours. The samples (n=3) were 

then filtered using a 0.45 µm nylon syringe filter and the drug content was analysed using the 

HPLC methods outlined in earlier sections.  

In vitro permeation studies of TRF-ethosomes using Strat-M® membrane 

The in vitro permeation of the selected ethosomal formulations was evaluated across Strat-M® 

membrane by using static Franz-type diffusion cells according to our previously reported 
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method (Nair Rajesh Sreedharan et al. 2019). The donor and the receptor compartments of the 

diffusion cells were having capacities of 1 mL and 2 mL respectively with an effective 

permeation area of approximately 0.95 cm2. The Strat-M® membrane was placed in between 

the donor and the receptor compartment and secured tightly using a horseshoe clamp. The 

optimized formulations of TRF ethosomes (TRF30 and TRF40) and the control (40% ethanolic 

TRF solution) were loaded in the donor compartments. Whereas, the receptor compartment 

was filled with phosphate buffered saline (PBS) containing polysorbate 80 (1% w/v). The 

diffusion cells were placed on a magnetic stirring block where the receptor compartment was 

submerged in a water bath maintained at 37 ºC. Samples were withdrawn (200 µL) from the 

receptor compartment at predetermined time points up to 48 hours and analysed by HPLC, 

n=4. Permeation profile curves were generated by plotting the cumulative amount of drug 

permeated (µg/cm2) against time (hr). The steady state flux (J) which represents the amount of 

tocotrienol permeated per unit area was determined from the gradient of the linear portion of 

the plot (Nair R. S. and Nair 2015).  

Ex vivo skin permeation studies using full-thickness human skin and heat separated 

epidermal membrane. 

Skin samples were obtained post-abdominoplasty from a local clinic in Kuala Lumpur, 

Malaysia after obtaining the Ethics approval from the Science and Engineering Research Ethics 

Committee (SEREC), University of Nottingham Malaysia (Ethics approval No: RS010516). A 

participant information sheet had been given to subjects with clear information about the type 

of research being carried out and about the disposal of their donated skin. Skin samples were 

collected after obtaining consent from patients and the excised skin samples were brought to 

the lab immediately after surgery. The subcutaneous fat was removed by blunt dissection and 

the skin was subsequently cut into pieces of approximately 3 cm2. The processed skin samples 
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were subsequently wrapped in aluminium foil, sealed in a polythene bag and stored at −20 °C 

until future use.  

The skin permeation experiments were conducted in a similar way as explained for 

Strat-M® membrane. The diffusion cells were assembled with skin samples where the stratum 

corneum (SC) layer facing upward and clamped firmly between the donor and the receptor 

compartments, n=5. TRF ethosome (equivalent to 1 mg gamma-T3) was taken in the donor 

phase whereas, the receptor phase contained PBS pH 7.4 with 1% polysorbate 80 and sodium 

azide (0.02% w/v). Sodium azide was used as an antibacterial agent to prevent microbial 

growth that likely to arise from the skin on prolonged exposure at 37 °C. The receptor samples 

were withdrawn at regular intervals and analysed by injecting 10 µL samples to an UHPLC 

system (Waters, Acquity® ArcTM) equipped with a fluorescence detector (2475 FLR). A reverse 

phase column (CORTECS® C18, 2.7 μm, 50 mm length × 4.6 mm diameter), maintained at 25 

± 5 °C was employed for gamma-T3 quantification. The mobile phase consisted of a mixture 

of methanol and water (95:05) with a flow rate maintained at 1.0 mL/minute. The detector 

excitation and emission wavelengths were 295 nm and 330 nm respectively. Permeation studies 

were was also carried out using the heat separated epidermal membrane. The full-thickness 

human skin was immersed into de-ionised water (60 °C) for 1 minute and the epidermal layer 

was carefully peeled away using forceps. Experiments were conducted similar to that with full-

thickness skin with the only exception being that epidermal membrane was used instead of full-

thickness skin, n=5.  

Drug stability studies in skin extract and the receptor media 

Stability of the permeant on exposure to the receptor media and the skin extract were assessed. 

Firstly, full-thickness human skin weighing 10 g was minced on white ceramic tile using a 

scalpel blade and placed in a glass bottle containing 50 mL of PBS pH 7.4 with 1% polysorbate 

80. The mixture was then placed on a shaker incubator at 37 °C and macerated for 24 hours at 
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200 rpm. The skin extract was filtered through a Whatman® filter paper (110 nm diameter and 

11 µm pore size), and 2 mL of the extract was added to a specified quantity (100 µg) of drug 

solution in a glass sample bottle. These drug solutions were then incubated in a water bath at 

37 °C for 72 hours and at pre-determined time intervals (0, 6, 12, 24, 48, 72 hours), samples 

were removed and analysed by using the HPLC method. In a similar manner, permeant stability 

in the receptor media without the skin extract (PBS pH 7.4 + 1% polysorbate 80) was also 

assessed to provide a clearer picture around potential degradation issues during the permeation 

studies using Strat-M® membrane.   

In vitro cytotoxicity study on HaCat cells 

Cytotoxicity of the pure TRF and the formulations was evaluated using MTT assay as reported 

previously (Nair Rajesh Sreedharan et al. 2019). The HaCat cells (human keratinocyte cells) 

were grown in DMEM media with 10% fetal bovine serum and 1% penicillin-streptomycin. 

The fully confluent cells were seeded in a 96-well plate (5 × 103 cells/well) and incubated at 

37 °C maintaining 5% CO2 for about 24 hours leaving the cells to adhere onto the 96-well plate. 

Thereafter, the media was removed, and the cells were treated with the formulations and the 

pure drug solutions. The untreated cells maintained at the same experimental conditions were 

used as the control. The plates were incubated for 72 hours and 20 µL MTT solution (5mg/mL 

in sterile PBS) was added to each well and further incubated for 4 hours. The purple coloured 

formazan crystals formed was then solubilised by adding DMSO (100 µL) and the absorbance 

was measured at 570 nm using a microplate reader (Biotek Instruments, Inc USA), n=3. The 

percentage cell viability was calculated on 48 and 72-hour incubation (Nair Rajesh Sreedharan 

et al. 2019; Scolari et al. 2019). 

Statistical analysis  

Statistical analysis was done using Graph-Pad Prism software version 7.03. All values are 

expressed as a mean ± standard deviation. The statistical significance between two groups was 
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done using Student’s t-test, more than two sets of data was tested by one-way analysis of 

variance (ANOVA) followed by post-hoc Tukey-HSD (Honestly Significant Difference), p < 

0.05 was considered significant. 

Results and Discussion 

Formulation of TRF loaded ethosomes  

Ethosomes were successfully developed by the film evaporation technique (Touitou et al. 

2000). Optimisation was performed by varying the phospholipid concentration, ethanol 

content, sonication time and the sonication amplitude. Reports suggest that a particle size ˂ 

300 nm is suitable for passive transport across the skin (Verma DD et al. 2003; Verma Poonam 

and Pathak 2012). Therefore, we aimed to restrict the ethosome sizes to below 300 nm by 

modulating the formulation variables. TRF ethosomes ethosomes were in the size range of 64.9 

± 2.2 (TRF-40) to 79.6 ±3.9 nm (TRF-30), where the ZP was found to be -53.3 ± 2.5 and -62.0 

± 2.6 mV correspond to TRF-40 and TRF-30 respectively.  It was observed that when the 

ethanol concentration was increased from 30% to 40%  the vesicle size decreased (Figure 1a). 

However, further increasing the ethanol concentration up to 50% led to the production of large 

vesicles (219.4 ± 6.3 nm). Ethanol concentration above a certain level may soften the lipid 

bilayer within the ethosome, compromising on the structural integrity and encapsulation 

efficiency (Fang et al. 2008; Ahad et al. 2013). Therefore, TRF-30 and TRF-40 were selected 

for further analysis.  

Vesicle size showed a direct relationship with increasing phosphatidylcholine 

concentration in the formulation; this is in line with previous reports (Pathan et al. 2018). Here, 

the phospholipid concentration was varied between 0.5 % w/v and 2.0 %w/v. The vesicle size 

of ethosomes prepared using 0.5 % phospholipid was greater than those prepared with 1.0 % 

w/v phospholipid; this was possibly due to the vesicles being imperfectly formed. This was 

evident from the higher PDI value obtained at a concentration of 0.5 % (0.78) as compared to 
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1% (0.24). The SPC concentration was optimised as 1.0 % w/v with the vesicle size from this 

formulation being smallest with a low PDI (Figure 1 b). A uniform size distribution was 

observed with an SPC concentration of 1.0% w/w giving PDI values ˂ 0.25. Furthermore, the 

ZP has a significant influence on the stability of vesicles: a high positive or negative ZP results 

in greater repulsion between vesicles as this is indicative of a more disperse electrical double-

layer which increases the likelihood of repulsion between adjacent particles and therefore 

reduces chance of aggregation. Studies have shown that ZP values higher than +/−30 mV 

exhibit significant electrostatic repulsion between the adjacent particles and can prevent the 

fusion of vesicles (Freitas and Müller 1998).  

The effect of sonication amplitude on ethosome formation was evaluated at amplitudes 

of 20%, 30% and 40%, and the effect of sonication duration was also tested by measuring the 

ethosome size at different time intervals (0, 10, 30 and 60 seconds). The results showed that 

vesicle size was inversely related to the sonication time and the amplitude (Figure 1 c & d). At 

low sonication amplitudes (20% and 30%) there was no significant difference seen in the 

average vesicle size however, 40% amplitude caused a significant reduction in the mean vesicle 

size. Higher sonication amplitudes and longer durations of sonication can possibly disrupt the 

ethosome structure. Silva et al. also reported that vesicle size was reduced on increasing the 

sonication amplitudes (Silva et al. 2010) and it has also been reported that high amplitudes 

(>40%) may generate heat and if the temperature exceeds 50°C then it may cause the hydrolysis 

of phosphatidylcholine. For these reasons, an amplitude of 20% for 60 s was employed 

throughout the study. 

STEM analysis 

Ethosomes imaging was performed by STEM. This technique combines the principle of SEM 

and TEM and was performed using the FE-SEM machine with an additional imaging holder to 

support a copper grid. The images of the optimised ethosomes showed a spherical shape with 
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smooth edges (Figure 2). No fusion or aggregation was observed indicating a homogeneous 

distribution of ethosomes, this was in agreement with the low PDI (˂ 0.25) obtained from 

Zetasizer analysis. However, the vesicle size data were slightly greater than those obtained with 

Zetasizer. The DLS measurements provide the average hydrodynamic diameter of a relatively 

high volume of colloidal suspension whereas the STEM images illustrate individual particles, 

i.e. a very low sample volume. Therefore, a combination of DLS measurements with imaging 

techniques can provide a better interpretation (Eaton et al. 2017). 

Encapsulation efficiency 

The encapsulation efficiencies of the TRF ethosomes were 66.8 ± 1.9% and 68.5 ± 1.2% 

correspond to TRF-30 and TRF-40 respectively, and no significant differences (p ˃0.05) found 

between TRF-30 and TRF-40. Reports suggest that ethanol can increase the EE of both 

hydrophilic and lipophilic drugs. Ethanol is effectively acting as a co-solvent enabling a larger 

amount of drug to be entrapped in the lipid bilayer (Dubey et al. 2007). High EE with an 

optimum vesicle size helps to maximise the transdermal delivery of drugs via vesicular carriers.  

FTIR analysis  

FTIR analyses of TRF and the formulation additives were performed to determine whether any 

structural changes had occurred during the formulation process (Figure 3). Prominent peaks 

from TRF were recorded at the following wavenumbers: 3423.4 cm-1 O−H stretching vibration, 

2923.7 cm-1 and 2853.85 cm-1 CH2 stretching, 1723.01 cm-1 C=C stretch, 1453 cm-1 C-H bend 

and 1377.04 cm-1 −C−C− stretch. SPC showed distinctive peaks at: 2923.0 cm-1 probably due 

to CH2 stretching vibration, 1736.6 cm-1 saturated aliphatic carbonyl (C=O) stretching 

vibration, 1614.8 cm-1 N−H bend of primary amines, and 1460.7 cm-1 C−H bending of CH3. A 

characteristic phosphate (PO4) stretch was seen at 1052.9 cm-1 and the quarternary amino 

stretching at 1227 cm-1  (Nzai and Proctor 1998). In the spectrum for cholesterol, a weak band 

at 3394.4 cm-1 corresponds to the O−H stretching vibration, peaks at 2930.5 cm-1 and 2856.3 
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cm-1 are due to CH2 stretching vibration, the bands at 1462.5 cm-1 and 1364.9 cm-1 are −C−C− 

aromatic stretching and C−O stretching respectively. It is evident from the individual spectra 

that many common functional groups were present in the excipients and the active drugs. This 

could potentially lead to the shifting of peaks to lower or higher wave numbers in the final 

formulation. However, the characteristics peaks described above for TRF were visible in the 

respective ethosome spectra suggesting that TRF was compatible with the formulation 

additives.  

Permeant solubility studies and the design of the receptor phase medium 

In an attempt to find a suitable receptor medium, saturation solubilities of TRF (gamma-T3) 

were determined in various vehicles (Table 2). TRF was found to be practically insoluble in 

PBS 7.4, and very poorly soluble in PBS containing 40% ethanol. However, TRF demonstrated 

an enhanced solubility in PBS containing 1% w/v polysorbate 80, a surfactant which has 

previously been shown to help maintain sink conditions (Ruela et al. 2016). Therefore, PBS 

containing 1% w/v polysorbate 80 was used as the preferred receptor phase considering its 

superiority in solubilising the drug and its minimal effect on membrane integrity. In vitro 

permeation studies using Franz-type diffusion cells generally exhibit a steady state drug 

diffusion profile under perfect sink conditions. It has been suggested that the drug 

concentration in the receptor phase should be much lower than the saturation solubility to 

ensure that permeant dissolution is not a rate-limiting step (Singh et al. 2018). The maximum 

receptor concentration obtained after 48h permeation study was less than 2% of the saturation 

solubility of TRF, thus ensuring a perfect sink condition.  

 

In vitro permeation of TRF from ethosomal formulations across Strat-M® membrane  

The permeation of TRF from the ethosomal formulations was shown to be significantly higher 

than from the control (40% ethanolic TRF) (Figure 4). Furthermore, there was also found to be 
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a significant difference in the cumulative amount permeated after 48 hours between the two 

ethosomal formulations, i.e. TRF30 and TRF40 (p < 0.05). TRF40 showed a greater cumulative 

amount permeated after 48 hours (132.38 ± 10.84 µg cm-2) and a higher flux (3.15 ± 0.28 µg 

cm-2 h-1). Whereas, TRF30 showed a cumulative permeation and flux of 87.44 ± 7.72  

µg cm-2 and 2.07 ± 0.20 µg cm-2 h-1 respectively. These significant differences in amount 

permeated and flux could be due to the differences in ethanol content. Studies have shown that 

gamma-T3 permeation from TRF nanoemulsions across a cellulose-ester membrane (CM) gave 

a flux of 0.39 µg cm-2 hr-1 (Pham et al. 2016), which was much lower than the flux obtained 

using ethosomal formulations (TRF30 or TRF40) in our study. CM is employed in many 

permeation studies but they are simple porous membranes with no inherent rate controlling 

property as such, the flux values will not be directly comparable to those obtained using Strat-

M® membranes (Haq et al. 2018).  Although the structure of Strat-M® is complex and offers 

greater resistance to diffusion than CM, the gamma-T3 flux obtained from the ethosomal 

formulations was at least 5-fold greater than from TRF nanoemulsions reported in Pham et al. 

study. This clearly shows the advantages of ethosomal formulations in enhancing the 

permeation of highly lipophilic compounds such as TRF.  

Ex vivo permeation of TRF from ethosomal formulations across full-thickness human  

skin 

The skin permeation studies of ethosomal formulation (TRF-40) showed promising results than 

the control solution. The cumulative amount of gamma-T3 permeated with TRF-40 was 1.03 

± 0.24 µg cm-2 with the corresponding flux value being 0.03 ± 0.01 µg cm-2 h-1 (Figure 5a), and 

this was much lower compared to the results obtained using Strat-M®. Such a large difference 

in flux is attributable to the significant differences between the morphology of skin and the 

artificial membrane. It is to be agreed with the facts that, the SC layer remains to be the main 

checkpoint in the skin permeation. The corneocytes in the SC are tightly bound and play a key 
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role in maintaining the barrier properties of the skin (Sapra et al. 2012). Reports suggest that 

ethosomes can permeate under both occluded and non-occluded conditions (Dayan and Touitou 

2000). Therefore, to avoid solvent loss due to evaporation and to keep the donor phase 

hydrated, occluded conditions were maintained throughout our experiments. There are a 

number of suggested mechanisms for ethosomal skin permeation. Most studies report a 

synergistic effect between ethanol and the vesicular components. A high ethanol concentration 

and the malleable nature of the ethosomes would have favoured transdermal permeation.  

Touitou et al. explained the skin permeation of ethosomes with regards to the “softening” of 

SC lipids (Touitou et al. 2000). Ethanol can interact with the polar head groups of the lipid 

molecules thereby causing a transition of the SC lipids resulting in enhanced fluidity. This can 

augment membrane permeability, thereby permitting the passage of vesicles through the tiny 

pores of the skin (Verma P. and Pathak 2010; Pandey et al. 2015). Alternatively, it has been 

suggested that phospholipids present in ethosomes may interact with SC lipids, possibly 

altering the transition temperature which may facilitate enhanced permeation (Yang et al. 

2017). The surface charge of vesicles also plays a significant role in transdermal permeation. 

Reports suggest that negatively charged vesicles exhibit enhanced skin permeation as 

compared to those that are positively charged (Ogiso et al. 2001). It is possibly due to the 

repulsion between the vesicles and the negatively-charged skin lipids, that may create a 

transient opening leading to enhanced skin permeation (Kohli and Alpar 2004).  

Permeation studies of TRF ethosomes using heat separated epidermal membrane 

The flux and the cumulative permeation of TRF-40 after 48 hours was 0.04 ± 0.01 µg cm-2 h-1 

and 1.73 ± 0.29 µg cm-2 respectively. This result indicated that the flux of gamma-T3 from the 

ethosomal formulation across the epidermal membrane was significantly higher than that 

across full thickness human skin (p < 0.05) (Figure 5b). This discrimination observed between 

the two different biological membranes is largely due to the differences in the physiological 
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structures and the impact of physicochemical properties, namely the MW and the log P of the 

permeant (Potts and Guy 1992). Gamma-T3 is highly lipophilic with a log P of 8.9 and MW 

411 Da. Reports have shown that SC stripping causes an enormous increase in permeation, 

confirming that the SC is the principal barrier to transdermal delivery (Andrews et al. 2013). 

Fick’s first law states that the membrane thickness is inversely proportional to the rate of 

diffusion. Therefore, with the epidermis being thinner than full-thickness skin, higher 

permeation was anticipated. The SC and the underlying dermis layer depict the lipophilic and 

aqueous regions respectively. Ethosomes, being highly deformable, can penetrate the SC and 

subsequently fuse with skin lipids and thereby release their encapsulated drug into the deeper 

layers of the skin. The highly lipophilic gamma-T3 (log P 8.9) may diffuse slower through the 

relatively hydrophilic dermis layer. For the reasons outline above it can be concluded that the 

flexible nature of ethosomes and the lipophilicity of TRF favour passage through the SC and 

epidermis, whilst diffusion through the relatively hydrophilic dermis layer may cause higher 

resistance. This could be one of the possible reasons for the enhanced permeation observed 

through the epidermal layers as compared to full-thickness skin. Our results were in agreement 

with a previous simulation study, suggesting that highly lipophilic compounds easily pass 

through SC whereas a slow diffusion was reported through viable epidermis and the dermis 

layer (Yamaguchi et al. 2008).  

Drug stability in skin extract and in the receptor media 

Drug stability studies in the receptor phase media were conducted at 37 °C, the receptor phase 

temperature. Interestingly, reports suggest that polysorbates, of which polysorbate 80, 

significantly enhance the stability of hydrophobic drugs through the formation of micelles and 

support the appropriateness of polysorbate 80 in the diffusion medium. TRF showed enhanced 

stability in the media containing skin extract compared to the media alone (Figure 6). This 

could be due to the ionic interaction or hydrogen bonding between the drug and the skin 
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components. Protonated groups present in tocotrienols might have interacted with the 

negatively charged skin proteins which would have formed strong ionic linkages, and the 

crosslinks formed between the skin proteins might have enhanced the thermal stability of TRF.  

In vitro cytotoxicity on healthy HaCat cells 

The skin compatibility of TRF ethosomal formulations was evaluated using healthy HaCat 

cells. There were significant differences in cell viability when a pure TRF solution and the 

TRF-loaded ethosomal formulations were tested. A concentration-dependent reduction in cell 

viability was observed (72 hours) where the % cell viability at the highest drug concentration 

(50 µg/mL) correspond to TRF solution was found to be 10.9 ± 3.7% and for TRF ethosomes 

it was  84.9 ± 6.7% (Figure 7). Moreover, the blank ethosomes also showed a high % cell 

viability (>95%), indicating the apparent skin compatibility of excipients used in the 

formulation of ethosomes. This suggests that any cytotoxicity demonstrated was due to the 

drug TRF and not from the carrier system.  These results corroborate previous reports which 

suggested that ethosomal formulations had a low toxicity to normal cells (Marto et al. 2016). 

Xie et al. reported a similar cytotoxicity of drug-free ethosomes on healthy fibroblast cells 

(>90% cell viability), further supporting the biocompatibility of ethosomal carriers (Xie et al. 

2018). Reports have also revealed that lipid vesicles may have a protective effect on HaCat 

cells, suggesting that the phospholipid content could be the possible reason for enhanced cell 

viability as compared to non-vesicular TRF solutions (Liu et al. 2013; Avadhani et al. 2017).  

 

Conclusion 

Ethosomes containing TRF were successfully formulated and evaluated in vitro. The vesicle 

size and ZP were optimised for transdermal delivery and colloidal stability. Permeations studies 

using full-thickness human skin showed that gamma-T3 flux from the ethosomal formulations 

was significantly higher than that of a TRF solution. Furthermore, the drug flux across the 
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Strat-M® and the epidermal membrane was found to be higher than that across full-thickness 

skin (p < 0.05). Cytotoxicity studies on healthy HaCat cells supported the notion that TRF 

ethosomal formulations are safe and possess great potential for transdermal delivery. Further 

in vivo evaluations should be conducted in order to validate these in vitro data. 
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Figure 1. Effect of formulation variables on the ethosome size: (a) Effect of Phospholipid 
concentration; (b) Effect of ethanol content; (c) Effect of sonication duration and d) Effect of 
sonication amplitude. Mean ± SD, N=3. (ns: not significant p ˃0.05; ** p < 0.002; *** p < 
0.001) 
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Figure 2. Shows the STEM image of TRF ethosomes. 
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Figure 3. FTIR spectra of SPC, cholesterol, pure TRF and TRF ethosomes. 

 

 

Figure 4. Permeation of gamma-T3 from TRF ethosomes (TRF-30 and TRF-40) and control 
(TRF in 40% ethanolic solution) through Strat-M® membrane. Mean ± SD, n=4. (*** p < 
0.001) 
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Figure 5. Permeation of gamma-T3 from TRF ethosomes (TRF-40) and control (TRF in 40% 
ethanolic solution) through excised full-thickness human skin (5a), and a comparison of 
cumulative gamma-T3 permeated from TRF-40 across the full-thickness human skin and the 
heat-separated epidermal membrane (5b). Mean ± SD, n=5 (*** p < 0.001, ** p < 0.002). 
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Figure 6. Stability of gamma-T3 in the receptor media at 37 °C showing enhanced stability in 
the media containing skin extract. Mean ± SD, n=3. (*** p < 0.001) 

 

 

 

Figure 7. Cell viability of HaCat cells on treatment with TRF solution, blank ethosomes and 
the TRF ethosomes at three different concentrations (12.5 µg/ml, 25 µg/ml, 50 µg/ml), showing 
enhanced cell viability of TRF ethosomes than TRF solution. Mean ± SD, N=3. (***p < 0.001, 
*p < 0.033). 
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Table 1. The composition of the blank and the drug-loaded ethosomal formulations 

Ethosome 
Formulation 

Drug           
(mg) 

Phospholipid 
(mg) 

Cholesterol 
(mg) 

Polysorbate 
80 (mg) 

Ethanol 
(%) 

Blank - 50 10 10 30 

  - 100 10 10 30 

  - 200 10 10 30 

  - 50 10 10 40 

  - 100 10 10 40 

  - 200 10 10 40 

  - 50 10 10 50 

  - 100 10 10 50 

  - 200 10 10 50 

TRF 10 100 10 10 30 

  10 100 10 10 40 

  10 100 10 10 50 
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Table 2. Saturation solubility values of TRF in various vehicles. 

Vehicle Saturation solubility (µg/mL), n=3 
 

PBS Not detectable 

PBS+40% ethanol 16.0 ± 2.0 

PBS+1%w/v polysorbate 80 3950.0 ± 47.0 
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