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Abstract

We study the system IFP of intuitionistic fixed point logic, an extension of
intuitionistic first-order logic by strictly positive inductive and coinductive def-
initions. We define a realizability interpretation of IFP and use it to extract
computational content from proofs about abstract structures specified by ar-
bitrary classically true disjunction free formulas. The interpretation is shown
to be sound with respect to a domain-theoretic denotational semantics and a
corresponding lazy operational semantics of a functional language for extracted
programs. We also show how extracted programs can be translated into Haskell.
As an application we extract a program converting the signed digit represen-
tation of real numbers to infinite Gray code from a proof of inclusion of the
corresponding coinductive predicates.

Keywords: Proof theory, realizability, program extraction, induction,
coinduction, exact real number computation

Contents

1 Introduction 2

2 Intuitionistic fixed point logic 6
2.1 The formal system IFP . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Wellfounded induction and Brouwer’s Thesis . . . . . . . . . . . 10
2.3 Example: Real numbers . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The language of real numbers . . . . . . . . . . . . . . . . 12
2.3.2 The axioms of real numbers . . . . . . . . . . . . . . . . . 12

?This work was supported by the International Research Staff Exchange Scheme (IRSES)
No. 612638 CORCON and No. 294962 COMPUTAL of the European Commission, the JSPS
Core-to-Core Program, A. Advanced research Networks and JSPS KAKENHI Grant Number
15K00015 as well as the European Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No. 731143.

∗Corresponding author
Email addresses: u.berger@swansea.ac.uk (Ulrich Berger),

tsuiki.hideki.8e@kyoto-u.ac.jp (Hideki Tsuiki)

Preprint submitted to Elsevier October 4, 2020



2.3.3 Natural numbers . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Infinite numbers and the Archimedean property . . . . . . 13
2.3.5 Archimedean induction . . . . . . . . . . . . . . . . . . . 13

3 Realizability 15
3.1 The domain of realizers and its subdomains . . . . . . . . . . . . 15
3.2 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 The formal system RIFP . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Translation to Haskell . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Types of IFP expressions . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Realizers of expressions . . . . . . . . . . . . . . . . . . . . . . . 26

4 Soundness 29
4.1 Proof of the soundness theorem . . . . . . . . . . . . . . . . . . . 29
4.2 Program extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Realizing natural numbers . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Realizing wellfounded induction . . . . . . . . . . . . . . . . . . . 41

5 Stream representations of real numbers 43
5.1 Cauchy representation . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Signed digit representation . . . . . . . . . . . . . . . . . . . . . 45
5.3 Infinite Gray code . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Extracting conversion from signed digit representation to Gray

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Operational semantics 51
6.1 Inductive and coinductive definitions of data . . . . . . . . . . . 52
6.2 Inductively and coinductively defined reduction relations . . . . . 54
6.3 Computational adequacy theorem . . . . . . . . . . . . . . . . . . 56
6.4 Computation of infinite data . . . . . . . . . . . . . . . . . . . . 59
6.5 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 63

1. Introduction

According to the Brouwer-Heyting-Kolmogorov interpretation of construc-
tive logic, formulas correspond to data types and proofs to constructions of ob-
jects of these data types [71, 50, 23, 70, 69, 64]. Moreover, by the Curry-Howard
correspondence constructive proofs can be directly represented in a typed λ-
calculus such that proof normalization is modelled by β-reduction. This tight
connection between logic and computation has led to a number of implementa-
tions of proof systems that support the extraction of programs from constructive
proofs, e.g. PX [38], Nuprl [23], Coq [24], Minlog [63, 15], Isabelle/HOL [18],
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Agda [4]. In general, program extraction is restricted to proofs about struc-
tures that are constructively given. This can be considered a drawback since it
excludes abstract mathematics done on a purely axiomatic basis. This paper
introduces the formal system IFP of Intuitionistic Fixed Point Logic as a basis
for program extraction from proofs that does not suffer from this limitation.
Preliminary versions of the system were presented in [7, 8, 9, 12, 11].

IFP is an extension of first-order logic by inductive and coinductive defini-
tions, i.e., predicates defined as least and greatest fixed points of strictly positive
operators. Program extraction is performed via a ‘uniform’ realizability inter-
pretation. Uniformity concerns the interpretation of quantifiers: A formula
∀xA(x) is realized uniformly by one object a that realizes A(x) for all x, so
a may not depend on x. Dually, a formula ∃xA(x) is realized uniformly by
one object a that realizes A(x) for some x, so a does not contain a witness
for x. The usual interpretations of quantifiers may be recovered by relativiza-
tion, ∀x (D(x) → A(x)) and ∃x (D(x) ∧ A(x)), for a predicate D that specifies
that x has some concrete representation. The uniform interpretation of quan-
tifiers makes IFP classically inconsistent with the scheme ‘realizability implies
truth’ (see the remark after Lemma 15 in Sect. 3). The Minlog system [63],
which also supports program extraction based on realizability, does permit a
uniform interpretation of quantifiers as well but differs from IFP in other re-
spects, for example the treatment of inductive and coinductive definitions.

Besides the support of proofs about abstract structures on an axiomatic
basis, IFP has further features that distinguishes it from other approaches to
program extraction. Classical logic: Although IFP is based on intuitionistic
logic a fair amount of classical logic is available. For example, soundness of
realizability holds in the presence of any disjunction-free axioms that are clas-
sically true. typical example is stability of equality, ∀x, y (¬¬x = y → x = y).
Partial computation: Like the majority of programming languages, IFP’s lan-
guage of extracted programs admits general recursion and therefore partial, i.e.,
nonterminating computation. This makes it possible to extract data represen-
tations that are inherently partial, such as infinite Gray code [28, 72] (see also
Sect. 5). Infinite computation: Infinite data, as they naturally occur in exact
real number computation, can be represented by infinite computations. This is
achieved by an operational semantics where computations may continue forever
outputting arbitrary close approximations to the complete (infinite) result at
their finite stages (Sect. 6). Haskell output : Extracted programs are typable
and can be translated into executable Haskell code in a straightforward way.

Related work: Minlog. The motivation for this article mainly stems from re-
cent developments in the Minlog proof system [63]. Minlog implements a formal
system which, from its very conception, is a constructive theory of computable
objects and functionals with an effective domain-theoretic semantics [64]. In
order to increase the expressiveness of the logic and the flexibility of program
extraction this system has been extended by an elaborate ‘decoration’ mecha-
nism for the logical operations that allows for a fine control of computational
content (this extension is also described in [64]). For example, an existential
quantifier can be decorated as ‘computational’ or ‘non-computational’ which
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causes the extracted program to include the witnessing term or not. Since in
the non-computational case no witness is required, the range of the quantified
variable no longer needs to be effectively (i.e. domain-theoretically) given but
may be an abstract mathematical structure. This new possibility of including
abstract structures in Minlog formalizations triggered the present article which
studies the implications and the potential of a computationally meaningful the-
ory of abstract structures in isolation. Minlog’s ‘non-computational’ decoration
corresponds to the uniform realizability interpretation of IFP mentioned ear-
lier. There are some differences between Minlog and IFP though. For example,
regarding the logical system, in Minlog all logical operations except implication
and universal quantification are defined in terms of clausal inductive definitions
while in IFP they are primitive and inductive definitions are not in the format
of clauses. Regarding computational content, Minlog’s realizers are typed and
realizability is defined in the style of Kreisel’s modified realizability [44] whereas
in IFP realizers are untyped and realizability is closer to Kleene [40] (albeit IFP
realizers are not numbers but domain elements denoted by functional programs).

PX . Another related system is PX [38] which is based on Feferman’s system
T0 of explicit mathematics [32] and uses a version of realizability with truth
to extract untyped programs from proofs. The main differences to IFP are
that PX has a fixed, constructively given, model similar to LISP expressions
and treats quantifiers in the usual ‘non-uniform’ way. PX supports positive
inductive definitions, however, restricted to operators without computational
content.

Further related work . Theories of inductive and coinductive definitions have
been studied extensively in the past. The proof-theoretic strength of classical
iterated inductive definitions has been determined in [21]. A proof-theoretic
analysis of a stronger system that is close to IFP, but based on classical logic,
has been given in [54]. In [74] it was shown that the proof-theoretic strength does
not change if the base system is changed to intuitionistic logic. Inductive defini-
tions have also been studied in the context of constructive set theory [3, 61], type
theory [29, 55] and explicit mathematics [36]. In [5] and [78], Inductive defini-
tions are related to theories of finite type in the framework of Gödel’s Functional
Interpretation. Propositional logics for inductive and coinductive definitions in-
terpreted on (finite) labelled transition are known as modal µ-calculi [43, 20].
These systems are based on classical logic and are mainly concerned with de-
termining the computational complexity of definable properties aiming at ap-
plications in automatic program verification systems. Computational aspects of
induction and coinduction (coiteration and corecursion), in particular questions
regarding termination, are studied widely in the context of inductive and coin-
ductive types. The strongest and most far reaching normalization can be found
in [52] and [51]. A programming language for real numbers extending PCF has
been studied in [31]. It has a small step operational semantics that permits the
incremental computation of digits, similar to our semantics in Sect. 6. Logical,
computational, semantical and category-theoretical aspects of coinduction are
studied in the context of coalgebra [39, 47]. The representation of coinductive
types in dependent type theories and the associated problems are an intensive
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object of study [34, 25, 37, 1, 13]. The computational complexity of corecursion
has been studied in [60]. Realizability interpretation related to the one for IFP
were also studied in [38, 68, 53, 6] (see the introduction of [8] for a discussion
of similarities and differences). In Constructive Analysis [19] and Computable
Analysis [76] one works with represented structures and explicitly manipulates
and reasons about these representations. In contrast, in IFP representations
remain implicit and are made explicit only through realizability. Proof Min-
ing [42] treats real numbers as a represented space but one can extract effective
bounds from ineffective proofs about abstract spaces without a constructive
representation (see e.g. [41, 33]).

Overview of the paper . Section 2 introduces the system IFP. Among other
things, the usual principle of wellfounded induction is exhibited as an instance of
strictly positive induction and shown to be strengthened by an abstract form of
Brouwer’s Thesis. The definitions are illustrated by an axiomatic specification
of the real numbers and a definition of the natural numbers as an inductively
defined subset of the reals. Special attention is paid to a formulation of the
Archimedean property as an induction principle.

Section 3 begins with a definition of a Scott domain D that serves as the
semantic domain of simple untyped functional programming language with con-
structors and unrestricted recursion. Then we introduce simple recursive types
denoting sub domains of D that serve as spaces of potential realizers of formulas
and show that the expected typing rules are valid. We extend IFP to a system
RIFP that contains new sorts δ and ∆ for elements and subdomains of D as well
as new terms, called programs and types, for denoting them. This is followed
by a formal realizability interpretation of IFP in RIFP. The interpretation is
optimized by exploiting the fact that Harrop formulas, which are formulas that
do not contain a disjunction at a strictly positive position, have trivial realizers
(similar optimizations are available in the Minlog system).

In Section 4 we prove the Soundness Theorem (Thm. 2) which shows that
from an IFP proof of a formula A from nc axioms one can extract a program
provably realizing A. For the proof we use an intermediate system IFP′ which
in the rules for induction and coinduction for the least and greatest fixed point
of an operator Φ requires in addition a proof of monotonicity of Φ. We provide
a recursive definition of the program extracted from an IFP derivation and
give explicit constructions of realizers for derived principles such as wellfounded
induction and its variants introduced in Sect. 2.

Section 5 is devoted to a case study on exact real number computation that
utilizes all the concepts introduced so far. It is shown that the well-known signed
digit representation and also the infinite (and partial!) Gray code representation
can be obtained through realizability from simple coinductively defined pred-
icates S and G. A detailed IFP proof that S is contained in G is given and
from it a program is extracted that converts the signed digit representation into
infinite Gray code. The equivalence of the extracted program with the one given
in [72] is also proved, which guarantees the correctness of the original program.

Section 6 introduces an operational semantics of programs that is able to
capture infinite computation. While the First Adequacy Theorem (Thm. 5)
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states that an inductively defined bigstep reduction relation =⇒µ captures the
semantics of programs M with a finite total denotation, i.e., M =⇒µ a iff a =
[[M ]], the Second Adequacy Theorem (Thm. 6) establishes an equivalence of
programs that have a possibly infinite and partial denotational semantics with
a small step reduction relation. This means that it is possible to incrementally
compute arbitrary close approximations to a program that has an infinite value.
Sect. 6 closes with a concrete example of infinite computation using a concrete
instance of the results of Sect. 5.

Section 7 concludes the paper with a summary and a discussion of open
problems and directions for further work.

2. Intuitionistic fixed point logic

We introduce the logical system IFP of intuitionistic fixed point logic as a
basis for the formalization of proofs which can be subject to program extraction.
IFP can be viewed as a subsystem of second-order logic with its standard clas-
sical set-theoretic semantics. We first define the language and the proof rules
of IFP and then draw some simple consequences demonstrating that IFP in-
cludes common principles such as wellfounded induction and permits a natural
formalization of real numbers as a real closed Archimedean field.

2.1. The formal system IFP

IFP is an extension of intuitionistic first-order predicate logic by least and
greatest fixed points of strictly positive operators. Rather than a fixed system
IFP is a schema for a family of systems suitable to formalize different mathe-
matical fields. An instance of IFP is given by a many-sorted first-order language
L and a set of axioms A described below. Hence L consists of

(1) Sorts ι, ι1, . . . as names for spaces of abstract mathematical objects.

(2) Terms s, t, . . . with a notion of free variables and a notion of substitution.
First order terms are the main example but we will also consider term
languages with binding mechanism (Sect. 3).

(3) Predicate constants, each of fixed arity (~ι).

Relative to a language L we define simultaneously

Formulas A,B: Equations s = t (s, t terms of the same sort), P (~t) (P a
predicate which is not an abstraction, ~t a tuple of terms whose sorts fit
the arity of P ), conjunction A∧B, disjunction A∨B, implication A→ B,
universal and existential quantification ∀xA, ∃xA.

Predicates P,Q: Predicate variables X,Y, . . . (each of fixed arity), predicate
constants, abstraction λ~xA (arity given by the sorts of the variable tuple
~x), µ(Φ), ν(Φ) (arities = arity of Φ).
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Operators Φ: λX P where P must be strictly positive in X (see below) and
the arities of X and P must coincide. The arity of λX P is this common
arity.

Falsity is defined as False
Def
= µ(λX X)() where X is a predicate variable of

arity ().
By an expression we mean a formula, predicate, or operator. When consid-

ering an expression it is tacitly assumed that the arity of a predicate and the
sorts of terms it is applied to fit. The set of free object variables and the set of
free predicate variables of an expression are defined as expected.

An occurrence of an expression E is strictly positive (s.p.) in an expression
F if that occurrence is not within the premise of an implication. A predicate
P is strictly positive in a predicate variable X if every occurrence of X in P is
strictly positive. The requirement of strict positivity could be easily relaxed to
mere positivity. However, since non-strict positivity will not be required at any
point, but would come at the cost of more complicated proofs, we refrain from
this generalization. A similar remark applies to the strict positivity condition
for fixed point types in Sect. 3.3.

We adopt the following notational conventions. Application of an abstrac-
tion to terms, (λ~xA)(~t), is defined as A[~t/~x] (therefore P (~t) is now defined
for all predicates P and terms ~t of fitting arity). Application of an operator
Φ = λX P to a predicate Q, Φ(Q), is defined as P [Q/X]. Instead of P (~t) we

also write ~t ∈ P and a definition P
Def
= µ(Φ) will also be written P

µ
= Φ(P ).

The notation P
ν
= Φ(P ) has a similar meaning. If Φ = λXλ~xA, then we

also write P (~x)
µ
= A[P/X] and P (~x)

ν
= A[P/X] instead of P

Def
= µ(Φ) and

P
Def
= ν(Φ). Inclusion of predicates (of the same arity), P ⊆ Q, is defined

as ∀~x (P (~x) → Q(~x)), intersection, P ∩ Q, as λ~x (P (~x) ∧ Q(~x)), and union,
P ∪ Q, as λ~x (P (~x) ∨ Q(~x)). Pointwise implication, P ⇒ Q, is defined as
λ~x (P (~x) → Q(~x)). Hence P ⊆ Q is the same as ∀~x (P ⇒ Q)(~x). Equiva-
lence, A ↔ B, is defined as (A → B) ∧ (B → A), and extensional equality of
predicates, P ≡ Q, as P ⊆ Q ∧Q ⊆ P .

Negation, ¬A, is defined as A → False and inequality, t 6= s, as ¬(t = s).
Bounded quantification, ∀x ∈ AB(x) and ∃x ∈ AB(x), is defined, as usual, as
∀x (A(x) → B(x)) and ∃x (A(x) ∧ B(x)). Exclusive ‘or’ and unique existence

are defined as A⊕B Def
= (A∨B)∧¬(A∧B), ∃1xA(x)

Def
= ∃x∀y (A(y)↔ x = y).

If we write E = E′ for expressions that are not terms, we mean that E and E′

are syntactically equal up to renaming of bound variables.
An expression is called non-computational (nc) if it is disjunction-free and

contains no free predicate variables. Our realizability interpretation (Sect. 3)
will be defined such that nc formulas do not carry computational content and are
interpreted by themselves. The reader may wonder why existential quantifiers
aren’t banned from nc formulas as well. The reason is that quantifiers are
interpreted uniformly, in particular, existential quantifiers are not witnessed.
The existential quantifier in intuitionisitc arithmetic, which is witnessed, can
be expressed in IFP by ∃x (N(x) ∧ A(x)), where N(x) means ‘x is a natural
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number’ and the predicate N is defined using disjunction (see Sect. 2.3.3).
The set of axioms A of an L-instance of IFP can be any set of closed L-

formulas. We denote that instance by IFP(A) leaving the language implicit since
it is usually determined by the axioms. In order for IFP(A) to admit a sound
realizability interpretation (Sects. 3 and 4), the axioms in A are required to be
non-computational. The reason is that this guarantees that they have trivial
computational content and are equivalent to their realizability interpretations,
as will be explained in Sect. 3. Therefore, it suffices that the axioms are true in
the intended structure where “true” can be interpreted in the sense of classical
logic. For example, if one is willing to accept a certain amount of classical logic
(as we do in this paper) one may include in A the stability axiom

∀~x(¬¬A→ A)

for every nc formula A with free variables ~x.
The proof rules of IFP include the usual natural deduction rules for intu-

itionistic first-order logic with equality (see below or e.g. [64]). In addition there
are the following rules for strictly positive induction and coinduction:

Φ(µ(Φ)) ⊆ µ(Φ)
CL(Φ)

Φ(P ) ⊆ P
µ(Φ) ⊆ P

IND(Φ, P )

ν(Φ) ⊆ Φ(ν(Φ))
COCL(Φ)

P ⊆ Φ(P )

P ⊆ ν(Φ)
COIND(Φ, P )

These rules can be applied in any context, that is, in the presence of free object
and predicate variables as well as assumptions.

Intuitively, µ(Φ) is the predicate defined inductively by the rules encoded by
the operator Φ. For example natural numbers (viewed as a subset of the real

numbers) can be defined as N
Def
= µ(λX λx (x = 0∨X(x−1))) corresponding to

the rules ‘N(0)’ and ‘if N(x−1), then N(x)’. The closure axiom CL(Φ) expresses
that µ(Φ) is closed under the rules, the induction rule IND(Φ, P ) says that µ(Φ)
is the smallest predicate closed under the rules (see also Sect. 2.3.3). Dually,
ν(Φ) is a coinductive predicate defined by ‘co-rules’. For example, the elements
of a partial order which start an infinite descending path can be characterized
by the predicate Path = ν(λX λx ∃y (y < x∧X(y))) (see also Sect. 2.2). Hence
if Path(x), then Path(y) for some y < x (COCL(Φ)), and Path is the largest
predicate with that property (COIND(Φ, P )).

The existence of µ(Φ) and ν(Φ) is guaranteed, essentially, by Tarski’s fixed
point theorem applied to the complete lattice of predicates (of appropriate ar-
ity) ordered by inclusion and the operator Φ, which is monotone due to its strict
positivity. A simple but important observation is that µ(Φ) and ν(Φ) are (prov-
ably in IFP) least and greatest fixed points of Φ, respectively. For example,
µ(Φ) ⊆ Φ(µ(Φ)) follows by induction: One has to show Φ(Φ(µ(Φ))) ⊆ Φ(µ(Φ)),
which, by monotonicity, follows from the closure axiom Φ(µ(Φ)) ⊆ µ(Φ).
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Induction and coinduction can be strengthened to the derivable principles of
strong and half-strong induction and coinduction (which will be used in Sect. 5).

Φ(P ∩ µ(Φ)) ⊆ P
µ(Φ) ⊆ P

SI(Φ, P )
P ⊆ Φ(P ∪ ν(Φ))

P ⊆ ν(Φ)
SCI(Φ, P )

Φ(P ) ∩ µ(Φ) ⊆ P
µ(Φ) ⊆ P

HSI(Φ, P )
P ⊆ Φ(P ) ∪ ν(Φ)

P ⊆ ν(Φ)
HSCI(Φ, P )

It is clear that these proof rules are indeed strengthenings of ordinary s.p. in-
duction since their premises are weaker due to the inclusions

Φ(P ∩ µ(Φ)) ⊆ Φ(P ) ∩ µ(Φ) ⊆ Φ(P )

Φ(P ∪ ν(Φ)) ⊇ Φ(P ) ∪ ν(Φ) ⊇ Φ(P )

which follow from the monotonicity of Φ. The derivations of these principles in
IFP are straightforward. For example, assuming the premise of SI(Φ, P ), Φ(P ∩
µ(Φ)) ⊆ P , one defines another operator Ψ = λX Φ(X ∩ µ(Φ)) so that Ψ(P ) ⊆
P . Then, µ(Ψ) ⊆ P by induction. Hence it suffices to show µ(Φ) ⊆ µ(Ψ).
The converse inclusion, µ(Ψ) ⊆ µ(Φ), follows by induction since Ψ(µ(Φ)) ≡
Φ(µ(Φ)) ⊆ µ(Φ). But now µ(Φ) ⊆ µ(Ψ) follows by induction since Φ(µ(Ψ)) ⊆
Φ(µ(Ψ)∩µ(Φ)) = Ψ(µ(Ψ)) ⊆ µ(Ψ). The other proofs are similar. Despite their
derivability we will adopt these strengthenings of induction and coinduction as
genuine rules of IFP since we can realize them by programs that are simpler
than those that would be extracted from their derivations (see Thm. 2).

When defining the syntax of IFP we deliberately left open the exact structure
of terms. This will give us greater flexibility regarding different instantiations of
IFP. All we need to require of terms, in order to guarantee that the theorems of
IFP are true with respect to the usual Tarskian semantics, is that their semantics
satisfies a ‘substitution lemma’, that is

[[t[r/x]]]η = [[t]]η[x 7→ [[r]]η].

The rest follows from the Tarskian soundness of the rules of intuitionistic pred-
icate logic and the existence of least and greatest fixed points of monotone
predicate transformers as explained above.

Note that, since False is defined as µ(λX X)(), the schema ex-falso-quodlibet,
False→ A, follows from A→ A by induction.

For the proof of the Soundness Theorem and the description of the program
extraction procedure (Sect. 4) it will be convenient to denote IFP derivations by
derivation terms and describe the proof calculus through an inductive definition
of a set of derivation judgements Γ ` d : A where Γ is a context of assumptions,
d is a derivation term in that context, and A is the formula proved by the
derivation. Derivations are defined relative to a given set A of axioms consisting
of pairs (o,A) where A is any closed formula and o is the name of the axiom,
though the soundness theorem holds only under nc axioms.
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Γ, u : A ` u : A Γ ` o : A ((o,A) ∈ A)

Γ ` Reflt : t = t
Γ ` d : A[s/x] Γ ` e : s = t

Γ ` CongλxA(d, e) : A[t/x]

Γ ` d : A Γ ` e : B
Γ ` ∧+(d, e) : A ∧B

Γ ` d : A ∧B
Γ ` ∧−l (d) : A

Γ ` d : A ∧B
Γ ` ∧−r (d) : B

Γ ` d : A

Γ ` ∨+
l,B(d) : A ∨B

Γ ` d : B

Γ ` ∨+
r,A(d) : A ∨B

Γ ` d : A ∨B Γ ` e : A→ C Γ ` f : B → C

Γ ` ∨−(d, e, f) : C

Γ, u : A ` d : B

Γ `→+
u:A (d) : A→ B

Γ ` d : A→ B Γ ` e : A
Γ `→− (d, e) : B

Γ ` d : A
Γ ` ∀+

x (d) : ∀xA (x not free in Γ)
Γ ` d : ∀xA

Γ ` ∀−t (d) : A[t/x]

Γ ` d : A[t/x]

Γ ` ∃+
λxA,t(d) : ∃xA

Γ ` d : ∃xA Γ ` e : ∀x (A→ B)

Γ ` ∃−(d, e) : B
(x not free in B)

Γ ` ClΦ : Φ(µ(Φ)) ⊆ µ(Φ)
Γ ` d : Φ(P ) ⊆ P

Γ ` IndΦ,P (d) : µ(Φ) ⊆ P

Γ ` CoClΦ : ν(Φ) ⊆ Φ(ν(Φ))
Γ ` d : P ⊆ Φ(P )

Γ ` CoIndΦ,P (d) : P ⊆ ν(Φ)

Γ ` d : Φ(P ) ∩ µ(Φ) ⊆ P
Γ ` HSIndΦ,P (d) : µ(Φ) ⊆ P

Γ ` d : Φ(P ∩ µ(Φ)) ⊆ P
Γ ` SIndΦ,P (d) : µ(Φ) ⊆ P

Γ ` d : P ⊆ Φ(P ) ∪ ν(Φ)

Γ ` HSCoIndΦ,P (d) : P ⊆ ν(Φ)

Γ ` d : P ⊆ Φ(P ∪ ν(Φ))

Γ ` SCoIndΦ,P (d) : P ⊆ ν(Φ)

Note that symmetry and transitivity of equality can be derived from reflexivity
and the congruence rule.

2.2. Wellfounded induction and Brouwer’s Thesis

The principle of wellfounded induction is an induction principle for elements
in the accessible or wellfounded part of a binary relation ≺ (definable in the
language of the given instance of IFP). We show that it is an instance of
strictly positive induction: The accessible part of ≺ is defined inductively by

Acc≺(x)
µ
= ∀y ≺ xAcc≺(y)

that is, Acc≺ = µ(Φ) where Φ
Def
= λX λx ∀y ≺ xX(y). A predicate P is called

progressive if Φ(P ) ⊆ P , that is, Prog≺(P ) holds where

Prog≺(P )
Def
= ∀x (∀y ≺ xP (y)→ P (x)) .
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Therefore, the principle of wellfounded induction, which states that a progressive
predicate holds on the accessible part of ≺, is a direct instance of the rule of
strictly positive induction:

Prog≺(P )

Acc≺ ⊆ P
WfI≺(P )

In most applications P is of the form A⇒ P . The progressivity of A⇒ P can
be equivalently written as progressivity of P relativized to A,

Prog≺,A(P )
Def
= ∀x ∈ A (∀y ∈ A (y ≺ x→ P (y))→ P (x))

and the conclusion becomes Acc≺ ⊆ A⇒ P , equivalently, Acc≺ ∩A ⊆ P .

Prog≺,A(P )

Acc≺ ∩A ⊆ P
WfI≺,A(P )

Dually to the accessibility predicate one can define for a binary relation a path
predicate

Path≺(x)
ν
= ∃y ≺ xPath≺(y)

that is, Path≺ = ν(Φ) where Φ
Def
= λX λx ∃y ≺ xX(y). Intuitively, Path≺(x)

states that there is an infinite descending path . . . x2 ≺ x1 ≺ x.
With the axiom of choice and classical logic one can show that ¬Path≺(x)

implies Acc≺(x) (the converse holds even intuitionistically), which can be viewed
as an abstract form of Brouwer’s Thesis:

BT≺ ∀x (¬Path≺(x)→ Acc≺(x))

In conjunction with wellfounded induction, BT≺ says that ≺-induction is valid
for all elements without infinite ≺-descending path.

If ≺ is defined in a disjunction-free way, then BT≺ is a true nc formula which
can be postulated as an nc axiom. By BTnc we denote the schema BT≺ for
any binary nc predicate ≺. In Sect. 2.3.5 we will use BTnc to justify a principle
called ‘Archimedean Induction’ which in turn will be needed in Sect. 5.

Remark . Brouwer’s original thesis which he used to justify Bar Induction is
obtained from BT≺ by defining for a ‘bar predicate’ P on finite sequences of

natural numbers the relation y ≺ x
Def
= ¬P (x) ∧ ∃a (y = ax), where ax denotes

the sequence x prefixed with a (see e.g. [75]). Bar Induction on a predicate Q
is then equivalent to WfI≺(Q).

2.3. Example: Real numbers

We illustrate the concepts introduced so far by an instance of IFP providing
an abstract specification of real numbers. This will be the basis for the program
extraction case study in Sect. 5. Hence we will take care to postulate only
non-computational axioms.

11



2.3.1. The language of real numbers

The language of the real numbers is given by

(1) Sorts: One sort ι as a name for the set of real numbers.

(2) Terms: First-order terms built from the constants and function symbols
0, 1,+,−, ∗, /, 2(·)(exponentiation),max. Further function symbols may

be added on demand. We set |x| Def
= max(x,−x).

(3) Predicate constants: <,≤.

2.3.2. The axioms of real numbers

As axioms we may choose any disjunction-free formulas that are true in
the real numbers. As such, we define AR that consists of a disjunction-free
formulation of the axioms of real-closed fields, equations for exponentiation, the
defining axiom for max

max(x, y) ≤ z ↔ y ≤ z ∧ x ≤ z,

stability of =,≤, <, as well as AP (Archimedean property) that will be defined
in Sect. 2.3.4 and Brouwer’s Thesis for nc predicates (BTnc) introduced in
Sect. 2.2. In the remainder of Sect. 2 and also in Sect. 5 all proofs take place in
IFP(AR).

2.3.3. Natural numbers

The natural numbers, considered as a subset of the real numbers, can be
defined inductively by

N(x)
µ
= x = 0 ∨N(x− 1)

which is shorthand for N
Def
= µ(ΦN) where ΦN

Def
= λX λx (x = 0 ∨X(x − 1)).

Equivalently, one could define N(x)
µ
= x = 0 ∨ ∃y (N(y) ∧ x = y + 1). The

closure and induction rules for N are literally

∀x ((x = 0 ∨N(x− 1))→ N(x))

∀x ((x = 0 ∨ P (x− 1))→ P (x))

∀x ∈ NP (x)

equivalently (using equality reasoning and axioms for real numbers),

0 ∈ N ∀x ∈ N (x+ 1 ∈ N)

P (0) ∧ ∀x (P (x)→ P (x+ 1))

∀x ∈ NP (x)

The missing Peano axiom, ∀x (N(x) → x + 1 6= 0), follows from the formula
∀x (N(x)→ 0 ≤ x) which can be proven by induction.

Strong induction on natural numbers is equivalent to

P (0) ∧ ∀x ∈ N (P (x)→ P (x+ 1))

∀x ∈ NP (x)

The rational numbers Q can be defined from the natural numbers as usual,

for example Q(q)
Def
= ∃x, y, z ∈ N (z 6= 0 ∧ q · z = x− y).

12



Example 1. We prove that the sum of two natural numbers is a natural num-
ber, which is expressed as ∀x, y (N(x) → N(y) → N(x + y)). An addition
program for natural numbers will be extracted from this proof in Example 2.
Suppose that x satisfies N(x). We prove ∀y(N(y) → N(x + y)) by induction.
Thus, we need to prove ∀y (y = 0 ∨ N(x + (y − 1)) → N(x + y)). If y = 0,
then N(x+ y) holds by the assumption and x+ 0 = x. If N(x+ (y − 1)), then
y = 0 ∨N((x + y) − 1) since x + (y − 1) = (x + y) − 1. Therefore, N(x + y)
holds by the closure rule.

2.3.4. Infinite numbers and the Archimedean property

As an example of a coinductive definition we define infinite numbers by

∞(x)
ν
= x ≥ 0 ∧∞(x− 1) .

Hence a real number is infinite iff by repeatedly subtracting 1 one always stays
non-negative (and hence positive).

The Archimedean property of real numbers can be expressed by stating that
there are no infinite numbers:

AP ∀x¬∞(x)

Since this is a true nc formula we include it as an axiom for the real numbers.
To give simple examples of proofs by induction and coinduction we show

Lemma 1. ∀x (∞(x)↔ ∀y ∈ N y ≤ x).

Proof. For the implication from left to right we show

∀y ∈ N ∀x (∞(x)→ y ≤ x)

by induction on y ∈ N. ∀x (∞(x) → 0 ≤ x) holds by the coclosure axiom for
∞. In the step, the induction hypothesis is ∀x (∞(x) → y ≤ x). We have to
show ∀x (∞(x) → y + 1 ≤ x). Hence assume ∞(x). By coclosure, ∞(x − 1).
Therefore y ≤ x− 1, by the induction hypothesis. It follows y + 1 ≤ x.

The implication from right to left can be shown by coinduction. Setting

P (x)
Def
= ∀y ∈ N y ≤ x we have to show that P (x) implies x ≥ 0 and P (x− 1).

Hence assume P (x). x ≥ 0 holds since 0 ∈ N. To show P (x − 1) let y ∈ N.
Then y + 1 ∈ N and therefore, since P (x), y + 1 ≤ x. It follows y ≤ x− 1.

2.3.5. Archimedean induction

Now we study a formulation of the Archimedean property as an induction
principle. This principle will be needed to prove the conversion of the signed
digit representation into Gray code (Thm. 4).

If we set y ≺ x
Def
= x ≥ 0 ∧ y = x − 1, then clearly ∞(x) is equivalent

to Path≺(x). Therefore, by the Archimedean property, Path≺ is empty, and
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by Brouwer’s Thesis, BT (Sect. 2.2), it follows that Acc≺(x) holds for all x.
Hence, wellfounded induction on ≺, WfI≺(P ), is equivalent to the rule

∀x ((x ≥ 0→ P (x− 1))→ P (x))

∀xP (x)
AI(P )

since clearly its premise is equivalent to Prog≺(P ).
A useful variant of AI is obtained by defining

y ≺q x
Def
= |x| ≤ q ∧ y = 2x

where here and in the following we assume q > 0. Then, as we will prove in
Lemma 3, Acc≺q (x) is equivalent to x 6= 0. Therefore, half strong induction,
HSI(Φ, P ), for Φ = λX λx (∀y ≺q xX(y)), yields the rule

∀x 6= 0 ((|x| ≤ q → P (2x))→ P (x))

∀x 6= 0 P (x)
AIq(P )

since its premise is equivalent to Prog≺q (P ). We call the principles AI(P ) and
AIq(P ) Archimedean induction. Therefore, we have shown:

Lemma 2. Archimedean induction is derivable in IFP(AR).

Lemma 3. Acc≺q (x) iff x 6= 0.

Proof. The ‘only if’ part follows by induction on Acc≺q (x): Since Acc≺q (x)
µ
=

∀y (|x| ≤ q ∧ y = 2x → Acc≺q (y)) is equivalent to Acc≺q (x)
µ
= (|x| ≤ q →

Acc≺q (2x)) it suffices to show that (|x| ≤ q → 2x 6= 0) implies x 6= 0, which is
immediate (using 2 · 0 = 0).

The ‘if’ part reduces, by BTnc, to the implication x 6= 0 → ¬Path≺q (x).
Therefore, we assume x 6= 0 and Path≺q (x) with the aim to arrive at a contra-

diction. Recall that Path≺q (x)
ν
= ∃y (|x| ≤ q ∧ y = 2x ∧Path≺q (y)), which is

equivalent to Path≺q (x)
ν
= (|x| ≤ q ∧Path≺q (2x)). By induction on N we can

prove
∀n ∈ N ∀x(Path≺q (x)→ |x| ≤ q2−n) .

Therefore, if Path≺q (x), then for all n ∈ N, q/|x| ≥ 2n ≥ n, which, by Lemma 1
and AP, is impossible.

In most applications Archimedean induction is used with a predicate of the
form B ⇒ P , and its premise is stated in an intuitionistically slightly stronger
(though classically equivalent) form.

∀x ∈ B (P (x) ∨ (x ≥ 0 ∧B(x− 1) ∧ (P (x− 1)→ P (x))))

∀x ∈ B P (x)
AIB(B,P )

∀x ∈ B \ {0} (P (x) ∨ (|x| ≤ q ∧B(2x) ∧ (P (2x)→ P (x))))

∀x ∈ B \ {0}P (x)
AIBq(B,P )

Lemma 4. AI implies AIB. AIq implies AIBq.

Proof. The premise of AIB(B,P ) implies the premise of AI(B ⇒ P ). The
premise of AIBq(B,P ) implies the premise of AIq(B ⇒ P ).
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3. Realizability

In this section we define a realizability interpretation of IFP. The interpre-
tation will be formalized in a system RIFP defined in Sect. 3.4 which is another
instance of IFP with extra sorts and terms for extracted programs and their
types (Sect. 3.2 and Sect. 3.3) as well as axioms describing them (Sect. 3.4).

Our programming language is an untyped language with a type assignment
system. It is similar to the language studied in [49], but simpler in that recursive
types are restricted to strictly positive ones.

Programs will be interpreted in a Scott domain D satisfying a recursive
domain equation, types will be interpreted as subdomains of D (Sect. 3.1).

A lazy operational semantics of this language will be studied in Sect. 6 and
shown to be equivalent to the denotational semantics. Our domain-theoretic
model of untyped programs originates in work by Scott [65]. An overview and
comparison of different models of untyped λ-calculi can be found in [59]

To define the realizability interpretation, we first assign types to IFP expres-
sions (Sect. 3.6) and then define the set of realizers of an expression as a subset
of the subdomain defined by its type (Sect. 3.7). We also show that typable
RIFP programs can be translated into Haskell programs (Sect. 3.5) and explain
how Haskell programs can be directly extracted from IFP proofs in Section 4.

3.1. The domain of realizers and its subdomains

Extracted programs will be interpreted in a Scott domain D defined by the
recursive domain equation

D = (Nil + Left(D) + Right(D) + Pair(D ×D) + Fun(D → D))⊥

where D → D is the domain of continuous functions from D to D, + de-
notes the disjoint sum of partial orders and (·)⊥ adds a new bottom element.
Nil,Left,Right,Pair,Fun denote the injections of the various components of
the sum into D. Nil,Left,Right,Pair (but not Fun) are called constructors.
D carries a natural partial order v with respect to which D is a countably
based Scott domain (domain for short), that is, a bounded complete algebraic
dcpo with least element ⊥ and countably many compact elements. The theory
of Scott domains and recursive domain equations is standard and can be found
e.g. in [2, 35].

Since domains are closed under suprema of increasing chains, D contains
not only finite but also infinite combinations of the constructors. For example,
writing a : b for Pair(a, b), an infinite sequence of domain elements (di)i∈N is
represented in D as the stream

d0 : d1 : . . .
Def
= sup

n∈N
Pair(d0,Pair(d1, . . .Pair(dn,⊥) . . .)) .

Since Scott domains and continuous functions form a cartesian closed category,
D can be equipped with the structure of a partial combinatory algebra (PCA,

[35]) by defining a continuous application operation a b such that Fun(f) b
Def
=
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f(b) and otherwise a b
Def
= ⊥, as well as combinators K and S satisfying K ab = b

and S a b c = a c (b c) (where application associates to the left). In particular
D has a continuous least fixed point operator which can be defined by Curry’s
Y -combinator or as the mapping (D → D) 3 f 7→ supn f

n(⊥) ∈ D.
Besides the PCA structure we will use the algebraicity of D, that is, the

fact that every element of D is the directed supremum of compact elements.
Compact elements have a strongly finite character which will be exploited in
the proof of uniqueness of certain fixed points (Sect. 3.3) and in the proof of
the Computational Adequacy Theorem (Thm. 5). The finiteness of compact
element is captured by their defining property (d ∈ D is compact iff for every
directed set A ⊆ D, if d v

⊔
A, then d v a for some a ∈ A) and the existence of

a function assigning to every compact element a a rank, rk(a) ∈ N, satisfying

rk1 If a has the form C(a1, . . . , ak) for a constructor C, then a1, . . . , ak are
compact and rk(a) > rk(ai) (i ≤ k).

rk2 If a has the form Fun(f), then for every b ∈ D, f(b) is compact with
rk(a) > rk(f(b)) and there exists a compact b0 v b such that rk(a) >
rk(b0) and f(b0) = f(b). Moreover, there are finitely many compacts
b1, . . . bn with rk(bi) < rk(a) such that f(b) =

⊔
{f(bi)|i = 1, . . . n, bi v b}.

In Sect. 3.3 we will model types as subdomains of D, that is, subsets of
D that are downwards closed and closed under suprema of bounded subsets.
We write X � D if X is a subdomain of D and denote by �D the set of all
subdomains of D. It is easy to see that a subdomain X is a domain with respect
to the partial order inherited from D and the notions of supremum and compact
element in X are the same as taken with respect to D. The following is easy to
see.

Lemma 5. (a) �D is a complete lattice. The meet operation is intersection.

(b) �D is closed under the following operations.

(X + Y )⊥
Def
= {Left(a) | a ∈ X} ∪ {Right(b) | b ∈ Y } ∪ {⊥},

(X × Y )⊥
Def
= {Pair(a, b) | a ∈ X, b ∈ Y } ∪ {⊥},

(X ⇒ Y )⊥
Def
= {Fun(f) | f : D → D cont., ∀a ∈ X(f(a) ∈ Y )} ∪ {⊥}.

By Lemma 5 (a), for every set S ⊆ D there is a smallest subdomain X
containing S, called the subdomain generated by S. Hence for any subdomain
Y , S ⊆ Y iff X ⊆ Y . Furthermore, any subdomain is generated by the set of
its compact elements.
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3.2. Programs

In order to formally denote elements of D we introduce terms M,N, . . . of a
new sort δ, called programs.

Programs 3M,N ::= a, b (program variables, i.e. variables of sort δ)

| Nil | Left(M) | Right(M) | Pair(M,N)

| caseM of {Cl1; . . . ;Cln}
| λa.M

| M N

| recM

| ⊥

In the case-construct each Cli is a clause of the form C(~a) → N where C
is a constructor and ~a is a tuple of different variables whose free occurrences
in N are bound by the clause. Furthermore, for different clauses C(~a) → M
and C ′(~a′) → M ′, the constructors C and C ′ must be different. The intuitive
meaning of a case-expression, say caseM of {. . . ; Left(a) → L; . . .}, is that if
M evaluates to a term matching the pattern Left(a), say Left(M ′), then the
whole case-expression evaluates to L[M ′/a]. The recursion construct recM
defines the least fixed point of M . It could be defined as Y M where Y is
the well-known combinator λf . (λa . f (a a)) (λa . f (a a)), however, we prefer an
explicit construct for general recursion since it better matches programming
practice (Sect. 3.5) and it can be naturally assigned a type (Sect. 3.3) while
Y involves self-application which is not typable in our system (see the remark
after Lemma 13). The constant ⊥ represents the ‘undefined’ domain element ⊥.
It could be defined as a non-terminating recursion but it is more convenient to
have it as a constant. Overall, our goal is to have a programming language that
enables us to naturally express the computational contents of IFP expressions
and proofs.

Substitution of programs, M [N/a], is defined as usual in term languages
with binders so that a substitution lemma holds (Lemma 6). We also identify
α-equal programs, that is, programs that are equal up to renaming of bound
variables. Composition, sum, pairing, and projections are defined as

M ◦N Def
= λa.M(N a)

[M +N ]
Def
= λc. case cof {Left(a)→M a; Right(b)→ N b}

〈M,N〉 Def
= λc.Pair(M c,N c)

πLeftM
Def
= caseM of {Pair(a, b)→ a}

πRightM
Def
= caseM of {Pair(a, b)→ b}

We write a
rec
= M for a

Def
= rec(λa.M), and a b

rec
= M for a

rec
= λb.M . Occa-

sionally we will use generalized clauses such as Right(Pair(a, b)) → M as an
abbreviation for Right(c)→ case c of {Pair(a, b)→M}.
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Since D is a combinatory algebra every program M denotes an element
[[M ]]η ∈ D depending continuously (w.r.t. the Scott topology) on the environ-
ment η that maps program variables to elements of D.

[[a]]η = η(a)

[[C(M1, . . . ,Mk)]]η = C([[M1]]η, . . . , [[Mk]]η)

[[caseM of {Cl1; . . . ;Cln}]]η = [[K]]η[~a 7→ ~d] if [[M ]]η = C(~d)

and some Cli is of the form C(~a)→ K

[[λa.M ]]η = Fun(f) where f(d) = [[M ]]η[a 7→ d]

[[M N ]]η = f([[N ]]η) if [[M ]]η = Fun(f)

[[recM ]]η = the least fixed point of f

if [[M ]]η = Fun(f)

[[M ]]η = ⊥ in all other cases, in particular [[⊥]]η = ⊥

For closed terms the environment is redundant and may therefore be omitted.
The following lemma is standard.

Lemma 6 (Substitution). [[M [N/a]]]η = [[M ]]η[a 7→ [[N ]]η].

3.3. Types

We introduce simple recursive types which are interpreted as subdomains of
the domain D defined in Sect. 3.1.

Types are expressions defined by the grammar

Types 3 ρ, σ ::= α (type variables) | 1 | ρ+ σ | ρ× σ | ρ⇒ σ | fixα . ρ.

where in fixα . ρ the type ρ must be strictly positive in α.
Given an environment ζ that assigns to each type variable a subdomain of

D, every type ρ denotes a subdomain Dζ
ρ of D:

Dζ
α = ζ(α),

Dζ
1 = {Nil,⊥},

Dζ
ρ�σ = (Dζ

ρ �Dζ
σ)⊥ (� ∈ {+,×,⇒}),

Dζ
fixα . ρ =

⋂
{X �D | Dζ[α 7→X]

ρ ⊆ X}

Lemma 7.

Dζ
fixα . ρ = D

ζ[α7→Dζfixα . ρ]
ρ = Dζ

ρ[fixα . ρ/α].

Proof. By strict positivity, D
ζ[α 7→X]
ρ is monotone in X. Therefore, the left

equation holds by Tarski’s fixed point theorem. The right equation is an instance
of the usual substitution lemma.
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As an example, we consider the type of natural numbers,

nat
Def
= fixα . 1 + α.

By Lemma 7, Dnat = (D1 +Dnat)⊥. It is easy to see that

Dnat = {Rightn(d) | n ∈ N, d ∈ {⊥,Left(⊥),Left(Nil)}}∪{tn∈NRightn(⊥)}.

By identifying Left(⊥) with Left(Nil), one obtains an isomorphic copy of the
domain of lazy natural numbers where Left(Nil) represents 0 and Right rep-
resents the successor operation. See Remark 1 at the end of this section for a
discussion on the relation between these domains.

Lemma 7 says that Dζ
fixα . ρ is a fixed point of the type operator α 7→ ρ. We

show that it is the unique fixed point under a regularity condition. The regu-
larity conditions excludes type operators of the form α 7→ fixβ1 . . . .fixβn . α
(where the βi are all different from α) which, obviously, have every subdomain
of D as fixed point. It turns out that if fixed points of such type operators are
excluded then uniqueness of fixed points holds. Therefore, we call a type regular
if it contains no sub-expression of the form fixα .fixβ1 . . . .fixβn . α.

Lemma 8. (a) Regular types are closed under substitutions.

(b) Every regular type is semantically equal to a non-fixed-point type, that is,
a type which is not of the form fixα . ρ.

Proof. (a) is easy.
(b) can be proved by induction on the fixed point height of a type which is

the unique number n such that the type is of the form fixα1 . . . .fixαn . ρ0 and
ρ0 is not a fixed point type. Let ρ be a regular type. If the fixed point height of
ρ is 0 we are done. If the fixed point height of ρ is n+ 1, then ρ is of the form
fixα . σ where σ has fixed point height n. By Lemma 7, ρ is semantically equal
to σ[ρ/α] which has fixed point height n as well since ρ is regular. Moreover,
by (a), σ[ρ/α] is regular. Hence the induction hypothesis can be applied.

Let X,Y range over �D and set X � n
Def
= {a ∈ X | a compact, rk(a) ≤ n}.

Lemma 9. If X � n ⊆ Y for all n, then X ⊆ Y .

Proof. This is clear since a domain is the completion of the subset of its compact
elements, and with increasing n, X � n exhausts all compact elements of X.

Define depthα(ρ) ∈ N∪{∞} by recursion on ρ as follows. depthα(ρ) =∞
if α is not free in ρ. Otherwise (using the expected order on N ∪ {∞} and
setting 1 +∞ =∞)

depthα(α) = 0

depthα(ρ1 � ρ2) = 1 + min
i

depthα(ρi) � ∈ {+,×}

depthα(ρ1 ⇒ ρ2) = depthα(ρ2)

depthα(fixβ . ρ) = depthα(ρ)

19



The following lemma exploits regularity in an essential way and is key to proving
uniqueness of fixed points (Thm 1).

Lemma 10. Let ρ be regular and s.p. in α.

If X � n ⊆ Y , then D
ζ[α7→X]
ρ � (n+ depthα(ρ)) ⊆ Dζ[α7→Y ]

ρ .

Proof. Suppose that X � n ⊆ Y . We write ρ(X) for D
ζ[α7→X]
ρ and show that for

all compact elements a ∈ ρ(X) � (n+depthα(ρ)), we have a ∈ ρ(Y ). The proof
is by induction on rk(a). We do a case analysis on ρ. Thanks to Lemma 8 (b)
we may skip fixed point types.

Let a ∈ ρ(X) � (n+ depthα(ρ)). If a = ⊥ then the assertion holds since all
subdomains contain ⊥. Therefore in the following we assume a 6= ⊥.

Case α is not free in ρ. Then ρ(X) = ρ(Y ) and therefore the assertion holds
trivially.

Case ρ = α. Then ρ(X) = X, ρ(Y ) = Y and depthα(ρ) = 0. Therefore,
the assertion is again trivial.

Case ρ = ρ1 + ρ2. W.l.o.g. a = Left(b) with b ∈ ρ1(X). Since rk(a) ≤
n+ depthα(ρ) ≤ n+ 1 + depthα(ρ1) and rk(a) = 1 + rk(b) it follows rk(b) ≤
n+depthα(ρ1), that is, b ∈ ρ1(X) � (n+depthα(ρ1)). By induction hypothesis
b ∈ ρ1(Y ), hence a ∈ ρ(Y ).

Case ρ = ρ1 × ρ2. Then a = Pair(a1, a2) with ai ∈ ρi(X) (i = 1, 2). Since
rk(a) ≤ n+ depthα(ρ) ≤ 1 +n+ depthα(ρi) and rk(a) ≥ 1 + rk(ai) it follows
rk(ai) ≤ n+ depthα(ρi), that is, ai ∈ ρi(X) � (n+ depthα(ρi)). By induction
hypothesis ai ∈ ρi(Y ), hence a ∈ ρ(Y ).

Case ρ = ρ1 ⇒ ρ2. Then a = Fun(f) with f ∈ D → D such that f [ρ1(X)] ⊆
ρ2(X) and rk(f(a1)) < rk(a) for all a1 ∈ D. We have to show a ∈ ρ(Y ), that
is f [ρ1(Y )] ⊆ ρ2(Y ). Hence we assume a1 ∈ ρ1(Y ) and show f(a1) ∈ ρ2(Y ).
Since ρ is s.p. in α, α is not free in ρ1. Therefore ρ1(X) = ρ1(Y ) and we have
a1 ∈ ρ1(X). Since rk(f(a1)) < rk(a) ≤ n + depthα(ρ) = n + depthα(ρ2) it
follows rk(f(a1)) ≤ n+depthα(ρ2), i.e. f(a1) ∈ ρ2(X) � (n+depthα(ρ2)). By
induction hypothesis f(a1) ∈ ρ2(Y ).

Lemma 11. Let ρ be regular and s.p. in α with depthα(ρ) > 0. Assume

X ⊆ Dζ[α 7→X]
ρ and D

ζ[α 7→Y ]
ρ ⊆ Y . Then X ⊆ Y .

Proof. By Lemma 9 it suffices to show that X � n ⊆ Y for all n ∈ N. We induct
on n.

n = 0: X � 0 = {⊥} ⊆ Y .
n+ 1: By induction hypothesis, X � n ⊆ Y . Since depthα(ρ) > 0 it follows

with Lemma 10 that D
ζ[α7→X]
ρ � (n+ 1) ⊆ Dζ[α7→Y ]

ρ . Therefore,

X � (n+ 1) ⊆ Dζ[α 7→X]
ρ � (n+ 1) ⊆ Dζ[α7→Y ]

ρ ⊆ Y

Theorem 1 (Uniqueness of fixed points). Let fixα . ρ be regular. If X ⊆
D
ζ[α 7→X]
ρ then X ⊆ Dζ

fixα . ρ, and if X ⊇ D
ζ[α 7→X]
ρ then X ⊇ Dζ

fixα . ρ. Hence

X = D
ζ[α 7→X]
ρ iff X = Dζ

fixα . ρ,
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Proof. For the first implication use Lemma 11 with Y
Def
= Dζ

fixα . ρ, noting that

D
ζ[α 7→Y ]
ρ = Y by Lemma 7, and depthα(ρ) > 0 since fixα . ρ is regular. For

the second implication the argument is similar.

Remark . In [49] a similar result is obtained for a larger type system that
includes universal and existential type quantification as well as union and in-
tersection types, and permitting fixed point types without positivity condition.
Types are interpreted as ideals, which are similar to subdomains but are only
closed under directed suprema. Subdomains are called strong ideals in [49]. The
existence of fixed points is proven using the Banach Fixed Point Theorem w.r.t.

a metric d such that for X 6= Y as d(X,Y )
Def
= min{2−n | X � n 6= Y � n}. We

added strict positivity since this provides stronger information about extracted
programs (see e.g. Lemma 37 and Thm. 7, and the remark after Lemma 13) and
the definition of fixed points is more direct.

3.4. The formal system RIFP

We introduce an extension RIFP of IFP suitable for a formal definition of
realizability and a formal proof of its soundness. In addition to the sorts of IFP,
RIFP contains the sorts δ denoting the domain D, and ∆ denoting the set of
subdomains of D. Programs are terms of sort δ, types are terms of sort ∆. We
also add a new relation symbol : of arity (δ,∆) where a : α means that a is an
element of the subdomain α. We write ∀a : ρA for ∀a (a : ρ→ A) and ∃a : ρA
for ∃a (a : ρ∧A). We identify a type ρ with the predicate λa. a : ρ, so that ρ(a)
stands for a : ρ and, for example, ρ ⊆ σ means ∀a (a : ρ→ a : σ).

In addition to the axioms and rules of IFP, which are extended to the lan-
guage of RIFP in the obvious way (and which include stability of equations),
RIFP contains (universally quantified) axioms that reflect the denotational se-
mantics of programs and types as well as those that express injectivity, range
disjointness and compactness of constructors. Since we will not apply a realiz-
ability interpretation to RIFP we do not need to restrict axioms to nc formulas.

We use the abbreviation IsFun(a)
Def
= ∃b (a = λc . (b c)).

Axioms for programs.

(i) caseCi(~b) of{C1(~a1)→M1; . . . ;Cn(~an)→Mn} = Mi[~b/~ai]

(ii)
∧
i

∀~b a 6= Ci(~b) → case aof{C1(~a1)→M1; . . . ;Cn(~an)→Mn} = ⊥

(iii) (λb.M) a = M [a/b]

(iv) ¬IsFun(a) → a b = ⊥
(v) IsFun(a) ∧ IsFun(b) ∧ ∀c (a c = b c) → a = b

(vi)
⊕

C constructor

∃1
~b (a = C(~b)) ⊕ IsFun(a) ⊕ a = ⊥

(vii) rec a = a (rec a)

(viii) P (⊥) ∧ ∀b (P (b) → P (a b))→ P (rec a) (P admissible)
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where an RIFP predicate of arity (δ) is called admissible if it contains neither
free predicate variables nor existential quantifiers nor inductive definitions.

Axioms for types.

(ix) ⊥ : α

(x) ρ[fixα . ρ/α] ≡ fixα . ρ

(xi) β � ρ[β/α] → β � fixα . ρ (� ∈ {⊆,⊇}, fixα . ρ regular)

(xii) c : 1 ↔ (c = Nil ∨ c = ⊥)

(xiii) c : α× β ↔ (∃a : α, b : β (c = Pair(a, b)) ∨ c = ⊥)

(xiv) c : α+ β ↔ (∃a : α (c = Left(a)) ∨ ∃b : β (c = Right(b)) ∨ c = ⊥)

(xv) c : α⇒ β ↔ ((IsFun(c) ∧ ∀a : α (c a : β)) ∨ c = ⊥)

(xvi) ∃α ∀β (P ⊆ β ↔ α ⊆ β) (P an RIFP predicate of arity (∆))

Clearly, axioms (i-vii) and (xii-xv) are correct in D respectively in �D. Axiom
(viii) is a restricted form of Scott-induction, a.k.a. fixed point induction. It is a
way of expressing that rec a is the least fixed point of a, that is, the supremum
of the chain ⊥ v a⊥ v a (a⊥) v . . .. Scott-induction holds more generally for
predicates that are closed under suprema of chains (such predicates are called
inclusive in [77]). It is easy to see that admissible predicates have this property.
As an example of Scott-induction, we show that every type is closed under least
fixed points of endofunctions, that is,

a : α⇒ α → rec a : α.

Indeed, assuming a : α ⇒ α, the admissible predicate P
Def
= (λb . b : α) satisfies

the premises of (viii) since ⊥ : α by axiom (ix) (which is valid since all subdo-
mains of D contain ⊥). Obviously, Scott-induction is also valid for admissible
predicates of more than one argument, e.g.

P (⊥,⊥) ∧ ∀b1, b2 (P (b1, b2) → P (a1 b1, a2 b2))→ P (rec a1, rec a2)

and Axiom (viii) should be understood in this more general form. Axioms (x)
and (xi) hold by Lemmas 7 and 1. Axiom (xvi) expresses the existence of the
subdomain generated by P and can be viewed as a form of comprehension.

We set RIFP(A)
Def
= IFP(A ∪A′) where A′ consist of the axioms (i-xvi) for

programs and types above. We write RIFP for RIFP(A) if the set of axioms is
not important.

The following lemma will be used later to simplify extracted programs.

Lemma 12. RIFP(∅) proves: If f is strict, that is, f ⊥ = ⊥, then

f(caseM of {C1(~a1)→ L1; . . . ;Cn(~an)→ Ln})
= caseM of {C1(~a1)→ f L1; . . . ;Cn(~an)→ f Ln} .
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Proof. Let f be strict. We have to prove the equation f K = K ′ where K
Def
=

caseM of {C1(~a1) → L1; . . . ;Cn(~an) → Ln} and K ′
Def
= caseM of {C1(~a1) →

f L1; . . . ;Cn(~an)→ f Ln}. Since we have to prove an equation and we assume

equations to be ¬¬-stable, we may use classical logic. If M = Ci(~b) for some i

and ~b, then K = Li[~b/~ai] and K ′ = f Li[~b/~ai], by axiom (i), and the equation
holds. Otherwise, K = K ′ = ⊥ by axiom (ii), and the equation holds since f is
strict.

Lemma 13. The following typing rules are derivable in RIFP(∅) (where Γ is a
typing context, that is, a list of assumptions a1 : ρ1, . . . an : ρn).

Γ, a : ρ ` a : ρ Γ ` Nil : 1 Γ ` ⊥ : ρ

Γ `M : ρ

Γ ` Left(M) : ρ+ σ

Γ `M : σ
Γ ` Right(M) : ρ+ σ

Γ `M : ρ Γ ` N : σ

Γ ` Pair(M,N) : ρ× σ
Γ `M : ρ× σ Γ, a : ρ, b : σ ` N : τ

Γ ` caseM of {Pair(a, b)→ N} : τ

Γ `M : ρ+ σ Γ, a : ρ ` L : τ Γ, b : σ ` R : τ

Γ ` caseM of {Left(a)→ L ; Right(b)→ R} : τ

Γ, a : ρ `M : σ

Γ ` λa.M : ρ⇒ σ

Γ `M : ρ⇒ σ Γ ` N : ρ

Γ `M N : σ

Γ `M : ρ[fixα . ρ/α]
ROLL

Γ `M : fixα . ρ

Γ `M : fixα . ρ
UNROLL

Γ `M : ρ[fixα . ρ/α]

Γ, a : ρ `M a : ρ

Γ ` recM : ρ
(a not free in M)

Proof. Immediate from the axioms for types.

Remark . Only terms typable with these rules will be extracted in Sect. 4.2.
Note that the Y -combinator (Sect. 3.2) is not typable by these rules since its
type must be of the form (ρ⇒ ρ)⇒ ρ, and in order to type the self application
(a a) occurring in Y one needs a type σ satisfying σ ≡ σ ⇒ ρ, that is, a fixed
point of a non-positive type operator.

3.5. Translation to Haskell

We sketch how to translate typable RIFP programs into Haskell. First we
define a Haskell type H(ρ) for each type ρ and a sequence of Haskell algebraic
data type declarations. We begin with the declaration

data One = Nil,

and then define

(i) H(1) = One

(i) H(α) = α
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(ii) H(ρ+ σ) = Either H(ρ) H(σ)

(iii) H(ρ× σ) = (H(ρ),H(σ))

(iv) H(ρ⇒ σ) = H(ρ)→ H(σ)

(v) H(fixα . ρ) = Cα,ρ ~β

In case (iv), → is Haskell’s function type constructor, in case (v), Cα,ρ is a new

name generated from α and ρ, and ~β is a list of the free type variables in fixα . ρ.
The list of Haskell data type declarations is extended by the following recursive
and possibly polymorphic data type Cα,ρ with one constructor which we again
call Cα,ρ.

data Cα,ρ ~β = Cα,ρ H(ρ)[Cα,ρ ~β/α]

To accommodate the typing rules ROLL and UNROLL we need Haskell pro-
grams

rollCα,ρ :: H(ρ)[Cα,ρ ~β/α]→ Cα,ρ ~β rollCα,ρ x = Cα,ρ x

unrollCα,ρ :: Cα,ρ ~β → H(ρ)[Cα,ρ ~β/α] unrollCα,ρ(Cα,ρ x) = x

and for recursive programs a fixed point combinator

rec :: (α→ α)→ α rec f = f (rec f)

Now suppose that d is a type derivation of M : ρ built from the typing rules
in Lemma 13. We define a Haskell program H(d) of type H(ρ) as follows. By
considering Pair(M,N) as the Haskell term (M,N), our program is an untyped
Haskell program. H(d) is obtained by inserting appropriate roll and unroll to
M following the type derivation d. We do not modify M for rules other than
ROLL and UNROLL. If d ends with ROLL with ρ = fixα . ρ′, we define
H(d) = rollCα,ρ′H(d′). If d ends with UNROLL and ρ = ρ[fixα . ρ′/α], we
define H(d) = unrollCα,ρ′H(d′). Here, d′ is the derivation of the premise of
ROLL and UNROLL. With the Haskell program H(d) obtained in this way,
we have a sound derivation of the typing H(d) :: H(ρ) in Haskell.

One can optimize this translation in several ways. For example, one can
treat a type of the form fixα . ρ1 + . . .+ρk so that it is translated to a data type
with k constructors. One can also use Haskell’s list type for fixα . (τ × α+ 1)
(i.e., finite/infinite list type) and fixα . (τ × α) (i.e., infinite list type).

3.6. Types of IFP expressions

We inductively assign to every IFP-expression (i.e., formula or predicate) E
a type τ(E). The idea is that τ(A), for a formula A, is the type of potential
realizers of A. We call an expression Harrop if it contains neither disjunctions
nor free predicate variables at strictly positive positions. This deviates from
the usual definition of the Harrop property [69] since existential quantifiers at
strictly positive positions are permitted. The reason for this is that quantifiers
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are interpreted uniformly, that is, not witnessed by realizers. Like nc formulas,
Harrop formulas have no computational content, however, they differ from nc
formulas in that they need not coincide with their own realizability interpreta-
tion (see Remark 3 at the end of this section).

We define τ(E) so that the type 1 is assigned to an expression iff it is Harrop.
In the following definition, we say that a predicate P is X-Harrop if λX P is
Harrop, that is, if P is strictly positive in X and P [X̂/X] is Harrop where X̂ is
a predicate constant associated with X.

τ(P (~t)) = τ(P )

τ(A ∨B) = τ(A) + τ(B)

τ(A ∧B) = τ(A)× τ(B) (A,B non-Harrop)

= τ(A) (B Harrop, A non-Harrop)

= τ(B) (A Harrop, B non-Harrop)

= 1 (A,B Harrop)

τ(A→ B) = τ(A)⇒ τ(B) (A,B non-Harrop)

= τ(B) (otherwise)

τ(�xA) = τ(A) (� ∈ {∀,∃})

τ(X) = αX (X a predicate variable, αX a fresh type variable)

τ(P ) = 1 (P a predicate constant)

τ(λ~xA) = τ(A)

τ(�(λX P )) = fixαX . τ(P ) (� ∈ {µ, ν}, P not X-Harrop)

= 1 (� ∈ {µ, ν}, P X-Harrop)

Remark . Though the semantics Dζ
1 of the type 1 is {Nil,⊥}, we will stip-

ulate in Section 3.7 that only Nil is a possible realizer of a Harrop expres-
sion. We will also define simplified realizers for products and implications if
some of their components are Harrop and therefore have corresponding sim-
plified definitions of τ(A) for these cases. Note that we define the type of a
(co)inductively defined Harrop predicate �(λX P ) to be 1. Without this sim-
plified type assignment a non-regular type may be assigned to a predicate, for
example, τ(False) = τ(µ(λX X)) would become fixαX . αX .

Lemma 14. For every expression E (formula or predicate) and predicate P ,

(a) E is Harrop if and only if τ(E) = 1,

(b) τ(E) is regular,

(c) if P is non-Harrop, then τ(E[P/X]) = τ(E)[τ(P )/αX ],

(d) If P is Harrop, then τ(E[P/X]) = τ(E[X̂/X]).

Proof. Straightforward structural induction on E.
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3.7. Realizers of expressions

In this section, we define the notion that a : τ(A) is a realizer of a formula
A, written a rA. This intuitively means that a is a computational content of
the formula A. In intuitionistic logic, a proof of A∨B provides evidence that A
is true or B is true, together with an indicator of which of the two cases holds.
We construct our notion of realizer by treating this as the primitive source of
computational content. Therefore, we defined an expression non-computational
(nc) if it contains neither disjunctions nor free predicate variables (Sect. 2.1).
A more general notion of an expression with trivial computational content is
provided by the Harrop property which forbids the occurrence of disjunctions
and free predicate variables only at strictly positive positions (Sect. 3.6).

In order to formalize realizability in RIFP we define for every IFP formula
A an RIFP predicate R(A) of arity (δ) that specifies the set of domain ele-
ments a such that a rA holds. For defining R(A), we simultaneously define
H(B) for Harrop formulas B which expresses that B is realizable, however with
trivial computational content Nil. We define for every IFP-expression an RIFP-
expression, more precisely we define for a

formula A a predicate R(A) of arity (δ);
non-Harrop predicate P of arity (~ι) a predicate R(P ) of arity (~ι, δ);
non-Harrop operator Φ of arity (~ι) an operator R(Φ) of arity (~ι, δ);
Harrop formula A a formula H(A);
Harrop predicate P a predicate H(P ) of the same arity;
Harrop operator Φ an operator H(Φ) of the same arity.

In the definition of realizability below we assume that to every IFP predicate
variable X of arity (~ι) there are assigned, in a one-to-one fashion, an RIFP
predicate variable X̃ of arity (~ι, δ) and a type variable αX . Furthermore, we
write a rA for R(A)(a) and rA for ∃a a rA. Recall that a predicate P is X-
Harrop if it is strictly positive in X and P [X̂/X] is Harrop where X̂ is a fresh
predicate constant associated with X. In this situation we write HX(P ) for
H(P [X̂/X])[X/X̂]. The idea is that HX(P ) is the same as H(P ) but considering
X as a (non-computational) predicate constant.

a rA = (a = Nil ∧H(A)) (A Harrop)

a rP (~t) = R(P )(~t, a) (P non-H.)

c r (A ∨B) = ∃a (c = Left(a) ∧ a rA) ∨ ∃b (c = Right(b) ∧ b rB)

c r (A ∧B) = ∃a, b (c = Pair(a, b) ∧ a rA ∧ b rB) (A,B non-H.)

a r (A ∧B) = a rA ∧H(B) (B Harrop, A non-H.)

b r (A ∧B) = H(A) ∧ b rB (A Harrop, B non-H.)

c r (A→ B) = c : τ(A)⇒ τ(B) ∧ ∀a (a rA→ (c a) rB) (A,B non-H.)

b r (A→ B) = b : τ(B) ∧ (H(A)→ b rB) (A Harrop, B non-H.)

a r3xA = 3x (a rA) (3 ∈ {∀,∃}, A non-H.)
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R(X) = X̃

R(λ~xA) = λ(~x, a) (a rA) (A non-H.)

R(2(Φ)) = 2(R(Φ)) (2 ∈ {µ, ν}, Φ non-H.)

R(λX P ) = λX̃ R(P ) (P non-H.)

H(P (~t)) = H(P )(~t) (P Harrop)

H(A ∧B) = H(A) ∧H(B) (A,B Harrop)

H(A→ B) = rA→ H(B) (B Harrop)

H(3xA) = 3xH(A) (3 ∈ {∀,∃}, A Harrop)

H(P ) = P (P a predicate constant)

H(λ~xA) = λ~xH(A) (A Harrop)

H(2(Φ)) = 2(H(Φ)) (2 ∈ {µ, ν}, Φ Harrop)

H(λX P ) = λX HX(P ) (P X-Harrop)

In order to see that R(2(Φ)) and H(2(Φ)) are wellformed one needs to prove
simultaneously that if an expression E is s.p. in X, then R(E) is s.p. in X̃, and
if E is X-Harrop, then HX(E) (= H(E[X̂/X])) is s.p. in X̂.

Lemma 15.

(a) If P is non-Harrop, then R(A[P/X]) = R(A)[R(P )/X̃][τ(P )/αX ].

(b) If P is Harrop, then R(A[P/X]) = R(A[X̂/X])[H(P )/X̂].

(c) If A is Harrop, then H(A)↔ rA.

(d) If E is an nc expression, then H(E) = E, in particular, H(False) = False.

(e) R(A) ⊆ τ(A) under the assumptions ∀~x (R(X̃(~x)) ⊆ αX), that is,
∀~x, b (X̃(~x, b)→ b : αX), for all free predicate variables X in A.

Proof. The statements are proven by induction on the size of expressions suit-
ably generalizing the statements to formulas or predicates. Parts (a-d) are easy.

For (e) one proves, simultaneously with the statement for formulas, that for
predicates P , a rP (~x) implies a : τ(P ) assuming ∀~x, b (Ỹ (~x, b)→ b : αY ) for all
free predicate variables Y in P . The only difficult case is a non-Harrop predicate
P of the form 2(λX Q) (2 ∈ {µ, ν}). In that case τ(P ) = fixαX . τ(Q) and
by Lemma 14 (b) this is a regular type. Furthermore, R(P ) = 2(λX̃ R(Q)) ≡
R(Q)[R(P )/X̃]. By the induction hypothesis, ∀a, ~x (a rQ(~x) → a : τ(Q)) un-
der the extra assumption ∀~x, b (X̃(~x, b) → b : αX). Let α be the subdomain
generated by the set {a ∈ D | ∃~x (a rP (~x))} whose existence is guaranteed by
Axiom (xvi). It suffices to show α ⊆ τ(Q)[α/αX ] since then, by Axiom (xi),
α ⊆ fixαX . τ(Q) = τ(P ) and consequently if a rP (~x), then a : α and there-
fore a : τ(P ). For the proof of α ⊆ τ(Q)[α/αX ] it suffices to show that if
a rP (~x), then a : τ(Q)[α/αX ]. Assume a rP (~x). Then (a rQ(~x))[R(P )/X̃]
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since R(P ) ≡ R(Q)[R(P )/X̃]. Using the induction hypothesis with X̃
Def
= R(P )

and αX
Def
= α and we get a : τ(Q)[α/αX ] as required.

Remarks. 1. Since Nil is the only possible realizer of a Harrop formula,
one could as well define 1 as {⊥} and use ⊥ as the realizer of a realizable Har-

rop formula. Then, the domain Dnat for nat
Def
= τ(N) (see Sect. 4.3) would

be isomorphic to the domain of lazy natural numbers, and the domain D2 for

2
Def
= 1 + 1 would be isomorphic to the domain of truth values {true, false,⊥}

(see Sect. 5.3). However, using ⊥ as a realizer of Harrop formulas contradicts
our intuitive understanding that ⊥ means non-termination. One could as well
obtain these isomorphisms without modifying the realizer of a Harrop formula
by adding nullary constructors Left0 (representing Left(Nil)) and Right0 (rep-
resenting Right(Nil)) to D and corresponding constructors to type expressions.
However, we refrain from these additions since their comparably small benefits
would not match the considerable complications they would create.

2. While a r (∀xA) ≡ ∀x (a rA) holds, r(∀xA) ≡ ∀x rA does not hold in
general since r(∀xA) = ∃a a r (∀xA) = ∃a∀x a rA whereas ∀x rA = ∀x∃a a rA.

3. Regarding (c) vs. (d) we note that for Harrop formulas A, H(A) need
not be equivalent to A. In fact, A and H(A) may even contradict each other.
For example, if A is the Harrop formula ¬∀x (x = 0 ∨ x 6= 0), then H(A) is
¬∃a∀x (a = Left(Nil)∧x = 0∨ a = Right(Nil)∧x 6= 0) which is intuitionisti-
cally provable from 0 6= 1. On the other hand ¬A is provable in classical logic.
Hence, rA → A is classically contradictory and therefore unprovable in RIFP.
The reason for this difference between A and rA is logical, more precisely it lies
in the uniform interpretation of the universal quantifier which forbids a realizer
of a formula ∀xB to depend on x. In contrast, in Kleene realizability the main
source of discrepancy between realizability and truth is computational and fol-
lows from the existence of undecidable predicates. For example, the formula

C
Def
= ∀x ∈ N(Halt(x) ∨ ¬Halt(x)) is classically true but not realizable since

any realizer, which in Kleene realizability has to be computable, would solve
the halting problem (and hence ¬C is classically false but realizable). In our
setting C is realizable since the domain D admits non-computable functions.

4. A crucial property of our realizability interpretation is that ⊥ can be
a realizer of a formula. For example, a r (False → A) for any a : τ(A). In
particular, ⊥ r (False → A) for any non-Harrop formula A. This enables us to
manipulate non-terminating computation in logic and extract non-terminating
programs from logical proofs. On the other hand, ⊥ rA does not hold if A is a
Harrop formula.

5. Although, by Lemma 15 (e), realizers are typable, they may be partial
as remarked above. Therefore our realizability is closer to Kleene’s realizability
by (codes of) partial recursive functions [40], rather than Kreisel’s modified
realizability [44] whose characteristic feature is that realizers are typed and
total. For example, it is easy to see that the schema Independence of Premise,
(A → ∃x ∈ NB) → ∃x ∈ N (A → B) where A is a Harrop formula, which is
realizable in modified realizability, is not realizable in our system.
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6. Despite the availability of classical logic through disjunction-free axioms
our interpretation is very different from Krivine’s classical realizability [45, 46].
While our interpretation fundamentally rests on the intuitionistic interpreta-
tion of disjunction as a problem whose solution requires a decision between two
alternatives, Krivine’s classical realizability is formulated in the negative frag-
ment of logic given with implication, conjunction and universal quantification
as the only logical connectives. In [56] it is shown that Krivine’s realizability
(roughly) corresponds to Gödel’s negative translation followed by intuitionistic
realizability.

4. Soundness

The Soundness Theorem stating that provable formulas are realizable is the
theoretical foundation for program extraction.

Theorem 2 (Soundness). Let A be a set of nc axioms. From an IFP(A) proof
of a formula A one can extract a closed program M : τ(A) such that M rA is
provable in RIFP(A).

More generally, let Γ be a set of Harrop formulas and ∆ a set of non-Harrop
formulas. Then, from an IFP(A) proof of a formula A from the assumptions
Γ,∆ one can extract a program M with FV(M) ⊆ ~u such that ~u : τ(∆) ` M :
τ(A) and M rA are provable in RIFP(A) from the assumptions H(Γ) and ~u r ∆.

Moreover, all typing judgements above are derivable by the rules of Lemma 13.

In this Section we prove this theorem (Sect. 4.1) and read off from it a
program extraction procedure for IFP-proofs (Sect. 4.2). We also study the
realizers of natural numbers (Sect. 4.3) and wellfounded induction (Sect. 4.4).

Remarks. 1. From the general version of the Soundness Theorem one sees
that Harrop formulas B can be freely used as assumptions (or axioms) as long
as their Harrop interpretations H(B) are true. For example, BT≺ (Brouwer’s
Thesis, defined in Sect. 2.2) is a Harrop formula (for an arbitrary relation ≺) and
one can show that H(BT≺) is equivalent to BTr≺ and hence true. Therefore,
BT≺ (without restriction on the relation ≺) can be used as an axiom in a proof
without spoiling program extraction.

2. Since RIFP(A) is an instance of IFP it follows from the Tarskian sound-
ness of IFP (see Sect. 2.1) that the statements M : τ(A) and M rA in the
Soundness Theorem are true, in particular M denotes indeed a realizer of A.

4.1. Proof of the soundness theorem

The expected proof of the Soundness Theorem by structural induction on
IFP derivations faces the obstacle that in order to prove realizability of s.p.
induction and coinduction one needs realizers for the monotonicity of the oper-
ators in question, and this, in turn, requires the realizability of s.p. induction
and coinduction. We escape this circularity by introducing an equivalent sys-
tem IFP′ for which soundness can be proven by induction on the length of
derivations. The only difference between the two systems is that IFP′ requires
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a monotonicity proof for the operator as an additional premise of s.p. induction
and coinduction.

Let Mon(Φ) be the following formula expressing the monotonicity of Φ:

Mon(Φ)
Def
= X ⊆ Y → Φ(X) ⊆ Φ(Y )

where X and Y are fresh predicate variables. The system IFP′ is obtained from
IFP by replacing the rules IND(Φ, P ) and COIND(Φ, P ) by

Φ(P ) ⊆ P Mon(Φ)

µ(Φ) ⊆ P IND′(Φ, P ) (∗)

P ⊆ Φ(P ) Mon(Φ)

P ⊆ ν(Φ)
COIND′(Φ, P ) (∗)

(∗) is the side condition that the free assumptions in the proof of Mon(Φ) must
not contain X or Y free.

The modified rules SI′(Φ, P ), HSI′(Φ, P ), SCI′(Φ, P ), HSCI′(Φ, P ), are
defined similarly.

By the length of a derivation we mean the number of occurrences of deriva-
tion rules.

Lemma 16. If IFP, IFP′, or RIFP proves Γ ` A, then the same system proves
Γ[P/X] ` A[P/X], Γ[P/X̂] ` A[P/X̂] and, if applicable, Γ[ρ/α] ` A[ρ/α],
with the same derivation length, where A, P , X, ρ, α are arbitrary formulas,
predicates, predicate variables, types, type variables respectively, and X̂ is an
arbitrary predicate constant that does not appear in any axiom.

Proof. Easy structural induction on derivations.

Remark . Important instances of Lemma 16 are derivations of Mon(Φ), which
occur as premises of the rules IND′ and COIND′. If we replace in Mon(Φ) one
or both of the predicate variables X and Y by different fresh predicate constants,
say X̂ and Ŷ , then, by Lemma 16, the resulting formulas have derivations of the
same length. This fact will be used in the soundness proof for IFP′ (Theorem 3).

Lemma 17. (a) If RIFP proves a rA from assumptions that do not contain
the predicate variable X and if P is a non-Harrop predicate of the same
arity as X, then RIFP proves a r (A[P/X]) from the same assumptions.

(b) If RIFP proves a r (A[X̂/X]) from assumptions that do not contain the
predicate constant X̂ and if P is a Harrop predicate of the same arity as
X, then RIFP proves a r (A[P/X]) from the same assumptions.

Proof. From a rA we get, by Lemma 16, (a rA)[R(P )/X̃][τ(P )/αX ] which, by
Lemma 15 (a), is the same as a r (A[P/X]) provided P is non-Harrop.

From a r (A[X̂/X]) we get, by Lemma 16, (a r (A[X̂/X]))[H(P )/X̂] which,
by Lemma 15 (b), is the same as a r (A[P/X]) provided P is Harrop.
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In Theorem 3 we will use the following monotone predicate transformers:

(f−1 ◦Q)(~x, a)
Def
= Q(~x, f a) (f ◦Q)(~x, b)

Def
= ∃a (f a = b ∧Q(~x, a))

(a−1 ∗Q)(~x)
Def
= Q(~x, a) (a ∗ P )(~x, b)

Def
= a = b ∧ P (~x)

∆(P )(~x, b)
Def
= P (~x) ∃(Q)(~x)

Def
= ∃aQ(~x, a)

The next lemma states their relevant properties. We omit the easy proofs.

Lemma 18. Equivalences.

f−1 ◦ (g−1 ◦Q) ≡ (g ◦ f)− ◦Q f ◦ (g ◦Q) ≡ (f ◦ g) ◦Q
a−1 ∗ (f−1 ◦Q) ≡ (f a)−1 ∗Q f ◦ (a ∗ P ) ≡ (f a) ∗ P
f−1 ◦∆(P ) ≡ ∆(P ) ∃(f ◦Q) ≡ ∃(Q)

f−1 ◦ P ∩ g−1 ◦Q ≡ 〈f, g〉−1 ◦ (πLeft
−1 ◦ P ∩ πRight

−1 ◦Q)

f ◦ P ∪ g ◦Q ≡ [f + g] ◦ (Left ◦ P ∪Right ◦Q)

Adjunctions.
Q ⊆ f−1 ◦Q′ ↔ f ◦Q ⊆ Q′
P ⊆ a−1 ∗Q ↔ a ∗ P ⊆ Q
Q ⊆ ∆(P ) ↔ ∃(Q) ⊆ P

Realizability. Below let Q,Q′ be non-Harrop predicates, P, P ′ Harrop predicates,
f : τ(Q)⇒ τ(Q′) and a : τ(Q):

f r (Q ⊆ Q′) ↔ R(Q) ⊆ f−1 ◦R(Q′) ↔ f ◦R(Q) ⊆ R(Q′)
a r (P ⊆ Q) ↔ H(P ) ⊆ a−1 ∗R(Q) ↔ a ∗H(P ) ⊆ R(Q)
H(Q ⊆ P ) ↔ R(Q) ⊆ ∆(H(P )) ↔ ∃(R(Q)) ⊆ H(P )
H(P ⊆ P ′) ↔ H(P ) ⊆ H(P ′)

R(Q ∩Q′) ≡ πLeft
−1 ◦R(Q) ∩ πRight

−1 ◦R(Q′)

R(Q ∪Q′) ≡ Left ◦R(Q) ∪Right ◦R(Q′)

Theorem 3 (IFP′ version of Soundness). Let A be a set of nc axioms. From
an IFP′(A) proof of a formula A one can extract a closed program M : τ(A)
such that M rA is provable in RIFP(A).

More generally, let Γ be a set of Harrop formulas and ∆ a set of non-Harrop
formulas. Then, from an IFP′(A) proof of a formula A from the assumptions
Γ,∆ one can extract a program M with FV(M) ⊆ ~u such that ~u : τ(∆) ` M :
τ(A) and M rA are provable in RIFP(A) from the assumptions H(Γ) and ~u r ∆.

Moreover, all typing judgements above are derivable by the rules of Lemma 13.

Proof. By induction on the length of IFP′ derivations.
In the following we mean by ‘induction hypothesis’ always an induction

hypothesis of the induction on the length of derivations. In order to avoid
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confusion with IFP′ induction on a strictly positive inductive predicate µ(Φ),
we will refer to the latter always as ‘s.p. induction’.

The logical rules are straightforward. We only look at one case, to highlight
the difference to other forms of realizability. In Sect. 4.2 the extracted programs
for all logical rules are shown.

Existence elimination. Assume we have derivations of ∃xA and ∀x (A→ B)
where x is not free in B. We need a realizer of B. By the first induction
hypothesis we have a realizers d of ∃xA, that is, d realizes A[y/x] for some y
(in the case that A is Harrop, this means that d = Nil and H(A[y/x]) holds).
Consider the case that B is non-Harrop. Then the second induction hypothesis
yields a realizer e of ∀x (A → B), that is, e realizes A[z/x] → B for all z. If
A is Harrop, the latter means that e realizes B provided H(A[z/x]) holds for
some z. But H(A[y/x]) holds. Hence e realizes B. If A is non-Harrop then e f
realizes B for all f that realize A[z/x] for some z. Since d realizes A[y/x], it
follows that e d realizes B. If B is Harrop, then the second induction hypothesis
means that H(B) holds provided A[z/x] is realizable for some z. Since A[y/x]
is realizable, it follows H(B) which means that Nil realizes B.

For s.p. induction and s.p. coinduction we consider an operator Φ = λX Q,
hence Φ(P ) = Q[P/X].

IND′(Φ, P ). Assume we have derived µ(Φ) ⊆ P by s.p induction from
Φ(P ) ⊆ P , that is, Q[P/X] ⊆ P , and Mon(Φ), that is, X ⊆ Y → Q ⊆ Q[Y/X].
It is our goal to find a realizer of µ(Φ) ⊆ P .

(a) Case Φ and P are both non-Harrop. We want f̃ : (fixαX . τ(Q))⇒ τ(P )
realizing µ(Φ) ⊆ P , that is, by Lemma 18, µ(λX̃ R(Q)) ⊆ f̃−1 ◦ R(P ). We
attempt to prove this by s.p. induction, so our goal is to prove

R(Q)[f̃−1 ◦R(P )/X̃] ⊆ f̃−1 ◦R(P ) .

By the induction hypothesis we have s : τ(Φ(P ))⇒ τ(P ) such that s r (Φ(P ) ⊆
P ), that is, by Lemma 18,

R(Q[P/X]) ⊆ s−1 ◦R(P ), (1)

and also somem : (αX ⇒ αY )⇒ τ(Q)⇒ τ(Q)[αY /αX ] such thatm r (Mon(Φ))
and hence also m r (Mon(Φ)[P/Y ]), by Lemma 17 (a). Therefore, ∀f (X̃ ⊆
f−1 ◦R(P )→ R(Q) ⊆ (mf)−1 ◦R(Q[P/X])). Using this with f

Def
= f̃ , where

f̃ is yet unknown, and X̃
Def
= f̃−1 ◦R(P ) we obtain, using Lemma 16 for RIFP′,

R(Q)[f̃−1 ◦R(P )/X̃] ⊆ (mf̃)−1 ◦R(Q[P/X]) (2)

Now,

R(Q)[f̃−1 ◦R(P )/X̃]
(2)
⊆ (mf̃)−1 ◦R(Q[P/X])

(1)
⊆ (mf̃)−1 ◦ (s−1 ◦R(P ))

= (s ◦mf̃)−1 ◦R(P )
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Therefore we define recursively f̃
rec
= s ◦mf̃ and are done. Clearly, f̃ has the

right type.
(b) Case Φ and P are both Harrop (then µ(Φ) and Q[P/X] are Harrop). We

aim to prove H(µ(Φ) ⊆ P ), that is, µ(λX HX(Q)) ⊆ H(P ). We try s.p. induc-
tion, so our goal is to prove

HX(Q)[H(P )/X] ⊆ H(P ).

By the induction hypothesis we have H(Φ(P ) ⊆ P ), that is,

H(Q[P/X]) ⊆ H(P ), (3)

and H(Mon(Φ)[X̂/X][Ŷ /Y ]) (see the remark after Lemma 16). The latter
yields, by Lemma 17 (b), the derivability of H(Mon(Φ)[X̂/X][P/Y ]), that is,
X̂ ⊆ H(P ) → H(Q[X̂/X]) ⊆ H(Q[P/X]). Using Lemma 16 for RIFP with

X̂
Def
= H(P ) we obtain H(Q[X̂/X])[H(P )/X̂] ⊆ H(Q[P/X]) which is the same

as
HX(Q)[H(P )/X] ⊆ H(Q[P/X]) (4)

since H(Q[X̂/X])[H(P )/X̂] = HX(Q)[H(P )/X]. (4) and (3) yield the desired
inclusion HX(Q)[H(P )/X] ⊆ H(P ).

(c) Case Φ is non-Harrop, P is Harrop (then µ(Φ) and Q[P/X] are non-
Harrop). We aim to prove H(µ(Φ) ⊆ P ), which, by Lemma 18, is equivalent to
µ(λX̃ R(Q)) ⊆ ∆(H(P )). Trying s.p. induction, our goal is to prove

R(Q)[∆(H(P ))/X̃] ⊆ ∆(H(P )).

By the induction hypothesis we have H(Φ(P ) ⊆ P ), that is,

R(Q[P/X]) ⊆ ∆(H(P ))), (5)

and m : τ(Q)⇒ τ(Q[Ŷ /Y ]) s.t. m r (Mon(Φ)[Ŷ /Y ]). Hence by Lemma 17 (b),
m r (Mon(Φ)[P/Y ]) that is, X̃ ⊆ ∆(H(P )) → R(Q) ⊆ m−1 ◦ R(Q[P/X]).

Using this with X̃
Def
= ∆(H(P )) we obtain

R(Q)[∆(H(P ))/X̃] ⊆ m−1 ◦R(Q[P/X]). (6)

Now,

R(Q)[∆(H(P ))/X̃]
(6)
⊆ m−1 ◦R(Q[P/X])

(5)
⊆ m−1 ◦∆(H(P ))

= ∆(H(P ))

(d) Case Φ is Harrop, P is non-Harrop.
Subcase X is not free in Q. The goal to find a realizer ã : τ(P ) of µ(Φ) ⊆ P

can be written as µ(λX H(Q)) ⊆ ã−1 ◦R(P ) whose s.p. inductive proof, in this
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case, boils down to proving H(Q) ⊆ ã−1 ◦R(P ). But such an ã is provided by
the induction hypothesis as a realizer of Φ(P ) ⊆ P .

Subcase X is free in Q (then Q, Q[P/X] and Mon(Φ)[X̂/X][P/Y ] are non-
Harrop). We need to find ã : τ(P ) such that ã r (µ(Φ) ⊆ P ), which is equivalent
to µ(λX HX(Q)) ⊆ ã−1 ∗R(P ). A proof attempt by s.p. induction leads to the
goal

HX(Q)[ã−1 ∗R(P )/X] ⊆ ã−1 ∗R(P ).

By the induction hypothesis we have s : τ(Φ(P ))⇒ τ(P ) such that s r (Φ(P ) ⊆
P ), equivalently,

R(Q[P/X]) ⊆ s−1 ◦R(P ), (7)

and some m : αY ⇒ τ(Q[X̂/X]) such that m r (Mon(Φ)[X̂/X]) and hence, by
Lemma 17 (a), also m r (Mon(Φ)[X̂/X][P/Y ]), that is, by Lemma 18,

∀a (X̂ ⊆ a−1 ∗R(P )→ HX(Q)[X̂/X] ⊆ (ma)−1 ∗R(Q[P/X]).

Using this with a
Def
= ã (yet unknown) and X̂

Def
= ã−1 ∗R(P ) we obtain

HX(Q)[ã−1 ∗R(P )/X] ⊆ (ma)−1 ∗R(Q[P/X]) (8)

Now,

HX(Q)[ã−1 ∗R(P )/X]
(8)
⊆ (mã)−1 ∗R(Q[P/X])

(7)
⊆ (mã)−1 ∗ (s−1 ◦R(P ))

= (s (mã))−1 ∗R(P )

Hence, the recursive definition ã
rec
= s (mã) provides a solution. Clearly, ã has

the right type τ(P ).
COIND′(Φ, P ). Assume we have derived P ⊆ ν(Φ) by s.p. coinduction

from P ⊆ Φ(P ), i.e. P ⊆ Q[P/X], and Mon(Φ). It is our goal to find a realizer
of P ⊆ ν(Φ).

(a) Case Φ and P are both non-Harrop. Dual to case (a) for IND′.
(b) Case Φ and P are both Harrop. Dual to case (b) for IND′.
(c) Case Φ is non-Harrop, P is Harrop (then ν(Φ), Q[P/X] and Q[Y/X]

are non-Harrop). We aim to prove ã r (P ⊆ ν(Φ)), for suitable ã : fixαX . τ(Q),
which is equivalent to ã∗H(P ) ⊆ ν(λX̃ R(Q)). Thanks to s.p. coinduction, this
reduces to the goal

ã ∗H(P ) ⊆ R(Q)[ã ∗H(P )/X̃].

The induction hypothesis yields s : τ(Φ(P )) such that s r (P ⊆ Φ(P )), that is,

s ∗H(P ) ⊆ R(Q[P/X]), (9)

and some m : αY ⇒ τ(Q[X̂/X]) ⇒ τ(Q[Y/X]) such that m r (Mon(Φ)[X̂/X]).
By Lemma 17 (b), this entails that m r (Mon(Φ)[P/X]), that is, by Lemma 18,
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∀a (a∗H(P ) ⊆ Ỹ → (ma)◦R(Q[P/X]) ⊆ R(Q[Y/X])). Using this with a
Def
= ã

and Ỹ
Def
= ã ∗H(P ) we arrive at

(mã) ◦R(Q[P/X]) ⊆ R(Q)[ã ∗H(P )/X̃]. (10)

Now,

R(Q)[ã ∗H(P )/X̃]
(10)
⊇ (mã) ◦R(Q[P/X])

(9)
⊇ (mã) ◦ (s ∗H(P ))

= (mã s) ∗H(P )

Therefore, we set ã
rec
= mã s which clearly is of the right type fixαX . τ(Q).

(d) Case Φ is Harrop, P is non-Harrop.
Subcase X is not free in Q. We have to show H(P ⊆ ν(Φ)), equivalently,

∃(R(P )) ⊆ ν(λX H(Q)). By s.p. coinduction, this reduces to ∃(R(P )) ⊆ H(Q)
which is equivalent to the induction hypothesis, H(P ⊆ Q).

Subcase X is free in Q (then Q, Q[P/X] and Mon(Φ)[P/X][X̂/Y ] are non-
Harrop). We need to prove H(P ⊆ ν(Φ)), that is, ∃(R(P )) ⊆ ν(λX HX(Q)).
S.p. coinduction reduces this to the goal

∃(R(P )) ⊆ HX(Q)[∃(R(P ))/X].

By the induction hypothesis we have s r (P ⊆ Φ(P )), equivalently,

s ◦R(P ) ⊆ R(Q[P/X]), (11)

and H(Mon(Φ)[P/X][X̂/Y ]), that is,

∃(R(P )) ⊆ X̂ → ∃(R(Q[P/X])) ⊆ H(Q[X̂/X]).

Using Lemma 16 for RIFP′ with X̂
Def
= ∃(R(P )) yields

∃(R(Q[P/X])) ⊆ H(Q[X̂/X])[∃(R(P ))/X̂] = HX(Q)[∃(R(P ))/X]. (12)

Now,

HX(Q)[∃(R(P ))/X]
(12)
⊇ ∃(R(Q[P/X]))

(11)
⊇ ∃(s ◦R(P ))

≡ ∃(R(P )).

We conclude the proof with the strong and half strong variants of s.p. in-
duction and coinduction. Since, as remarked in Sect. 2.1, these variants are
derivable from ordinary s.p. induction and coinduction, they do not need to
be treated separately. We will do this nevertheless in order to obtain simpler
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realizers. We only derive these simplified realizers for those instances that will
be used later although simplified realizers can be given in all cases where the
conclusion of a rule is a non-Harrop formula.

HSCI′(Φ, P ). Assume we have derived P ⊆ Φ(P ) ∪ ν(Φ), that is, P ⊆
Q[P/X] ∪ ν(Φ), as well as Mon(Φ), that is, X ⊆ Y → Q ⊆ Q[Y/X].

Case Φ and P are both non-Harrop. We are looking for f̃ : τ(P ) ⇒
fixαX . τ(Q), realizing P ⊆ ν(Φ), that is, f̃ ◦ R(P ) ⊆ ν(R(Φ)). We will at-
tempt to prove this by half strong coinduction, so our goal is to prove (since
R(Φ) = λX̃ R(Q))

f̃ ◦R(P ) ⊆ R(Q)[f̃ ◦R(P )/X̃] ∪ ν(R(Φ)) .

By the induction hypothesis we have s : τ(P )⇒ (τ(Q)[τ(P )/αX ]+fixαX . τ(Q))
such that s r (P ⊆ Φ(P ) ∪ ν(Φ)), that is, by Lemma 18 for IFP′,

s ◦R(P ) ⊆ Left ◦R(Q[P/X]) ∪Right ◦ ν(R(Φ)) (13)

and, using Lemma 14 (c), some m : (αX ⇒ αY ) ⇒ τ(Q) ⇒ τ(Q)[αY /αX ])
such that m r (Mon(Φ)) and hence also m r (Mon(Φ[P/X])), by Lemma 17 (a).
Therefore, ∀f (f ◦R(P ) ⊆ Ỹ → mf ◦R(Q[P/X]) ⊆ R(Q[Y/X])). Using this

with f
Def
= f̃ , where f̃ is yet unknown, and Ỹ

Def
= f̃ ◦ R(P ) we obtain, using

again Lemma 16

mf̃ ◦R(Q[P/X]) ⊆ R(Q)[f̃ ◦R(P )/X̃] . (14)

Now,

R(Q)[f̃ ◦R(P )/X̃] ∪ ν(R(Φ))

(14)

⊇ (mf̃ ◦R(Q[P/X])) ∪ ν(R(Φ))

Lemma 18≡ [(mf̃) + id] ◦ (Left ◦R(Q[P/X]) ∪Right ◦ ν(R(Φ)))

(13)

⊇ [(mf̃) + id] ◦ (s ◦R(P ))

Lemma 18≡ ([(mf̃) + id] ◦ s) ◦R(P )

Therefore we define recursively f̃
rec
= [(mf̃) + id] ◦ s and are done. Clearly, f̃

has the right type.
SCI′(Φ, P ), case Φ and P are both non-Harrop. Using the induction hypoth-

esis with realizers s of P ⊆ Φ(P ∪ν(Φ)), and m of Mon(Φ[P/X]), one sees, with

a similar reasoning as above, that the recursive definition f̃
rec
= (m [f̃ + id]) ◦ s

provides a realizer of P ⊆ ν(Φ).
HSI′(Φ, P ), case Φ is Harrop but not constant, P is non-Harrop. Us-

ing the induction hypothesis with realizers s of Φ(P ) ∩ µ(Φ) ⊆ P , and m of

Mon(Φ[P/X]), one sees that the recursive definition ã
rec
= s (mã) provides a

realizer of µ(Φ) ⊆ P (which is the same as the realizer for the corresponding
instance of s.p. induction).
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Lemma 19. Mon(Φ) is provable in IFP’.

Proof. We define MonX(P )
Def
= X ⊆ X ′ → P ⊆ P [X ′/X] where X ′ is a fresh

variable accompanied with X. Then, for Φ = λX P , Mon(Φ) is equivalent to
MonX(P ). Therefore, we prove MonX(P ) by induction on P . That is, prove
MonX(P ) assuming that MonY (Q) holds for every operator λY Q such that Q
is a subexpression of P .

For the case that P has the form µ(λY Q) we assume X ⊆ X ′ and show
µ(λY Q) ⊆ µ(λY Q[X ′/X]). Here, we may assume that Y 6∈ {X,X ′}. We use
IFP’-induction on µ(λY Q) and hence have to show

Q[µ(λY Q[X ′/X])/Y ] ⊆ µ(λY Q[X ′/X]) (15)

and Mon(λY Q), that is, MonY (Q). The latter holds by the induction hypoth-
esis. But MonX(Q) also holds. Therefore, Q ⊆ Q[X ′/X]. Thus, by Lemma 16,
Q[µ(λY Q[X ′/X])/Y ] ⊆ Q[X ′/X][µ(λY Q[X ′/X])/Y ] holds. Furthermore, by
closure, Q[X ′/X][µ(λY Q[X ′/X])/Y ] ⊆ µ(λY Q[X ′/X]). Thus, we have (15).

For the case that P has the form ν(λY Q), the argument is completely dual
if we replace MonX(P ) by the equivalent formula X ′ ⊆ X → P [X ′/X] ⊆ P .

The remaining cases are easy using the extracted programs in Sect. 4.2 as a
guide.

Proof of the Soundness Theorem for IFP (Thm. 2). From an IFP proof one can
obtain an IFP’ proof of the same formula by Lemma 19. Therefore we obtain
the result by Theorem 3.

4.2. Program extraction

The proof of the Soundness Theorem contains an algorithm for computing
the realizing program M which we now describe. We also note how to produce
a Haskell program at the end of this section. For brevity we write a derivation
judgement Γ ` d : A as dA, suppressing the context.

For an IFP derivation dA the extracted program ep(dA) is defined as

ep(dA)
Def
= ep′(pt(dA))

where pt(·) is the transformation of IFP proofs into IFP′ proofs based on
Lemma 19, and ep′(·) is the program extraction procedure based on Theorem 3.

The transformation pt(dA) simply replaces recursively every subderivation

of the form Ind(eΦ(P )⊆P ) by Ind′(pt(eΦ(P )⊆P ),Mon
Mon(Φ)
Φ ) where Mon

Mon(Φ)
Φ

is the proof described in Lemma 19. Similarly, CoInd(eΦ(P )⊆P ) is replaced by

CoInd′(pt(eΦ(P )⊆P ),Mon
Mon(Φ)
Φ ), and so on.

The extraction procedure ep′(dA) is defined by recursion on derivations as
follows:

If A is Harrop then ep′(dA)
Def
= Nil. Hence, in the following we assume that

the proven formula is non-Harrop.
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Closure and coclosure are realized by the identity:

ep′(Cl
Φ(µ(Φ))⊆µ(Φ)
Φ ) = ep′(CoCl

ν(Φ)⊆Φ(ν(Φ))
Φ ) = λa . a (16)

For induction, in the case where P is non-Harrop, the extracted program is

ep′(Ind′(dΦ(P )⊆P , eMon(Φ))µ(Φ)⊆P ) ={
rec (λa . ep′(d) ◦ ep′(e) a) if Φ is non-Harrop

rec (λa . ep′(d) (ep′(e[X̂/X]) a)) otherwise.
(17)

For coinduction in the case where Φ is non-Harrop, the extracted program is

ep′(CoInd′(dP⊆Φ(P ), eMon(Φ))P⊆ν(Φ)) ={
rec (λa . ep′(e) a ◦ ep′(d)) if P is non-Harrop

rec (λa . (ep′(e[X̂/X]) a ep′(d))) otherwise.
(18)

For the strong and half-strong versions of induction and coinduction we only
present a few cases that will be used later. For half strong induction in the
case where Φ is Harrop but not constant and P is non-Harrop, the extracted
program is the same as for induction, namely

ep′(HSInd(dΦ(P )∩µ(Φ)⊆P , eMon(Φ))µ(Φ)⊆P ) = rec (λa . ep′(d)(ep′(e[X̂/X]) a)).

For half strong coinduction in the case where both Φ and P are non-Harrop,
the extracted program is

ep′(HSCoInd(dP⊆Φ(P )∪ν(Φ), eMon(Φ))P⊆ν(Φ)) = rec (λa . [ep′(e) a+id]◦ep′(d)).
(19)

For strong coinduction in the case where both Φ and P are non-Harrop, the
extracted program is

ep′(SCoInd(dP⊆Φ(P∪ν(Φ)), eMon(Φ))P⊆ν(Φ)) = rec (λa . (ep′(e)[a+id])◦ep′(d)).

Assumptions are realized by variables, and the congruence rule does not
change the realizer:

ep′(uAii ) = ui

ep′(CongP (dP (s), es=t)P (t)) = ep′(d)

The logical rules are realized as follows:

ep′(∨+
l,B(dA)A∨B) = Left(ep′(d))

ep′(∨+
r,A(dB)A∨B) = Right(ep′(d))

ep′(∨−(dA∨B , eA→C , fB→C)C) = case ep′(d) of

{Left(a)→ ep′(e) ∗ a ;

Right(b)→ ep′(f) ∗ b}
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where ep′(e) ∗ a means ep′(e) a if A in non-Harrop and ep′(e) if A is Harrop.
Similarly for ep′(f) ∗ b.

ep′(∧+(dA, eB)A∧B) =

 ep′(d) if B is Harrop
ep′(e) if A is Harrop
Pair(ep′(d), ep′(e)) otherwise

ep′(∧−l (dA∧B)A) =

{
ep′(d) if B is Harrop
πLeft(ep′(d)) otherwise

ep′(∧−r (dA∧B)B) =

{
ep′(d) if A is Harrop
πRight(ep′(d)) otherwise

ep′((→+
uA

(dB))A→B) =

{
ep′(d) if A is Harrop
λu. ep′(d) otherwise

ep′((→− (dA→B , eA))B) =

{
ep′(d) if A is Harrop
ep′(d) ep′(e) otherwise

ep′(∀+
x (dA)∀xA) = ep′(d)

ep′(∀−t (d∀xA)A[t/x]) = ep′(d)

ep′(∃+
λxA,t(d

A[t/x])∃xA) = ep′(d)

ep′(∃−(d∃xA, e∀x (A→B))B) =

{
ep′(e) if A is Harrop
ep′(e) ep′(d) otherwise

Extraction into Haskell.. By the Soundness Theorem (Thm. 2) one can extract
from a proof of a formula A a realizing programM such that the typingM : τ(A)
can be derived using the rules given in Lemma 13. The extraction procedure
ep′(·) implicitly computes not only M but a typing derivation for M : τ(A).
Composing this with the translation of RIFP programs into Haskell one obtains
an extraction procedure directly into Haskell. It is easy to see that the composed
procedure can be obtained by the following small modifications of ep′(·) which
we call eph′(·). In addition to replacing Pair(M,N) by (M,N), the definition
of ep′(·) is changed for closure and coclosure derivation rules with Φ = λXP ,
α = αX , and ρ = τ(P ) from (16) to

eph′(Cl
Φ(µ(Φ))⊆µ(Φ)
Φ ) = rollCα,ρ

eph′(CoCl
ν(Φ)⊆Φ(ν(Φ))
Φ ) = unrollCα,ρ

For induction and coinduction with Φ = λXQ, α = αX and ρ = τ(Q), we use
the following definitions instead of (17) and (18).

eph′(Ind′(dΦ(P )⊆P , eMon(Φ))µ(Φ)⊆P ) ={
rec (λa . eph′(d) ◦ (eph′(e) a) ◦ unrollCα,ρ) if Φ is non-Harrop

rec (λa . eph′(d) (eph′(e[X̂/X]) a)) otherwise.
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eph′(CoInd′(dP⊆Φ(P ), eMon(Φ))P⊆ν(Φ)) ={
rec (λa. rollCα,ρ ◦ (eph′(e) a) ◦ eph′(d)) if P is non-Harrop

rec (λa . (eph′(e[X̂/X]) a eph′(d))) otherwise.

Similar modifications need to be carried out for the other induction and coin-
duction schemes.

4.3. Realizing natural numbers

In Sect. 2.3.3 we defined natural numbers as a subset of the real numbers
through the inductive predicate N(x)

µ
= x = 0∨N(x−1). This view of natural

numbers is abstract since no concrete representation is associated with it. A
concrete representation of natural numbers is provided through the realizability
interpretation of the predicate N. Note that the formula N(x) is not Harrop
since it contains a disjunction at a strictly positive position. We have τ(N) =
nat = fixα . 1 + α, the type of natural numbers (see Sect. 3.3). Realizability
for N works out as

a r N(x)
µ
= a = Left(Nil) ∧ x = 0 ∨ ∃b (a = Right(b) ∧ b r N(x− 1)) .

Therefore, a r N(x) means that a is the unary representation of the natural
number x.

Lemma 20. (a) (r N(x))↔ N(x)

(b) (r ∃x ∈ NA(x))↔ (∃x ∈ N rA(x)).

(c) H(∀x ∈ NA(x))↔ ∀x ∈ N H(A(x)) if A(x) is a Harrop formula.

(d) a r N(x) ∧ b r N(y)→ (a = b↔ x = y).

Proof. Both implications of part (a) are easily proven by induction.
Parts (b) and (c) follow immediately from (a).
To prove part (d) one can use that natural numbers are non-negative and

subtraction is an injective function in its first argument.

Remark . In the parts (a-c) of lemma 20, N may be replaced by any predicate
that contains neither implications nor universal quantifiers nor free predicate
variables. However, (d) depends on the concrete definition of N and specific
properties of the theory of real numbers.

By Lemma 20 it is safe to identify natural numbers with their realizers.
Henceforth we will use the variables n,m, k, l, . . . for both. Hence, in an IFP
proof a natural number is a special real number while in an extracted program
it is a special domain element. Recall from Sect. 2.3.3 that rational numbers

are defined by the predicate Q(q)
Def
= ∃x, y, z ∈ N (z 6= 0 ∧ q · z = x − y)

which corresponds to a representation of rational numbers by triples of natural
numbers (n,m, k) (k 6= 0) denoting (n − m)/k. Although the corresponding
statement of Lemma 20 (d) (i.e. uniqueness of realizers) does not hold for Q,
the generalizations of Lemma 20 (a–c) do apply to Q. Therefore, one can use
realizers to express rational numbers.
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Example 2. In Example 1, we proved A
Def
= ∀x, y (N(x)→ N(y)→ N(x+y)).

We have τ(A) = nat ⇒ nat ⇒ nat. According to Lemma 19, the formula

Mon(ΦN)
Def
= X ⊆ Y → ΦN(X) ⊆ ΦN(Y ) expressing the monotonicity of the

operator ΦN is provable in IFP’ and the following program monN : (αX ⇒
αY )⇒ 1 + αX ⇒ 1 + αY is extracted from the proof.

monN = λf.λm. case m of{Left(a)→ Left(a); Right(b)→ Right(f(b))}

Furthermore, from the proof of the induction premise we extract the following
program of type (1 + nat)⇒ nat.

s = (λm.casemof {Left(c)→ n; Right(c)→ Right(c)})

Here, n is the realizer of N(x). Therefore, by (17) of Sect. 4.2, the realizer
extracted from the proof of A is the following program of type nat⇒ nat⇒ nat

plus = λn. rec λf. s ◦ (monN f)

= λn. rec λf. λm. s((monN f)m) .

By program axiom (ii), s is strict. Therefore, by Lemma 12, we can rewrite

plusnm
rec
= case m of{Left(a)→ s(Left(a)); Right(b)→ s(Right(plus n b))}
rec
= case m of{Left(a)→ n; Right(b)→ Right(plus n b)}.

4.4. Realizing wellfounded induction

In this section we work out in detail the realizers of wellfounded induc-
tion and its specializations (Sect. 2.2) as provided by the Soundness Theorem
(Thm. 2). This will be important for understanding the programs extracted in
Sect. 5.

Lemma 21 (Realizer of wellfounded induction). The schema of wellfounded
induction, WfI≺,A(P ), is realized as follows. If s realizes Prog≺,A(P ) where
P is non-Harrop, then Acc≺ ∩A ⊆ P is realized by

- f̃
rec
= λa. (s a (λa′. λb. f̃ a′)) if ≺ and A are both non-Harrop,

- f̃
rec
= λa. (s a f̃) if ≺ is Harrop and A is non-Harrop,

- c̃
rec
= s (λb. c̃) if ≺ is non-Harrop and A is Harrop,

- rec s if ≺ and A are both Harrop.

Proof. Since WfI≺,A(P ) follows from WfI≺(A ⇒ P ) and the latter is an in-
stance of induction, the extracted programs shown in the lemma can be obtained
from Theorem 2. However, it is instructive to give some details of their deriva-
tions.

Recall that Acc≺ = µ(Φ) where Φ(X) = λx ∀y ≺ xX(y) and Prog≺(Q) =
Φ(Q) ⊆ Q. Since Φ is a Harrop operator, Acc≺ is a Harrop predicate.
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According to Theorem 2 and the program extraction procedure described in
Sect. 4.2 the extracted realizer of Acc≺ ⊆ A⇒ P is

f̃
rec
= s′ (mf̃)

provided s′ r Prog≺(A ⇒ P ) and m r (Mon(Φ)[X̂/X]). Because s realizes
Prog≺,A(P ), that is,

∀x (x ∈ A→ ∀y (y ∈ A→ y ≺ x→ y ∈ P )→ x ∈ P )

and Prog≺(A⇒ P ) expands to

∀x (∀y(y ≺ x→ y ∈ A→ y ∈ P )→ x ∈ A→ x ∈ P )

it is clear that we can define

- s′
Def
= λg.λa. (s a (λa′. λb. g b a′)) if ≺ and A are both non-Harrop,

- s′
Def
= λf.λa. (s a f) if ≺ is Harrop and A is non-Harrop,

- s′
Def
= s if A is Harrop.

The realizer m of Mon(Φ)[X̂/X], which expands to

X̂ ⊆ Y → ∀x (∀y ≺ x X̂(y))→ ∀y ≺ xY (y)

is easily extracted as

- λa. λb. a if ≺ is non-Harrop,

- λa. a if ≺ is Harrop.

From this, one can easily see that the extracted realizer of Acc≺ ⊆ A ⇒ P is
as stated in the lemma. Since Acc≺ is Harrop it follows that the same program
realizes the inclusion Acc≺ ∩A ⊆ P .

Finally, we exhibit the realizers of Archimedean induction. We only look
at the forms AIq and AIBq since the principles AI and AIB have the same
realizers and will not be used in the following.

Lemma 22 (Realizers of Archimedean induction).

AIq If s realizes ∀x 6= 0 ((|x| ≤ q → P (2x)) → P (x)), where P is non-Harrop,
then rec s realizes ∀x 6= 0P (x).

AIBq If s realizes ∀x ∈ B \ {0} (P (x) ∨ (|x| ≤ q ∧ B(2x) ∧ (P (2x) → P (x)))),
where B and P are non-Harrop, then

a b
rec
= case s bof {Left(c)→ c; Right(b′, d)→ d (a b′)} (20)

realizes ∀x ∈ B \ {0}P (x).
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Proof. AIq is derived from half strong induction HSI as is shown in Lemma 2,
and the realizer of the monotonicity of the operator in questions clearly is the
identity. Therefore, as we studied in Section 4.2, it has the realizer a

rec
= s a,

that is, rec s.
Clearly, the premise of AIBq(B,P ) implies the premise of AIq(B ⇒ P ).

From a realizer s of the premise of the former one obtains the realizer

s′ = λa.λb. case s bof {Left(c)→ c; Right(b′, d)→ d (a b′)}

of the premise of the latter. Therefore, a
rec
= s′ a, that is,

a b
rec
= case s bof {Left(c)→ c; Right(b′, d)→ d (a b′)}

realizes the conclusion ∀x ∈ P \ {0}B(x).

5. Stream representations of real numbers

As a first serious application of IFP we present a case study about the
specification and extraction of exact representations of real numbers. This will
highlight many features of our system such as the use of classical axioms as well
as partial and infinite realizers. We will continue the development of the system
IFP in Sect. 6 with the operational semantics of programs.

We study three representations of real numbers as infinite streams of dis-
crete data: Cauchy representation, signed digit representation, and infinite Gray
code [28, 72]. We first recall each representation informally in the style of com-
putable analysis [76]. Then we show how it can be obtained as the realizability
interpretation of a suitable predicate built on the formalization of real numbers
in IFP in Sect. 2.3. Hence, in this section all formal definitions and proofs take
place in IFP(AR) where AR is the non computational axiom system for the real
numbers introduced in Sect. 2.3 which includes the Archimedean property (AP)
and Brouwer’s Thesis for nc relations (BTnc). In particular, in this instance of
IFP the various versions of Archimedean Induction (Sect. 2.3.5) are valid.

For our purpose it is most convenient to work in the interval [−1, 1]. Every-
thing could be easily transferred to the unit interval [0, 1] which is used in [72].

We will use the notation a0 : a1 : . . . to denote infinite streams, mostly in
an informal setting but occasionally also for elements of the domain D that
represent streams (as we did in Sect. 3.1).

5.1. Cauchy representation

Informal definition. An infinite sequence a = (ai)i∈N of rational numbers that
converges quickly to a real number x is called a Cauchy representation of x:

C(a, x)
Def
= ∀n ∈ N |x− an| ≤ 2−n .

We consider the Cauchy representation as the standard representation and call
any other representation R of real numbers (in [−1, 1]) computable if it is com-
putably equivalent to the Cauchy representation restricted to [−1, 1], i.e. R-
representations can be effectively transformed into Cauchy representations and
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vice-versa. More precisely, if R(r, x) expresses that r is a R-representation of x
we say that R is computable if there exist (possibly partial) computable func-
tions ϕ,ψ such that for all a, r and x ∈ [−1, 1]

R(r, x)→ C(ϕ(r), x) and C(a, x)→ R(ψ(a), x) .

Note that all representations we will consider are functions or infinite sequences
of discrete objects (rational numbers or digits) possibly extended with unde-
finedness. There exist natural notions of computable functions between such
representations (see [62], [76], [72]).

Formalization in IFP. The Cauchy representation can be obtained through the
realizability interpretation of the predicate

C(x)
Def
= ∀n ∈ N ∃q ∈ Q |x− q| ≤ 2−n .

By unfolding the definition of realizability one obtains a r C(x)↔

∀n (a : nat⇒ rat ∧ ∀b (b r N(n)→ ∃q ((a b) r Q(q) ∧ |x− q| ≤ 2−n)))

where rat
Def
= τ(Q) = nat × nat × nat. By identifying natural numbers with

their realizers, this simplifies to

a r C(x) ↔ a : nat⇒ rat ∧ ∀n ∈ N∃q ((an) r Q(q) ∧ |x− q| ≤ 2−n)

and by further expressing rational numbers through their realizers, it becomes

a r C(x) ↔ a : nat⇒ rat ∧ ∀n ∈ N |x− an| ≤ 2−n .

Therefore a r C(x) ↔ C(a, x) where the infinite sequence a is given as a
function on the natural numbers.

Alternatively, one can formalize the Cauchy representation coinductively by

C′(x)
ν
= ∃n ∈ N (|x− n| ≤ 1 ∧C′(2x)).

Defining the type of streams of type ρ as

ρω
Def
= fixα . ρ× α

the predicate C′ has the type τ(C′) = natω and we obtain the realizability
interpretation

a r C′(x)
ν
= ∃n ∈ N, a′ (a = Pair(n, a′) ∧ |x− n| ≤ 1 ∧ a′ r C′(2x))

by identifying natural numbers with their realizers. Therefore, the two for-
malizations lead to different ‘implementations’ of the Cauchy representation.
However, they are equivalent in the sense that one can prove C(x)↔ C′(x) and
extract from the proof mutually inverse translations between the representa-
tions. The stream representation has the advantage that it permits ‘memoized’
computation due to a lazy operational semantics (see Sect. 6).
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5.2. Signed digit representation

Informal definition. For an infinite sequence p = (pi)i<ω of signed digits pi ∈
{−1, 0, 1} set

[[p]]
Def
=
∑
i<ω

pi2
−i ∈ [−1, 1] . (21)

If x = [[p]], then p is called a signed digit representation of x ∈ [−1, 1]. We set

S(p, x)
Def
= [[p]] = x .

The digit 0 is redundant since every x ∈ [−1, 1] has a binary representation,
that is, a signed digit representation p ∈ {−1, 1}ω. However, the redundancy is
needed to render the signed digit representation computable, in particular to be
able to compute from a Cauchy representation of x a signed digit representation
of x.

One easily sees that for d ∈ {−1, 0, 1}, p ∈ {−1, 0, 1}ω and x ∈ [−1, 1]

S(d : p, x) ↔ |2x− d| ≤ 1 ∧ S(p, 2x− d) (22)

where d : p denotes the sequence beginning with d and continuing with p.

Formalization in IFP. We define a predicate S(x) expressing that x has a signed
digit representation. First, we define the property of being a signed digit,

SD(x)
Def
= (x = −1 ∨ x = 1) ∨ x = 0 .

We define 3
Def
= (1 + 1) + 1. Then, τ(SD) = 3 and

d r SD(x) = (d = Left(Left(Nil)) ∧ x = −1) ∨
(d = Left(Right(Nil)) ∧ x = 1) ∨
(d = Right(Nil) ∧ x = 0) .

Thus, the three digits−1, 1, 0 are realized by the three elements Left(Left(Nil)),
Left(Right(Nil)),Right(Nil) of 3. We identify these natural numbers and
their realizers and use variables d, e for both of them.

Next we define a predicate expressing that d ∈ {−1, 0, 1} is the first digit of
a signed digit representation of x

II(d, x)
Def
= |2x− d| ≤ 1 .

Finally, in view of (22), we set

S(x)
ν
= ∃d ∈ SD (II(d, x) ∧ S(2x− d)) .

We have τ(S) = 3ω and

p r S(x)
ν
= ∃d ∈ SD, p′ (p = Pair(d, p′) ∧ II(d, x) ∧ p′ r S(2x− d)) .

Because of (22) one easily sees that p r S(x) holds iff p is an infinite stream of
signed digits that represents x, i.e. S(p, x) holds.
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5.3. Infinite Gray code

Informal definition. Gray code of a real number x in [−1, 1] is defined using
the digits L and R and an ‘undefined’ digit, ⊥. We first define total Gray code
of x which is a variant of the binary representation and which does not use ⊥.
For an infinite sequence q ∈ {L,R}ω, we say that q is a total Gray code of x if
x = [[q]]G where, identifying L with −1 and R with 1,

[[q]]G =
∑
i<ω

(−
∏
j≤i

(−qj))2−i ∈ [−1, 1]. (23)

There are simple conversion algorithms between binary representation and total
Gray code. Comparing (23) with (21), one can see that if (qi)i<ω is a Gray
code, then p = (pi)i<ω is a binary representation of the same number for pi =
−
∏
j≤i(−qj). This equation means that pi is 1 iff q0, . . . , qj contains an odd

number of R. Conversely, if p = (pi)i<ω is a binary representation, then (qi)i<ω
for

qi =

{
L if pi−1 = pi
R if pi−1 6= pi

is a total Gray code of the same number. Here, we temporarily define p−1 = −1.
Defining the ‘tent function’ t : [−1, 1]→ [−1, 1] as

t(x) = 1− 2|x|,

one can show

[[a : q]]G = x ↔ ((x ≤ 0 ∧ a = L) ∨ (x ≥ 0 ∧ a = R)) ∧ [[q]]G = t(x)

for a ∈ {L,R}, q ∈ {L,R}ω and x ∈ [−1, 1]. This means that q is an itinerary
of x along the tent function, i.e. qn equals L or R depending on whether tn(x)
is negative or positive. If tn(x) = 0, then qn may be either.

Total Gray code is non-unique for the dyadic rationals in (−1, 1), that is,
numbers of the form k/2l where l ∈ N and k ∈ Z and with |k| < 2l. Such
numbers have two binary codes of the form t(−1)1ω and t1(−1)ω for some finite
sequence t ∈ {−1, 1}∗, and therefore have exactly two total Gray codes, namely,

sLRLω 1 and sRRLω

for some finite sequence s ∈ {L,R}∗. These two codes only differ in the first
digit after s, so it is natural to allow this digit to be ⊥ since it carries no
information. Therefore, we define the set of Gray codes as

GC
Def
= {L,R}ω ∪ {s⊥RLω | s ∈ {L,R}∗}
= {q ∈ {L,R,⊥}ω | ∀n (qn = ⊥ → (qk)k>n = RLω)}

1If s = a0, . . . , an−1, then sLRLω = a0 : . . . : an−1 : L : R : L : L : L : . . .

46



and define [[·]]G : GC → [−1, 1] as the extension of total Gray code [[·]]G :
{L,R}ω → [−1, 1] by setting

[[s⊥RLω]]G
Def
= [[sLRLω]]G(= [[sRRLω]]G) .

For example [[⊥RLω]]G = 0 and [[R⊥RLω]]G = 1/2. We set

G(q, x)
Def
= q ∈ GC ∧ [[q]]G = x .

One can see that

G(a : q, x) ↔ ((x ≤ 0 ∧ a = L) ∨ (x ≥ 0 ∧ a = R) ∨ (x = 0 ∧ a = ⊥))

∧G(q, t(x)) (24)

for a ∈ {⊥,L,R}, q ∈ {⊥,L,R}ω and x ∈ [−1, 1]. Note that t(x) in the right
conjunction of (24) does not depend on the first digit a whereas for the signed
digit case 2x− d in the right conjunction of (22) depends on d.

While it can be shown that total Gray code is not computable, Gray code is,
thanks to the possibility of having an undefined digit. In [72] one finds programs
translating between Gray code and the signed digit representation.

Formalization in IFP. We define a predicate G(x) expressing that x has a Gray
code. We first define a predicate for the digits of Gray code:

D(x)
Def
= x 6= 0→ (x ≤ 0 ∨ x ≥ 0) .

We have τ(D) = 2 for 2
Def
= 1 + 1. Note that D2 = {Left(Nil),Right(Nil),⊥,

Left(⊥),Right(⊥)} (See Remark 1 of Sect. 3.7). Setting L
Def
= Left(Nil) and

R
Def
= Right(Nil), we have

a r D(x) = a : 2 ∧ (x 6= 0→ (a = L ∧ x ≤ 0) ∨ (a = R ∧ x ≥ 0)) .

Thus, all elements of 2 realize D(0). By considering not only ⊥ but also Left(⊥)
and Right(⊥) as denotations of the Gray code digit ⊥, a r D(x) means that a
is the first digit of a Gray code of x. Therefore, we define

G(x)
ν
= (−1 ≤ x ≤ 1) ∧D(x) ∧G(t(x)) .

We have τ(G) = 2ω and

q r G(x)
ν
= (−1 ≤ x ≤ 1) ∧ ∃a, q′ (q = Pair(a, q′) ∧ a r D(x) ∧ q′ r G(t(x)))

and hence q r G(x) means that q is a Gray code of x, i.e. G(q, x) by (24).
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5.4. Extracting conversion from signed digit representation to Gray code

We show S ⊆ G and extract from the proof a program that converts signed
digit representation to Gray code. Proofs are presented in an informal style
but are formalizable in the system IFP(AR) and simplifications of programs
are proven in RIFP(∅). We write x ∈ IId for II(d, x) and allow combinations of
patterns in case expressions. For example,

caseM of {−1→ N1; 1→ N2; 0→ N3; } Def
=

caseM of {Left(a)→ (case aof {Left(b)→ N1; Right(b)→ N2});
Right(a)→ N3} .

Recall that S = ν(ΦS) and G = ν(ΦG) for

ΦS
Def
= λX λx ∃d ∈ SD (x ∈ IId ∧X(2x− d)) ,

ΦG
Def
= λX λx (−1 ≤ x ≤ 1) ∧D(x) ∧X(t(x)) .

According to Lemma 19, the formula Mon(ΦS)
Def
= X ⊆ Y → ΦS(X) ⊆ ΦS(Y )

expressing the monotonicity of the operator ΦS is proved in IFP’ and the fol-
lowing program mon : (αX ⇒ αY ) ⇒ 3 × αX ⇒ 3 × αY is extracted from the
proof.

mon f p
Def
= Pair(πLeft p, f(πRight p)). (25)

It is also the case for Mon(ΦG) and the same program mon with the type
obtained by replacing 3 with 2 is realizing Mon(ΦG).

Lemma 23. ∀x (S(−x)→ S(x)).

Proof. By coinduction. Therefore, we show P ⊆ ΦS(P ) for P (x)
Def
= S(−x),

that is,
∀x (S(−x)→ ∃d ∈ SD (x ∈ IId ∧ S(−(2x− d)))). (26)

Suppose that S(−x) holds. By coclosure, for some e ∈ SD, we have −x ∈
IIe ∧ S(−2x − e). Since −x ∈ IIe, we have x ∈ II−e. Since S(−2x − e), we have
S(−(2x− d)) for d = −e, and therefore x ∈ IId ∧ S(−(2x− d)).

The program step1 : 3ω ⇒ 3× 3ω extracted from the proof of (26) is

step1
Def
= λp.Pair(case (πLeft p) of {−1→ 1; 0→ 0; 1→ −1}, πRight p) .

Therefore, by (18) of Sect. 4.2, the realizer extracted from the proof of P ⊆ S
is the following program minus : 3ω ⇒ 3ω

minus
rec
= (mon minus) ◦ step1.

After some simplification using Lemma 12 we have

minus p
rec
= Pair(case (πLeft p) of {−1→ 1; 0→ 0; 1→ −1},minus (πRight p)).

(27)
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Theorem 4.

Proof. By coinduction. Hence we show ∀x(S(x) → (−1 ≤ x ≤ 1) ∧ D(x) ∧
S(t(x))). Since ∀x(S(x) → −1 ≤ x ≤ 1) is immediate, we need to show the
following two claims.

Claim 1. ∀x (S(x) → D(x)), that is, ∀x ∈ S \ {0} B(x) where B(x)
Def
= x ≤

0 ∨ x ≥ 0. We use AIB1/2(S,B). Therefore, we show

∀x ∈ S \ {0} (B(x) ∨ (|x| ≤ 1/2 ∧ S(2x) ∧ (B(2x)→ B(x)))). (28)

Since S(x)
ν
= ∃d ∈ SD (x ∈ IId ∧ S(2x− d)), we have the following cases.

Case d = −1. We have −1 ≤ x ≤ 0 ∧ S(2x+ 1) and thus x ≤ 0.
Case d = 1. We have 0 ≤ x ≤ 1 ∧ S(2x− 1) and thus x ≥ 0.
Case d = 0. We have |x| ≤ 1/2 ∧ S(2x). In addition, we always have

B(2x)→ B(x) (realized by id). This completes the proof of Claim 1.

Claim 2. ∀x(S(x)→ S(t(x))).

We set S′(y)
Def
= ∃x ∈ S y = t(x) and show S′ ⊆ S by half-strong coinduc-

tion. Therefore, we show

S′(y)→ ∃d ∈ SD(y ∈ IId ∧ S′(2y − d)) ∨ S(y). (29)

Assume S′(y), i.e., y = t(x) for an x that satisfies S(x).
Case −1 ≤ x ≤ 0∧S(2x+ 1). Then 2x+ 1 = t(x) = y. Hence we have S(y).
Case 0 ≤ x ≤ 1 ∧ S(2x− 1). Then 2x− 1 = −t(x) = −y and hence S(−y).

Therefore, by Lemma 23, we have S(y).
Case |x| ≤ 1/2 ∧ S(2x). Then y = t(x) ≥ 0 and thus y ∈ II1. Hence it

suffices to show S′(2y − 1). We have 2y − 1 = 1 − 4|x| = t(2x) and therefore
S′(2y − 1) holds. This completes the proof of Claim 2 and hence the proof of
the theorem.

We extract a program from this proof.
Program from Claim 1. The program step2 : 3ω ⇒ (2 + 3ω × (2 ⇒ 2))

extracted from the proof of (28) is

step2 p
Def
= case (πLeft p) of { − 1→ Left(Left Nil);

1→ Left(Right Nil);

0→ Right(Pair(πRight p, id))}.

Therefore, by (20) of Lemma 22, the extracted realizer of S(x) → D(x) is
sgh : 3ω ⇒ 2,

sgh p
rec
= case (step2 p) of {Left(b)→ b; Right(q, g)→ g(sgh q)} .

By rewriting a nested case expression using Lemma 12, we have

sgh p
rec
= case (πLeft p) of {−1→ L; 1→ R; 0→ sgh(πRight p)} . (30)
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Note that sgh(0 : 0 : . . .) = ⊥. This can be seen by applying Scott in-

duction (Axiom (viii)) to the predicate P
Def
= λb (b (0 : 0 : . . .) = ⊥) and

a
Def
= λb. λp. case (πLeft p) of {−1→ L; 1→ R; 0→ b(πRight p)}.
Program from Claim 2. The program extracted from the proof of (29) is

step3 : 3ω ⇒ 3× 3ω + 3ω,

step3 p
Def
= case (πLeft p) of {−1→ Right(πRight p);

1→ Right(minus(πRight p));

0→ Left (Pair(1, πRight p))} .

Therefore, according to equation (19) of Sect. 4.2, the program extracted from
the proof of S(x)→ S(t(x)) is sgt : 3ω ⇒ 3ω,

sgt p
rec
= [(mon sgt) + id](step3 p) .

This definition can be simplified to (using again Lemma 12),

sgt p
rec
= case(πLeft p)of{ − 1→ πRight p; 1→ minus(πRight p);

0→ Pair(1, sgt(πRight p))} .
(31)

Now, by equation (18) of Sect. 4.2, the extracted program stog : 3ω ⇒ 2ω from

the proof of S ⊆ G is stog
rec
= (mon stog) ◦ step4 with step4 : 3ω ⇒ 2ω × 3ω,

step4 p = Pair(sgh p, sgt p). This simplifies to

stog p
rec
= Pair(sgh p, stog(sgt p)). (32)

Note that since sgh(0 : 0 : . . .) = ⊥ the first digit of stog(0 : 0 : . . .) is ⊥ and
therefore stog(0 : 0 : . . .) evaluates to ⊥ : R : L : L : . . .. We will study this
evaluation in Example 3, at the end of this paper.

Thus, we have obtained a program that consists of four recursions. In the rest
of this section, we transform this program into a program with one recursion.
We use the list notation a : p for Pair(a, p) and write head for πLeft and tail for
πRight.

First, by Scott-induction it is easy to see the equivalence of (32) to the fol-
lowing program provided p is restricted to total elements of 3ω, that is, elements
of 3ωt where 3ωt (a)

ν
= head a ∈ {−1, 0, 1} ∧ 3ωt (tail a).

stog p
rec
= case (head p) of {

−1 → L : stog (tail p) ;
1 → R : stog(minus (tail p)) ;
0 → sgh (tail p) : stog (1 : sgt (tail p))
}

Note that the two programs are not equal for p = ⊥ since stog⊥ is equal to
⊥ : stog⊥ with the old definition (32) of stog, whereas stog⊥ = ⊥ with the
new definition of stog. However, since all realizers of S are total (easy proof by
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coinduction), both programs realize S ⊆ G. Therefore we use the same name
stog for both.

We now show that the new definition of stog can be simplified.
By strong coinduction (Sect. 2) one can easily prove G(−x) → G(x). The

extracted program nh : 2ω ⇒ 2ω inverts the first digit of a Gray code.

inv a = case a of {L→ R ; R→ L }
nh q = (inv (head q)) : (tail q)

One can also show, using Scott-induction, that sgh(minus p) = inv (sgh p)
and sgt(minus p) = sgt p. Therefore, for total p,

stog (minus p) = sgh (minus p) : stog (sgt (minus p))

= inv (sgh p) : stog (sgt p)

= nh (stog p) .

With this equation, we can simplify stog as follows.

stog p = case (head p) of {
−1 → L : stog (tail p) ;

1 → R : nh (stog (tail p)) ;
0 → sgh (tail p) : stog (1 : sgt (tail p))
}

The last case further simplifies to 0 → sgh (tail p) : R : nh (stog (sgt (tail p))) by
expanding stog. Since stog p = sgh p : stog (sgt p), one can further rewrite the
definition of stog using the let notation let q = M in N for (λq.N)M .

stog p = case (head p) of {
−1 → L : stog (tail p) ;

1 → R : nh (stog (tail p)) ;
0 → let q = stog (tail p) in (head q) : R : nh (tail q)
}

The above equation holds for total p. Viewing it as recursive definition (replac-

ing ‘=’ by ’
rec
=’) on obtains a program which coincides with the previous one

on total arguments (proof by Scott-induction) and hence realizes S ⊆ G. It is
precisely the Haskell program of signed digit to Gray code conversion in [72] if
we view :, head and tail as ordinary list operations.

6. Operational semantics

The Soundness Theorem (Thm. 2) shows that from an IFP-proof of a for-
mula one can extract a program realizing it, provably in RIFP. Because the
program axioms of RIFP are correct w.r.t. the domain-theoretic semantics, this
theorem shows that the denotational semantics of a program extracted from an
IFP proof is a correct realizer of the formula. However, so far we have no means
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to run the extracted programs in order to compute data that realize the for-
mula. In this section we address this issue by defining an operational semantics
and showing that it fits the denotational semantics through two Computational
Adequacy Theorems (Thms. 5, 6). The first is essentially an untyped version
of Plotkin’s Adequacy Theorem for the simply typed language PCF [58]. Its
proof uses compact elements of the untyped domain model as a replacement
for types, a technique introduced by Coquand and Spiwack [26], and follows
roughly the lines of [8]. The second Adequacy Theorem concerns the computa-
tion of infinite data. A related result for an extension of PCF by real numbers
was obtained by Escardo [31]. While Escardo works in a typed setting and
concerns incremental computation on the interval domain, our result is untyped
and computes arbitrary infinite data built from constructors. There exists a
rich literature on computational adequacy covering, for example, typed lambda
calculi with various effects [57, 48], denotational semantics based on games or
categories [27, 66], and axiomatic approaches [22, 30].

In the following we work with our untyped programming language that in-
cludes programs not typable with our type system, and consider types only in
Section 6.5. This shows that the operational properties of our programs are
independent of the type system.

6.1. Inductive and coinductive definitions of data

First we make precise what we mean by data. Recall from Sect. 3.1 that
programs are interpreted in the domain D defined by the recursive domain
equation

D = (Nil + Left(D) + Right(D) + Pair(D ×D) + Fun(D → D))⊥ .

We consider the sub-domain E of D built from constructors only

E = (Nil + Left(E) + Right(E) + Pair(E × E))⊥

and call its elements data. We also define various predicates on D as least or
greatest fixed points of the following operators Φ and Φ⊥ of arity (δ). The
definitions and proofs below take place in informal mathematics although we
take advantage of the notations and proof rules provided by the formal system
IFP regarding inductive and coinductive definitions.

Φ(X)(a)
Def
=

∨
C

constructor

∃a1, . . . , ak a = C(a1, . . . , ak) ∧
∧
i≤k

X(ai)


and its variant Φ⊥ obtained by adding ⊥ as an option

Φ⊥(X)(a)
Def
= a = ⊥ ∨ Φ(X)(a) .

We have

E = ν(Φ⊥) (arbitrary data)
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and we define

Ef
Def
= µ(Φ⊥) (finite data)

Et
Def
= ν(Φ) (total data)

Eft
Def
= µ(Φ) (finite total data)

It is easy to see that Ef consists of the compact data, Et of the data containing
no ⊥, and Eft = Ef ∩ Et, hence our choice of names.

Using binary versions of the operators Φ and Φ⊥,

Φ2(X)(a, b)
Def
=
∨
C

(
∃a1, . . . , ak, b1, . . . , bk a = C(a1, . . . , ak)∧

b = C(b1, . . . , bk) ∧
∧
i≤kX(ai, bi)

)
Φ2
⊥(X)(a, b)

Def
= a = ⊥ ∨ Φ2(X)(a, b)

Φ2
⊥,⊥(X)(a, b)

Def
= a = b = ⊥ ∨ Φ2(X)(a, b)

we define the relations

a vE b
Def
= ν(Φ2

⊥)(a, b) (domain ordering on E)

appr(a, b)
Def
= µ(Φ2

⊥)(a, b) (finite approximation)

eq(a, b)
Def
= ν(Φ2

⊥,⊥)(a, b) (bisimilarity)

teq(a, b)
Def
= ν(Φ2)(a, b) (total bisimilarity)

Note that vE coincides with the domain order v on E but not with that on
D. a vE b implies a ∈ E, by coinduction, therefore vE is not reflexive on
D \ E. Clearly, appr(a, b) holds iff a vE b and Ef(a), and teq(a, b) holds iff
eq(a, b) and a, b ∈ Et. If we replace in the definition of eq(a, b) the largest fixed
point ν by the least fixed point µ, we obtain the relation µ(Φ2

⊥,⊥)(a, b) which
clearly implies that a and b are equal elements of Ef (easy inductive argument).
However,

∀a, b (eq(a, b)→ a = b) (33)

is a non-trivial assertion expressing that the elements of E are completely de-
termined by their constructors, which we use in this section. From (33) one
can derive the equivalence (a = b ∧ a, b ∈ E) ↔ (a vE b ∧ b vE a) and the
maximality of the elements in Et, (a vE b ∧ Et(a)) → a = b. We prove the
following lemma to give typical examples of inductive and coinductive proofs on
data.

Lemma 24.

(a) appr(a, b) iff Ef(a) ∧ a vE b.

(b) a vE b iff E(a) ∧ ∀d(appr(d, a)→ appr(d, b)).
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Proof. (a) Left to right is by induction on appr(a, b). Right to left is induc-
tion on Ef(a) to prove that Ef(a) → ∀b(a vE b → appr(a, b)). We show
∀a (Φ⊥(P )(a) → P (a)) for P (a) = ∀b(a vE b → appr(a, b)). Suppose that
Φ⊥(P )(a). If a = ⊥, then P (⊥). If a = C(a1, . . . , ak)∧

∧
i≤k P (ai) and a vE b,

let b = C(b1, . . . , bk). We have ai vE bi and thus appr(ai, bi) by P (ai).
(b) Left to right is immediate by (a). Right to left is by coinduction on

a vE b. Let P (a, b)
Def
= E(a) ∧ ∀d(appr(d, a) → appr(d, b)). We need to

show ∀a, b (P (a, b) → Φ2
⊥(P )(a, b)). Because E(a), a = ⊥ or a has the form

C(a1, . . . , ak) with a1, . . . , ak ∈ E. If a = ⊥, then Φ2
⊥(P )(a, b) holds. If a

has the form C(a1, . . . , ak), we have appr(C(⊥k), a) and thus appr(C(⊥k), b) by
P (a, b). Therefore, b = C(b1, . . . , bk) for some bi. We need to show that P (ai, bi).
If appr(d, ai), then appr(C(⊥i, d,⊥k−i−1), a). Hence, appr(C(⊥i, d,⊥k−i−1), b),
and thus appr(d, bi).

6.2. Inductively and coinductively defined reduction relations

We define four reduction relations between closed programs and data through
induction and coinduction. These relations are related to computational proce-
dures in Sect. 6.4. In order to treat programs as syntactic objects, we introduce
a new sort π of programs and use M,N,K, . . . for variables of sort π. When a
program is considered as an element of π, we use x, y, . . . as names for program
variables while we use a, b, . . . to denote elements of D.

A value is a closed program M that begins with a constructor or has the
form λx.M . Following [8], we first define inductively a bigstep reduction relation
M ⇓ V between closed programs M and values V as follows:

(i) V ⇓ V

(ii)
M ⇓ C( ~M) N [ ~M/~y] ⇓ V

caseM of {. . . ;C(~y)→ N ; . . .} ⇓ V

(iii)
M ⇓ λx.M ′ M ′[N/x] ⇓ V

M N ⇓ V

(iv)
M (recM) ⇓ V

recM ⇓ V

Lemma 25. For a closed program M , there is at most one value V such that
M ⇓ V .

Proof. There is at most one ⇓ reduction rule applicable to a closed program.

Since bigstep reduction stops at constructors (due to rule (i)), in order to
obtain a data, we need to continue computation under constructors. We define
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four reduction relations M =⇒µ a, M =⇒µ⊥ a, M =⇒ν a, M =⇒ν⊥ a, all of arity
(π, δ), as least and greatest fixed points of the operators

Φop(X)(M,a)
Def
=

∨
C

(
∃M1, . . . ,Mk, a1, . . . , ak (M ⇓ C(M1, . . . ,Mk)

∧ a = C(a1, . . . , ak) ∧
∧
i≤kX(Mi, ai))

)
Φop
⊥ (X)(M,a)

Def
= a = ⊥ ∨ Φop(X)(M,a) .

Here again, C ranges over constructors. Now we define

=⇒
µ Def

= µ(Φop)

=⇒
ν Def

= ν(Φop)

=⇒
µ⊥ Def

= µ(Φop
⊥ )

=⇒
ν⊥ Def

= ν(Φop
⊥ ) .

Note that the definition of M =⇒µ a is equivalent to an inductive definition
by the following reduction rules.

M ⇓ Nil

M =⇒µ Nil

M ⇓ Pair(M1,M2) M1 =⇒µ a1 M2 =⇒µ a2

M =⇒µ Pair(a1, a2)

M ⇓ Left(M) M =⇒µ a

M =⇒µ Left(a)

M ⇓ Right(M) M =⇒µ a

M =⇒µ Right(a)

=⇒ν can be defined by replacing in the rules above µ with ν and interpreting

the rules coinductively, that is, permitting infinite derivations. =⇒µ⊥ and =⇒ν⊥ are

obtained by adding the axioms M =⇒µ⊥ ⊥ and M =⇒ν⊥ ⊥ respectively.
M =⇒µ a is the finite reduction to a finite total data and M =⇒ν a is the

(possibly) infinite reduction to a (possibly) infinite total data. M =⇒µ⊥ a and

M =⇒ν⊥ a are reductions that may leave some part unreduced by assigning ⊥, and
are used to obtain observations of infinite data through finite approximations.
For example, for M = rec(λx.Pair(Nil, x)), no a ∈ D satisfies M =⇒µ a but

M =⇒
ν

Nil : Nil : Nil : . . .

M =⇒
ν⊥
⊥ : Nil : Nil : . . .

M =⇒
µ⊥
⊥ : Nil : ⊥ (= Pair(Pair(⊥,Nil),⊥)).

Lemma 26.

(a) M =⇒µ a iff M =⇒µ⊥ a ∧ Eft(a).

(b) M =⇒ν a iff M =⇒ν⊥ a ∧ Et(a).

(c) M =⇒µ⊥ a iff M =⇒ν⊥ a ∧ Ef(a).
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(d) M =⇒ν⊥ a iff ∀d (appr(d, a)→M =⇒µ⊥ d) ∧ E(a).

Proof. (a) By induction on =⇒µ and =⇒µ⊥ .

(b) By coinduction on =⇒ν and =⇒ν⊥ .

(c) Left to right is immediate induction on =⇒µ⊥ . Right to left is by induction
on Ef(a).

(d) Right to left by coinduction on =⇒ν⊥ . For P (M,a)
Def
= ∀d (appr(d, a) →

M =⇒µ⊥ d) ∧ E(a), we prove P (M,a) → Φop
⊥ (P )(M,a). Suppose that P (M,a).

Since a ∈ E, a = ⊥ or a has the form C(a1, . . . , ak) for ai ∈ E. If a = ⊥,
then we have Φop

⊥ (P )(M,a). If a = C(a1, . . . , ak), then appr(C(⊥k), a) and

therefore M =⇒µ⊥ C(⊥k). Hence, M ⇓ C(M1, . . . ,Mk) for some M1, . . . ,Mk.
We need to show P (Mi, ai) for each i ≤ k. Suppose that appr(d′, ai) and let

d = C(⊥i−1, d′,⊥k−i). Since appr(d, a), we haveM =⇒µ⊥ d. Therefore, Mi =⇒µ⊥ d′.

Left to right: Suppose M =⇒ν⊥ a. We have E(a) by coinduction on E. We

show that appr(d, a) impliesM =⇒µ⊥ d. appr(d, a) implies Ef(d) by Lemma 24 (a).

On the other hand, M =⇒ν⊥ a and appr(d, a) imply M =⇒ν⊥ d by coinduction.

Therefore, by part (c), M =⇒µ⊥ d.

6.3. Computational adequacy theorem

Now we prove our first result linking the denotational with the operational
semantics.

Theorem 5 (Computational Adequacy I). Let M be a closed program.

(a) M =⇒µ a iff a = [[M ]] ∧ Eft(a).

(b) M =⇒µ⊥ a iff a vE [[M ]] ∧ Ef(a).

(c) M =⇒ν a iff a = [[M ]] ∧ Et(a).

(d) M =⇒ν⊥ a iff a vE [[M ]].

Note in (d) that a vE [[M ]] implies E(a). The proof of the theorem will be
given through the following Lemmas 27-33. Computational adequacy usually
means (a), and (c) is its generalization to infinite total data. As we will see in
Lemma 27, (b) and (d) are proved as lemmas for (a) and (c). They are also
foundations for the second adequacy theorem (Thm. 6).

Lemma 27. In Thm. 5, part (b) implies part (a), and part (d) implies part (c).

Proof. [(b) implies (a)]: M =⇒µ a implies Eft(a) by Lemma 26 (a). In addition,

if Eft(a) holds, then M =⇒µ a and M =⇒µ⊥ a are equivalent by Lemma 26 (a),
and a vE b and a = b are equivalent as we mentioned before Lemma 24.

[(d) implies (c)]: Similar. Note that, by (33), = on E is the bisimulation
relation.
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Due to this lemma, we only need to prove (b) and (d). The ‘only if’ parts
of (b) and (d) are obtained by the following lemma.

Lemma 28 (Correctness).

(a) If M ⇓ V , then [[M ]] = [[V ]].

(b) If M =⇒µ⊥ a, then appr(a, [[M ]]).

(c) If M =⇒ν⊥ a, then a vE [[M ]].

Proof. (a) is proven by induction along the definition of M ⇓ V .

(b) We define P (M,a)
Def
= appr(a, [[M ]]) and prove M =⇒µ⊥ a → P (M,a)

by induction. Therefore, we prove Φop
⊥ (P )(M,a) → P (M,a). Suppose that

Φop
⊥ (P )(M,a). If a = ⊥, then we have P (M,a). If Φop(P )(M,a), then M ⇓

C(M1, . . . ,Mk), a = C(a1, . . . , ak), and P (Mi, ai) for every i ≤ k. Hence, by
(a), [[M ]] = [[C(M1, . . . ,Mk)]] = C([[M1]], . . . , [[Mk]]). Since P (Mi, ai), we have
appr(ai, [[Mi]]) and therefore appr(a, [[M ]])).

(c) By Lemma 24 (b), we need to show that M =⇒ν⊥ a and appr(d, a) implies

appr(d, [[M ]]). First, we can easily show that M =⇒ν⊥ a and appr(d, a) implies

M =⇒ν⊥ d. Since M =⇒ν⊥ d and Ef(d), we have M =⇒µ⊥ d by Lemma 26 (a).
Therefore, appr(d, [[M ]]) by (b).

We prove the ‘if’ part of Thm. 5 (b) following [8], which uses ideas from [58]
and [26]. Let D0 be the set of compact elements of D. To every a ∈ D0 we
assign a set of closed programs Pr(a) by induction on rk(a) (Sect. 3.1).

Pr(⊥) = the set of all closed programs

Pr(C(a1, . . . , ak)) = {M | ∃M1, . . . ,Mk, M ⇓ C(M1, . . . ,Mk) ∧∧
i≤k

Mi ∈ Pr(ai))}

Pr(Fun(f)) = {M | ∃x,M ′, (M ⇓ λx.M ′ ∧
∀b ∈ D0 (rk(b) < rk(Fun(f))→
∀N ∈ Pr(b) (M ′[N/x] ∈ Pr(f(b)))))}

Note that for a ∈ D0 ∩ E (= Ef(a)), M ∈ Pr(a) is equivalent to M =⇒µ⊥ a.

Lemma 29. For a, b ∈ D0, if a v b, then Pr(a) ⊇ Pr(b).

Proof. As the proof of Lemma 12 in [8].

Lemma 30. Suppose that a ∈ D0 \ {⊥}. M ∈ Pr(a) iff M ⇓ V for some
V ∈ Pr(a).

Proof. Immediate from the definition of Pr(a).

Lemma 31. If M ∈ Pr(Fun(f)), then recM ∈ Pr(fn(⊥)) for every n ∈ N.
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Proof. Induction on n. It is trivial for n = 0 because Pr(⊥) contains every
closed program. Suppose that recM ∈ Pr(fn(⊥)). According rk2, for b =
fn(⊥), f(b) = f(b0) for some compact b0 v b with rk(Fun(f)) > rk(b0). Since
recM ∈ Pr(b), we have recM ∈ Pr(b0) by Lemma 29. Since M ∈ Pr(Fun(f)),
M ⇓ λx.K for some x and K and ∀c ∈ D0(rk(c) < rk(Fun(f)) → ∀N ∈
Pr(c)(K[N/x] ∈ Pr(f(c))). We apply this to the case c = b0 and N = rec M
and get K[rec M/x] ∈ Pr(f(b0)) = Pr(fn+1(⊥)). Therefore, K[rec M/x] ⇓ V
and V ∈ Pr(fn+1(⊥)). Thus, we also have rec M ⇓ V and therefore rec M ∈
Pr(fn+1(⊥)), by Lemma 30.

Lemma 32 (Approximation). For a closed program M and a ∈ D0, if a v [[M ]],
then M ∈ Pr(a).

Proof. We show a more general statement about arbitrary programs involving
substitutions and environments to take care of free variables. A substitution is a
finite mapping from variables to the set of closed programs. An environment is a
finite mapping from variables to D. For a substitution θ and an environment η,
we write θ ∈ Pr(η) if η(x) is compact and θ(x) ∈ Pr(η(x)) for each x ∈ dom(θ).
We prove by induction on M :

For an environment η, a substitution θ such that θ ∈ Pr(η), a pro-
gram M such that FV (M) ⊆ dom(θ) and a ∈ D0, if a v [[M ]]η then
Mθ ∈ Pr(a).

Since the statement is clear for a = ⊥, we assume a 6= ⊥. We may also
assume M 6= ⊥ since otherwise the condition a v [[M ]]η is not satisfied. The
cases that M is x, C(N1, . . . , Nk), caseM ′ of {. . . ;C(~y) → K; . . .}, λx.M ′,
M ′ N are similar to the corresponding cases of Lemma 15 in [8]. We only
consider the case M = recN . Suppose that a v [[M ]]η. Since a 6= ⊥, [[N ]]η =
Fun(g) for some continuous function g : D → D such that [[M ]]η is the least
fixed point of g. Therefore, a v gn(⊥) for some n. By continuity, there is a
compact f ∈ D → D such that f v g and a v fn(⊥). Since Fun(f) v [[N ]]η, by
induction hypothesis, Nθ ∈ Pr(Fun(f)). By Lemma 31, rec (Nθ) ∈ Pr(fn(⊥)).
By Lemma 29, Pr(a) ⊇ Pr(fn(⊥)). Therefore, Mθ = rec (Nθ) ∈ Pr(a).

Proof of the if part of Thm. 5 (b). Suppose that d vE [[M ]] for a finite data d.
Then, M ∈ Pr(d) by the Approximation Lemma. Therefore, by the remark

after the definition of Pr(a), we have M =⇒µ⊥ d.

Lemma 33. If [[M ]] has the form C(a1, . . . , ak), then M ⇓ C(M1, . . . ,Mk) for
some M1, . . . ,Mk.

Proof. Let a = C(⊥, . . . ,⊥). If [[M ]] has the form C(a1, . . . , ak), then a vE [[M ]].

By applying Thm. 5 (b), we obtain M =⇒µ⊥ a. Thus, M ⇓ C(M1, . . . ,Mk) for
some M1, . . . ,Mk.
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Completing the proof of the first Adequacy Theorem. Finally, we prove the ‘if’

part of (d) of Thm. 5. We prove by coinduction that a vE [[M ]] implies M =⇒ν⊥ a.
Therefore, for a ∈ D and a closed program M , we show

a vE [[M ]]→ a = ⊥ ∨∨
C

(
∃M1, . . . ,Mk, a1, . . . , ak (M ⇓ C(M1, . . . ,Mk)

∧a = C(a1, . . . , ak) ∧
∧
i≤k ai vE [[Mi]])

)
.

Suppose that a vE [[M ]]. Since this implies a ∈ E, it follows that a = ⊥ or a has
the form C(a1, . . . , ak) for ai ∈ E. If a = ⊥ we are done. If a = C(a1, . . . , ak),
then [[M ]] also has the form C(a′1, . . . , a

′
k) for some a′i wE ai. Therefore, we

can apply Lemma 33 and obtain M ⇓ C(M1, . . . ,Mk) for some M1, . . . ,Mk.
By Lemma 28 (a), we have [[M ]] = [[C(M1, . . . ,Mk)]] = C([[M1]], . . . , [[Mk]]).
Therefore, ai vE a′i = [[Mi]].

6.4. Computation of infinite data

Thm. 5 (c) and (d) characterize the denotational semantics of a program

M in terms of the relations M =⇒ν a and M =⇒ν⊥ a which have a more proof-
theoretic rather than operational character since they are defined by (possibly
infinite) derivations. In this section we define a notion of possibly infinite step-
by-step computation that continues under data constructor and prove a second
adequacy theorem (Thm. 6) which provides a truly operational characterization
of the denotational semantics of a program.

As one can see from Thm. 5 (d), the reduction relation M =⇒ν⊥ a is not
functional and a program M is related to a set of data whose upper bound is
the denotational semantics of M . To obtain a more precise operational notion,
we use the following inductively defined smallstep leftmost-outermost reduction
relation  on closed programs that corresponds to bigstep reduction.

(i) caseC( ~M) of {. . . ;C(~y)→ N ; . . .} N [ ~M/~y]

(ii) (λx.M) N  M [N/x]

(iii) recM  M (recM)

(iv)
M  M ′

caseM of { ~Cl} caseM ′ of { ~Cl}

(v)
M  M ′

M N  M ′N

Since we are only concerned with reducing closed terms the substitutions in (i)
and (ii) do not need α-conversions.

Lemma 34. If M ⇓ V , then M  ∗ V .
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Proof. The proof is by induction on the definition of M ⇓ V .
If M = V , then the assertion is trivial.
If M = caseM ′ of {. . . ;C(~y) → N ; . . .}, then M ′ ⇓ C( ~M) and N [ ~M/~y]) ⇓

V . By the induction hypothesis, M ′  ∗ C( ~M) and N [ ~M/~y] ∗ V . We have

M = caseM ′ of {. . . ;C(~y)→ N ; . . .}

 ∗ caseC( ~M) of {. . . ;C(~y)→ N ; . . .}

 N [ ~M/~y] ∗ V .

If M = M1N , then M1 ⇓ λx.M ′ and M ′[N/x] ⇓ V . By the induction
hypothesis, M1  ∗ λx.M ′ and M ′[N/x]  ∗ V . Therefore, M = M1N  ∗

(λx.M ′)N  M ′[N/x] ∗ V .
If M = recM ′, then M ′ (recM ′) ⇓ V . We have

M = recM ′  M ′ (recM ′) ∗ V,

by the induction hypothesis.

In order to approximate the denotational semantics operationally, we need
to continue computation under constructors. Since a constructor may have
more than one argument and some computations of arguments may diverge, we
need to compute all the arguments in parallel. For this purpose, we extend the

smallstep reduction  to a relation
p
 by the following inductive rules:

M  M ′

M
p
 M ′

Mi
p
 M ′i (i = 1, . . . , k)

C(M1, . . . ,Mk)
p
 C(M ′1, . . . , ,M

′
k)

M
p
 M otherwise.

Clearly there is exactly one applicable rule for each closed program M . We

denote by M (n) the unique program M ′ such that M(
p
 )nM ′.

For a closed program M , we define M⊥ ∈ E as follows.

C(M1, . . . ,Mk)⊥ = C(M1⊥, . . . ,Mk⊥)

M⊥ = ⊥ if M is not a constructor term

Lemma 35 (Accumulation). If M
p
 M ′, then M⊥ vE M ′⊥. Therefore,

M (n)
⊥ vE M (m)

⊥ for n ≤ m.

Proof. Immediate by the definition of
p
 .

For a closed program M , M (n)
⊥ can be viewed as the finite approximation

of the value of M obtained after n consecutive parallel computation steps. The
following lemma shows that this computation is complete, that is, every finite
approximation is obtained eventually.

Lemma 36 (Adequacy for finite values). If M =⇒µ⊥ a, then ∃na vE M (n)
⊥.
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Proof. Let P (M,a)
Def
= ∃na vE M (n)

⊥. We prove by induction that M =⇒µ⊥ a
implies P (M,a). That is, we show

Φop
⊥ (P )(M,a)→ P (M,a).

If a = ⊥, then we have P (M,a). If we have

(M ⇓ C(M1, . . . ,Mk)) ∧ a = C(a1, . . . , ak) ∧
∧
i≤k

(∃ni ai vE Mi
(ni)
⊥)

for a constructor C, then, for n the maximum of ni (i ≤ k), a = C(a1, . . . , ak) vE
C(M1

(n)
⊥, . . . ,Mk

(n)
⊥) = C(M1, . . . ,Mk)(n)

⊥ by Lemma 35. On the other
hand, by Lemma 34, we have M (m) = C(M1, . . . ,Mk) for some m. Therefore,
a vE M (m+n)

⊥.

Since M (n)
⊥ is an increasing sequence by Lemma 35, we can define

M (∞) =
⊔
n

M (n)
⊥.

We say that the program M infinitely computes the data M (∞).
For d ∈ D we define the data-part dE ∈ E as follows.

⊥E = ⊥
C(d1, . . . , dk)E = C((d1)E , . . . , (dk)E)

Fun(f)E = ⊥

Clearly, the function d 7→ dE is a projection of D onto E.

Theorem 6 (Computational Adequacy II). M (∞) = [[M ]]E for every closed
program M .

Proof. It is easy to show the following.

(a) If M
p
 M ′ then [[M ]]E = [[M ′]]E .

(b) M⊥ vE [[M ]]E .

Therefore, M (n)
⊥ vE [[M ]]E . Since this holds for every n, we have M (∞) vE

[[M ]]E .

By Thm. 5 (d), M =⇒ν⊥ [[M ]]E because [[M ]]E vE [[M ]]. Therefore, by

Lemma 26 (d), ∀d (appr(d, [[M ]]E)→M =⇒µ⊥ d), and consequently, by Lemma 36,
∀d (appr(d, [[M ]]E) → ∃n d vE M (n)

⊥). Since d vE M (n)
⊥ → appr(d,M (∞)),

we have ∀d (appr(d, [[M ]]E) → appr(d,M (∞))). Therefore, [[M ]]E vE M (∞) by
Lemma 24 (b).

Note that if [[M ]] ∈ E, then we have [[M ]]E = [[M ]]. Therefore, the second
Adequacy Theorem says M (∞) = [[M ]] in this case.
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6.5. Data extraction

Using types we are able to identify criteria under which an extracted program
denotes an observable data, i.e. an element of E.

Lemma 37. If ρ is a type that contains no function type and ζ is a type envi-
ronment such that ζ(α) ⊆ E for all type variables α in the domain of ζ, then
Dζ
ρ ⊆ E.

Proof. Structural induction on ρ. The only non-obvious case is fixα . ρ. By
the definition of Dζ

fixα . ρ, and since E is a subdomain of D, it suffices to show

D
ζ[α 7→E]
ρ ⊆ E. But this holds by the induction hypothesis.

We call an IFP-formula a data formula if it contains no free predicate variable
and no strictly positive subformula of the form A→ B where A and B are non-
Harrop.

Theorem 7 (Data Extraction). From a proof in IFP of a data formula A
from Harrop assumptions Γ one can extract a closed program M realizing A,
provably in RIFP from H(Γ). Moreover, M is a data that can hence be infinitely
computed, that is, M (∞) = [[M ]].

Proof. By the Soundness Theorem (Thm. 2) we can extract a closed program
M : τ(A) such that RIFP proves H(Γ) ` M rA. Clearly, since A is a data
formula, τ(A) contains no function type. Therefore, by Lemma 37, M denotes
a data. By the second Adequacy Theorem (Thm 6), M (∞) = [[M ]].

Example 3. In Thm. 4, we proved S ⊆ G and obtained a program stog as
its realizer. On the other hand, one can prove S(1) by showing {1} ⊆ S by

coinduction. From the proof, we can extract the realizer a
rec
= Pair(1, a) (i.e.,

a = 1:1 : . . . ) of S(1). From S ⊆ G and S(1), we can trivially prove G(1) and
from these proofs we can extract a realizer M1 = stog (1 : 1 : . . .) of G(1). With
the small-step reduction rule, one can compute

M1
p
 ∗ R :N1

p
 ∗ R :L :N2

p
 ∗ R :L :L :N3

p
 ∗ . . .

for some Ni(i ≥ 1). Taking ( )⊥ of these terms, we have an increasing sequence

⊥, R :⊥, R :L :⊥, R :L :L :⊥, . . .

Taking the limit of these terms, one can see that M1 infinitely computes the
data M1

(∞) = R :L :L : . . ., which is a realizer of G(1) by Thm. 7.
While for S(1) there was only one canonical proof and one realizer, we now

look at S(1/2) which has more than one canonical proof and realizer and will
give rise to three Gray codes, one with an undefined digit. By the coclosure
axiom, S(1/2) unfolds to ∃d ∈ SD (1/2 ∈ IId∧S(2 ·1/2−d)). Therefore, we can
choose d = 0 and use the above proof of S(1). This yields a realizer 0 : 1 : 1 : . . .
of S(1/2), and M1/2 = stog (0 :1 :1 : . . .) is a realizer of G(1/2). One can see that

M1/2
p
 ∗ N1 :R :N2

p
 ∗ R :R :N3

p
 ∗ R :R :R :N4

p
 ∗
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for some Ni(i ≥ 1). Therefore, the result of finite-time computation proceeds

⊥, ⊥ :R :⊥, R :R :⊥, R :R :R :⊥, R :R :R :L :⊥, . . .

and in the limit, we have M1/2
(∞) = R :R :R :L,L : . . ..

Since 1:0 :0 : . . . is another realizer of S(1/2), M′1/2 = stog(1 :0 :0 : . . .) is also

a realizer of G(1/2). One can see that

M′1/2
p
 ∗ R :N1

p
 ∗ R :N2 :R :N3

p
 ∗ R :N4 :R :L :N5

p
 ∗ . . .

for some Ni(i ≥ 1). Therefore, one can observe the finite approximations

⊥, R :⊥, R :⊥ :R :⊥, R :⊥ :R :L :⊥, . . .

hence M′1/2 computes the partial infinite data M′1/2
(∞)

= R :⊥ :R :L :L : . . ..

7. Conclusion

We presented IFP, a formal system supporting program extraction from
proofs in abstract mathematics. IFP is plain many-sorted first-order logic ex-
tended with two extra constructs for strictly positive inductive and coinductive
definitions that are dual to each other. Sorts in IFP represent abstract struc-
tures specified by (classically true) disjunction free closed axioms. Hence full
classical logic is available. Computational content is extracted through a real-
izability interpretation that treats quantifiers uniformly in order to permit the
interpretation of sorts as abstract spaces. The target language of the interpre-
tation is a functional programming language in which extracted programs are
typable and therefore easily translatable into Haskell and executed there. The
exact fit of the denotational and operational semantics of the target language
is proven by two computational adequacy theorems. The first (Thm 5) states
that all compact approximations of the denotational value of a program can be
computed, the second (Thm 6) states that the full (possibly infinite) denota-
tion value can be computed through successive computation steps. It should be
stressed that axioms used in a proof do not show up as non-executable constants
in extracted programs and therefore do not spoil the computation of programs
into canonical form. Besides the natural numbers as a primary example of a
strictly positive inductive definition we studied wellfounded induction and useful
variations thereof such as Archimedean induction.

In an extended case study we formalized in IFP the real numbers as an
Archimedean real closed field and introduced various exact real number repre-
sentations (Cauchy and signed digit representation as well as infinite Gray code)
as the realizability interpretations of simple coinductive predicates (C, S, and
G). From a proof that S is a subset of G we extracted a program converting
the signed digit representation into infinite Gray code. There is an experimen-
tal Haskell implementation of IFP and its program extraction called Prawf [17]
where this is carried out.

This case study highlights some crucial features of IFP:
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• The real numbers are given axiomatically as an abstract structure;

• signed digit representation and infinite Gray code are obtained as realizers
of coinductive predicates S and G;

• Archimedean induction is used to prove that the sign of non-zero reals in
S can be decided (first part of the proof of Thm. 4);

• the definition of G permits partial realizers (which are inevitable for infi-
nite Gray code);

• the second adequacy Theorem is applied to compute full infinite Gray code
in the limit.

This case study not only puts to test the practical usability of IFP but also leads
to the study of possible extensions of it. Having extracted a program realizing
the inclusion S ⊆ G it is natural to ask about the reverse inclusion. In [72] a
parallel and nondeterministic program converting infinite Gray code into signed
digit representation is given which is necessarily parallel and nondeterministic
[73]. Since the programming language of RIFP doesn’t have these features
such conversion cannot be extracted. We leave it for further work to develop a
suitable extension of our system improving and extending previous work in this
direction [16, 10]. A further interesting line of study will be the extraction of
algorithms that operate on compact sets of real numbers as studied in [14, 67].
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[50] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[51] R. Matthes. Monotone inductive and coinductive constructors of rank 2. In
L Fribourg, editor, Computer Science Logic (Proceedings of the Fifteenth
CSL Conference), number 2142 in Lecture Notes in Computer Science,
pages 600–615. Springer, 2001.

[52] N.P. Mendler. Inductive types and type constraints in the second-order
lambda calculus. Annals of Pure and Applied Logic, 51:159–172, 1991.

[53] F. Miranda-Perea. Realizability for monotone clausular (co)inductive defi-
nitions. Electr. Notes in Theoret. Comput. Sci., 123:179–193, 2005.
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