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Abstract

Hawkes processes have been widely used in many areas, but their probability

properties can be quite difficult. In the paper an elementary approach is

presented to obtain moments of Hawkes processes and/or the intensity of a

number of marked Hawkes processes, in which the detailed outline is given step-

by-step, and it works not only for all Markovian Hawkes processes, but also

for some non-Markovian Hawkes processes. The approach is simpler and more

convenient than usual methods such as the Dynkin formula and martingale

methods. The method is applied for one-dimensional Hawkes processes and

other related processes such as Cox processes, dynamic contagion processes,

non-homogenous Poisson processes and non-Markovian cases. Several results

are obtained which may be useful in studying Hawkes processes and other

counting processes. Our proposed method is an extension of Dynkin formula,

which is simple and easy to use.
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1. Introduction

Hawkes [12]-[14] introduced a family of models for stochastic point processes called

‘self-exciting and mutually-exciting point processes’, the essential property of which was

that the occurrence of any event increased the probability of further events occurring.

The main theoretical properties derived were the Bartlett spectrum and the corre-

sponding covariance density function, useful tools for discriminating between models,

means and variances of event counts. These processes have since become known as

Hawkes processes and, despite a low uptake of applications for the first thirty years

or so, they have recently become widely used in many different fields of study. For

example, see [20], [21], [18], [22], [5, 6], [3] and [16].

This paper considers simple point processes on R≥0. We denote such a process

by N(t) :=
∑
r∈N ITr≤t, t ≥ 0, where {Tr} denote the (disjoint) points of N(t). We

interpret R≥0 as ‘time’ and the points Tr as ‘events’ in time. IA is an indicator function

for event A, i.e., IA = 1 if event A occurs, otherwise, IA = 0. An important property

of simple point processes is the (conditional) intensity function, often denoted by λ(t),

such that P{N(t+ ∆)−N(t) = 1|Ft} = λ(t)∆ + o(∆),

P{N(t+ ∆)−N(t) ≥ 2|Ft} = o(∆),

where (Ft)t≥0, representing the history of the process up to time t is the filtration

Ft = σ(N(s), 0 ≤ s < t): so that the history includes knowledge of both intensity and

the events prior to time t. Note that the above property means that the point process

is orderly: i.e., events cannot occur simultaneously.

A simple but fairly general marked Hawkes self-exciting process can be defined by

its intensity in the form

λ(t) = v(t) +
∑
Tr<t

Zrγ(t− Tr), t > 0.

The function γ(u) ≥ 0, u > 0 controls the effect that an event has on the intensity of

events at time u later: this may be called the exciting kernel. Zr is a mark associated

with the event occurring at time Tr: these are usually supposed to be i.i.d. random

variables. Note that in this simple class of processes the mark multiplies the exciting
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kernel so that an event with a large mark will increase the future intensity much more

than an event with a small mark will. For example, an earthquake with large magnitude

will increase the probability of further earthquakes much more than a small earthquake

will. Similarly, a large jump in the price of a financial asset is more likely to cause

more future jumps than a small jump will. Marks can enter the model in more general

ways but this simple version will suffice in this paper. v(t) is the base intensity: we

will treat this as a deterministic function of time, although it may be partly a function

of some exogenous process, representing economic conditions, weather etc., depending

on the process that is being modeled.

It is important to realize that the intensity should always be non-negative, and this

will be assured if v(t), Zr and γ(u) are all non-negative. In this paper we will mostly

consider exponential kernels γ(u) = e−βu, u > 0, so that our basic class of self-exciting

processes will be defined by

λ(t) = v(t) +
∑
Tr<t

Zre
−β(t−Tr), t > 0. (1)

Sometimes it is useful to suppose that a process has been running for some time,

effectively taking the start time as minus infinity for the stationary process. In this

paper we will always take the process as starting at time zero, so that the event times,

Tr, are always positive.

A similarly simple class of mutually-exciting models for marked multivariate point

processes, Nk(t), k = 1, 2, ...,K, can be defined by the intensity functions

λk(t) = vk(t) +

K∑
j=1

∑
Tj,r<t

Zj,rαkje
−βkj(t−Tj,r), (2)

where λk(t) and vk(t) are the intensity function and baseline intensity, respectively, for

the process of events Nk(t). {Tj,r}r=1,2,... denotes the series of times at which events of

type j occur and {Zj,r}r=1,2,..., the marks associated with those events, are typically

assumed to be i.i.d. with distribution function GZj (z). αkj and βkj are parameters

that determine the exciting effect that an event of type j has on the future intensity

of events of type k. If j = k we have a self-exciting component; j 6= k we have a

cross-exciting component.

Hawkes processes have been intensively studied and there have been generalizations

to the models and advances in understanding their mathematical properties. Distribu-
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tions of counts and interval properties of Hawkes processes can be quite difficult. Some

results have been obtained, often using relatively advanced methods such as infinitesi-

mal generators and Dynkin’s formula (for example, see [10]). In this paper we consider

a class of relatively simple Hawkes processes and introduce an elementary method

to obtain expectations of the general form E[g(N(t), λ(t), t)], for example E[Nm(t)],

E[λk(t)] and Cov[N(t), λ(t)]. The method is elementary in principle, although the

algebra can sometimes be complicated or we need to resort to numerical integration.

First we briefly describe methods that have been used in the literature to find such

expectations or, better still, to find distributions of N(t) and/or λ(t). Oakes [19]

studied the simple self-exciting model (v(t) ≡ v, Zr ≡ α in Equation (1), which is

called as a simple Hawkes process). Using the branching process representation of

the simple Hawkes process, developed in [15], he obtained a set of equations for the

probability generating function (p.g.f) of N(t), and hence found the mean

E[N(t)] =
vt

1−m
− m

(1−m)
2

v

β

{
1− e−β(1−m)t

}
, (3)

where m = α/β is the branching ratio (the expected number of immediate descendants

of any individual in the process). Adamopoulos [1] generalized Oakes [15] cluster

process representation of the univariate self-exciting process to a mutually-exciting

process. He derived a multivariate probability functional (p.g.fl) of the process from

which a variety of probability generating functions, and therefore moments, can be

obtained. For example, he obtained the expected number of type j descendants

of a type i event at the origin that occur in the interval (0, t). He also obtained

some forward recurrence time distributions and distributions of time intervals between

events. Numerical results were given for a simple bivariate earthquake model as

specified by Equation (2) with all marks Zj,r equal to 1 and parameters v1 = α11 =

α12 = 0 but each of the parameters v2, α21, α22 > 0. Thus, type 2 events were self-

exciting and also excited type 1 events; type 1 events were entirely generated by the

occurrence of type 2 events, even the baseline being zero. Errais et al. [11] modeled

the occurrence of defaults in a portfolio of assets using the simple marked self-exciting

process of Equation (2), but with different notation and with time-varying baseline
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intensity

λ(t) = c+ e−κt(λ0 − c) +
∑
Tr<t

Zre
−κ(t−Tr).

The marks, Zr, were proportional to the loss of the defaulting asset, so large losses

were likely to lead to further defaults by causing large increases in the intensity.

As the joint process (N(t), λ(t)) is Markovian, they were able to use the infinitesimal

generator and associated Dynkin formula to obtain closed expressions for the moments

of the Hawkes intensity. In particular

E[λ(t)] =

(
κc

µ
+ λ0

)
eµt − κc

µ
, (4)

where µ = E(Zr) − κ. A similar method was used to find E[λ2(t)] and, therefore, the

variance. They also show that a conditional transform of J = (L,N), where L(t) is

the cumulative loss up to time t, satisfies

E[exp (uJT |Ft)] = exp (a(t) + b(t)λ(t) + uJt) ,

where the functions a(t) and b(t) satisfy certain differential equations. Differentiating

with respect to u leads to differential equations that can be solved, algebraically or

numerically, to obtain various moments. For example,

E[N(t)] =
κc+ µλ0

µ2

(
eµt − 1

)
− κc

µ
t. (5)

Dassios and Zhao [8] introduced the dynamic Contagion model, denoted as (ND(t),

λD(t)), where ND(t) and λD(t) are corresponding counting process and its inten-

sity function. They could use piecewise-deterministic Markov process theory and

the work of [9] to show that the infinitesimal generator operating A on a function

g(n, λ, t) to obtain a conditional joint Laplace transform-probability generation func-

tion E
[
θND(t)−ND(u)e−υλD(t)|Fu

]
, t > u ≥ 0, for the distributions of ND(t) and λD(t)

in terms of a function that satisfies a certain ODE. Marginal Laplace transforms, p.g.fs

of ND(t) and λD(t) are obtained by setting θ = 1 and υ = 0, respectively. Moments

can be obtained in the usual way by taking appropriate derivatives with respect to θ

and υ. However, instead they apply the infinitesimal generator to functions of the form

g(n, λ, t) = nmλk to obtain a differential equation whose solution yields the expectation

E
[
Nm
D (t)λkD(t)

]
. In this way they obtain, for example, E[λD(t)], E[λ2

D(t)], E[ND(t)],
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E[N2
D(t)], E[ND(t)λD(t)] and hence also variances and covariance. In each case there

is a different differential equation to solve which, using their methods, includes using

martingale properties of the generator.

Chen et al. [3] gave perhaps the easiest solution for the expectation of intensity

of the univariate Hawkes process with exponential exciting kernel. They wrote its

intensity function in the integral form λ(t) = v +
∫ t

0
αe−β(t−u)dN(u). On taking

expectations we get E [λ(t)] = v +
∫ t

0
αe−β(t−u)E [λ(u)] du and the Laplace transform

of this is ϕ∗(s) =
∫∞

0
E [λ(t)] e−stdt = v

s + α
s+βϕ

∗(s). So ϕ∗(s) = v
β−α (βs −

α
s+β−α ),

which has inverse transform

E [λ(t)] =
v

β − α

(
β − αe−(β−α)t

)
, t > 0, α 6= β. (6)

This is equivalent to Equation (4) if, in that equation, λ0 = c = v, so that the baseline

intensity is constant, and κ = β, E[Zr] = α.

Summarizing the methods have been used so far for obtaining moments and count

distributions of Hawkes processes, we know that the methods are: (i) infinitesimal

generator and Dynkin’s formula, (ii) probability generating function, (iii) Martingale

method and (iv) Laplace transform, but all these methods are only for Hawkes processes

with exponential kernel intensity functions.

The rest of the paper is organized as follows. In Section 2 provides our main results

in the paper, in which a procedure of obtaining moments for Hawkes processes is

developed and illustrated by applying it to a simple Hawkes process, and the relation

of our method and Dynkin’s formula is discussed as well. In Section 3 various results

are obtained for a simple one-dimensional marked Hawkes processes. In Section 4 the

method is applied to a variety of processes such as general mutually-exciting processes,

Cox processes, dynamic contagion processes, non-homogenous Poisson processes, a

one-dimensional self-exciting process with multiple marks and a non-Markovian case.

Finally, Section 5 contains conclusions and discussion.

2. Main Result

Methods of finding moments that make use of infinitesimal generator, Dynkin for-

mula and martingale may be considered a bit advanced by many people. In this section

we propose a new approach for finding moments that use probabilistic arguments that
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are fairly elementary in principle, although the complicated algebraic manipulations

are needed sometimes for this approach. Somewhat like [8], they lead to differential

equations that may be solved algebraically or by numerical integration.

The aim of the method proposed in this paper is to calculate the expectation value

of any arbitrary function of point process N(t) and its intensity function λ(t), denoted

as f(t) := E[g(N(t), λ(t), t)]: for example, the special cases of E[Nm(t)], E[λn(t)] and

Cov[N(t), λ(t)]. The procedure for this method is described below in subsection 2.1,

taking the simple Hawkes process as an example, and fm,n(t) = E[Nm(t)λn(t)] as an

objective function. This process is relatively simple but illustrates most of the ideas

used in the general method. Subsection 2.2 provides some comparisons with a method

using infinitesimal generators and Dynkin’s formula.

2.1. Procedure of the elementary approach

The main idea of our elementary approach for obtaining the moments of Hawkes

processes is as follows. Given the history of Hawkes process Ft = σ(N(s), 0 ≤ s < t)

and a small positive ∆ > 0, we know that N(t + ∆) − N(t) is Bernoulli distributed

approximately, thus λ(t + ∆|N(t + ∆) − N(t),Ft) are two-point distributed random

variables approximately, then it is easily to obtain E[g(N(t+ ∆), λ(t+ ∆), t+ ∆)|Ft]

based on these Bernoulli and two-point distributions approximately. Furthermore,

some differential or partial differential equations on E[g(N(t), λ(t), t)] can be given via

letting ∆→ 0 and using double expectation theorem, these differential or partial differ-

ential equations can be solved analytically or numerically to obtain E[g(N(t), λ(t), t)].

In the following, we present a procedure exemplified by application for a simple Hawkes

process to give the detailed steps to show how our elementary approach works. Consider

a simple Hawkes process N(t), t ≥ 0 with an intensity function given by

λ(t) = v +

t∫
0

αe−β(t−u)dN(u) = v +
∑
Tr<t

αe−β(t−Tr),

where Tr are positive event times, r = 1, 2, ..., v, α, β > 0.

Procedure of the method: the start

Step 1. Set an objective function f(t) = E[g(N(t), λ(t), t)] that is calculated:

for example, E[Nm(t)λn(t)]. (The required conditions on g(n, λ, t) will be given in

subsection 2.2.)
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Step 2. Find the probabilities of the following related point process events.

For a simple (or orderly) point process, we need conditional probabilities

P{N(t+ ∆)−N(t) = 0|Ft} and P{N(t+ ∆)−N(t) = 1|Ft},

where the filtration Ft = σ(N(s), 0 ≤ s < t) represents the history of the process up

to time t.

For the simple Hawkes process, we have

P{N(t+ ∆)−N(t) = 0|Ft} = 1− λ(t)∆ + o(∆),

P{N(t+ ∆)−N(t) = 1|Ft} = λ(t)∆ + o(∆).

Step 3. Calculate the intensity function values λ(t + ∆) given the following two

events:

{N(t+ ∆)−N(t) = 0} and {N(t+ ∆)−N(t) = 1}.

For the simple Hawkes process, we have,

(i) when {N(t+ ∆)−N(t) = 0} occurs,

λ0(t+ ∆) = v + α
∑

Ti<t+∆

e−β(t−Ti+∆) = (1− β∆)λ(t) + βv∆ + o(∆);

(ii) when {N(t+ ∆)−N(t) = 1} occurs,

λ1(t+ ∆) = v + α
∑
Ti<t

e−β(t−Ti+∆) + αe−β(t−TN(t)+1+∆)

= λ0(t+ ∆) + α(1− β∆1) + o(∆1), 0 < ∆1 < ∆.

Step 4. Calculate and simplify E[g(N(t + ∆), λ(t + ∆), t + ∆)|Ft] by using the

results obtained in Step 2 and Step 3.

For the simple Hawkes process, we have

E[Nm(t+ ∆)λn(t+ ∆)|Ft]

= Nm(t)λn0 (t+ ∆)[1− λ(t)∆] + [N(t) + 1]mλn1 (t+ ∆)λ(t)∆ + o(∆)

= Nm(t)λn(t) +Nm(t)
n−1∑
i=0

(
n

i

)
(−∇1)n−iλi(t)−Nm(t)

n∑
i=0

(
n

i

)
(−∇1)n−iλi+1(t)∆

+
m∑
j=0

(
m

j

)
N j(t)

n∑
i=0

(
n

i

)
αn−iλi+1(t)∆ + o(∆),

where ∇1 = β[λ(t)− v]∆, 0 < ∆1 < ∆.
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Step 5. Take expectations on both sides on the formula of E[g(N(t + ∆), λ(t +

∆), t + ∆)|Ft] which was gotten in Step 4, then let ∆ → 0 to get the differential or

partial differential equation on E[g(N(t), λ(t), t)].

For the simple Hawkes process, we have

d

dt
E[Nm(t)λn(t)] = lim

∆↓0

E[Nm(t+ ∆)λn(t+ ∆)]− E[Nm(t)λn(t)]

∆

= nβvE[Nm(t)λn−1(t)]− nβE[Nm(t)λn(t)]

+

m−1∑
j=0

(
m

j

)
E[N j(t)λn+1(t)],

+

m∑
j=0

n−1∑
i=0

(
m

j

)(
n

i

)
αn−iE[N j(t)λi+1(t)]. (7)

Note that where
w∑
i=0

[•] = 0, when w < 0.

Step 6. Solve the established differential equations based on the boundary condi-

tions.

For the simple Hawkes process, this differential equation (obtained in Step 5 ) can

be solved, subject to initial conditions E[N i(0)] = 0, E[λi(0)] = vi, (i = 1, 2, . . .).

Procedure of the method: the end.

This procedure provides the main result for our elementary method, the quantities

λ0(t+∆) and λ1(t+∆) are required, and the double expectation theorem is used, then

differential equations are developed, which can provide solution for E[g(N(t), λ(t), t)]

Remark 1. In Steps 3 and 4, the symbol o(∆) is used, which is for X = o(∆) such

that

lim
∆↓0

X

∆
= 0, a.e.,

where X is a random variable. In the paper the notation o(∆) is used in many

places, some of them are for the deterministic sense, some for the random case like

just mentioned in Step 3. However, which one does not matter for the calculations,

the reason for this can be seen in Remark 2.

Remark 2. We have used the conclusion lim
∆↓0

E[X/∆] = 0 such that X = o(∆) (of

course, it is not a general infinitesimal, which is raised in our paper), this operation

means that

lim
∆↓0

E[X/∆] = E[lim
∆↓0

X/∆] = 0.
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The holding of above equality needs, in general, the sequence { o(∆)
∆ }∆>0 = {X∆}∆>0

being uniformly integrable. In fact, we have

sup
0<∆<δ

E[|X/∆|] <∞,

where δ is a given very small positive value, it is well-known that this condition can

guarantee the the sequence {X∆}∆>0 being uniformly integrable. Thus the interchange

of expectation and limit is a reasonable operation in our procedure. In the following,

we shall show some facts appeared in our paper. Note we assume that

E[|g(N(t), λ(t), t)|] <∞.

Case 1. In Step 3 in Section 2.1, for

λ0(t+ ∆) = v + α
∑

Ti<t+∆

e−β(t−Ti+∆) = (1− β∆)λ(t) + βv∆ + o(∆),

where o(∆) = [ (β∆)2

2! − (β∆)3

3! + (β∆)4

4! − · · · ][λ(t)− v] = [e−β∆ − 1 + β∆][λ(t)− v]. On

the other hand, we can know that

E[|o(∆)

∆
|] ≤ |e

−β∆ − 1 + β∆

∆
|E[|λ(t)− v|],

and | e
−β∆−1+β∆

∆ | ≤ 1
∆

∞∑
n=2

(−1)
n (β∆)n

n! ≤ 1
∆

∞∑
n=2

(β∆)n

n! ≤ β
∞∑
n=1

(β∆)n

n! = β(eβ∆ − 1). If

we choose ∆β < 1, i.e., ∆ < 1/β = δ, then we have

|e
−β∆ − 1 + β∆

∆
| ≤ β(e− 1).

For any given time t , we know that E[|λ(t) − v|] ≤ C, i.e., it has a bound (where C

does not related to ∆). Thus we can obtain that

E[|o(∆)

∆
|] ≤ β(e− 1)C

provided that ∆ < 1/β = δ. It proves sup
0<∆<δ

E[|X/∆|] <∞.

Case 2. In Step 3 in Section 2.1, for

λ1(t+ ∆) = v + α
∑
Ti<t

e−β(t−Ti+∆) + αe−β(t−TN(t)+1+∆)

= λ0(t+ ∆) + α(1− β∆1) + o(∆1), 0 < ∆1 < ∆,

where ∆1 is a random variable, but it has the lower and upper bounds: 0 and ∆ ,

respectively. Similarly, we can prove that sup
0<∆<δ

E[|X/∆|] <∞,∆ < 1/β = δ.
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Case 3. In Step 3 in Section 2.2, in E[g(N(t + ∆), λ(t + ∆), t + ∆)|Ft], we used

that

o(∆) = g(N(t+ ∆), λi(t+ ∆), t+ ∆)P{N(t+ ∆)−N(t) ≥ 2}, (i ≥ 2),

it has assumed that

P{N(t+ ∆)−N(t) ≥ 2} = oD(∆)

which is a deterministic case (using the letter “D” to denote it). On the other hand,

based on the boundness of E[|g(N(t), λ(t), t)|] for any time t , we have

E[o(∆)/∆] = [oD(∆)/∆]E[g(N(t+ ∆), λi(t+ ∆), t+ ∆)] = oD(∆)/∆,

which proves that sup
0<∆<δ

E[|X/∆|] <∞.

Remark 3. The double expectation theorem is used in our elementary method, i.e.,

E [g(N(t+ ∆), λ(t+ ∆), t+ ∆)] = E [E[g(N(t+ ∆), λ(t+ ∆), t+ ∆)|Ft]] .

Remark 4. We have not mentioned the marks in Hawkes processes in this procedure,

but, in fact, the i.i.d. marks do not affect our method in essential, they just make

the computations complicated. Thus in the following context, we consider them not

always.

2.2. Relation of our method to use of infinitesimal generators and Dynkin’s

formula

From the procedure provided above, we know that the key issue is to get the

differential equation. To embody this key point, we summarize and provide the detailed

steps for a general function g(N(t), λ(t), t) which and its related expectations must

satisfy the following conditions:

(i) ∂
∂tg(N,λ, t) is uniformly continuous in t;

(ii) ∂
∂λg(N,λ, t) and ∂

∂λg(N,λ, t)dλ
dt are uniformly continuous in λ;

(iii) All expectations exist and are finite.

Given the filtration Ft = σ(N(s), 0 ≤ s < t), and noting that λ(t) = λ(t,N(t), Z),

where the random variable Z is a mark in the Hawkes process N(t) with distribution
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function GZ(z).

E[g(N(t+ ∆), λ(t+ ∆), t+ ∆)|Ft]

= g(N(t), λ0(t+ ∆), t+ ∆)[1− λ(t)∆]

+ g(N(t) + 1, λ1(t+ ∆), t+ ∆)[λ(t)∆] + o(∆)

= g(N(t), λ0(t+ ∆), t+ ∆)− g(N(t), λ0(t+ ∆), t+ ∆)λ(t)∆

+ g(N(t) + 1, λ1(t+ ∆), t+ ∆)λ(t)∆ + o(∆),

where λ0(t+ ∆) = λ(t+ ∆, N(t), Z1, Z2, . . . , ZN(t)),

λ1(t+ ∆) = λ(t+ ∆, N(t) + 1, Z1, Z2, . . . , ZN(t)+1),

lim
∆↓0

λ0(t+ ∆) = λ(t,N(t), Z1, Z2, . . . , ZN(t)) and,

lim
∆↓0

λ1(t+ ∆) = λ(t,N(t) + 1, Z1, Z2, . . . , ZN(t)+1).

We have

lim
∆↓0

E{E[g(N(t+ ∆), λ(t+ ∆), t+ ∆)|Ft]− g(N(t), λ(t), t)}
∆

= lim
∆↓0

E[g(N(t), λ0(t+ ∆), t+ ∆)]− E[g(N(t), λ0(t+ ∆), t)]

∆

+ lim
∆↓0

E[g(N(t), λ0(t+ ∆), t)]− E[g(N(t), λ(t), t)]

∆

+ lim
∆↓0
{E[λ(t)g(N(t) + 1, λ1(t+ ∆), t+ ∆)]

− E[λ(t)g(N(t), λ0(t+ ∆), t+ ∆)]}.

We get

d

dt
E[g(N(t), λ(t), t)] = E[

∂

∂t
g(N(t), λ(t), t)] + E[

∂

∂λ
g(N(t), λ(t), t)

d

dt
λ(t)]

+E[λ(t)g(N(t) + 1, λ(t) + Z, t)]− E[λ(t)g(N(t), λ(t), t)]
(8)

provided that

lim
∆↓0

E[g(N(t), λ0(t+ ∆), t)]− E[g(N(t), λ(t), t)]

∆
= E[

∂

∂λ
g(N(t), λ(t), t)

d

dt
λ(t)]

and

|E[λ(t)g(N(t) + 1, λ(t) + Z, t)]− E[λ(t)g(N(t), λ(t), t)]| <∞

hold.

Equation (8) can be used for any function g(N,λ, t) for which the expectations of

E[ ∂∂λg(N(t), λ(t), t) d
dtλ(t)] and E[λ(t)g(N(t)+1, λ(t)+Z, t)] can be calculated or can be

expressed as functions of E[g(N(t), λ(t), t)] or Equation (8) can be solved analytically

or numerically.
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For completeness, we recall that the definition of an infinitesimal generator A of

process X(t) is given as for any function g : <n → <,

Ag(x) = lim
t↓0

E[g(X(t))]− g(x)

t
, x ∈ <n, X(0) = x, lim

t↓0
g(X(t)) = g(x).

Furthermore, we can take an integral operation from time t to T (t < T ) on both

sides of Equation (8) getting

E[g(N(T ), λ(T ), T )|Ft]− g(N(t), λ(t), t)

=
T∫
t

E{ ∂
∂u
g(N(u), λ(u), u)|Ft}du+

T∫
t

E{ ∂
∂λ
g(N(u), λ(u), u)

d

du
λ(u)|Ft}du

+
T∫
t

E[λ(u)g(N(u) + 1, λ(u) + Z, u)|Ft]du− E[λ(t)g(N(t), λ(t), t)]

= E{
T∫
t

[λ(u)
∞∫
0

[g(N(u) + 1, λ(u) + z, u)− g(N(u), λ(u), u)]dGZ(z)

+
∂g

∂u
+
∂g

∂λ

dλ

du
|Ft]du}.

That is to say, we have

E[g(N(T ), λ(T ), T )|Ft]− g(N(t), λ(t), t) = E[

T∫
t

Ag(N(u), λ(u), u)du|Ft], (9)

which is the Dynkin formula. The infinitesimal generator A is given for a function

g : N×<+ ×<+ → < with continuous partial derivatives by

Ag(N,λ, t) =
∂g

∂t
+
∂g

∂λ

dλ

dt
+ λ

∞∫
0

[g(N + 1, λ+ z, t)− g(N,λ, t)]dGZ(z). (10)

Based on the above analysis, we see that, if the process is Markovian, the results

obtained by using the Dynkin formula can also be obtained by using our method. Fur-

thermore, our method is very näıve and simple. However, our method is more general

because, as the following example shows, it can also be applied in non-Markovian cases

for which the Dynkin formula is not applicable. In fact, another non-Markovian case

example will be presented in Section 4 as well.

Remark 5. We presented our elementary method by using a procedure rather than

formula like Equation (8). Because (i) our method does not need any advanced theory

and works for more situations rather than limited to the Markovian cases which the

Dynkin formula needs; (ii) Our method can be operated simply without any conditions
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to be checked if it works. In fact, In subsection 3.2.3, we shall show this point via the

comparison between our method and Dynkin formula.

We consider any regular counting process such that the probability of multiple events

in an interval of length ∆ is of order o(∆) as ∆ → 0. Then we have the following

Theorem:

Theorem 1. For a counting process such that P{N(t+ ∆)−N(t) ≥ 2} = o(∆), then

we have
d

dt
E[Nm(t)] =

m−1∑
j=0

(
m

j

)
E[N j(t)λ(t)], (m ≥ 1). (11)

Proof. The proof is similar to that in Steps 4 and 5 in the procedure for the simple

Hawkes process. �

Remark 6. Theorem 1 does not require the Markov property, it holds for all counting

processes that do not have multiple events occurring simultaneously. This fact tells us

that our method is an extension of Dynkin formula.

3. Applications on Self-Exciting Hawkes Processes

In this section, the applications on several self-exciting Hawkes processes for our

elementary method given in Section 2 are shown, in which the detailed steps or

numerical examples are presented.

3.1. Applications on a simple Hawkes process

Consider a simple Hawkes process N(t), t ≥ 0 with an intensity function given in

Section 2. In the following steps, we demonstrate our method for E[λn(t)], t ≥ 0, and

derive all general equations (i.e., equations (12), (14) and (15)). Then consider special

cases like n = m = 2.

Step 1. Set our target as E[λn(t)] for any positive integer n (n ≥ 1).

Step 2. Find two probabilities such as

P{N(t+ ∆)−N(t) = 0|Ft} = 1− λ(t)∆ + o(∆),

P{N(t+ ∆)−N(t) = 1|Ft} = λ(t)∆ + o(∆),

where the filtration Ft = σ(N(s), 0 ≤ s < t) represents the history of the simple

Hawkes process up to time t, and ∆ > 0. And we also know that P{N(t+∆)−N(t) ≥
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2|Ft} = o(∆) due to the assumption.

Step 3. Calculate the intensity function λ(t+ ∆) given Ft and two events

{N(t+ ∆)−N(t) = 0} and {N(t+ ∆)−N(t) = 1}

(i) When {N(t+ ∆)−N(t) = 0} occurs,

λ0(t+ ∆) = v +
∑

Ti<t+∆

αe−β(t−Ti+∆) = (1− β∆)λ(t) + βv∆ + o(∆);

(ii) When {N(t+ ∆)−N(t) = 1} occurs,

λ1(t+ ∆) = v +
∑
Ti<t

αe−β(t−Ti+∆) + αe−β∆1

= λ0(t+ ∆) + α(1− β∆1) + o(∆1), 0 < ∆1 < ∆.

Step 4. Calculate E[λn(t+ ∆)|Ft].

Based on values of λ0(t+ ∆) and λ1(t+ ∆) given in Step 3, we have

E[λn(t+ ∆)|Ft] = λn0 (t+ ∆)[1− λ(t)∆] + λn1 (t+ ∆)λ(t)∆ + o(∆)

= λn0 (t+ ∆) + λ(t)∆

n−1∑
i=0

(
n

i

)
λi0(t+ ∆)(α− β∆1)n−i + o(∆).

E[λm(t+∆)|Ft] is gotten because when {N(t+∆)−N(t) = 0} occurs, then λ(t+∆) =

λ0(t+ ∆). When {N(t+ ∆)−N(t) = 1} occurs, then λ(t+ ∆) = λ1(t+ ∆).

Step 5. Get a differential equation on E[λn(t)]. Let ∆ → 0, and using the result

obtained in Step 4 and the following equality

E[E[λn(t+ ∆)|Ft]] = E[λn(t+ ∆)],

then we have

d

dt
E[λn(t)] = nβvE[λn−1(t)]− nβE[λn(t)] +

n−1∑
i=0

(
n

i

)
αn−iE[λi+1(t)], (n ≥ 1), (12)

Step 6. Solve the established differential equation for getting E[λn(t)]. Now we

consider the case of E[N2(t)].

We have from Equation (11),

d

dt
E
[
N2(t)

]
= E [λ(t)] + 2E [N(t)λ(t)] , (13)

thus we need two terms: E[λ(t)] and E[N(t)λ(t)], for getting E[N(t)2].
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Similarly, for E[N(t)λ(t)], following Steps 1 to 5, we can get differential equations

as follows.

d

dt
E[N(t)λ(t)] = βvE[N(t)] + E[λ(t)] + (α− β)E[N(t)λ(t)] + E[λ2(t)]. (14)

We thus can set up and solve a chain of differential equations.

E[λ(t)]→ E[λ2(t)]→ · · · → E[λn(t)], (n ≥ 1).

When n = 1, we have
d

dt
E[λ(t)] = (α− β)E[λ(t)] + βv (15)

with initial condition E[λ(0)] = v. This differential equation is easily solved as

E[λ(t)] =


−βv
α− β

+
αv

α− β
e(α−β)t, when α 6= β,

v + vαt, when α = β.

(16)

Taking m = 1, in Equation (11) gives

d

dt
E [N(t)] = E [λ(t)]⇒

E[N(t)] =

t∫
0

E [λ(u)] du =


−βvt
α− β

+
αv

(α− β)
2 [e(α−β)t − 1], when α 6= β,

vt+
1

2
vαt2, when α = β.

(17)

Furthermore, we have from Equation (12),

d

dt
E[λ2(t)] = (2βv + α2)E[λ(t)] + (2α− 2β)E[λ2(t)], (n = 2). (18)

Solving Equation (18), we have, with initial condition E[λ2(0)] = v2,

E[λ2(t)] =


[

∆11

α− β
+ v2 − ∆12

α− β

]
e−2(α−β)t, when α 6= β,

v(α2 + 2βv)(
1

2
t2 + t) + v2, when α = β,

where ∆11 = (α2+2βv)v

[
αe3(α−β)t

3(α− β)
− βe2(α−β)t

2(α− β)

]
,∆12 = (α2+2βv)v

[
α

3(α− β)
− β

2(α− β)

]
.

Similarly, solving Equation (14), we get, with initial condition E[N(0)λ(0)] = 0,

E[N(t)λ(t)] =


e(α−β)t

t∫
0

[βvE[N(u)] + E[λ(u)] + E[λ2(u)]]du, when α 6= β,

t∫
0

[βvE[N(u)] + E[λ(u)] + E[λ2(u)]]du, when α = β.

(19)
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Based on Equation (13), we have, with initial condition E
[
N2(0)

]
= 0,

E
[
N2(t)

]
=

t∫
0

[E [λ(u)] + 2E [N(u)λ(u)]du, (20)

which is a closed-form for the second order moment of a simple Hawkes process. In

fact, these are not so easy to describe in general but results for low order moments

are easy to obtain. Results for all first and second order moments can be found from

Equations (16) and (17) for first order then Equations (14), (18) to (20), for second

order moments - see example 1 below. All expectations of order m can be found as

follows: calculate all expectations of order less than m; find expectation E[λm(t)] using

the recursion of powers of λ(t) from Equation (12); finally, use appropriate versions of

corresponding Equation (21) (to be given in subsection 3.2) to obtain successively all

expectations of order m,

E[λm(t)]→ E[NH(t)λm−1(t)]→ · · · → E[Nm−1
H (t)λ(t)]→ E[Nm

H (t)], (m ≥ 1).

The whole recursion can be represented as

order 1: E[λ(t)]→ E[N(t)]→ order 2

order 2: E[λ2(t)]→ E[N(t)λ(t)]→ E[N2(t)]→ order 3

. . .

order m− 1: · · · → order m

order m: E[λm(t)] → E[N(t)λm−1(t)] → · · · → E[Nm−1(t)λ(t)] → E[Nm(t)], (m ≥

1)

In the following, a numerical example is given for a simple Hawkes process.

Example 1. For a simple Hawkes process, if α = 2, β = 3, v = 1, we have

E[λ(t)] = 3− 2e−t

from Equation (16), then from Equation (17)

E[N(t)] =

t∫
0

E[λ(u)]du = −2 + 3t+ 2e−t;

d

dt
E[λ2(t)]+2E[λ2(t)] = 10E [λ(t)] from Equation (12)⇒ E[λ2(t)] = 15−20e−t+6e−2t;
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d

dt
E[N(t)λ(t)] + E[N(t)λ(t)] = 3E [N(t)] + 2E[λ(t)] + E[λ2(t)] from Equation (14)

⇒ E[N(t)λ(t)] = 6 + 9t− 18te−t − 6e−2t;

d

dt
E[N2(t)] = E [λ(t)] + 2E [N(t)λ(t)] from Equation (21)

⇒ E[N2(t)] =

t∫
0

E [λ(u)] + 2E [N(u)λ(u)] du

⇒ E[N2(t)] = −44 + 15t+ 9t2 + 36te−t + 38e−t + 6e−2t.

We further obtain in the usual way

Var[λ(t)] = 6− 8e−t + 2e−2t,

Var[N(t)] = −48 + 27t+ 24te−t + 46e−t + 2e−2t,

Cov[N(t), λ(t)] = E[N(t)λ(t)]− E[N(t)]E[λ(t)] = 12− 12te−t − 10e−t − 2e−2t.

As shown in FIGURE 1, we see that correlation coefficient ρ(t) of N(t) and λ(t) is a

decreasing function of time t and lim
t↓0

ρ(t) = 1, lim
t↑∞

ρ(t) = 0, as we intuitively expect.

 

( )t ( )N t ( )t

( )N t

}

( )G z

,a

)

r

r
[ ][ ] m

m n

H
( )( )( )( )

( , ),t t +D

1 ( ) ( )- D+ D ( ) ( )N t N t

Figure 1: The correlation coefficient ρ(t) of N(t) and λ(t) for a simple Hawke process..

3.2. Applications on a simple self-exciting marked Hawkes process

In this subsection, we shall use our method to obtain some results for the simple

self-exciting marked Hawkes process defined as follows (see Equation (21)). A simple

self-exciting marked Hawkes process NH(t) has intensity

λ(t) = v +
∑
Tr<t

Zie
−β(t−Tr), t > 0, (21)
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with {Zr} a sequence of i.i.d. random variables with distribution function GZ(z). An

even simpler model is obtained if GZ(z) is a degenerate distribution with all values

equal to a constant α, which is a simple Hawkes process we have discussed previously. It

is easy to see that the pair (NH(t), λ(t)) forms a Markov process. Within this subsection

we simplify the notation by writing E[Zr] = µr, r > 0. Note that throughout this paper

we always use µi as the ith moments for random variables, their distribution functions

can be known from the context.

3.2.1. A result for E[Nm
H (t)λn(t)].

Similar to that in subsection 3.1, we have that if there is no event occuring in

(t, t+ ∆), with probability 1− λ(t)∆ + o(∆), then NH(t+ ∆) = NH(t) and,

λ0(t+∆) = v+
∑

Ti<t+∆

Zie
−β(t+∆−Ti) = v+e−β∆

∑
Ti<t

Zie
−β(t−Ti) = λ(t)−∇1 +o(∆).

If there is an event occuring in (t, t+ ∆), with probability λ(t)∆ + o(∆), then NH(t+

∆) = NH(t) + 1 and

λ1(t+ ∆) = v +
∑

Ti<t+∆

Zie
−β(t+∆−Ti)

= λ(t)−∇1 + ZNH(t)+1∇2 + o(∆),

where ∇1 was given in Step 4 of subsection 2.1, and ∇2 = 1− β∆1. Thus we can get

Theorem 2 given below, which is a differential equation that can be solved recursively.

Theorem 2. For any non-negative integers m and n, suppose the random marks Zi,

(i = 1, 2, . . .) with distribution function GZ(z) are independent of previous values of

Hawkes process NH(t) and its intensity λ(t); and its kernel function is γ(t) = e−βt.

Then we have, using the notation fm,n(t) = E[Nm
H (t)λn(t)],

d

dt
fm,n(t) = nβvfm,n−1(t)− nβfm,n(t) +

m−1∑
j=0

(
m

j

)
fj,n+1(t)

+

m∑
j=0

n−1∑
i=0

(
m

j

)(
n

i

)
µn−ifj,i+1(t), (22)

where
w∑
i=0

[•] = 0, when w < 0, and µr = E[Zr] =
∞∫
0

urdGZ(u) <∞.

We see that fm,n(t) satisfied a first-order differential difference equation, which can
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be solved easily. Furthermore, we can know that getting fm,n(t) needs all values for

fj,i(t), (j, i) ∈ {(0, 1, . . . ,m− 1), (0, 1, . . . , n+ 1)}.

In addition, Theorem 2 can be obtained by using the Dynkin formula approach

too. We now show that the same general result can be derived from Dynkin’s formula.

Because of the Markov property for stochastic process (NH(t), λ(t)), and using the

results in [9] and [8], we consider the function g(N,λ, t) = Nm
H (t)λn(t), then we have

Ag(N,λ, t) = β(v − λ)
∂g

∂λ
+ λ[

∞∫
0

g(N + 1, λ+ x, t)dG(x)− g(N,λ, t)]

= nβ(v − λ)Nmλn−1 + (N + 1)mλ

n∑
i=0

(
n

i

)
λiµn−i −Nmλn+1

provided that

|(N + 1)m
n∑
i=0

(
n

i

)
λiµn−i −Nmλn| <∞,

where the operator A is the infinitesimal generator of the Hawkes process with intensity

function λ(t) = v +
∑
Ti<t

Zie
−β(t−Ti), µi =

∞∫
0

zidGZ(z), i = 0, 1, . . .. Based on the

Dynkin formula, we have, for t < T ,

E[Nm
H (T )λn(T )|Ft] = Nm

H (t)λn(t) + E[

T∫
t

Ag(NH(u), λ(u), u)du|Ft].

Take expectation operation on both sides of the above equation and set t = 0: we have

E[Nm
H (T )λn(T )] =

T∫
0

E[Ag(NH(u), λ(u), u)du].

Differentiating the above equation, we get

d

dt
fm,n(t) = E[Ag(NH(t), λ(t), t)]

= nβvfm,n−1(t)− nβfm,n(t)

+
m−1∑
j=0

(
m

j

)
fj,n+1(t) +

m∑
j=0

n−1∑
i=0

(
m

j

)(
n

i

)
µn−ifj,i+1(t),

which is coincident with our result presented in Theorem 2. This again shows that

our method gets the same result as the Dynkin formula in the cases where the latter

method is valid.
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3.2.2. Auto-covariance and cross-covariance

Here we consider the calculations of auto-covariance and cross-covariance functions

for the simple self-exciting marked Hawkes process NH(t) and its intensity λ(t) as

follows.

Because auto-covariances are symmetric we need consider only u < t when finding

E[λ(t)λ(u)] and E[NH(t)NH(u)]. Then

E[λ(t+ ∆)λ(u)|Ft]

= λ(t)λ(u)−∇1λ(u) + E[ZNH(t)+1∇2 −∇1]λ(u)λ(t)∆ + o(∆),

and so
d

dt
E[λ(t)λ(u)] = βvE[λ(u)] + (µ1 − β)E[λ(t)λ(u)], with solution

E[λ(t)λ(u)] = βvE[λ(u)]
e(µ1−β)(t−u) − 1

(µ1 − β)
+ e(µ1−β)(t−u)E[λ2(u)], u < t, (23)

in terms of expectations that we already know how to find.

We define the cross-covariance function of NH(t) and λ(t) as

Cov[NN (t), λ(t)] = E[NH(t)λ(u)]− E[NH(t)]E[λ(u)].

To find E[NH(t)λ(u)], when u > t,

E[NH(t)λ(u+ ∆)|Fu]

= NH(t)λ(u)−NH(t)∇1(u) +NH(t)E[Z∇2 −∇1(u)]λ(u)∆ + o(∆).

Then
d

du
E[NH(t)λ(u)] = βvE[NH(t)] + (µ1 − β)E[NH(t)λ(u)], which has solution

E[NH(t)λ(u)] = βvE[NH(t)]
e(µ1−β)(u−t) − 1

(µ1 − β)
+ e(µ1−β)(u−t)E[NH(t)λ(t)]. (24)

When u < t,

E[NH(t+ ∆)λ(u)|Ft] = NH(t)λ(u)[1− λ(t)∆] + [NH(t) + 1]λ(u)λ(t)∆ + o(∆),

then

E[NH(t+ ∆)λ(u)] = E[NH(t)λ(u)] + E[λ(u)λ(t)]∆ + o(∆),

which means
d

dt
E[NH(t)λ(u)] = E[λ(u)λ(t)] which has solution

E[NH(t)λ(u)] = E[NH(u)λ(u)] +

t∫
u

E[λ(u)λ(υ)]dυ, u < t, (25)
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in terms of expectations that we know how to calculate. Finally,

E[NH(t+ ∆)NH(u)|Ft] = NH(t)NH(u)[1− λ(t)∆] + (NH(t) + 1)NH(u)λ(t)∆ + o(∆)

gives us the differential equation

d

dt
E[NH(t)NH(u)] = E[NH(u)λ(t)]

with solution in terms of expectations that we already know how to find

E[NH(t)NH(u)] = E[N2
H(u)] +

t∫
u

E[NH(u)λ(υ)]dυ, u < t. (26)

3.2.3. Correlation between NH(t) and
∫ t

0
λ(u)du

Similar to subsection 3.2.2, the related discussions are presented as follows.

If there is no event occuring in (t, t + ∆), with probability 1 − λ(t)∆ + o(∆), then

NH(t+ ∆) = NH(t) and

t+∆∫
0

λ(u)du =

t∫
0

λ(u)du+

t+∆∫
t

[v +
∑
Ti<u

Zie
−β(u−Ti)]du

=

t∫
0

λ(u)du+

t+∆∫
t

[v +
∑
Ti<t

Zie
−β(u−Ti)]du

=

t∫
0

λ(u)du+ λ(t)∆ + o(∆).

If there is an event occuring in (t, t+ ∆), with probability λ(t)∆ + o(∆), then NH(t+

∆) = NH(t) + 1 and we get

t+∆∫
0

λ(u)du

=
t∫

0

λ(u)du+
TNH (t)+1∫

t

[v +
∑
Ti<u

Zie
−β(u−Ti)]du+

t+∆∫
TNH (t)+1

[v +
∑
Ti<u

Zie
−β(u−Ti)]du

=
t∫

0

λ(u)du+
t+∆∫
t

[v +
∑
Ti<t

Zie
−β(u−Ti)]du+ ZNH(t)+1

t+∆∫
TNH (t)+1

e−β(u−TNH (t)+1)du

=
t∫

0

λ(u)du+ λ(t)∆ + ZNH(t)+1β
−1[1− e−β(t+∆−TNH (t)+1)] + o(∆)

=
t∫

0

λ(u)du+ λ(t)∆ +∇3 + o(∆),
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where ∇3 = ZNH(t)+1∆′, 0 < ∆′ < ∆. Then we have

E{Nm
H (t+ ∆)λn(t+ ∆)[

t+∆∫
0

λ(u)du]l|Ft}

= Nm
H (t)[λ(t)−∆1]n[

t∫
0

λ(u)du+ λ(t)∆]l[1− λ(t)∆] + [NH(t) + 1]m

× [λ(t)−∇1 +∇2]n[
t∫

0

λ(u)du+ λ(t)∆ +∇3]lλ(t)∆ + o(∆)

= {Nm
H (t)λn(t) +Nm

H (t)
n−1∑
i=0

(
n

i

)
(−∇1)

n−i
λi(t)−Nm

H (t)
n∑
i=0

(
n

i

)
× (−∇1)

n−i
λi+1(t)∆ +

m∑
j=0

(
m

j

)
N j
H(t)

n∑
i=0

(
n

i

)
(∇2 −∇1)

n−i
λi+1(t)∆}

× [
t∫

0

λ(u)du]l + lNm
H (t)λn+1(t)[

t∫
0

λ(u)du]l−1∆ + o(∆).

Thus similar to Theorem 2, we can get

d

dt
E{Nm

H (t)λn(t)[
t∫

0

λ(u)du]l}

= nβvE{Nm
H (t)λn−1(t)[

t∫
0

λ(u)du]l} − nβE{Nm
H (t)λn(t)[

t∫
0

λ(u)du]l}

+
m−1∑
j=0

(
m

j

)
E{N j

H(t)λn+1(t)[
t∫

0

λ(u)du]l}+
m∑
j=0

n−1∑
i=0

(
m

j

)(
n

i

)
µn−iE{N j

H(t)

× λi+1(t)[
t∫

0

λ(u)du]l}+ lE{Nm
H (t)λn+1(t)[

t∫
0

λ(u)du]l−1}.

(27)

Similar to that in subsection 3.1, we thus have the following chain recursions for getting

E[Nm
H (t)

t∫
0

λ(u)du],

order 0: E[
t∫

0

λ(u)du]→ order 1

order 1: E[λ(t)
t∫

0

λ(u)du]→ E[NH(t)
t∫

0

λ(u)du]→ order 2

. . .

order m− 1: · · · → order m

order m: E[λm(t)
t∫

0

λ(u)du]→ E[NH(t)λm−1(t)
t∫

0

λ(u)du]→

· · · → E[Nm
H (t)

t∫
0

λ(u)du].

Similar recursions can be given for l = 2, l = 3 and so on.
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For example, for E{NH(t)[
t∫

0

λ(u)du]}, we have



d

dt
E[

t∫
0

λ(u)du] = E[λ(t)],

d

dt
E{λ(t)[

t∫
0

λ(u)du]} = βvE[
t∫

0

λ(u)du] + (µ1 − β)E{λ(t)[
t∫

0

λ(u)du]}+ E[λ2(t)],

d

dt
E{NH(t)[

t∫
0

λ(u)du]} = E{λ(t)[
t∫

0

λ(u)du]}+ E[NH(t)λ(t)].

Remark 7. The first equation above holds always, the reason of listing it here is that

it will be used below.

In fact, we can use the Dynkin formula to give the equation

d

dt
E{λ(t)[

t∫
0

λ(u)du]} = βvE[

t∫
0

λ(u)du] + (µ1 − β)E{λ(t)[

t∫
0

λ(u)du]}+ E[λ2(t)].

Let g(NH(t), λ(t), t) = λ(t)
t∫

0

λ(u)du, then we have

Ag(NH(t), λ(t), t) =
∂g

∂t
+
∂g

∂λ

dλ(t)

dt
+ λ(t){[λ(t) + Z]

t∫
0

λ(u)du− λ(t)

t∫
0

λ(u)du}

= λ2(t) +
dλ(t)

dt

t∫
0

λ(u)du+ λ(t)Z

t∫
0

λ(u)du

= λ2(t) + [βv − βλ(t)]

t∫
0

λ(u)du+ λ(t)Z

t∫
0

λ(u)du,

then we have

d

dt
E{λ(t)[

t∫
0

λ(u)du]} = E[Ag(NH(t), λ(t), t)]

= βvE[
t∫

0

λ(u)du] + (µ1 − β)E{λ(t)[
t∫

0

λ(u)du]}+ E[λ2(t)],

which is the equation we obtained by using our elementary approach.

Remark 8. When we see the procedure of using the Dynkin formula above, we can

know it may sometimes have some confuse on derivation process for
∂g

∂λ
, because there

is a λ(t) in the integral, which tells us that our method is more simple and direct.
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Example 2. For the simple self-exciting Hawkes processes in Example 1, we have

E[
t∫

0

λ(u)du] =
t∫

0

E[λ(u)]du = −2 + 3t+ 2e−t,

d

dt
E{λ(t)[

t∫
0

λ(u)du]}+ E{λ(t)[
t∫

0

λ(u)du]} = 3E[
t∫

0

λ(u)du] + E[λ2(t)] = 9 + 9t− 14e−t + 6e−2t

⇒ E{λ(t)[
t∫

0

λ(u)du]} = e−t
t∫

0

eu(9 + 9u− 14e−u + 6e−2u)du = 9t− 14te−t + 6e−t − 6e−2t,

d

dt
E{NH(t)[

t∫
0

λ(u)du]} = E{λ(t)[
t∫

0

λ(u)du]}+ E[NH(t)λ(t)] = 6 + 18t− 32te−t + 6e−t − 12e−2t

⇒ E{NH(t)[
t∫

0

λ(u)du]} = −32 + 6t+ 9t2 + 32te−t + 26e−t + 6e−2t,

d

dt
E{[

t∫
0

λ(u)du]2} = 2E{λ(t)[
t∫

0

λ(u)du]} = 18t− 28te−t + 12e−t − 12e−2t

⇒ E{[
t∫

0

λ(u)du]2} = −22 + 9t2 + 28te−t + 16e−t + 6e−2t.

Then we have

Var[NH(t)] = 2e−2t + 46e−t + 24te−t + 27t− 48,

Var[
t∫

0

λ(u)du] = 2e−2t + 24e−t + 16te−t + 12t− 26,

Cov[NH(t),
t∫

0

λ(u)du] = E{NH(t)[
t∫

0

λ(u)du]} − E[NH(t)]E[
t∫

0

λ(u)du]

= 2e−2t + 34e−t + 20te−t + 18t− 36.

Thus we have the correlation coefficient

ρ̃(t) =
2e−2t + 34e−t + 20te−t + 18t− 36√

2e−2t + 46e−t + 24te−t + 27t− 48
√

2e−2t + 24e−t + 16te−t + 12t− 26
.

As shown in FIGURE 2, we see that correlation coefficient ρ̃(t) of NH(t) and
∫ t

0
λ(u)du

is an increasing function of time t and lim
t↓0

ρ̃(t) ≈ 0.8662, lim
t↑∞

ρ̃(t) = 1, which is

interesting compared with FIGURE 1.

3.2.4. Generating functions

This subsection contains results for probability generating functions for the distribu-

tion of NH(t), Laplace transforms for the distribution of λ(t) and the joint distribution

of the two. As usual, we are here concerned with obtaining the appropriate partial

differential equation. We start with the joint distribution:
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Figure 2. The curve of correlation coefficient ( )tr(  

( )t

Figure 2: The curve of correlation coefficient ρ̃(t).

Theorem 3. For the Hawkes process with intensity function λ(t) = v+
∑
Tr<t

Zre
−β(t−Tr),

we have
∂

∂t
G(θ, s, t) = [1− βs− θφ(s)]

∂

∂s
G(θ, s, t)− βvsG(θ, s, t), (28)

G(θ, s, t) := E[θNH(t)e−sλ(t)] is the p.g.f/Laplace transform of the joint distribution

of (NH(t), λ(t)); φ(s) = E[e−sZ ] =
∫∞

0
e−szdGZ(z), is the Laplace transform of the

density function of the marked random variables. The initial condition is G(θ, s, 0) =

e−sv.

Proof.

G(θ, s, t+ ∆|Ft) = E[θNH(t+∆)e−sλ(t+∆)|Ft]

= θNH(t)e−s[λ(t)−∆(βλ(t)−βv)][1− λ(t)∆]

+ θE
[
θNH(t)e−s[λ(t)−∆(βλ(t)−βv)+ZNH (t)+1(1−β∆′)]λ(t)

]
∆ + o(∆)

= θNH(t)e−sλ(t){1 + s[βλ(t)− βv]∆}[1− λ(t)∆]

+ θE
[
θNH(t)e−s[λ(t)−∆(βλ(t)−βv)]λ(t)e−sZNH (t)+1(1−β∆′)

]
∆ + o(∆), 0 < ∆′ < ∆.

Then we have

∂

∂t
G(θ, s, t) = [βs− 1 + θφ(s)]E[θNH(t)e−sλ(t)λ(t)]− βvsE[θNH(t)e−sλ(t)]

= [1− βs− θφ(s)]
∂

∂s
G(θ, s, t)− βvsG(θ, s, t),

the proof is completed. �

Corollary 1. Under the same conditions as above, the Laplace transform of the dis-

tribution of λ(t), g(s, t) := E
[
e−sλ(t)

]
= G(1, s, t), and satisfies the partial differential
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equation
∂

∂t
g(s, t) = [1− βs− φ(s)]

∂

∂s
g(s, t)− βvsg(s, t), (29)

with boundary/initial conditions g(0, t) = 1, g(s, 0) = e−sv.

The proof follows simply from the theorem by taking g(s, t) = G(1, s, t).

Corollary 2. Under the same conditions as above, the p.g.f. of the distribution of

NH(t) is given by G(θ, t) = G(θ, 0, t) and satisfies the differential equation

∂

∂t
G(θ, t) = (θ − 1)E

[
θNH(t)λ(t)

]
, (30)

subject to conditions G(1, t) = 1; G(θ, 0) = 1.

The joint probability generating function for (NH(t), λ(t)) can be given by solving

a partial differential equation, which provides, at least, a way to find the moments and

count distribution for Hawkes processes.

4. Other Applications

Previous sections have dealt with results for the simple self-exciting Hawkes. In

this section we consider briefly results for some other models such as mutually-exciting

process, Cox process, dynamic contagion process, inhomogenous Poisson process and

non-Markovian process.

4.1. Mutually-exciting process

We now consider a fairly general model comprising K mutually-exciting marked

point processes with exponential exciting kernels. Suppose the intensity of Nl(t) is

given by

λl(t) = vl +

K∑
j=1

λlj(t), l = 1, . . . ,K, (31)

where

λlj(t) =
∑
Tj,r<t

Zj,rαlje
−βlj(t−Tj,r), (32)

and {Tj,r}r=1,2,... is a sequence of occurrence times of type-j events and {Zj,r}r=1,2,...

the marks associated with them. Note that there is an extra factor αlj that contributes

to the effect of a type-j event, and its mark, on the future intensity of type-l events:
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this is because the same event and same mark may have different effects on various

other types of event. Then

E
[
Nm
k (t+ ∆)λnl (t+ ∆)|Ft

]
= Nm

k (t)
{
λl(t)−∆

K∑
j=1

λlj(t)βlj
}n{

1−∆
K∑
j=1

λj(t)
}

+ E
[
Nm
k (t)

K∑
i=1,i6=k

∆λi(t)
{
λl(t)−∆

K∑
j=1

λlj(t)βlj + Zi,Ni(t)+1αli(1−∆′βli)
}n]

+ E
[(
Nk(t) + 1

)m
∆λk(t)

{
λl(t)−∆

K∑
j=1

λlj(t)βlj + Zk,Nk(t)+1αlk(1−∆′βlk)
}n]

+ o(∆),

where 0 < ∆′ < ∆. Taking expectations and appropriate limits as ∆→ 0,

d

dt
E [Nm

k (t)λnl (t)] = −nE

Nm
k (t)λn−1

l (t)

K∑
j=1

λlj(t)βlj

− E

 K∑
j=1

Nm
k (t)λnl (t)λj(t)


+E

Nm
k (t)

K∑
j=1,j 6=k

λj(t)

n∑
i=0

(
n

i

)
λil(t)µ

(q)
n−iα

n−i
lj


+E

[
(Nk(t) + 1)

m
λk(t)

n∑
i=0

(
n

i

)
λil(t)µ

(k)
n−iα

n−i
lk

]
,

where µ
(j)
n−i = E

[
Zn−ij,r

]
is the (n− i)th moment of Zj,r for all r = 1, 2, . . ..

This can be written as

d

dt
E [Nm

k (t)λnl (t)] = −n
K∑
j=1

βljE
[
Nm
k (t)λlj(t)λ

n−1
l (t)

]
+

m−1∑
j=0

(
m

j

)
E
[
N j
k(t)λk(t)λnl (t)

]

+

n−1∑
i=0

(
n

i

) K∑
j=1,j 6=k

µ
(j)
n−iα

n−i
lj E

[
Nm
k (t)λil(t)λj(t)

]
+

m∑
j=0

n−1∑
i=0

(
m

j

)(
n

i

)
µ

(k)
n−iα

n−i
lk E

[
N j
k(t)λil(t)λk(t)

]
. (33)

4.2. Cox process

Cox [4] introduced a doubly stochastic model of point processes, now usually called

Cox processes. More recent treatments of the properties of general classes of Cox

processes are given, for example, by [2] and [17]. For this paper, we consider a simple

version used by [7] in the context of catastrophe insurance. It has intensity

λ(t) = v +
∑
Tr<t

Yre
−β(t−Tr), t > 0, (34)

{Yr}r=1,2,... is a sequence of i.i.d. random variables with distribution function GY (y),

y > 0. This looks much like Equation (1) for the Hawkes process when v(t) = v. But
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there is one very big difference: the events {Tr} on the right of Equation (34) arise from

a time homogeneous Poisson process with rate η, and the {Yr} are marks associated

with events of the Poisson process; in contrast, the events on the right of Equation (1)

belong to the same process that is generated by the intensity λ(t) on the left — it is

this that drives the contagious property of the Hawkes process, with the occurrence of

past events increasing the intensity that governs future events.

Note that the above Cox model involves two point processes, the Cox process NC(t)

and the Poisson process, NP (t), that drives it. These can be considered as forming a

bivariate mutually-exciting pair. In this case the general form of Equation (2) can be

written as the special case
λC(t) = v +

∑
TP,r<t

Yie
−β(t−TP ;r),

λP (t) = η.

(35)

In general, each intensity of a bivariate mutually-exciting Hawkes process consists

of a baseline intensity and two exciting terms: a self-exciting term and a cross-exciting

term. In this case we see that the Cox intensity contains a term that is excited by the

Poisson process, but no self-exciting term; the Poisson intensity has no exciting terms

at all. So they are not really mutually-exciting, because the Cox process is not excited

at all!

Similarly, we know that the triple (NC(t), NP (t), λC(t)) forms a Markov process.

For the Cox process we have two point processes, NC(t) and the Poisson process,

NP (t), that drives it. Therefore, for small time increment ∆, we need four probabilities

P{{NC(t+ ∆)−NC(t) = 0} ∩ {NP (t+ ∆)−NP (t) = 0}|Ft}

= [1− λ(t)∆][1− η∆] + o(∆) = 1− (η + λ(t))∆ + o(∆);

P{{NC(t+ ∆)−NC(t) = 0} ∩ {NP (t+ ∆)−NP (t) = 1}|Ft} = η∆ + o(∆);

P{{NC(t+ ∆)−NC(t) = 1} ∩ {NP (t+ ∆)−NP (t) = 0}|Ft} = λ(t)∆ + o(∆);

P{{NC(t+ ∆)−NC(t) = 1} ∩ {NP (t+ ∆)−NP (t) = 1}|Ft} = o(∆).

Note that the reasons are, for example, for the above last equality as follows.

Because, we can consider two cases: (i) {NC(t + ∆)−NC(t) = 1} occurs not later

than occurring of {NP (t+ ∆)−NP (t) = 1}; (ii) {NC(t+ ∆)−NC(t) = 1} occurs after

occurring of {NP (t+ ∆)−NP (t) = 1}.
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For case (i), we have

P{{NC(t+ ∆)−NC(t) = 1} ∩ {NP (t+ ∆)−NP (t) = 1}|Ft}

= P{{NP (t+ ∆)−NP (t) = 1}|{NC(t+ ∆)−NC(t) = 1},Ft}

× P{{NC(t+ ∆)−NC(t) = 1}|Ft}

= P{{NP (t+ ∆)−NP (t) = 1}|Ft}P{{NC(t+ ∆)−NC(t) = 1}|Ft}

(due to NC(t) does not affect NP (t), and P{NC(t+ ∆)−NC(t) ≥ 2} = o(∆) if

{NP (t+ ∆)−NP (t) = 1} affects NC(t))

= η∆λ(t)∆ + o(∆) = o(∆).

For case (ii), we have,

P{{NC(t+ ∆)−NC(t) = 1} ∩ {NP (t+ ∆)−NP (t) = 1}|Ft}

= P{{NC(t+ ∆)−NC(t) = 1}|{NP (t+ ∆)−NP (t) = 1},Ft}P{{NP (t+ ∆)−NP (t) = 1}|Ft}

= λ(t+ ∆)λ(t)∆P{{NP (t+ ∆)−NP (t) = 1}|Ft}+ o(∆)

= λ(t+ ∆)λ(t)∆η∆ + o(∆) = o(∆),

where

λ(t+ ∆) = v +
∑

TP,i<t+∆

Yie
−β(t−TP,i+∆)

= v + e−β∆[λ(t)− v] + Y ∗e−β∆1 , (0 < ∆1 < ∆)

= (1− β∆)λ(t) + βv∆ + Y ∗e−β∆1 + o(∆).

For the Cox process we have

λ(t+ ∆) =

λ(t)−∆[βλ(t)− βv] + o(∆), given {NP (t+ ∆)−NP (t) = 0},

λ(t)−∆[βλ(t)− βv] + YNP (t)+1 + o(∆), given {NP (t+ ∆)−NP (t) = 1}.

Thus, apart from the constant term, the intensity decays exponentially with an added

jump, Y , when a new Poisson event occurs at a time that precedes the end of the time

increment by ∆′, (∆′ < ∆).

Let ∇4 = YNP (t)+1(1− β∆′), so lim
∆↓0

(∇4 −∇1) = YNP (t)+1. Then we have

E[Nm
C (t+ ∆)λn(t+ ∆)|Ft]

= Nm
C (t)(λ(t)−∇1)

n
(1− (λ(t) + η)∆) +Nm

C (t)(λ(t)−∇1 +∇4)
n
η∆

+ (NC(t) + 1)
m

(λ(t)−∇1)
n
λ(t)∆ + o(∆),
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and

d

dt
E[Nm

C (t)λn(t)] = lim
∆↓0

E[Nm
C (t+ ∆)λn(t+ ∆)]− E [Nm

C (t)λn(t)]

∆

= nβvE[Nm
C (t)λn−1(t)]− nβE[Nm

C (t)λn(t)]

+η

n−1∑
i=0

(
n

i

)
µn−iE[Nm

C (t)λi(t)]

+

m−1∑
j=0

(
m

j

)
E[N j

C(t)λn+1(t)], (36)

where µr = E[Y r] is the rth moment of the mark Y . In fact, because of the Markov

property of (NC(t), λ(t)), we have the same result for Cox process by using the Dynkin

formula for the objective function E[Nm
C (t)λn(t)].

Differential Equation (36) can be solved, subject to initial conditions E[N i
C(0)] = 0,

E[λi(0)] = vi, (i = 1, 2, . . .), we see that this involves similar functions with various

powers, so that such equations must be solved recursively. Start with m = 0, n = 1

and we have
dE[λ(t)]

dt
+ βE[λ(t)] = βv + ηµ1,

which has solution

E[λ(t)] = v +
ηµ1

β

(
1− e−βt

)
. (37)

Alternatively, this is also easily obtained by taking expectations of Equation (34),

because it is easily to obtain the expectation of a function of Poisson random variables.

If we let m = 1, n = 0 then Equation (36) becomes

dE [NC(t)]

dt
= E[λ(t)]

or, rather obviously,

E [NC(t)] =

t∫
0

E[λ(u)]du =

(
ηµ1

β
+ v

)
t− ηµ1

β2

(
1− e−βt

)
. (38)

The general equation using m = 0 is

dE[λn(t)]

dt
+ nβE[λn(t)] = nβvE[λn−1(t)] + η

n−1∑
i=0

(
n

i

)
µn−iE[λi(t)],

so that we have a simple recursion for E[λn(t)] in terms of lower powers of n. Recursion

is not so simple for m > 0, but we give the first two equations that are obviously soluble
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in terms of powers that we already know.
dE[NC(t)λ(t)]

dt
+ βE[NC(t)λ(t)] = βvE[NC(t)] + ηµ1E[NC(t)] + E[λ2(t)],

dE[N2
C(t)]

dt
= E[λ(t)] + 2E[NC(t)λ(t)].

4.3. Dynamic contagion processes

Dassios and Zhao [8] introduced a dynamic contagion process, ND(t), with intensity

function

λD(t) = v + (λ0 − v)e−βt +
∑
Sr<t

Yre
−β(t−Sr) +

∑
Tr<t

Zre
−β(t−Tr), (39)

where {Sr}r=1,2,... are event occurring times of a homogenous Poisson process with rate

η and {Yr}r=1,2,... are their associated marks, assumed to be i.i.d. random variables

with distribution function GY (y), y > 0. {Tr}r=1,2,... are event occurring times of

a dynamic contagion process with corresponding marks, {Zr}r=1,2,..., assumed to be

i.i.d. random variables with distribution function GZ(z), z > 0. It is assumed that the

random variables Yr, Zr are independent of the history of the process prior to their

occurrences. In this case the baseline intensity is not constant.

Note that, apart from changing subscript C into D, and having a time-varying

baseline intensity, Equation (39) differs from the first part of Equation (35) simply by

adding a self-exciting term to the cross-exciting term that is already there. Together

with the expression for λP (t) in Equation (35) we once again have a bivariate mutually-

exciting process (ND(t), NP (t)) and, because of the exponential form of the exciting

terms, the triple (ND(t), NP (t), λD(t)) forms a Markov process: in fact, because NP (t)

is Poisson, (ND(t), λD(t)) is a Markov process. In introducing the dynamic contagion

process, [8] described it as a generalization of both the Hawkes process (with exponen-

tial decay) and the Cox process with shot noise intensity (with exponential decay). We

see that, in fact, it is a special case of a bivariate mutually-exciting Hawkes process.

The Dynamic contagion process was defined in Equation (39). We restate it here in

a slightly different form. The intensity is

λ(t) = v(t) +
∑
Sr<t

Yie
−β(t−Sr) +

∑
Tr<t

Zre
−β(t−Tr),
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where the baseline intensity is the time-varying function v(t) = v + (λ0 − v)e−βt.

In this model we have two point processes: the Dynamic contagion process ND(t),

which has intensity λ(t), and the Poisson process NP (t), which has constant intensity

η.

Similarly, we seek to find a differential equation for E
[
Nm
D (t)Nk

P (t)λn(t)
]
. The

result is as follows.

d

dt
E[Nm

D (t)Nk
P (t)λn(t)]

= n[v′(t) + βv(t)]E[Nm
D (t)Nk

P (t)λn−1(t)]− nβE[Nm
D (t)Nk

P (t)λn(t)]

+ η
k∑
r=0

(
k

r

)
n−1∑
i=0

(
n

i

)
µ

(Y )
n−iE[Nm

D (t)Nr
p (t)λi(t)] + η

k−1∑
r=0

(
k

r

)
E[Nm

D (t)Nr
p (t)λn(t)]

+
m∑
j=0

(
m

j

)
n−1∑
i=0

(
n

i

)
µ

(Z)
n−iE[N j

D(t)Nk
P (t)λi+1(t)] +

m−1∑
j=0

(
m

j

)
E[N j

D(t)Nk
P (t)λn+1(t)],

(40)

where v′(t) =
dv(t)

dt
= −β(λ0 − v)e−βt.

Equation (40), of course, is a special case of Equation (33) when v(t) ≡ v is constant.

We can consider special cases when some of the parameters m, k, n are zero. We can

also consider other cases such as E[Nm
D (t)λn1

1 (t)λn2
2 (t)], where

λ1(t) =
∑
Sr<t

Yre
−β(t−Sr); λ2(t) =

∑
Tr<t

Zre
−β(t−Tr).

With the given baseline intensity the process is Markovian and so Equation (40) can

also be derived by Dynkin’s formula. However, our proof is valid for more general

baseline intensity functions.

4.4. Inhomogenous Poisson processes

Here we simply take λ(t) to be a given deterministic function: there are no exciting

kernels of the kind we have so far assumed. Using our method, we can get the following

differential equation

d

dt
E[g(N(t))] = {E[g(N(t) + 1)]− E[g(N(t))]}λ(t), (41)

which can be solved analytically for some functions g : <+ ×N→ < under some mild

conditions.

Example 3. g(x) = θx, θ > 0, we have

d

dt
E[θN(t)] = {E[θN(t)+1]− E[θN(t)]} = (θ − 1)E[θN(t)]λ(t),
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so that

E[θN(t)] = exp

 t∫
0

(θ − 1)λ(u)du

 , (42)

which is of course the very well known expression for the p.g.f. of the inhomogeneous

Poisson process.

Example 4. g(x) = xn, n = 1, 2, . . ., we have

d

dt
E[Nm(t)] = {E[(N(t)+1)m]− E[Nm(t)]}λ(t) = λ(t)

m−1∑
j=0

(
m

j

)
E[N j(t)],

which can be integrated to give

E[Nm(t)] =

m−1∑
j=1

(
m

j

) t∫
0

λ(u)E[N j(u)]du. (43)

In fact, we can have, for an inhomogeneous Poisson process N(t) whose intensity

function as λ(t), and

P{N(t) = k} =
[Λ(t)]k

k!
e−Λ(t), k = 0, 1, . . . ,

where Λ(t) =
t∫

0

λ(u)du,

d

dt
E[Nm(t)] =

d

dt
{
∞∑
k=0

km
[Λ(t)]k

k!
e−Λ(t)}

= λ(t)

∞∑
k=0

km
[Λ(t)]

k−1

(k − 1)!
e−Λ(t) − λ(t)

∞∑
k=0

km
[Λ(t)]

k

k!
e−Λ(t)

=

m−1∑
j=0

(
m

j

)
E[N j(t)λ(t)],

which is the same as Equation (43) with initial condition E[Nm(0)] = 0.

4.5. A multi-marked Hawkes process

We now consider a new type of Hawkes process whose intensity function is given by

λ(t) = v +

K∑
j=1

∑
Tr<t

Zj,re
−βj(t−Tr), (44)

where Tr is the occurrence time of the rth event of the point process NH(t); for each

j = 1 to K, {Zj,r ∼ GZj (z)}r=1,2,... is a sequence of i.i.d. marks; these series are
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also independent of each other and independent of previous values of the process N(t).

The model looks very similar to the standard mutually-exciting process. However, in

this case there is only one point process and each event on the right of this equation

is operated on by a kernel that consists of K different exponential functions, each

multiplied by a different mark sequence, which combine additively to produce the

output intensity. Note that the rates βj are in general different: if they were all the

same then this would become a simpler self-exciting process with marks that are just

the sums of the individual marks
∑K
j=1 Zj,r with a distribution that is the convolution

of the various GZj (z) distributions. Our method can still work on this more general

Hawkes process. In the following, we only consider the case of K = 2.

Theorem 4. For a Hawkes process with intensity function

λ(t) = v +
∑
Tr<t

Z1,re
−β1(t−Tr) +

∑
Tr<t

Z2,re
−β2(t−Tr), (45)

we have

d

dt
E[Nm

H (t)λn(t)] = −nβ1E[Nm
H (t)λn−1(t)λ1(t)]− nβ2E[Nm

H (t)λn−1(t)λ2(t)]

+
m−1∑
j=0

(
m
j

)
E[N j

H(t)λn+1(t)] +
m∑
j=0

n−1∑
i=0

(
m
j

)(
n
i

)
wn−iE[N j

H(t)λi+1(t)],

where for (k = 1, 2, . . . ; r = 1, 2, . . .)

λ1(t) =
∑
Tr<t

Z1,re
−β1(t−Tr); λ2(t) =

∑
Tr<t

Z2,re
−β2(t−Tr); wk =

∞∫
0

zkdGZ1,r+Z2,r
(z).

We can also treat the intensity components separately

d

dt
E[Nm

H (t)λn1
1 (t)λn2

2 (t)]

= −(n1β1 + n2β2)E[Nm
H (t)λn1

1 (t)λn2
2 (t)] +

m−1∑
j=0

(
m

j

)
E[N j

H(t)λ(t)λn1
1 (t)λn2

2 (t)]

+
m∑
j=0

n1−1∑
i=0

(
m

j

)(
n1

i

)
µ

(1)
n1−iE[N j

H(t)λ(t)λi1(t)λn2
2 (t)]

+
m∑
j=0

n2−1∑
i=0

(
m

j

)(
n2

i

)
µ

(2)
n2−iE[N j

H(t)λ(t)λn1
1 (t)λi2(t)]

+
m∑
j=0

n1−1∑
j1=0

n2−1∑
j2=0

(
m

j

)(
n1

i1

)(
n2

i2

)
µ

(1)
n1−i1µ

(2)
n2−i2E[N j

H(t)λ(t)λi11 (t)λi22 (t)].

where µ
(i)
k =

∞∫
0

zki dGZi(zi), (i = 1, 2; k = 1, 2, . . .).
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Proof. The proof is similar to the previous ones. The details are omitted here. �

Some special cases are considered in the following.

When n1 = n2 = 0, by using Theorem 4, we have

d

dt
E[Nm

H (t)] =

m−1∑
i=0

(
m

i

)
E[N i

H(t)λ(t)],

which is coincident with Theorem 1 provided for general counting processes. In par-

ticular,
d

dt
E[NH(t)] = E[λ(t)]⇒ E[NH(t)] =

t∫
0

E[λ(u)]du.

When m = 0, by using Theorem 4, we have

d

dt
E[λn1

1 (t)λn2
2 (t)] = −(n1β1 + n2β2)E[λn1

1 (t)λn2
2 (t)]

+
n1−1∑
i=0

(
n1

i

)
µ

(1)
n1−iE[λ(t)λi1(t)λn2

2 (t)]

+
n2−1∑
i=0

(
n2

i

)
µ

(2)
n2−iE[λ(t)λn1

1 (t)λi2(t)]

+
n1−1∑
i1=0

n2−1∑
i2=0

(
n1

i1

)(
n2

i2

)
µ

(1)
n1−i1µ

(2)
n2−i2E[λ(t)λi11 (t)λi22 (t)].

(46)

4.6. Non-Markovian Hawkes Processes

In this subsection, a non-Markovian Hawkes process, denoted as NHG(t), is con-

sidered by using our method, whose intensity kernel function is h(t) = te−t, (t ≥

0) (Gamma decay function), i.e., its intensity function is

λ(t) = v +

t∫
0

h(t− s)dNHG(t) = v +
∑
Ti<t

h(t− Ti) = v +
∑
Ti<t

[(t− Ti)e−(t−Ti)], (47)

where {Ti}i=1,2,... is the series of times at which events occur for the Hawkes process

NHG(t).

We shall give the results for the moments of NHG(t) by using our method, then

present a closed-form for E[N2
HG(t)] as an example. Because the higher order moments

can also be done similarly, here they are omitted.

It is easy to know that h′(t) = e−t − te−t = h2(t) − h(t), where h2(t) = e−t, for

t ≥ 0, h2(t) = 0, for t < 0.
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First we have, when {NHG(t+ ∆)−NHG(t) = 0} occurs,

λ0(t+ ∆) = v +
∑

Ti<t+∆

h(t− Ti + ∆) = v +
∑
Ti<t

h(t− Ti + ∆)

= v +
∑
Ti<t

h(t− Ti) + ∆
∑
Ti<t

h′(t− Ti) + o(∆)

= λ(t) + ∆[
∑
Ti<t

h2(t− Ti)−
∑
Ti<t

h(t− Ti)] + o(∆)

= λ(t) + ∆[λ2(t)− λ(t) + v] + o(∆),

where λ2(t) is a stochastic process, which is defined as

λ2(t) :=

t∫
0

h2(t− s)dNHG(t) =
∑
Ti<t

h2(t− Ti) =
∑
Ti<t

e−(t−Ti). (48)

Note that λ2(t) depends on the point process NHG(t) whose the moments are consid-

ering now. (λ2(0) = 0, λ2(t) = 0, when t < T1)

On the other hand, we have, when {NHG(t+ ∆)−NHG(t) = 1} occurs,

λ1(t+ ∆) = v +
∑

Ti<t+∆

h(t− Ti + ∆) = v +
∑
Ti<t

h(t− Ti + ∆) + h(t− T ∗ + ∆)

= λ0(t+ ∆) + h(∆1) + o(∆), 0 < ∆1 < ∆, t < T ∗ < t+ ∆.

Using our elementary method presented in Section 2, then we have the following result.

Theorem 5. For a Hawkes process NHG(t) with intensity function

λ(t) = v +
∑
Ti<t

[(t− Ti)e−(t−Ti)],

then we have

d

dt
E[Nm

HG(t)λn(t)λl2(t)] = nE[Nm
HG(t)λn−1(t)λl+1

2 (t)]− (n+ l)E[Nm
HG(t)λn(t)λl2(t)]

+nvE[Nm
HG(t)λn−1(t)λl2(t)]

+

m−1∑
i=0

(
m

i

)
E[N i

HG(t)λn+1(t)[λ2(t) + 1]l]

+

l−1∑
k=0

(
l

k

)
E[Nm

HG(t)λn+1(t)λk2(t)], (49)

where
w∑
0

[∗] = 0, if w < 0 and λi(t) = 0, if i < 0.
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Proof. The proof is similar to the previous ones based on some complicated algebraic

manipulations, here it is omitted. �

Remark 9. Theorem 5 is presented as an example for our elementary approach on a

non-Markovian Hawkes process in which the Dynkin formula cannot work. It is again

to prove our method is an extension of Dynkin formula.

Special cases: From Equation (49), we have the following special cases.

(i) When m = 0, n = 1, l = 0, we have

d

dt
E[λ(t)] = E[λ2(t)]− E[λ(t)]− v.

(ii) When m = 0, n = 0, l = 1, we have

d

dt
E[λ2(t)] = E[λ(t)]− E[λ2(t)].

To summarize cases (i) and (ii), we have a set of 2 differential equations as follows.
d

dt
E[λ(t)] = E[λ2(t)]− E[λ(t)]− v,

d

dt
E[λ2(t)] = E[λ(t)]− E[λ2(t)].

Numerical results, with E[λ2(0)] = 0, E[λ(0)] = v, and set v = 2, are,
E[λ(t)] =

1

2
e−2t + t+

3

2
,

E[λ2(t)] = −1

2
e−2t + t+

1

2
.

(iii) When m = 0, n = 2, l = 0, we have

d

dt
E[λ2(t)] = 2E[λ(t)λ2(t)]− 2E[λ2(t)] + 2vE[λ(t)].

(iv) When m = 0, n = 1, l = 1, we have

d

dt
E[λ(t)λ2(t)] = E[λ2(t)] + E[λ2

2(t)]− 2E[λ(t)λ2(t)] + vE[λ2(t)].

(v) When m = 0, n = 0, l = 2, we have

d

dt
E[λ2

2(t)] = 2E[λ(t)λ2(t)]− 2E[λ2
2(t)] + E[λ(t)].
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To summarize cases (iii), (iv) and (v), we have a set of 3 differential equations as

follows. 

d

dt
E[λ2(t)] = 2E[λ(t)λ2(t)]− 2E[λ2(t)] + 2vE[λ(t)],

d

dt
E[λ(t)λ2(t)] = E[λ2(t)] + E[λ2

2(t)]− 2E[λ(t)λ2(t)] + vE[λ2(t)],

d

dt
E[λ2

2(t)] = 2E[λ(t)λ2(t)]− 2E[λ2
2(t)] + E[λ(t)].

Numerical results, with E[λ2
2(0)] = 0, E[λ2(0)] = v2 = 4, E[λ(0)λ2(0)] = 0, are,

E[λ2(t)] =
9

8
t2 +

51

16
t+

137

16
+

7

4
e−2t +

3

4
te−2t +

7

64
e−4t,

E[λ2
2(t)] =

9

8
t2 +

27

16
t+

41

64
− 3

4
e−2t − 3

4
te−2t +

7

64
e−4t,

E[λ(t)λ2(t)] =
9

8
t2 +

37

16
t+

47

64
− 5

8
e−2t − 7

64
e−4t.

(vi) When m = 1, n = 1, l = 0, we have

d

dt
E[NHG(t)λ(t)] = E[NHG(t)λ2(t)]− E[NHG(t)λ(t)] + vE[λ(t)] + E[λ2(t)].

(vii) When m = 1, n = 0, l = 1, we have

d

dt
E[NHG(t)λ2(t)] = E[NHG(t)λ(t)]− E[NHG(t)λ2(t)] + E[λ(t)λ2(t)] + E[λ(t)].

To summarize cases (vi) and (vii), we have a set of 2 differential equations as follows.
d

dt
E[NHG(t)λ(t)] = E[NHG(t)λ2(t)]− E[NHG(t)λ(t)] + vE[λ(t)] + E[λ2(t)],

d

dt
E[NHG(t)λ2(t)] = E[NHG(t)λ(t)]− E[NHG(t)λ2(t)] + E[λ(t)λ2(t)] + E[λ(t)].

Numerical results, with E[NHG(0)λ(0)] = 0, E[NHG(0)λ2(0)] = 0, are,
E[NHG(t)λ(t)] =

3

8
t3 +

17

8
t2 +

943

128
t+

715

256
− 7

256
e−2t +

5

4
te−2t +

3

16
t2e−2t − 7

128
e−4t,

E[NHG(t)λ2(t)] =
3

8
t3 +

17

8
t2 +

823

128
t− 345

256
+

331

256
e−2t − 13

8
te−2t − 3

16
t2e−2t +

7

128
e−4t.

Based on Theorem 1, we have

d

dt
E[N2

HG(t)] =
1∑
j=0

(
2

j

)
E[N j

HG(t)λ(t)]

= E[λ(t)] + 2E[NHG(t)λ(t)]

=
1

2
e−2t + t+

3

2
+ 2

[
3

8
t3 +

17

8
t2 +

943

128
t+

715

256
− 7

256
e−2t +

5

4
te−2t +

3

16
t2e−2t − 7

128
e−4t

]
=

3

4
t3 +

17

4
t2 +

999

56
t+

883

128
+

49

128
e−2t +

5

2
te−2t +

3

8
t2e−2t − 7

56
e−4t.

E[N2
HG(t)] =

−1

5376
(1008t2 + 7728t+ 4893)e−2t +

3

16
t4 +

17

12
t3 +

999

112
t2 +

883

128
t+

1

32
e−4t +

225

256
.
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On the other hand, we also have

E[NHG(t)] =

t∫
0

E[λ(u)]du =
1

4
− 1

4
e−2t +

1

2
t2 +

3

2
t.

The curves for E[N2
HG(t)], E[NHG(t)] and a sample path of λ(t) are presented in

FIGURES 3 and 4, respectively.

 

           

22
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HG

( )t

( ( ), ( ), ( ))N t t t

+D

0

Figure 3: The curves of E[N2
HG(t)]

and E[NHG(t)].
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Figure 4: A sample path of λ(t) with v = 2

(Ti = 0.5, 2, 2.5, 4, (i = 1, ..., 4)

Remark 10. The key issue for our method to be used successfully is to introduce a

stochastic process λ2(t) for this non-Markovian Hawkes process with Gamma decay

kernel function. In fact, the process (NHG(t), λ(t), λ2(t)) has the Markov property.

In general, how to introduce some stochastic processes makes the Markov property

true for non-Markovian Hawkes processes is a difficult question, which is similar to

the method of supplementary variables. When using our method, one does not need

to check the Markov property being true or not, if the differential equations can be

established successfully, then our method is applicable.

5. Conclusions and Discussion

In the paper an elementary approach is presented to obtain moments of the counting

process and/or the intensity of a number of marked Hawkes processes, in which the

detailed procedure is given step-by-step, and it works not only for all Markovian

Hawkes processes, but also for some non-Markovian Hawkes processes. When the
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process is Markovian the same results can be obtained by the famous Dynkin formula.

Our method starts by finding the expectation of the required moment at time t + ∆

conditional on the history of the process up to time t. Taking a further expectation

and finding the limit as ∆→ 0 yields a differential equation for the required moment.

It may be possible to solve this explicitly in simple cases, otherwise it may be solved by

standard numerical methods for differential equations. Our method does not depend

on having a Markov process, so that it is more general for this purpose than using a

Dynkin formula.

Results have been found for simple versions of a self-exciting process, mutually-

exciting Hawkes processes, Cox processes, dynamic contagion processes and non-homo

-geneous Poisson processes. We show that all of these actually belong to the Hawkes

process family. Some results are also obtained for a self-exciting process with multiple

marks. We also present an application of our elementary method to a non-Markovian

Hawkes processes with Gamma decay kernel function, which shows again that our

method is an extension of Dynkin formula.

We use exponential exciting-kernel functions. This often results in the process

having the Markov property, but the main advantage is the simple form we get, to

order o(∆), for λ(t+∆). We also use the Gamma decay kernel function by introducing

a new related stochastic process although the marks and exponential parameter are not

used, which is for presenting a simple example in non-Markovian case. As mentioned

previous, the Marks and parameters do not affect our method, they just bring some

complexity but difficulty. The method in introducing a new stochastic process for non-

Markovian Hawkes process looks much like the method of supplementary variables in

essential. The Gamma decay kernel function in the example makes some difference

with exponential kernel function for random intensity functions, the former’s intensity

function increases gradually, but the latter’s intensity has a jump when an event occurs.

An advantage of our method is that it begins by looking at the conditional ex-

pectation of the function we are actually trying to derive. For example, to obtain

results for E[θN(t)e−sλ(t)] we would begin simply with E[θN(t+∆)e−sλ(t+∆)|Ft] where

the filtration Ft represents the history of the process up to time t. In contrast, for

the dynamic contagion process, [8] (Theorem 3.1 in their paper) approach the same

problem by beginning with an objective function g(N,λ, t) = ec(t)An(t)e−B(t)λ and



42 Cui et al.

then use the infinitesimal generator to obtain equations for the functions c(t), A(t),

and B(t). Our approach seems more obvious.

We have given several examples in the paper but the method can be applied to many

problems.
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