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Figure 1: Pressed by a glass plate from above, an elastoplastic object filled with liquid undergoes plastic deformation, and the liquid inside
breaks out due to the increasing pressure.

Abstract
We present a novel divergence free mixture model for multiphase flows and the related fluid-solid coupling. The new mixture
model is built upon a volume-weighted mixture velocity so that the divergence free condition is satisfied for miscible and
immiscible multiphase fluids. The proposed mixture velocity can be solved efficiently by adapted single phase incompressible
solvers, allowing for larger time steps and smaller volume deviations. Besides, the drift velocity formulation is corrected to
ensure mass conservation during the simulation. The new approach increases the accuracy of multiphase fluid simulation by
several orders. The capability of the new divergence-free mixture model is demonstrated by simulating different multiphase flow
phenomena including mixing and unmixing of multiple fluids, fluid-solid coupling involving deformable solids and granular
materials.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Multiphase flows are common in our daily lives with interesting vi-
sual effects. From latte art to watercolors mixing, multiphase flows
demonstrate abundant textures, shapes and colors. The complexity
of multiphase flows, however, can go far beyond single-phase sys-
tems, especially when materials with significantly different proper-
ties mix together. Simulating the discontinuity at the interface be-
tween phases and the resulting behaviors has always been a chal-
lenging problem.

Simulating a multiphase system requires careful consideration of
both the individual phases and their interactions. An intuitive way
is to model each phase individually and treat the coupling between
phases as extra forces and boundary conditions. Another approach
is the so-called mixture model. It models the mixture as a single
phase and solves for the averaged velocity, while the relative veloc-
ity of each phase is computed with a constitutive model. The latter
approach requires much less computation than solving a separate

set of equations for each phase, and is ideal for graphical applica-
tions where efficiency matters more [RLY∗14] [YJL∗16].

However, there are still unsolved problems that limit the simu-
lation efficiency and accuracy. First, the mixture velocity proposed
by Ren et al. [RLY∗14] is not inherently divergence-free, even if
all component phases are incompressible. As a result, the associ-
ated multiphase SPH model is incompatible with the incompress-
ible solvers [SP09, ICS∗14, BK15] that are computationally more
efficient. Secondly, the formulations of drift velocity and phase ex-
changing fail to conserve mass, and the associated error accumu-
lates during the simulation.

To solve the aforementioned problems, we present a novel
divergence-free mixture model, which enables the use of incom-
pressible fluid solvers for multiphase systems. Our approach sup-
ports much larger time steps, and improves the efficiency signifi-
cantly. We also propose a corrected drift velocity formulation, so
that the mass conservation is met during simulation. We show that
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the relative error is controlled below 0.001%, which is several or-
ders of magnitude smaller than the previous work.

2. Related Work

Multiphase flows. Multiphase flows have received increasing at-
tention in computer graphics recently. Immiscible fluids with the
presence of discontinuities at the interface have been extensively
studied [HK05, LSSF06, BB12, LLD∗20]. However, for miscible
fluids, the mixing of phases was often simply treated as a diffusion
process in some early research works [KPNS10, LLP11]. Ren et
al. [RLY∗14] introduced the drift velocity model into graphics, and
successfully simulated the mixing and unmixing phenomena due
to the relative motion between individual phases. As stated above,
this method lacks a divergence-free formulation and is incompati-
ble with incompressible solvers. Yang et al. [YCR∗15] developed
an energy-based approach to guide the phase diffusion, and cap-
tured complex phenomena like liquid-liquid extraction. However,
this model does not handle the density difference between phases,
and also ignores the kinetic effects from the relative motions of
component phases. For a detailed overview of multiple-fluid simu-
lation we refer readers to [RYL∗18].

Incompressible SPH methods. Becker and Teschner [BT07]
proposed a weakly compressible SPH (WCSPH) method to con-
trol the fluid compression. Large stiffness parameters are required
to enforce small compression rates, which strictly restricts the sim-
ulation time step. Solenthaler and Pajarola [SP09] proposed an it-
erative approach that reduces the density error with a prediction-
correction scheme. Ihmsen et al. [ICS∗14] proposed an efficient
solver for the Pressure Poisson Equation (PPE), and achieved fur-
ther performance improvement. Both of these two methods con-
sider only the constant density condition, as this is directly related
to the visual effects. In contrast to this, Bender et al. [BK15] pro-
posed to solve for the divergence-free velocity condition in addition
to the constant density condition, which allows for even larger time
steps. We adapt this approach to handle particles with varied mass
and density, and implement our new multiphase solver based on it.

Lagrangian solids. The study of deformable solids in graphics
has a long history, from which we mainly focus on the Lagrangian
methods that are relevant to this work. Müller et al. [MKN∗04] used
a point-based method with MLS (moving least squares) for com-
puting deformation gradients. Keiser et al. [KAG∗05] proposed a
framework to combine the pressure and viscosity using the SPH
method with the MLS-based deformation gradient. Solenthaler et
al. [SSP07] modified their work by using the SPH for the com-
putation of all forces. Becker et al. [BIT09] further improved this
approach to correctly handle rotations with a corotated SPH formu-
lation. Recently, Peer et al. [PGBT17] developed an implicit for-
mulation for incompressible linear elastic objects, which allowed
for larger time steps with better performance. We adopt this solid
model in our framework to support larger time steps in simulating
multiphase fluid solid coupling.

Simulating elastoplastic deformations is a big challenge, since
the drastic deformations sometimes lead to unpredictable shape
change. For mesh-based methods, a non-trivial remeshing is needed
[BWHT07]. Point-based methods handle this problem more eas-
ily, since no topological information is required [JWJ∗14, GBB09,

Table 1: Definition of symbols.

Symbol Meaning

αk volume fraction of phase k
ck mass fraction of phase k

ρk,ρm density of phase k and the mixture
uk,um velocity of phase k and the mixture

umk drift velocity of phase k
τk,τm viscous stress

τT k,τT m turbulent stress
τDk,τDm interphase stress
Mk,Mm interphase momentum exchange

Cm phase separation constant
Dm turbulent diffusion constant

ZLKW13]. Recently, the Material Point Method (MPM) have
gained significant success in simulating elastoplastic materials such
as snow [SSC∗13], sands [KGP∗16], and phase changing objects
[SSJ∗14].

Multiphase fluid-solid coupling. Yan et al. [YJL∗16] extended
[RLY∗14] to handle liquids and solids uniformly. The stress of
solids is divided into pressure and shear stress, where the pres-
sure is computed with the equation of state, and the shear stress by
constitutive models. Their method simulates the coupling between
solids and multiple fluids, porous flows and dissolution phenom-
ena. Yang et al. [YCL∗17] introduced phase field to the Helmholtz
free energy method to handle the dissolution and phase change of
solids. Strong artificial viscosity is required to stabilize the motion
of solid particles and suppress the pressure oscillation within the
solids. Our mixture model works seamlessly with these coupling
approach, while the artificial viscosity can be removed due to the
use of incompressible solvers.

MPM has also been applied to simulate multiphase flows in-
cluding sand-water coupling and particle laden flows [TGK∗17,
GPH∗18], achieving appealing visual effects. These methods use
separate grids and velocity fields for different phases, and have not
considered dissolution effects.

3. The Mixture Model

Before describing our method in detail, it is necessary to briefly
recap the multiphase mixture model. As stated above, the mixture
model treats the multiphase flow as a whole body, and the com-
ponent phases are described by their relative movement. The fluid
motion is divided into two parts: the mixture velocity of the whole
body and the drift velocity of each component phase.

The mixture model assumes that the component phases are mov-
ing across each other at their terminal velocity, which means there
is no relative acceleration between different phases. This holds true
when the coupling between phases are strong, such as in certain
particle suspension flows. The motion of the mixture can be solved
in a similar way to solving a single phase fluid, while the drift ve-
locity is directly computed with a constitutive model.

It is crucial to have an appropriate definition of the mixture
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Figure 2: Advection with a non-divergence free velocity field (or-
ange) changes the volume of particles, while advection with a diver-
gence free velocity field (blue) keeps the particle volume constant.

velocity, which is however not very straightforward. In the work
of Ren et al. [RLY∗14], the mixture velocity is defined as u′m =
1

ρm
∑k αkρkuk, where αk,ρk, uk are the volume fraction, density

and velocity of phase k, respectively, and ρm is the density of the
mixture. The divergence of this mixture velocity is related to the
density as∇·u′m =− ∂ρm

∂t , which is nonzero since the density ρm is
highly variable in a multiphase mixture. Therefore, the change of
ρm is related to the pressure, and the linear system becomes much
more complicated than a common Poisson problem. In the previous
work, the fluid pressure is computed with the equation of state in
WCSPH instead of solving the linear system.

Besides, there are issues related to the mass conservation. Al-
though the particle-based Lagrangian schemes are known for their
natural advantage in maintaining mass conservation, this property
only holds true in a multiphase system without phase exchange be-
tween particles. As show in Fig. 2, if we advect the multiphase
mixture with a non-divergence free velocity field (the orange ar-
row), the rest volume of the fluid particles will change. As a result,
some particles may hold more fluids, while others hold less. The
previous work ignores this volume change when computing phase
exchange, which is equivalent to scaling all particles’ volumes back
to the initial volume. Since the volume fractions of particles are not
uniform, such scaling violates the mass conservation.

To solve the problems mentioned above, we propose a novel
divergence-free mixture model based on a volume-weighted mix-
ture velocity, which enables the use of incompressible solvers for
solving the fluid pressure. The divergence free velocity field used
for the advection keeps the rest volumes of particles constant (blue
arrow in Fig. 2), making the mass conservation easily obeyed with-
out special effort.

4. Divergence-free Mixture Model

In this section we first give our definition of volume-weighted mix-
ture velocity, and then derive the corresponding formulations of the
drift velocity and phase diffusion. The symbols used in this paper
are listed in Table 1.

4.1. Mixture Velocity

In this work we assume all component phases are incompress-
ible, and the mixing process does not introduce additional volume
changes. Therefore the density of phase k can be treated as a con-
stant. For a multiphase flow, the continuity equation for phase k is

∂(αkρk)

∂t
+∇· (αkρkuk) = 0. (1)

Since the density ρk is constant, the relation ∂αk
∂t +∇· (αkuk) = 0

holds. Summing over all phases yields∇· (∑k αkuk) = 0. Thus we
define the mixture velocity as

um = ∑
k

αkuk, (2)

and it satisfies the divergence-free condition ∇·um = 0. The pro-
posed volume-based mixture velocity corresponds to the local vol-
ume center of fluids, while the conventional mass-based mixture
velocity [RLY∗14, YJL∗16] corresponds to the local mass center.

The drift velocity of phase k is defined as its relative velocity to
the mixture, i.e. umk = uk−um. Substituting the drift velocity and
the relation∇·um = 0 into Eq. (1) yields:

∂αk
∂t

+um ·∇αk =−∇· (αkumk). (3)

With the left hand side denoting the material derivative Dαk
Dt with

respect to the mixture velocity um, the above equation is used to
update the volume fraction of each particle during simulation.

It is trivial to verify ∑k αkumk = 0 and sequentially ∑k∇ ·
(αkumk) = 0. This means the volume fractions in each particle al-
ways add up to 1, and therefore the mass is well conserved during
the advection in Eq. (3). However, the formulation of drift velocity
umk derived from a constitutive model normally violates this con-
straint, so we propose a corrected formulation as explained in § 4.3.

4.2. Momentum Equation

As stated in [MTK96], for a multiphase flow system, the momen-
tum equation of phase k is

αkρk(
∂uk
∂t

+uk ·∇uk)

=−αk∇pk +αkρkg+∇· [αk(τk + τT k)]+Mk, (4)

where τk, τT k and Mk are the viscous stress, the turbulent stress
and the inter-phase momentum exchange, respectively. According
to the local equilibrium assumption, the phases are under the same
pressure, therefore the pressure of phase k can be replaced by the
mixture pressure pm. Then by substituting the phase velocity uk
with the drift velocity umk, taking ρk out of the derivatives and sum-
ming over all phases, the following equation can be obtained:

Dum

Dt
=−∇pm ∑

k

αk
ρk

+g

+∇· (τm + τT m + τDm)+Mm, (5)
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where

τm = ∑
k

αkτk
ρk

,

τT m = ∑
k

αkτT k
ρk

,

τDm =−∑
k

αkumkumk,

Mm = ∑
k

Mk
ρk

. (6)

The above equation is very similar to the momentum equation
of single phase fluid with an additional factor in the pressure term
and several inter-phase diffusion terms. The pressure term can be
rewritten as:

−∇pm ∑
k

αk
ρk

=− γ

ρm
∇pm,

where γ = ∑k
α

2
k

ck
, and ck is the mass fraction of phase k. This factor

can be precomputed at each time step, so that the single phase fluid
solvers can be easily modified to solve this equation.

4.3. Constitutive Model

We adopt the drag force model in [MTK96] to derive our drift ve-
locity formulation. The model assumes that a local equilibrium be-
tween all phases is reached at every moment, so that each phase is
moving at its terminal velocity relative to the whole mixture. There-
fore the drift velocity umk can be directly computed from the drag
forces between phase k and the other phases. We further correct the
resulting formulation to ensure ∑k αkumk = 0, so that the volume
fraction update in Eq. (3) obeys mass conservation.

For the sake of clarity, we provide the detailed derivation in Ap-
pendix A, and directly give the drift velocity of phase k as

umk =Cm
ρk−ρm

ρm

(
g− Dum

Dt

)
+

Dm

αk
∇αk, (7)

where Cm and Dm are constants controlling the separation and dif-
fusion effects. The first term denotes the phase separation due to the
inertial difference, and the second term denotes the diffusion due to
turbulent fluctuation. In our experiments, we set both Cm and Dm at
around 0.001∼ 0.01.

Since the turbulent fluctuation term becomes meaningless when
αk = 0, we directly set umk = 0 if the particle does not contain
phase k. Besides, we rewrite the volume fraction update equation
(3) as

Dαk
Dt

=−∇· (αkumk0)+∇·∇(Dmαk), (8)

where umk0 only contains the first term of umk. This formulation
now gives meaningful results for all possible volume fraction val-
ues.

The interphase momentum exchange Mk is given by

Mk = αk(ρk−ρm)

(
g− Dum

Dt

)
, (9)

where terms other than the drag force are negligible and dropped
from the equation.

Compared to directly computing the viscous stress τm and turbu-
lent stress τT m in Eq. (5), a more practical way is to define a gen-
eralized stress tensor τGm = τm + τT m [MTK96]. The complexity
of a turbulent-related viscosity is generally considered an overkill
for graphic applications. We therefore replace these terms with the
artificial viscosity [BT07], which is adequate to generate visually
plausible results.

5. Discretization

Following the previous works on multiphase fluids [RLY∗14,
YCR∗15], we implement our mixture model with the SPH method
and uniformly handle free surface fluids and deformable bodies. To
better examine the performance of the new model, we build our
solver based on both WCSPH and incompressible SPH methods
such as IISPH [ICS∗14] and DFSPH [BK15]. The multiphase prop-
erties such as the volume fractions and drift velocities are stored on
individual SPH particles. In each time step, the momentum equa-
tion of the mixture velocity is solved by the adapted single phase
fluid solver, after which the drift velocity and phase exchange be-
tween particles are computed analytically.

5.1. SPH Formulation

The SPH method interpolates a variable at particle i from its neigh-
boring particles, that is

Ai = ∑
j

m j

ρ j
A j∇Wi j, (10)

where Wi j is a kernel function, and the cubic spline function is used
in this work.

The density estimation for multiphase fluids is slightly different
from those for single phase fluids, since the rest density and mass of
particles are different. According to [SP08], the density of particle
i is estimated as

ρi = mi ∑
j

Wi j. (11)

Using the above density estimation, the problem is transformed into
enforcing a constant particle volume.

5.2. Momentum Equation using SPH

The terms in the momentum equation (5) are discretized as

(− γ

ρm
∇pm)i =−γi ∑

j
m j

(
p j

ρ2
j
+

pi

ρ2
i

)
∇Wi j,

(∇· τDm)i =−∑
j

m j

ρ j
(τDm,i + τDm, j)∇Wi j. (12)

The viscosity term involving τm and τT m is replaced by the artificial
viscosity given as

Fv
i

mi
=−∑

j
m jΠi j∇Wi j,

Πi j =−
2αhcs

ρi +ρ j

min(0,um,i j ·xi j)

d2 + εh2 (13)
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Figure 3: An elastic duck dissolving in water. Since the duck’s density is half of the water density, it floats on the water surface.

Algorithm 1: Simulation Loop (IISPH)

forall particles i do
estimate density ρi Eq. (11);
predict velocity uadv

m,i (§ 5.2);
compute dii Eq. (14);

end
forall particles i do

predict density ρ
adv
i (14);

compute aii as in IISPH;
end
l = 0;
while errl

avg > η∨ l < 2 do
IISPH iteration;

end
forall particles i do

um,i(t +∆t) = uadv
m,i + γi∆tF p

i (t)/mi ;
xi(t +∆t) = xi(t)+∆tum,i(t +∆t);

end
phase diffusion (Algorithm 2);

where α is a viscosity constant, cs the sound speed, h the smoothing
distance, ε a small constant (normally set to 0.01) for preventing
singularity. The interphase term Mm,i does not require SPH dis-
cretization, and it is computed at the end of each time step and
stored on particles.

5.3. Incompressible SPH Solver

Solving the pressure with an incompressible SPH solver is straight
forward, and we implemented our method on both IISPH and DF-
SPH. The simulation workflow is explained below using IISPH as
an example, and is outlined in Alg. 1.

At the beginning of each time step, we first estimate the density
and precompute the pressure factor γ for each fluid particle. Then
the velocity and density change are predicted using the momen-
tum equation without the pressure term, after which the pressure is
solved to satisfy the divergence free condition and the particle po-
sition and velocity are integrated. Next, the drift velocity umk, the
interphase momentum exchange τDm and Mm are explicitly com-
puted. Finally, we compute the phase exchange between particles,
and update the mass and rest density of each particle. This part is
also outlined in Alg. 2.

With the factor γ, the formulation of IISPH should be changed as

ρ
adv
i = ρi(t)+∆t ∑

j
miuadv

m,i j∇Wi j,

dii =−γi∆t2
∑

j

m j

ρ2
i
∇Wi j,

di j =−γi∆t2 m j

ρ2
j
∇Wi j. (14)

The rest of the derivation stays unchanged, and the resulting for-
mulation is very similar to the original one.

The approach in [SP08] can also be used to deal with the density
contrast of multiphase fluids. But when solving the pressure in the
Jacobi fashion, as in IISPH and DFSPH, the linear system becomes
ill-conditioned if the density contrast goes too high, and the calcu-
lation may fail to converge. Fortunately, the density ratio between
common fluids and solids does not lead to this situation, while
problems involving air-water coupling should be handled with a
different approach rather than a multiphase mixture model.

5.4. Phase Exchange using SPH

The phase exchange is discretized as symmetric pairwise fluxes
to ensure mass conservation. Following the SPH discretization in
[IOS∗14], the two terms in the phase exchange equation Eq. (8) are
discretized as:

∇· (αkumk0)i = ∑
j

Vi j
(
αk,iumk0,i +αk, jumk0, j

)
·∇Wi j

∇·∇(Dmαk)i = 2Dm ∑
j

Vi j(αk,i−αk, j)
xi j ·∇Wi j

xi j ·xi j + ε
(15)

where Vi j =
1
2

(
mi
ρi
+

m j
ρ j

)
, ε= 0.01h2. In the above formulation, the

phase update of particle i is discretized into pairwise fluxes between
particle i and its neighboring particles.

However, negative volume fractions may appear during the sim-
ulation, and will break the mass conservation if they are simply
clamped to the interval [0,1]. The negative volume fractions are due
to the flux of the separation term, which sometimes forces a compo-
nent phase to flow out of particles with very low volume fractions.
Therefore, in each time step, we test whether or not the separation
flux between a pair of particles will lead to negative volume frac-
tions of any component phases. If this is true, the separation term is
disabled between this pair of particles in this time step so that only
the diffusion term functions. We test and disable the flux for each
pair of particles independently, and sometimes the total fluxes of
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Algorithm 2: Phase Diffusion

forall particles i do
get particle acceleration

ai(t +∆t) = (um,i(t +∆t)−um,i(t))/∆t;
compute drift velocities Eq. (7);
compute τDm Eq. (6);
compute Mm Eq. (9) and Eq. (6);
compute phase diffusion Eq. (15);

end

Table 2: Runtime performance of our examples

Example N ∆t (ms) iteration s/frame

dambreak 203k 1.0 5.31 6.7
∼WCSPH 203k 0.2 - 12.1
pour water 61k∼161k 0.5 2.43 6.2
∼WCSPH 61k∼161k 0.2 - 10.1
cube 178k 0.5 3.10/1.99 6.0
duck 37.3k 0.5 3.2/2.0 16.1
sand 114k∼514k 0.5 2.0 20.5
gear 993k 0.5 3.15/2.3 60.7

one particle’s several neighbors can lead to negative volume frac-
tions. This value is clamped to zero, and it stops any out-flowing
flux in the following time steps. In our experiments this small vio-
lation in one time step is found negligible.

After the phase update, volume fraction values may still deviate
from the possible region due to the time discretization and floating
error, therefore we clamp the values to the interval [0,1] and re-
normalize the volume fractions of the corresponding particles. With
the proposed phase update approach, the relative error is controlled
below 0.01%, as is shown in Fig. 4.

6. Results

The proposed incompressible multiphase SPH algorithm is imple-
mented with CUDA, and all experiments presented in this section
were simulated on an NVIDIA Geforce GTX1080 graphic card and
an 8 core Intel i7-6700K CPU. The performance data are given in
Table 2, and in this paper we measure the performance at a frame
rate of 30 Hz. The average iterations of IISPH or DFSPH are also
listed in the table, where cases solved by DFSPH has two iteration
numbers corresponding to the density solver and the divergence
solver respectively.

6.1. Phase Exchange

Dam break. A dam break case of two fluid pillars is shown in Fig.
4 to demonstrate the efficiency and accuracy of our approach. The
particle spacing is 0.01 m, a fixed time step of 1 ms is used for the
IISPH-based solver, and the threshold of average error of particle
volume is set to 0.1%. While the previous approach [RLY∗14] is
viable to simulate this scenario, a much smaller time step around
0.2 ms is required. As shown in Table 2, our approach implemented
with IISPH is about 2x faster.

Figure 4: A dam break case using our approach and [RLY∗14]. The
overall motions are similar, while the rest volumes of component
phases are constantly changing for [RLY∗14].

The overall motion of fluids generated by the two approaches are
similar, while the volumes of component phases are not conserved
when using the previous method. In this case the densities of the red
and blue phase are 1000 and 1300 kg/m3 respectively. As shown in
Fig. 4, red phase decreases with time in the result by [RLY∗14]
and causes artificial colour changes to the mixture. The mass loss
accumulates with time, and reaches above 10% at the end of the
simulation, while our approach controls the mass loss below 0.01%,
improving the accuracy by several orders.

The average errors of particle volumes of the two approaches are
also compared. The obtained average error of WCSPH is smaller
than IISPH, since we have chosen a large stiffness parameter to
enforce incompressibility and eliminate pressure oscillation. How-
ever, even with a much smaller time step, we still observe larger
oscillations in the figure. These comparisons confirm that using an
incompressible solver does improve both the efficiency and stabil-
ity of the simulation.

Pouring water. We have conducted another case comparing the
two methods, where red phase liquid is poured into a tank half-
filled with blue phase liquid. The densities of the red and blue phase
are 1000 and 500 kg/m3 respectively. As is shown in Fig.5, when
solved with the previous method, the blue phase suffers from mass
loss, and the color is incorrectly redder. As the particle number
increases, the final performance is given in Table. 2.

6.2. Two-way Coupling

Since the incompressible SPH solver naturally handles particle col-
lisions, the two-way coupling can be achieved more easily com-
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Figure 5: Another comparison of our approach with [RLY∗14]. Red
phase is poured into a tank containing some blue phase liquid. The
blue phase decreases when solved by the previous method, making
the mixture incorrectly redder.

pared to the method in [YJL∗16]. To simulate hyperelastic solids
we adopt the elastic solid model in [PGBT17] and handle the
elastoplastic deformation with the model in [BWHT07]. The parti-
cle spacing is 0.005 m in the following cases.

Pressing cube. Fig. 1 demonstrates the stability of our fluid-solid
coupling model. The cube is initially filled with fluid. Pressed by a
glass plate, it undergoes plastic deformation and the internal liquid
eventually breaks out from the corners of the cube. When the glass
board is lifted up, the cube can no longer return to its initial shape.

Duck dissolution. The dissolution is treated as a special kind of
phase diffusion between solid and liquid particles, since the Noyes-
Whitney equation has the same form of the diffusion equation, as
applied by Yan et al. [YJL∗16]. In Fig. 3, an elastic duck is dropped
onto a water surface. We set the density of the duck to half of the
water, so that it can float on the water surface. It slowly dissolves
into the water. The water is originally light blue, and the yellow
duck material gives it a green tint.

Sand dissolution. Fig. 6 shows a sand dragon dissolves in a water
tank. While water is poured at the left side of the tank, the sand
dragon collapses on the floor and sand particles are flushed toward
the right side by the fast flowing water. The densities of water and
sand are set as 1000 kg/m3 and 1300 kg/m3, respectively. We set the
granular to be dissolvable, and a particle suspension flow is formed
as the water interacts with the sand. The particle number increases
when water is poured into the tank, and the final performance is
20.5 seconds per frame as listed in Table 2.

6.3. Fast Moving Boundaries

Gear motions. Using the incompressible methods, our new model
can stably handle scenarios involving fast moving objects and com-
plex boundaries. Two scenarios involving the coupling between
rapidly rotating gears and liquid mixtures are set up, as shown in
Fig. 7. The tank is filled with red, green, and blue liquids of den-
sities 500 kg/m3, 1000 kg/m3 and 1500 kg/m3 respectively. The

particle spacing is 0.01 m, the two gears are rotating at 6 rad/s, and
a fixed time step of 0.5 ms is used in the simulation. The rotation
of the two gears generates strong mixing effects. We choose rela-
tively large parameter Cm and Dm so that while mixing is obvious
in the stirred region, the mixture separates when flowing into the
un-stirred regions. After the gears stop rotating, the mixture settles
and gradually separates back into layers.

7. Conclusion and Discussion

In this paper we propose a divergence free mixture model for mul-
tiphase fluids, which enables the use of incompressible fluid solver
to handle multiphase phenomena, and therefore significantly im-
proves the efficiency in simulating large and highly dynamic sce-
narios.

In our model, the mixture velocity is weighted by phase volume
and corresponds to the local volume center of the mixture. The re-
sulting momentum equation involves an additional volume fraction
related factor, which can be easily solved by any single phase in-
compressible fluid solver. This definition leads to a formulation of
phase exchange that obeys mass conservation, greatly improving
the accuracy of multiphase fluid simulation. A series of experi-
ments are presented to demonstrate the capability of our approach,
including multiple fluid mixing, fluid-solid two way coupling, and
dissolution of elastic body and granular materials.

Since our mixture model is based on the assumption that phases
are moving at their terminal velocity across each other, the us-
age of our mixture model is restricted to cases where strong cou-
pling exists between phases, such as liquid-particle mixtures. While
more vibrant mixtures such as gas-particle mixtures involves much
weaker coupling, and therefore is not suitable for this approach. Ex-
tending this approach to handle a wider range of phenomena would
be an interesting topic for future research.

Besides, the current incompressible SPH method does not handle
high density ratio well. The linear system becomes ill-conditioned
under high density contrast, and the Jacobi fashioned approach
could fail to converge. We have also shown this instability in our
video. The conjugate gradient method is not a viable solution, since
the varied particle mass makes the linear system nonsymmetric.
Normally we do not face such problems, since the mixture model
handles only strongly coupled multiphase systems. Using other
Krylov space solving method such as GMRES may help to solve
this problem, but requires further research.
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Appendix A: Drift Velocity

To derive the drift velocity, we start from the momentum equation
of phase k, the left hand side of which can be approximated as

αkρk(
∂

∂t
uk +(uk ·∇)uk)≈ αkρk

Duk
Dt

.

This approximation is due to uk ≈ um. According to [MTK96], the
viscous stress, diffusion stress and the inter-phase term are small
compared to the pressure and gravity, and can be dropped in the
following derivation. The turbulent stress is kept for the turbulent
diffusion, which is an essential part of the multiphase phenomena.
Therefore, Eqs. (4) and (5) can be rewritten as

αkρk
Duk
Dt

=−αk∇pk +αkρkg+∇· (αkτT k)+Mk

Dum

Dt
=−∑

k

αk
ρk
∇pm +g+∇· τT m (16)

The local equilibrium assumption leads to Dumk
Dt = 0, and there-

fore Duk
Dt = Dum

Dt . The second equation comes from the definition
of umk. We assume ∇pk ≈ ∇pm as in § 4.2, and define ρ

′ =
(∑k

αk
ρk
)−1. Substituting these into Eq. (16), the interphase momen-

tum exchange can be expressed as:

Mk =αk(ρk−ρ
′)

(
Dum

Dt
−g
)
+αkρ

′∇·τT m−∇·(αkτT k). (17)

The drag force model in [MTK96] is given by

Mk =−βuck +M′k, (18)

where M′k is a term caused by velocity fluctuations, and β is the
drag coefficient determined by many attributes such as fluid den-
sities and particle radius. uck is the relative velocity of phase k,
defined as uck = uk − uc, where uc is the mixture velocity of the
other phases. Combining Eqs. (17) and (18) closes the equation for
uck, of which an approximate solution is given as:

uck = uck0 +
Dck
αk
∇αk (19)

where uck0 is a solution for the equation without fluctuation terms,
that is,

uck0 =
ρk−ρ

′

β

(
g− Dum

Dt

)
. (20)

Dck is the fluctuation coefficient related to the turbulent energy den-
sity. The drift velocity umk can then be computed with the relative
velocity uck as umk = (1−αk)uck. Therefore, the drift velocity of
phase k is

umk = (1−αk)

(
ρk−ρ

′

β

(
g− Dum

Dt

)
+

Dck
αk
∇αk

)
. (21)

However, this formulation violates the constraint ∑k αkumk = 0.
This violation is caused by the approximation adopted in the above
derivation. We therefore propose a corrected formulation based on
this formulation:

umk =Cm
ρk−ρm

ρm

(
g− Dum

Dt

)
+

Dm

αk
∇αk, (22)

where the coefficients Cm and Dm are constants that have the same
values for all phases.
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