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ABSTRACT 

In some applications, such as ground vibration testing in the aerospace industry, it is of 

interest to observe the modal behaviour of a slender structure while it is statically loaded. One 

way of statically loading such a structure is to suspend masses using very soft springs. If the 

springs are linear, then this results in an extremely large static deflection of the springs. This 

problem could be overcome by dynamically isolating the masses using quasi-zero stiffness 

(QZS) springs. This paper describes the design, construction and experimental testing of a 

device that can exhibit QZS. A novel design is proposed that allows the stiffness and the 

symmetry of the device to be adjusted independently using separate adjustment mechanisms. 

Quasi-static and dynamic testing of the device show that it can be adjusted to have an 

extremely low stiffness within the limits of measurement. The main trend of the force-

displacement curve showed that it had a cubic stiffness characteristic, and that friction was 

responsible for its hysteretic behaviour. Dynamic testing showed that the device locked-up 

due to friction at low frequencies, but at high frequencies the device acted as an efficient 

linear isolator. An experiment was also performed where a mass was suspended on a multi-

modal beam structure via the QZS device. It was shown that a static load could be applied to 

the beam without the attached mass appreciably affecting the dynamic response of the beam, 

despite the suspended mass was about 12% of that of the host structure.  

Keywords: Quasi-Zero Stiffness; High-Static-Low-Dynamic-Stiffness; Nonlinear vibration; 

Vibration absorber. 

  



 

1 INTRODUCTION AND MOTIVATION  

 

Since the book on quasi-zero stiffness (QZS) by Alabuzhev et al. [1] in 1989, there has been 

an enormous amount of research carried out on the design and application of devices 

incorporating QZS. These are nonlinear springs that have the attractive property of having a 

high static stiffness and a very low dynamic stiffness, so-called HSLDS devices. Some 

common applications for these devices include vibration isolation, vibration absorbers and 

vibration energy harvesters [2]. Perhaps the most widespread use of nonlinear stiffness 

elements has been in vibration isolation [3-11], but they are also being considered for 

inclusion in metamaterials to adjust band gap performance [12], and similar principles are 

also exploited in energy harvesting [13]. However, in this paper, the application of interest is 

in static loading a structure using masses suspended from the structure using QZS devices. 

When a mass is resiliently attached to a structure through a nonlinear stiffness, a nonlinear 

vibration absorber is formed, and this is an area where much work has been done, so it is 

appropriate to first review this work in the context of this paper.  

A mass together with a QZS spring can be exploited to provide broadband vibration reduction 

as a nonlinear energy sink (NES). This was pioneered by Vakakis et al. [14,15], who showed 

that energy could be efficiently transferred from the host structure to the absorber – the so-

called targeted energy transfer approach. Gendelman et al. [16-18] further discussed the 

attractors of a linear oscillator with an attached nonlinear energy sink under external 

harmonic excitation, and recently, specific tuning approaches for nonlinear absorbers have 

been discussed by Viguié and Kerschen [19], and Brennan and Gatti [20]. Yang et al. [21] 

investigated the performance of nonlinear absorbers attached to a nonlinear host system using 

power flow analysis. Detroux et al. [22] analysed the performance of the nonlinear tuned 

vibration absorber, and Habib et al. [23] proposed a design strategy for the absorber. Tang et 

al. [24] experimentally investigated the characteristics of a nonlinear vibration absorber, and 

its fundamental performance was further explored in [25]. 

Although there are some similarities between the static loading of a structure using suspended 

masses and the attachment of vibration absorbers, the objectives are very different. The aim 

of static loading a structure during laboratory-based vibration testing is to apply static forces 



that the structure may experience in operation. If this is achieved by adding masses, then the 

dynamics of the structure will be affected, which is clearly undesirable. This can be avoided 

if very soft springs are used to suspend the masses, and QZS springs could be ideal for this 

purpose. Such an arrangement offers a way of observing the modes of a structure while it is 

subject to static loading, avoiding a shift in its natural frequencies, and has been particularly 

important to the aerospace industry. Distributed loads such as aerodynamic pressure could be 

simulated by attaching a large number of small masses to the host structure, each of which is 

attached using a QZS device. Researchers often transform dynamic loads to static loads with 

dynamic factors [26] and perform structural optimization of airplane wings [26-29]. For 

aerodynamic experiments and analysis of wings, the effect of large static pre-flutter 

deformation should be considered [30,31], and a static load taken into account [32], without 

affecting the dynamic characteristics of the aircraft wings. To realize a suitable ground 

vibration test of a highly flexible aircraft, Chang and Hodges [33] developed a multiple-beam 

model restrained by a bungee cord system with very low stiffness. To simulate the free-free 

boundary conditions of flexible space structures and to counteract gravity loads in ground 

vibration testing, Woodard and Housner [27] proposed a zero-spring-rate mechanism and 

characterize the nonlinear behaviour due to structure imperfections. Yang et al. [34] 

developed an adaptive feed-forward control scheme to adjust the inertial effects of a zero-

stiffness suspension system featuring a noncircular disk, which was used as an application in 

counteracting gravity during ground dynamic testing. 

The practical design of a true QZS spring is highly challenging as it is inherently susceptible 

to parameter errors – the two primary sources of parameter error are stiffness error and static 

load error [35-38]. Stiffness error occurs because of the need to reduce stiffness to the order 

of typical measurement errors in relation to the static stiffness of the device. This is due to the 

natural frequency being proportional to the square root of stiffness. For example, reducing the 

natural frequency by a factor of 10 requires a stiffness reduction by a factor of 100. This 

means that typical errors can lead to much higher natural frequencies than expected, or even 

negative stiffness leading to complex inter-well responses [39]. Some authors have 

considered ways to correct stiffness error, for example [38,40]. Static load (or payload) error 

results from the need to exactly locate the system equilibrium point at the point of minimum 

stiffness, and is again exaggerated in very low stiffness devices. This is because if the 

equilibrium stiffness is very low, a small error in the estimate of the payload weight (or 

equivalently the supporting spring stiffness) results in a large displacement of the payload 



away from the optimal point, again resulting in significantly higher than expected stiffness. 

These two forms of error highlight the need for a QZS device to allow precise adjustment of 

both stiffness and static load bearing to function successfully. Zhou and Liu presented a 

prototype of HSLDS spring exploiting magnetism to allow a semi-active control of its 

stiffness [41]. Le and Nguyen presented a theoretical design that allows for both stiffness and 

load error correction [42]. In [43] Wang et al. create a magnetic QZS device that allows 

payload adjustment to isolate a neonatal incubator, and this achieved natural frequencies 

nearly as low as 1 Hz for a payload in the range of 2.2 kg to 2.8 kg. Some further applications 

of QZS design solution, in the form of an HSLDS isolator are discussed in [39,42,44,45]. 

The aim of this paper is to design and test a simple mechanical device, that provides true QZS 

behaviour, for the application of suspending masses on a multi-modal structure to provide 

static loading. This is achieved by incorporating two adjusters that allow both stiffness error 

and static load error to be corrected independently. It is shown experimentally that the device 

achieves zero stiffness within the limits of measurement, and can be exploited to apply a 

static load to a multi-modal structure without significantly shifting its natural frequencies. 

The contributions of this paper are thus the design, and static and dynamic testing of a simple 

and compact mechanical QZS device which has two independent tuning mechanisms for 

stiffness and payload adjustment. Furthermore, the device is used to demonstrate that a static 

load can be applied by way of adding a mass to a structure with minimal perturbation of its 

modal properties. 

The paper is organised as follows. Following this introduction, Section 2 describes the 

fundamental effects of adding suspended masses on a multi-modal structure by using elastic 

elements. The design of a true QZS device is described in Section 3, and in Section 4 static 

and dynamic experimental characterisation of the device is carried out. The dynamic 

behaviour of a simple test-rig in which the QZS device is coupled to a simple cantilever beam 

is experimentally investigated in Section 5. The paper is concluded with Section 6. 

 

2 EFFECTS OF ADDING SUSPENDED MASSES ON A MULTI-

MODAL STRUCTURE 

 



In this section, an investigation is carried out into the dynamic behaviour of a multi-modal 

structure when masses are attached through spring-damper suspension devices. A beam is 

used as a benchmark for the host structure to illustrate the general effects. Of particular 

interest is the limiting case when QZS devices are used.  

 

The structure of interest consists of a Euler-Bernoulli cantilever beam with an arbitrary 

number of suspended masses, excited by a harmonic force with amplitude F, as shown in Fig. 

1. 

 

Figure 1. A cantilever beam with an arbitrary number of masses attached through QZS elements and 

viscous dampers. The g-vector denotes gravity. 

 

The combined system is modelled in the frequency domain using the dynamic stiffness 

method. A generic beam element of length eL  represented in local coordinates, with forces 

1,2F , moments 1,2M , lateral displacements 1,2W  and rotations 1,2  at each end of the beam 

element, is shown in Fig. 2. 

 

Figure 2. A beam element showing the forces, moments and linear, angular displacements at each end 

in local coordinate system. 



    

The beam element vector of forces and moments,  1 1 2 2

T

e F M F Mf is related to the 

vector of displacements and rotations  1 1 2 2  
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e W W  w by the dynamic stiffness 

matrix De, so that [46] 
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and 
2 (1/4)( / )S EI    is the flexural wavenumber, where   is the frequency,   is the 

density, E is the Young’s modulus, S is the cross sectional area and I is the second moment 

of area. 

The model of the system shown in Fig. 1 is obtained using a procedure similar to the finite 

element method, however, in this approach, each beam element contains distributed mass and 

stiffness. The number of elements N  is related to the number of nodes 1N  , which is 

determined by the number of points along the beam where a suspended mass, excitation force 

and response output is located. Each suspended mass is connected to a node between two 

beam elements through a parallel combination of a spring and a damper. The global dynamic 

stiffness matrix D  is given by 
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e
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i
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where e  is the beam element number, eB  is a Boolean matrix which converts the local node 

coordinates to global coordinates and eD  is the dynamic stiffness matrix given in Eq. (1). 

The second summation in Eq. (2) refers to the contribution of each suspended mass. The total 

number of suspended masses is mN  and iC  is also a Boolean matrix which has the function 

of adding mD  at the appropriate global coordinate. The dynamic stiffness for each suspended 

mass is 2 2( j ) ( j )mD m k c k m c       
 
[46], where m  is the mass, k  is the stiffness, 

c  is the damping and j= 1 . 

The Boolean matrix Be has four lines and 2n columns, consisting of zeros and ones. The 

elements in the matrix are unity when the degrees of freedom of the beam element coincide 

with the global degrees of freedom, and are zero otherwise. Examples of the Boolean 

matrices for the first two beam elements are given below as 
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Similarly, the matrix Ci has one row and 2n columns. The elements of Ci are zeros, except for 

the degree of  freedom where the suspended mass i is attached. For example, the Boolean 

matrix for the last suspended mass is given by 

 
1 2

0 0 1 0 .
m

n

N


C

 After applying the boundary conditions, which correspond to fixed-free conditions for the 

system in Fig. 1, the velocity at each node is given by 

 

1j v D f  (3) 



where v  is the global vector of linear and angular velocities and f  is the global vector of 

forces and moments, which has zero elements, except at the degree of freedom related to the 

applied external force. 

Numerical simulations are used to illustrate the behaviour of the system in Fig. 1 with the 

parameters given in Table 1. In the first simulation, three masses are located at distances 0.47 

m, 0.73 m and 1 m, respectively, from the fixed end of the 1-meter-length beam (the locations 

were selected so that they were not at nodal points in the frequency range of interest). Note 

that the stiffness that connects each mass to the beam is very small, so that the natural 

frequency of each suspended mass arrangement is well below all natural frequencies of the 

beam.  

 

Table 1. Physical properties used in the numerical simulations 

Property Value 

Beam Young’s Modulus, E 210 × 109 N/m2 

Beam density,  7800 kg/m3 

Beam length × width × thickness 1 × 0.2 × 0.012 m 

Each suspended mass, m 5% of beam mass 

Each viscous damping element, c 250 Ns/m 

Each quasi-zero stiffness, k 1 N/m 

Location of the force from the fixed end 0.2 m 

Beam loss factor 0.01 

 

The transfer mobility of the velocity of the free end of the beam per unit input force is shown 

in Fig. 3, along with a similar simulation is with a single suspended mass located at the free-

end of the beam. It can be seen from Figure 3 that the effects of adding three suspended 

masses or one single mass are qualitatively similar. The suspended masses cause two main 

effects – an increase in the overall damping of the structure, and a small downward shift of 

the lowest resonance frequencies. The damping effect on each mode is dependent on the 

position of the masses relative to the nodal points. Since the influence of either one or three 

masses is very similar, the subsequent discussion is limited to the case of a beam with a 

single suspended mass only. 



 

Figure 3. Comparison of the mobility response of the beam with three suspended masses, and one 

suspended mass. Also plotted is the mobility of the beam alone. 

 

To help in the interpretation of the results in Fig. 3, the jD  term in Eq. (2) is examined in 

more detail. As the suspension stiffness is very small, in the frequency range of interest is 

k m  , so that 
2 )j(jjD mc m c    . In the case when c m  , then 

2

nD m  , i.e., there is mass-like behaviour; and when c m  , then jnD c  , i.e., 

there is damping-like behaviour. Thus, the four cases illustrated in Figs. 4(a)-(d) are 

considered. The simulations are presented in Fig. 5. For clarity, cases (a), (b) and (c) are 

shown separately in Fig. 5(a), and cases (a), (b) and (d) are shown in Fig. 5(b). 

 



 

Figure 4. Different configurations of a cantilever beam subject to harmonic force. (a) Beam alone, (b) 

beam with mass attached through viscous damper and quasi-zero stiffness, (c) beam with grounded 

viscous damper attached (d) beam with mass attached. 

 

In Fig. 5(a), it can be seen that at lower frequencies, for example close to the first resonance 

frequency, the response of the beam with suspended mass is different to the case of the beam 

with grounded damper. However, when the frequency is increased, that difference becomes 

less and less significant. In Fig. 5(b) it can be seen that at relatively low frequencies, the 

response of the beam with suspended mass is very similar to the case of the beam with 

directly attached mass. Thus, if the natural frequency of the structure is much less (greater) 

than c m  then the attachment will predominantly act like an added mass (damper). An 

animation that highlights these effects is supplied in supplementary material for this paper. 



 

 

Figure 5. Comparison of mobility responses. (a) Beam without and with low-stiffness suspended 

mass compared to the beam with viscous damper. (b) Beam without and with low-stiffness suspended 

mass compared to the beam with directly attached mass.  

 



3 THEORETICAL DESIGN OF A NONLINEAR STIFFNESS 

ELEMENT FOR QZS 

 

This section presents a mathematical description of a QZS device which has two simple 

adjustments – one to correct stiffness errors, and a second to correct for errors in static 

loading. Like many nonlinear devices (e.g. [44,45]) the suspension system consists of two 

parts or subsystems. The first of these supports the static load, and is shown in Fig. 6(a).  

 

 

Figure 6. Subsystems of the QZS suspension and associated force displacement curves, with 

associated mathematical symbols. (a) Vertical spring component, providing positive stiffness and 

static load support. (b) Negative stiffness mechanism (note horizontal spring remains under tension at 

all times during normal operation). (c) Combination of (a) and (b) to give the QZS characteristic. (d-f) 

Typical force displacement responses for parts (a-c), respectively. 

 



In this implementation, as in many others (e.g. [40,44]), this part simply consists of a linear 

spring oriented vertically. With reference to the parameters labelled in Fig. 6, the force-

displacement relationship for the vertical spring of stiffness kv, is given by 

   0 0 0 0( ) ,v v v v v v v v vP z k l l F k a z L F         (4) 

where L0v is the initial length of the spring and F0v is the tension required to start extending 

the spring from this position. Note that by varying v  the spring can be adjusted so that the 

static load is supported at the chosen initial position, i.e., (0)v sP F  for different values of the 

static load sF .  

The second subsystem is shown in Fig. 6(b) and adds the required negative stiffness and 

resulting nonlinearity. Note that at 0z   the linkage forms a square of side a . The elastic 

potential energy within this system is solely due to the horizontal spring of stiffness kh and is 

given by 
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where L0h is the initial length of the spring and F0h is the tension required to start extending 

the spring from this position. Note from Fig. 6(b) that the distance h hL   is given by 
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Combining Eqs. (5) and (7) and differentiating the potential energy, results in the vertical 

force due to the horizontal spring, given by 
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Note that the effect on the displacement z of the rotation of the vertical members in Fig. 6(b) 

is neglected. Figure 6(e) shows a typical shape of the force displacement function described 

by Eq. (8). The stiffness at 0z   is found from the derivative of the force-deflection curve, 

and is given by 
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in which it can be seen that the negative stiffness of this subsystem can be varied by adjusting 

h . The parallel combination of these two subsystems is shown in Fig. 6(c), and the force-

displacement characteristic is determined by summing the forces given in Eqs. (4) and (8) to 

give 

     .  v nP z P z P z   (10) 

A typical force-deflection curve for the complete device is shown in Fig. 6(e). Note from Eq. 

(8) that (0) 0nP  , so that 
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To achieve the requirement that (0) sP F , v  is adjusted so that 
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The overall stiffness of the device at 0z   is given by 
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(13) 

and this gives the overall stiffness of the device ek  if equilibrium is achieved at 0z  . Hence 

any required ek  can be found by choosing 

 
0

0 .
4

e v h
h h

h

a k k F
a L
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Therefore, the QZS mechanism can, in principle, be made free from static loading error, 

simply by setting v  in accordance with Eq. (12). Then any required value for ek  can be 

achieved by simply choosing h  in accordance with Eq. (14).  

  

4 EXPERIMENTAL TESTS ON THE DEVICE 

 

4.1 Prototype of the Device 

A prototype of the QZS device is illustrated in Figs. 7(a) and (b). The distance a between the 

joints in Fig. 6, is 70 mm, and each arm is made from a 4 mm aluminium plate. Good quality 

roller bearings are used for the five joints. 

To permit accurate adjustment of the parameters h  and v , the device was equipped with 

two tuning pegs such as those found on guitars or other stringed instruments. The tuners have 

an internal worm screw that is self-locking and gives a gear ratio of 18:1. The peg diameter is 

nominally 6 mm although the effective diameter will vary slightly when coils of thread lie on 

top of each other. Thus, one eighth of a revolution on the a peg adjusts h  or v  by 

approximately 0.13 mm. Smaller adjustments are clearly possible, so this figure gives a very 

conservative estimate of the fidelity of the adjustment. The springs are connected to thin 

Dyneema® cord which is wrapped around the shaft of the tuning pegs and tied off.  

It was found that as the cord for the vertical adjuster had several turns on the upper tuning 

peg shaft, there could be slight misalignment of the force applied by the vertical spring 

causing the device to skew. To overcome this problem the wire loop, visible in Fig. 7(b) was 

incorporated as a guide to ensure that the line of force for the vertical spring remained 

central. From separate static measurement, the stiffness of the horizontal and vertical springs 

were found to be 2.21 N/mm and 0.718 N/mm, respectively. 



 

Figure 7. Photographs of the prototype QZS device showing the front (a) and the rear (b) view. 

 

4.2 Quasi-static characterization 

To obtain a quasi-static characterisation, the device was mounted in a ZwickiLine TH 2.5kN 

load testing machine, as shown in Fig. 8(a). The process to obtain force-displacement data 

was as follows: 

1. The QZS device was suspended from the upper jaws of the tester (where the load cell 

is located) and the loading force was zeroed, hence the zero excludes the self-weight 

of the device. 

2. The device was connected to the lower jaws of the tester, and then the upper jaws 

were raised until the two lower beams were horizontal. This ensured that the load test 

would commence from the ideal equilibrium point for the device, as currently 

configured. 

3. An expanding saw tooth displacement cycle as shown in Fig. 8(b) was applied with a 

loading rate of 100 mm/min. This was used so that the repeatability of the measured 

forces and the effect of any hysteresis in the loading cycles could be monitored. 

 



 

Figure 8. (a) The QZS suspension device at 0z   mounted in the load tester. (b) Applied 

displacement cycle. 

 

A typical measured force-displacement curve as a result of this process is shown in Fig. 9. 

The results confirm that the mechanism has a smooth nonlinear force-displacement 

characteristic. Also shown are fitted 3rd and 5th order polynomials to the central part of the 

data. It can be seen that the data can be well matched by a third order polynomial. However, 

it is also clear that friction is significant in the device, causing hysteresis on each loading 

cycle. 



 

Figure 9. Results of the quasi-static tests. 

 

Figure 10(a) shows the effect of adjustments to the vertical spring tuning peg. It can be seen 

that the shape of the force displacement curve remains mostly constant with this adjustment. 

If positive turns are applied (which increase the tension in the vertical spring) the graph is 

translated upwards, which may be necessary for a larger static load. Similarly, negative turns 

reduce the tension in the vertical spring, and this may be necessary for smaller static loads. 

With reference to the discussion in Section 3, Figure 10(a) shows that the vertical tuning peg 

effectively alters v  and has the desired effect of adjusting for the static load, as shown in 

Eq. (11). 

Figure 10(b) shows the effect of adjusting the horizontal spring tuning peg. Compared to the 

‘neutral’ case, increasing the turns (and therefore increasing the horizontal spring tension, or 

decreasing h ) reduces the stiffness near zero, or even to negative values if there is an 

excessive number of turns. Similarly, reducing the turns on the horizontal spring tuner 

increases the stiffness. However, there is very little change in the static force (0)P  showing 

that adjustments to the static stiffness are effectively independent from adjustments to the 

static load. This tuner is effectively adjusting h , confirming predictions made in Section 3. 



In particular this parameter has a direct effect on the zero displacement stiffness as shown by 

Eq. (13), whilst having no effect on the zero displacement force as predicted by Eq. (11).   

Figures 10(a) and (b) therefore confirm experimentally that the device is able to effectively 

decouple two different effects: the vertical tuner acts on P(0) only, without affecting the 

stiffness at z = 0; the horizontal tuner acts on the stiffness at z = 0 only, without affecting 

P(0). In this way, it is possible to achieve a true QZS effect acting on the horizontal tuner 

only, and balancing any static load thorough the vertical tuner independently.  

 

 



Figure 10. Results of quasi-static tests showing the effects of adjusting the tuners. (a) Adjustment of 

the vertical spring tuner, (b) adjustment the horizontal spring tuner. ‘Neutral’ denotes an arbitrary 

initial configuration to which the adjustments are applied. 

 

4.3 Dynamic characterization 

To gain insight into the dynamic performance of the QZS device, it is connected to an 

APS113 ELECTRO-SEIS® Long-Stroke vibration shaker at one end, and a 1.5 kg mass is 

suspended from the other end, as shown in Fig. 11. The shaker was driven by a voltage 

controlled sinusoidal signal, with the shaker amplifier setting at approximately half of the 

maximum gain. Stepped sine tests were used to capture the low frequency resonant behaviour 

of the system, where the displacement of both the payload mass and the shaker armature were 

measured by Omron laser displacement sensors. 

 

Figure 11. The QZS mechanism suspended from the APS113 shaker. 



 

An in-house algorithm was developed to control the stepped sine testing procedure, with a 

settling criterion used at each data point, to strike a balance between the quality of data and 

achieving reasonably short sweep times. The settling algorithm involved the repeated 

sampling of periods of data, forming a vector of the first 10 Fourier components (sine and 

cosine components of the first 5 harmonics) of the base displacement signal. After a 

minimum of 5 forcing periods, if the relative difference between two successive vectors was 

less than 10%, the result was accepted. However, to limit the time over which a test could 

take, a maximum of 30 settling periods was permitted, after which a data point was taken 

anyway.  

An initial stepped sine test was conducted with the horizontal tuner adjusted until it felt by 

hand to be near zero stiffness. The vertical spring tuner was then adjusted until the lower 

arms of the mechanism lay horizontally under the weight of the payload. The sweep initially 

progressed upwards then downwards for frequencies between 0.5 Hz and approximately 100 

Hz, at logarithmic intervals. Data up to 5 Hz is presented in Fig. 12, because higher frequency 

data became quite noisy as the response of the payload mass was very small due to the 

isolating effect of the QZS device. 



 

 

Figure 12. Absolute displacement response amplitudes for initial configuration, with voltage 

amplitudes (a) 0.4V, (b) 0.5V, (c) 0.6V. 

 

Examination of Fig. 12(a) shows that at very low frequencies, the friction within the 

mechanism is sufficient to completely suppress the response at the resonance frequency. In 

Fig. 12(b) and (c) a classic hardening response can be seen for relatively high amplitudes of 

oscillation – the frequency response curve bends to the higher frequencies so that jump-up 

and jump-down can occur [48]. This is particularly evident in Fig. 12(b), where the sweep up 

causes a sudden jump-down at about 2.5 Hz, while the sweep down causes a sudden jump-up 

at a lower frequency, about 1.8 Hz. Note, however, that during the upsweep part of the test 

for a 0.6 V supply shown in Fig. 12(c) the motion became excessively large at approximately 

1.8 Hz, and needed some manual restraint to prevent damage. Thus, caution is necessary 

when interpreting the data around this frequency.  



Following the initial dynamic test, the QZS device was transferred back to the Zwick load 

tester, and a quasi-static measurement as described in Section 4.1 (with a greater range of 

displacement) was performed. The results of this test are shown in Fig. 13(a), where it can be 

seen that the suspension has a very low equilibrium stiffness. 

For comparison, a model of form 

2 3

0 1 2 3 s( ) .gn( )cP z p p z p z p F zz      (15) 

is overlaid, where the constants ip  are the polynomial stiffness coefficients, cF  is force due 

to Coulomb friction, and  sgn z  is equal to 1 when the loader is advancing in the 

increasing  z direction and -1 otherwise. The unknown coefficients are fitted using linear 

regression and their values are given in Table 2. 

 

Table 2 Fitted coefficients for Fig. 13. 

Property Units 
Value 

(a) (b) 

𝑝0 N 1.492 1.487 

𝑝1 N/mm  1.314×10-2 -1.822×10-2 

𝑝2 N/mm2 -9.480×10-4  3.497×10-4 

𝑝3 N/mm3  6.686×10-4  6.738×10-4 

𝐹𝑐 N  3.623×10-1  4.034×10-1 

 

 

 

 



 

 

Figure 13. Quasi-static force displacement data for (a) initial configuration and (b) refined 

configuration.   

 



To determine if any further reduction in the resonant frequency of the mass-QZS system 

could be achieved, the horizontal stiffness was altered using the horizontal adjuster, while 

repeated quasi-static measurements were made. The final result shown in Fig. 13(b) was 

visually judged to be the closest to zero equilibrium stiffness – note that this is somewhat 

ambiguous as the upper curves of the hysteresis loop show a slightly positive trend, while the 

lower curves show a slightly negative trend around the static equilibrium position. A cubic 

polynomial that was subsequently fitted to that data, suggests a slightly negative equilibrium 

stiffness. However, no bi-stable behaviour was discernible, which is perhaps because the 

negative stiffness region lies entirely within the region where friction could suppress this. In 

this sense, friction performs a positive role in stabilizing a very low or even negative stiffness 

system.  

Figure 14 shows the dynamic performance of the refined configuration, when the QZS device 

was placed in the test rig shown in Fig. 11. In this case, it can be seen that the resonance 

almost completely disappears at an excitation amplitude of 0.5 V, suggesting that the 

resonant peak has been driven to even lower frequencies where friction locking suppresses 

the dynamic response. Figures 14 and 15 highlight an interesting feature of the true 

performance of QZS isolators, which is that it is almost impossible to observe the near zero 

frequency resonance, because it becomes dominated by either frictional behaviour causing 

locking in the isolator, or nonlinear hardening of the spring causing the jump up and drop 

down frequencies to increase. 

With some further post processing, the relative displacement of the mass compared to the 

shaker displacement can be calculated. This is superimposed upon a backbone curve 

determined using the procedure in Appendix A, which can be calculated with the polynomial 

coefficients fitted to the static data, in Fig. 15. It can be seen that at low frequencies the 

locking-up of the device due to friction results in a poor match between response and the 

backbone curve, particularly in parts (a) and (d) where the lower excitation amplitude is 

insufficient to break friction at these frequencies. However, when the device is not locked-up, 

the data follows the backbone curve well. Note, that for the refined configuration, the low 

amplitude stiffness is slightly negative according to the polynomial fit, and this results in an 

unusual backbone curve at low amplitude and frequency, as seen in Fig. 15(d) and (e).  

 



 

 

Figure 14. Responses of the refined configuration at voltage amplitude (a) 0.5V and (b) 0.6V.  

 



 

Figure 15. Relative response amplitudes and backbone curves for initial configuration (a) 0.4V, (b) 

0.5V and (c) 0.6V; refined configuration (d) 0.5V and (e) 0.6V. 

 

5 RESPONSE OF A STEEL BEAM WITH A MASS ATTACHED 

USING THE QZS DEVICE 

To investigate the efficacy of the QZS device it was used to suspend a 1.5 kg mass from the 

tip of a steel box section beam with cross sectional dimensions 100 mm × 50 mm, wall 

thickness 3 mm, with a free length of 1.8 m. The frequency response function (FRF) of the 

beam was measured with and without the attached mass. If the QZS device was to perform as 

desired, the attached mass would have a negligibly small effect on resonant frequencies found 

in the FRF, although some additional damping would occur. The detail of the proposed 

experiment is shown in Fig. 16. 



 

Figure 16. Beam experimental setup showing different views. 

 

The beam was excited by a shaker suspended by elastic cables, attached to the beam at 

approximately 70 cm from the fixed end – a location chosen as a compromise between 

effectively exciting all modes of interest, whilst not demanding excessive stroke from the 

shaker. The vibration controller and data acquisitions system was a Dataphysics Abaqus 730 

signal analyser. A swept sine signal was used to excite the beam over a range of 5-120 Hz 

with a logarithmic sweep lasting 40 s. This type of excitation was chosen to ensure that the 

amplitude of excitation at each frequency was such that no friction locking occurred in the 

device. Figure 17 shows the various FRFs that were obtained. For the beam, three 

measurements are shown. One is for the beam alone, the second is when the mass was 

attached to the tip of the beam using Dyneema® cord, and the third is when the mass was 

attached via the QZS device. Also shown as grey lines are the FRFs between the applied 

force and the attached mass. Clearly the use of a broadband FRF characterisation assumes 

that the structure is behaving linearly, and not showing the complex nonlinear behaviour 

presented in Section 4.3. By testing in a frequency range significantly beyond the resonance 

of the isolator, the structure with QZS device responds in a linear-like manner, as confirmed 



by a check on the coherence function which had a minimum value of 0.91 in all tests within 

the frequency range of interest. 

The first comparison to make is between the bare beam response, and that with a mass 

directly connected to the tip. In this case, it is clear that the mass has a very intrusive effect 

on the first mode of the beam, shifting the frequency from approximately 15.5 Hz down to 

approximately 11.5 Hz. Interestingly, there is clearly some flexibility in the Dyneema® cord 

because by 60 Hz the mass is isolated from the beam, and thus has relatively little effect on 

the 2nd mode. Comparing the response of the beam alone and the beam with the mass 

attached via the QZS device, shows that the differences are largely corrected through the use 

of the QZS device to suspend the mass, with both modes showing similar frequencies albeit 

with more damping in the case of the isolated mass. This highlights the potential of these 

devices to be used to apply a static load to a structure, with only minor effects on the 

structure modal properties. It also shows that this configuration applies significant damping 

to all modes of the structure, in a similar manner to that presented in Figs. 3 and 5. 

 

Figure 17. FRF of the bare beam compared to that of beam with a directly connected mass and a mass 

suspended with the QZS mechanism. Fainted gray lines show that responses of the payload mass were 

relevant. 

 



6 CONCLUSIONS  

In this paper, a mechanically simple device capable of exhibiting quasi-zero stiffness 

behaviour has been  designed, built and tested. The device allows static loads to be applied to 

a host structure by connecting masses through such devices so that the attached masses do not 

affect the dynamic behaviour of the loaded structure. The device has a novel design and its 

stiffness characteristics can be adjusted using two independent mechanisms to (a) adjust the 

stiffness, and (b) ensure that its nonlinear stiffness is symmetric about its static equilibrium 

position.  

A mathematical description of the device has been presented, and it has been shown 

experimentally that it can be adjusted to have an extremely low stiffness within the limits of 

measurement. From a quasi-static test, the main trend of the force-displacement curve 

showed that it had a cubic stiffness characteristic, and that friction was responsible for its 

hysteretic behaviour. The dynamic performance of the device was investigated by using it to 

suspend a mass from a long stroke shaker. Stepped sine tests were used to capture the low 

frequency resonant behaviour by using a laser displacement sensor. It was shown that, by 

properly adjusting the device so that it had quasi-zero stiffness, the resonance almost 

completely disappeared for low levels of excitation, as the device locked up due to friction. 

The low frequency resonance was dominated by either friction or nonlinear stiffening, and 

hence a direct measurement of the near zero frequency resonance was not possible. Above 

the resonance frequency the device acted as an efficient linear isolator. 

An experiment was also performed where a mass was suspended on a multi-modal beam 

structure via the quasi-zero stiffness device. This setup configuration was inspired by a 

possible application in the aerospace industry, where masses are practically suspended on 

multi-modal wing structures by soft springs to apply static loads for ground vibration tests, in 

a way that does not affect modal frequencies of the underlying structures. The main 

requirement in these cases is to observe the modes of the structure whilst it is subject to static 

loading, without the static loading affecting the dynamic behaviour of the structure. The 

results from the experimental tests confirm that the proposed device is able to achieve such a 

requirement – the lowest resonance frequency of the multi-modal structure was only slighted 

shifted, despite a suspended mass of about 12% of that of the host structure.  
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Appendix A: Calculation of backbone curves 

This appendix derives the backbone curves plotted in Figure 15 following an abridged form 

of the analysis used in [48]. The system comprising the payload mass suspended via the 

nonlinear isolator from the electro dynamic shaker can be represented by 

   0,mx P z   (A1) 

where x is the displacement of the payload mass, P(z) is the restoring force of the isolator 

given by Eq. (15), and ,z x r   is the relative displacement of the mass compared to the 

motion of the shaker, r. Assuming a base excitation of the form cosr R t  , Eq. (A1)  can 

be written in terms of the relative displacement and the base excitation, to give 

   2 cos .mz P z mr mR t       (A2) 

An underlying conservative system can be extracted from Eq. (A2) as  

   0,mz P z   (A3) 

where friction has been neglected from P(z), and furthermore z and P(z) have been translated 

so that the origin is at the static equilibrium position, so that for this calculation 

2 3

1 2 3( ) p z pz z zP p  . Equation (A4) strongly influences the dynamics of Eq. (A3), as it 

captures all inertial and elastic forces. Its solution gives a relationship between amplitude and 

frequency known as backbone curve, which gives the trend of the forced response given by 

Eq. (A2).  

The backbone curve is found by assuming Eq. (A4) has a solution of  cosz Z t  .  Terms 

including cos t  are gathered together and all others are neglected (reasonable for odd or 

nearly odd P(z)) to obtain [48] 
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