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Abstract 

Microporous carbons were prepared starting from a series of benzene polycarboxylic acids 

following two strategies: (i) activation- and template-free pyrolysis and (ii) ion-exchange 

pyrolysis. The proposed synthetic strategies are facile approaches to produce highly 

microporous carbons that avoid the use of large amounts of corrosive and expensive chemical 

activators or templates. By varying the number of carboxylic acid groups, the charge 

balancing species and the degree of deprotonation of the precursors, microporous carbons 

with diverse morphologies, textural properties and oxygen contents were obtained and their 

CO2 and N2 sorption properties were assessed. The abundant micropores made the materials 

suitable for CO2 adsorption at low pressure and ambient temperature, achieving CO2 uptake 

as high as 4.4 mmol/g at 25 °C and 1 bar, competitive with those reported for porous carbons 

produced using large excess of alkali metal based activating agents. It was found that high 

performance, in terms of CO2 uptake and CO2/N2 selectivity, was linked to the simultaneous 

presence of large ultra-micropore volume and high oxygen content in the sorbents. This 

suggests that the interplay of ultra-microporosity and oxygen doping matters more than the 

two features taken singularly in determining the CO2/N2 separation properties of porous 

carbons at low pressure. 
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Introduction 

Inorganic [1, 2], organic [3-5], polymeric [6], and hybrid inorganic–organic[7-10] porous 

materials play a key role in many technologies including water treatment, gas capture and 

separation, supercapacitors, catalysis, sensors, tissue engineering, drug delivery, and 

photonics [11, 12]. The pore walls of porous materials can interact with atoms, ions, and 

molecules, or load and hold solid particles, liquids, and gases [13-15]. Among various porous 

materials, porous carbons (PCs), also known as activated carbons, have been vastly utilised as 

liquid and gas adsorbents because of their high surface area, tuneable pore size distribution, 

notable stability against high temperature and humidity, good adsorption kinetics, 

sustainability, and cheapness [5, 16-18]. In addition, in order to achieve suitable properties 

for specific applications [19-22], heteroatoms can be incorporated into the carbon framework, 

either on the carbon surface or as a part of the covalent network [23-26]. 

The extensive and continued use of fossil fuels has led to the fast and large 

accumulation of carbon dioxide (CO2), sulphur dioxide (SO2), and nitric oxide (NO), and soot 

particles in the atmosphere [27]. Concern over CO2 emissions, which are the main cause of 

global warming and climate change, has been growing restlessly in recent years. CO2 capture 

is regarded as an effective measure to mitigate climate change, even though challenges still 

remain to be addressed, such as high production and regeneration cost of the sorbent material 

[28, 29]. Among various materials developed for post-combustion CO2 capture, PCs have 

been known as promising candidates due to possessing ideal properties and presenting high 

adsorption capacity and easy regeneration at ambient temperature [30]. There are a number of 

contributing factors influencing the gas uptake in porous materials including surface area, 

pore volume and size, doping and even morphology of the adsorbent [31-35]. It is widely 

agreed that, at atmospheric pressure, CO2, with a kinetic diameter of 3.3 Å, tends to be 

accommodated in micropores smaller than 10 Å [36]. It has indeed been found that 

microporous structures are more favourable for CO2 uptake at low pressure (below 1 bar), 

while mesoporous structures have higher capture performance at pressure higher than 1 bar 

[37, 38]. In other words, lower pressures demand narrower pores for adsorption [39]. In this 

regard, a great deal of effort has been devoted to tailoring PCs for desired applications mainly 

based on the use of activating agents such as alkali-metal ions; however, carbon source and 

activator can be crucial factors affecting the pore volume and size.  

There still exist controversial opinions as to whether the textural properties are 

dominant over surface chemistry in PCs to control CO2 capture efficiency at different 

pressures. Note that we use the term “surface” herein to indicate the guest-accessible surface, 
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whereas we use “external surface” when referring to the portion of sample probed by X-ray 

photoelectron spectroscopy (XPS). A classic example is whether the capture performance of 

oxygen-doped PCs is mostly dominated by the oxygen content or by the pore structure of the 

sorbent. Oxygen doped porous carbons made from oxygen-rich polymer precursors have been 

employed to show the significant impact of oxygen on increasing CO2 uptake performance, 

especially at high pressure [40]. It also has been suggested that the surface chemistry, rather 

than the textural properties, governs the CO2 capture performance at lower pressures, while 

the textural properties become more important at higher CO2 pressures, when the adsorption 

process becomes controlled by the micropore filling mechanism [41, 42]. Carboxyls and 

hydroxyls have been suggested as the most effective oxygenated functionalities for selective 

adsorption of CO2, due to their high polarity, compared to carbonyls and ethers [43, 44]. A 

recent work reported that oxygen can actually be detrimental to the capture performance, 

although in this case the focus was on the external surface functionalisation [45]. In the same 

work, it was suggested that, at lower temperatures (0 °C), the effect of textural properties is 

dominant over surface chemistry and that the ultra-micropore volume alone determines the 

adsorption behaviour. Some authors have recently proposed that both textural properties and 

oxygen content contribute together to determine the adsorption behaviour of the sorbent [46, 

47]. 

In this study, we used aromatic carboxylic acids as precursors to prepare microporous 

carbons with morphology and textural properties influenced by both the number of carboxylic 

acid groups in the precursor and the activation conditions. In particular, we investigated a 

range of benzene polycarboxylic acids (BCAs), namely, terephthalic acid (H2-TP), trimesic 

acid (H3-TM), pyromellitic acid (H4-PM) and mellitic acid (H6-M) (Fig. 1), for the 

production of oxygen-doped PCs. We chose these BCAs since they have the same central 

phenyl core but increasing numbers of carboxylic groups and can be good model compounds 

to identify trends in textural properties, surface chemistry, and gas separation performance. 

The resulting PCs were fully characterised using electron microscopy, CHN elemental 

analysis, XPS and gas sorption analysis, and the CO2 capture performance was correlated to 

their composition and porous features. The proposed approach could be considered to 

produce cheap porous carbon from oxy-cracked petroleum coke, a byproduct of oil refinery, 

rich in carboxyl groups [48]. 
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Fig. 1. Benzene polycarboxylic acids used in this study as precursors of microporous carbons. 

 

Experimental section 

Materials 

All chemicals were purchased from Sigma-Aldrich and used without further purification. 

 

Synthesis 

Products P-H3-TM and P-H6-M were obtained by direct pyrolysis of H3-TM and H6-M, 

respectively, without any pre-treatment in a cylindrical furnace at 800 °C under Ar for 1 h 

with a heating rate of 1 °C/s.  

The process for PCs obtained from ion-exchanged BCAs is as follows: the BCA 

precursors were added into the aqueous MOH (where M = K, Na) solution with the following 

MOH/BCA ratios: KOH/H2-TP 2:1, KOH/H3-TM 3:1, NaOH/H3-TM 3:1, KOH/H4-PM 4:1, 

KOH/H6-M 6:1, KOH/H6-M 3:1. The mixture was stirred at 70 °C for 3 h, followed by water 

evaporation under reduced pressure. The ion-exchanged products were dried in an oven at 90 

°C for 4 h prior to carbonisation. Then, the sample was put in a ceramic boat in the 

cylindrical tube followed by thermal treatment under argon at 800 °C for 1 h with a heating 

rate of 1 °C s-1. The resulting sample was washed with deionised H2O and then immersed in 

HCl solution (0.1 N) under stirring for 15 min. After that, the sample was thoroughly washed 

with deionised H2O until neutral pH was achieved. The final PCs were obtained after drying 

in a vacuum oven at 80 °C overnight. 
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Characterisation 

Scanning Transmission Electron Microscopy (STEM) and Transmission Electron Microscopy 

(TEM) were performed with a Thermo Fisher Scientific Talos F200X at 200 kV. The STEM 

was conducted with a convergence angle of 20 mrad and a high angle annular dark field 

(HAADF) detector operating with inner and outer angles of 62 mrad and164 mrad. SEM 

images of the PCs were obtained with a JEOL 7800F FEG SEM (JEOL, Akishima, Tokyo, 

Japan). The Raman data of the PCs were recorded at room temperature using a Renishaw 

inVia Raman Microscope (Renishaw plc, Miskin, Pontyclun, UK) with excitation wavelength 

of 633 nm. The elemental analyser (Vario EL cubewas, Germany) was used to determine the 

amount of carbon, hydrogen and oxygen.    

XPS was performed using a Kratos Axis Supra (Kratos Analytical, Japan) utilising a 

monochromatic Al-Kα X-ray source (Kα 1486.58 eV), 15 mA emission current, magnetic 

hybrid lens, and slot aperture. Region scans were performed using a pass energy of 40 eV and 

step size of 0.1 eV. Peak fitting of the narrow region spectra was performed using a Shirley 

type background, and the synthetic peaks were of a mixed Gaussian-Lorentzian type. Carbon 

sp2 was used for charge referencing with the binding energy of the sp2 carbon set to 284.0 eV.  

N2 adsorption/desorption isotherms at 77 K and CO2 adsorption isotherms at 273 K 

were obtained using a Quantachrome Nova 2000E (Quantachrome Instruments, Boynton 

Beach, FL, USA). About 50-100 mg of sample was used. The samples were degassed at 150 

°C for 4 h under dynamic vacuum prior to analysis. Specific surface areas were determined 

by applying the Brunauer–Emmett–Teller (BET) method to the N2 isotherms. The BET 

equation was fitted in the following P/P0 ranges: P-K2-TP: 0.002-0.032; P-K3-TM: 0.0028-

0.045; P-K4-PM: 0.003-0.043; P-K6-M: 0.0013-0.081; P-H3-TM: 0.002-0.03; P-Na3-TM: 

0.006-0.034; P-H3K3-M: 0.005-0.064; P-H6-M: 0.0026-0.043. Total pore volume was 

measured at P/P0 of 0.9 in the N2 isotherms. Micropore volume was determined using the t-

plot method (Carbon Black equation) applied in the 0.2 - 0.45 P/P0 range of the N2 isotherms. 

Pore size distribution in the range of pore width >6 Å was determined applying the 

Equilibrium model within the Quenched solid Density Functional Theory (QSDFT) method 

to the N2 isotherms, assuming slit-shaped pores. Pore size distribution in the range of pore 

width <15 Å was determined applying the Non-Linear Density Functional Theory (NLDFT) 

method to the CO2 isotherms. 

High pressure CO2 and N2 adsorption isotherms up to 10 bar were measured with a 

Quantachrome iSorb High Pressure Gas Analyser (Germany) at 25 °C, 35 °C and 45 °C for 

CO2 and at 25 °C for N2. About 200 mg of sample was used for the adsorption studies. All 
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the samples were degassed at 160 °C under dynamic vacuum for 2 h prior to analysis. 

Degasification temperature was internally controlled by covering the cell containing sample 

with a thermal jacket, while the adsorption temperature was adjusted by a jacketed beaker 

connected to a circulating bath containing a water/ethylene glycol mixture. The CO2 

adsorption isotherms were fitted with the Dual-Site Langmuir model: 

� = �1 ∙ �1 ∙ �
1 + �1 ∙ � + �2 ∙ �2 ∙ �

1 + �2 ∙ �  
The CO2 isotherms were also fitted with the Virial equation, using six common parameters 

(a0, a1, a2, a3, a4, a5, b0) for three isotherms: 

ln � = ln � + 1

 � ��

�

���
�� +  �� 

The N2 adsorption isotherms were fitted with the Langmuir model. Isosteric heats of CO2 

adsorption (Qst) were calculated in two ways: I. using the Clausius-Clapeyron equation, from 

the isotherms collected at 25, 35 and 45 °C and fitted with the Dual Site Langmuir model; II. 

using the five temperature dependent parameters used to fit the Virial equation (a0, a1, a2, 

a3, a4, a5). Ideal adsorbed solution theory (IAST) selectivity for a 0.15:0.85 CO2/N2 mixture 

at 25 °C in the 1-10 bar pressure range was calculated using the software IAST++ [49]. 

 

Results and Discussion 

Scheme 1 represents pathways to produce oxygen doped porous carbon from BCAs as carbon 

and oxygen source, either in protonated form or when neutralised with NaOH or KOH. We 

note that the hydroxide activating agent is here used in strictly stoichiometric amounts, in 

order to avoid the drawbacks associated with usage of large excess of activating agents, such 

as corrosion, low yield and environmental hazard [30]. Successful direct pyrolysis was only 

observed for H3-TM and H6-M, whereas H2-TP and H4-PM sublimed before being 

carbonised. The yield of PCs derived from pyrolysis of H3-TM and H6-M (~25-30%) was 

lower than those derived from their ion-exchanged counterparts (45-55%), suggesting that 

aromatic salts benefit from higher stability and undergo less burn-off. 
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Scheme 1. Reaction Scheme for the PCs synthesis using benzene polycarboxylic acid 

precursors. 

 

We prepared and characterised a total of eight samples. For the sake of clarity, we 

have separated them into the following three series, which will be discussed separately in 

order to identify dependence on one parameter at the time: 1) Effect of the number of 

carboxylic groups on the aromatic ring of BCAs – i.e. two, three, four, six – when fully 

neutralised with KOH. These samples are named P-K2-TP, P-K3-TM, P-K4-PM, P-K6-M, 

respectively. 2) Effect of the nature of the charge balancing species – i.e. H, Na, K – in TM. 

These samples are named P-H3-TM, P-Na3-TM and P-K3-TM, respectively. 3) Effect of the 

degree of deprotonation in M – i.e. zero, three, six - when neutralised with KOH. These 

samples are named P-H6-M, P-H3K3-M, P-K6-M, respectively. 

 

Effect of the number of carboxylic acids 

We started our investigation by preparing a series of samples, derived from commercially 

available BCA precursors, with varying number of carboxylate groups. The effect of number 

of COOK groups on the morphology of the resulting PCs was investigated by SEM, TEM 

and STEM. SEM images (Fig. S1, see Supporting Information, SI) for products shows an 

agglomeration of carbon particles forming different shapes, evident at high magnification. 

Using STEM and TEM, a better picture of the surface morphology was gathered, see Fig. 1 

and Fig. S2 (SI). As can be seen from Fig. 1, a similar spherical shape in range of 50-200 nm 

is observed for P-K3-TM and P-K6-M, with plenty of pores especially visible in the former. 

P-K2-TP displayed ill-defined shape and P-K4-PM showed sheet-like morphology with 

evidence of pores with size of about 50 nm. 
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Fig. 1 STEM images of P-K2-TP (top left panel), P-K3-TM (top right panel), P-K4-PM 

(bottom left panel) and P-K6-M (bottom right panel). 

 

CHN elemental analysis shows that the oxygen content found in the pyrolysed product is 

inversely proportional to that of the BCA precursor, increasing in the order P-K6-M < P-K4-

PM < P-K3-TM < P-K2-TP (Table 1). The observed inverse trend of the oxygen content 

between salt precursors and obtained PCs is likely because the presence of more oxygen in 

precursor demands more MOH in stochiometric ratio, leading to further burn-off and release 

of more CO and CO2, which can subsequently leave the PC with lower oxygen content and 

vice versa [50]. 
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Table 1. Elemental composition of porous carbons derived from KOH-neutralised BCA 
precursors. 

Precursor 
Pyrolysed 
Product 

Elemental composition 
(wt%) O/C molar ratio 

(from EA) 
O/C molar ratio 

(from XPS)a 
C H O 

 P-K2-TP 79.79 1.64 18.50 0.175 0.313 

 
P-K3-TM 84.35 1.63 14.02 0.125 0.120 

 
P-K4-PM 87.72 1.05 11.22 0.096 0.277 

 

P-K6-M 91.20 0.83 7.97 0.066 0.258 

a Derived from the atomic percentages reported in Table S1 

 

The XPS analysis of the samples shows that both carbon and oxygen are present, while no 

evidence of residual potassium is seen (Fig. 2 and Tables S1-2, see SI). The C 1s spectrum 

consists of five peaks including pure carbon and oxidised carbon. All spectra are similar, 

which is expected for this group of samples as the only difference between them is the 

number of oxidised carbons on the precursor material. As observed by Raman spectroscopy 

(Fig. S3, see SI), the carbon-carbon bonds are present as a mixture of sp2 and sp3 

hybridisations, displaying binding energies of 284.5 and 284.8 eV, respectively. The oxidised 

carbon is a mixture of alcohols/ethers (286.1-286.5 eV), carbonyls (287.4-287.9 eV) and 

carboxylate-like groups (288.6-288.9 eV) [44, 46, 47, 51]. However, it is only by correlating 

the C 1s data with the O 1s data that the true nature of the carbon-oxygen bonds can be 

elucidated. Deconvolution of the O 1s spectra reveals three main contributions, whose 

binding energies suggest presence of C=O (531.4 eV), C-O (533.0 eV) and O-H groups 

(534.0 eV) [44, 46, 47, 51].  Except for P-K3-TM, the ratios of carbon to oxygen in the 

samples are not in good agreement with those obtained by elemental analysis (Table 1). 

However, it is important to note here that XPS is a surface technique and only scans the top 5 

nm of a sample, whereas elemental analysis is a bulk technique. In addition, elemental 

analysis measures the quantity of hydrogen present in the sample, which XPS is unable to do. 

Comparing the values of CHN analysis and XPS, we can see that P-K4-PM and P-K6-M have 

most of their oxygen concentrated near the external surface. A similar observation can be 

made for P-K2-TP, even though in this case the discrepancy between CHN and XPS is 

smaller. 

Jo
urn

al 
Pre-

pro
of



11 
 

 

 

Fig. 2 XPS spectra of the samples P-K2-TP, P-K3-TM, P-K4-PM and P-K6-M. High 

resolution spectra of C 1s (left) and O 1s (right). 

 

N2 sorption analysis at 77 K reveals that all the samples are predominantly microporous, 

adsorbing most N2 at P/P0 below 0.1. P-K4-PM and P-K6-M also feature little hysteresis 

above 0.4 P/P0, suggesting that they contain a small amount of mesopores (Fig. 3a). BET 

surface areas range between 1210 m2 g-1 for P-K2-TP and 1933 m2 g-1 for P-K6-M (Table 2). 

The total pore volume increases with increasing number of carboxylic groups in the 

precursor, but in terms of micropore volume P-K3-TM is higher than P-K4-PM (0.57 cm3 g-1 

vs 0.49 cm3 g-1, respectively, Table 2). The pore size distribution (PSD) derived from the N2 

isotherms at 77 K shows that P-K6-M features a much larger share of supermicropores 

having diameter comprised between 1 and 2 nm than the other samples (Fig. 3b and Fig. S4 
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see SI). These pores make up nearly 50% of the pore volume of P-K6-M. CO2 sorption 

analysis at 273 K reveals that P-K3-TM uptakes a remarkable 150 cm3 g-1 (6.7 mmol g-1) at 

760 torr, with the other samples all reaching values in the vicinity of 120 cm3 g-1 (5.4 mmol g-

1) (Fig. 3c). PSD derived from the CO2 isotherms at 273 K displays similar pore structure, 

with P-K3-TM having the highest share of ultramicropores (i.e. with diameter < 8 Å), 

peaking at 0.32 cm3 g-1 (Fig. 3d and Fig. S5). P-K6-M displays the lowest amount of very 

narrow pores having diameter between 3 and 4 Å, which can be especially effective for CO2 

adsorption at low pressure. 

 

 

Fig. 3 N2 adsorption isotherms collected at 77 K (a) and resulting pore size distribution (b), 

CO2 adsorption isotherms collected at 273 K up to 760 torr (c) and resulting pore size 

distribution (d) for P-K2-TP (red), P-K3-TM (blue), P-K4-PM (olive) and P-K6-M (orange). 

Displayed lines connect experimental points. 
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Table 2. Textural properties and CO2 uptake values at various pressures for P-K2-TP, P-K3-
TM, P-K4-PM and P-K6-M. 

Sample 
BET s.a. 
(m2 g-1) 

Total pore 
volumea 
(cm3 g-1) 

Micropore 
volumeb 
(cm3 g-1) 

Ultramicropore 
volumec 
(cm3 g-1) 

CO2 uptake at 25 °Cd 
(mmol g-1) 

0.15 bar 1 bar 10 bar 

P-K2-TP 1210 0.51 0.44 0.27 1.3 4.0 8.2 

P-K3-TM 1533 0.63 0.57 0.32 1.3 4.4 10.1 

P-K4-PM 1390 0.64 0.49 0.26 1.1 3.9 9.5 

P-K6-M 1933 0.88 0.69 0.24 0.9 3.8 12.4 
a Measured at P/P0 = 0.9; b From t-plot applied to N2 isotherm; c Cumulative pore volume at pore width of 8 Å from pore size 
distribution derived from CO2 sorption at 273 K (Figure S5); d From high pressure CO2 isotherms. 
 
High pressure CO2 isotherms, measured up to 10 bar at 25 °C, show that P-K3-TM perform 

best at pressure below 1 bar, up-taking as much as 4.4 mmol g-1 of CO2, but P-K6-M is able 

to adsorb considerably more CO2 than any other sample at 10 bar (12.4 mmol g-1) (Fig. 4a 

and Table 2). These observations can be rationalised by noting that P-K3-TM has the largest 

amount of ultra-micropores, which are effective in adsorbing CO2 at low pressure, whereas P-

K6-M has the largest amount of large micropores, which require higher pressures to be 

covered. The different behaviour of P-K2-TP and P-K4-PM at low pressure could be 

explained invoking two concurring factors: the samples have similar ultra-micropore volume 

(0.27 cm3 g-1 vs 0.26 cm3 g-1, respectively, Table 2), even though P-K2-TP displays slightly 

higher cumulative pore volume below 5 Å (Fig. S5); in addition, P-K2-TP contains nearly 

twice as much oxygen than P-K4-PM (18.50% vs 11.22%, respectively), which could be 

beneficial to further increase the affinity of its surface for CO2. The remarkable performance 

displayed by P-K3-TM at low pressure can be attributed to a favourable combination of high 

ultra-micropore volume and oxygen content (14.02%). This is in line with some very recent 

works, which suggest that both narrow micropores and oxygenated functional groups are 

indeed necessary to increase the affinity for CO2 [46, 47]. This is likely due to the polar 

character conferred to small pores by oxygenated functionalities, where the adsorbate 

experiences intimate interactions with the pore walls, thus creating a favourable environment 

for the strongly quadrupolar and highly polarisable CO2 molecule. The fact that P-K3-TM 

(ultra-micropore volume = 0.32 cm3 g-1, oxygen content = 14.02%) performs slightly better 

than P-K2-TP (ultra-micropore volume = 0.27 cm3 g-1, oxygen content = 18.50%) at 0.15 bar 

points towards ultra-micropore volume being more important than oxygen content. In order 

to gain more insight into the adsorption behaviour of the samples, the isosteric heat of CO2 
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adsorption (Qst) was extracted from the CO2 adsorption isotherms collected at 25, 35 and 45 

°C, which were fitted with both the Dual Site Langmuir equation, applying the Clausius-

Clapeyron equation, and the Virial equation (Fig. S6-13, Tables S3-10). The trends of Qst 

derived from the Clausius-Clapeyron equation suggest that P-K2-TP and P-K3-TM could 

reach higher values than the other samples, but the fact that these grow as the loading 

increased up to about 2 mmol g-1 indicates that the model does not provide a completely 

realistic picture of the phenomenon, because the strongest adsorption sites (i.e. those with 

higher Qst) should be filled first and the Qst should gradually decrease at higher loadings 

(Fig. S14). The Qst trends obtained from the Virial equation are, instead, more canonical 

(Fig. 4c) and appear to confirm the beneficial effect of oxygen content: P-K2-TP and P-K3-

TM display Qst at zero coverage of 31 and 30 kJ mol-1, respectively, more than 2 kJ mol-1 

larger than that of P-K4-PM and more than 4 kJ mol-1 larger than that of P-K6-M. High 

pressure N2 isotherms, measured up to 10 bar at 25 °C, show that P-K3-TM uptakes the least 

amount of N2, whereas the other samples show very similar trends (Fig. 4b, Fig. S15-18, 

Tables S11-14). This suggests that the combination of large ultra-micropore volume and high 

oxygen content is beneficial in reducing the affinity for N2. This is in stark contrast with what 

observed for CO2 and can be rationalised based on the small quadrupolar moment and 

polarisability of the N2 molecule. The combination of high CO2 and low N2 uptake makes P-

K3-TM remarkably more selective than the other samples. The calculated CO2/N2 selectivity 

of P-K3-TM, according to the ideal adsorbed solution theory (IAST) for a 0.15:0.85 mixture 

at 1 bar total pressure, is 32, about twice as much as that displayed by the other samples 

(comprised between 12 for P-K6-M and 18 for P-K2-TP, Fig. 4d). Furthermore, the 

selectivity of P-K3-TM increases with pressure, reaching a value of 55 at a total pressure of 

10 bar, whereas the other samples stay roughly constant in the same pressure range. The 

combination of high CO2 uptake and high selectivity makes P-K3-TM a promising sorbent 

for application in a pressure swing adsorption separation process. When compared with other 

PCs reported in the literature, P-K3-TM displays CO2 uptake, at both 0.15 bar and 1 bar at 25 

°C, competitive with the best performing sorbents (Table S15). It is worth to note that all 

methods used to prepare PCs in Table S15 (see SI) rely on the alkali-metal activation through 

changing the ratio between precursor and activator and there is no stochiometric-based 

calculation. 
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Fig. 4 High pressure CO2 adsorption isotherms (with inset up to 1 bar) collected at 25 °C (a), 

high pressure N2 adsorption isotherms collected at 25 °C (b), isosteric heats of CO2 

adsorption (Qst, c) derived from Virial fitting and IAST selectivity in the 1-10 bar pressure 

range at 25 °C for a 0.15:0.85 CO2/N2 mixture (d) for P-K2-TP (red), P-K3-TM (blue), P-K4-

PM (olive) and P-K6-M (orange). Displayed lines are Dual Site Langmuir fits in (a) and 

Langmuir fits in (b). 

 

Effect of the charge balancing species 

Having observed that H3-TM could be pyrolysed with no need to neutralise with KOH, we 

sought to gain better understanding of the trimesate precursor system by investigating the 

properties of porous carbons derived from the same carboxylate species, but with different 

charge balancing species, i.e. H, Na and K. 

As can be seen from Fig. 5, the morphology of the three samples varies considerably: 

oval shaped particles with size < 100 nm are seen for P-H3-TM, P-Na3-TM takes the shape 

of vesicular particles, while P-K3-TM led to spherical particles, as already noted above. SEM 

and TEM figures are displayed in Fig. S19-20 (see SI). 
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Figure 5. STEM images of PH-3-TM, P-Na3TM, and P-K3-TM. 

 

CHN elemental analysis shows that the oxygen content found in the pyrolysed 

product is influenced by the nature of the cationic species and it increases in the order H < Na 

<< K (Table 3). This trend might be related with different interactions between the 

carboxylate groups and the positive species existing in the precursors, which become stronger 

as the size of the cation becomes larger, thus leading to retaining more oxygen upon 

pyrolysis. We are not aware of other studies employing similar precursors, therefore there is 

no reliable term of comparison against which our results can be benchmarked. 

 

Table 3. Elemental composition of porous carbons derived from trimesate precursors with 
different charge balancing species. 

Precursor Pyrolysed Product 

Elemental 
composition (wt%) O/C molar ratio 

(from EA) 
O/C molar ratio 

(from XPS) 
C H O 

 
P-H3-TM 97.00 0.21 2.79 0.021 0.233 

 
P-Na3-TM 93.23 0.67 6.10 0.049 0.083 

 
P-K3-TM 84.35 1.63 14.02 0.125 0.120 

 

The XPS spectra were fit and peaks assigned following the method described in the 

previous section (Fig. 6). For all samples the ratio between sp2 and sp3 carbon is in favour of 

the former. However, in going from P-H3-TM to P-Na3-TM to P-K3-TM the ratio decreases 

(Table S16). Although this dominance is not observed in the Raman spectroscopy (Fig. S21, 

see SI), where all the spectra are very similar, this is probably due to the high surface 

sensitivity achieved using XPS. From the O 1s spectra, the same three oxygen environments 

are observed, with no outstanding differences between different samples. It is worth noting 
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that P-H3-TM has the lowest O/C ratio from CHN analysis (0.021), but the highest one 

(0.233) from XPS, suggesting that majority of the oxygen is concentrated near its external 

surface (Table 3). 

 

 

Fig. 6 XPS spectra of the samples P-H3-TM, P-Na3-TM and P-K3-TM. High resolution 

spectra of (left) C 1s and (right) O 1s. 

 

N2 sorption analysis at 77 K reveals that P-H3-TM and P-Na3-TM have very similar 

isotherms, leading to determine BET surface areas of 681 m2 g-1 and 708 m2 g-1, respectively, 

much lower than that of P-K3-TM (1533 m2 g-1, Fig. 7a and Table 4). The same trend can be 

seen for total pore volume, micropore volume and ultra-micropore volume (Table 4). 

Accordingly, the pore size distribution (PSD) derived from the N2 isotherms at 77 K shows 

that P-K3-TM features a larger share of large micropores than P-H3-TM and P-Na3-TM (Fig. 

7b and Figure S22). The lower porosity of P-H3-TM and P-Na3-TM is indicative of less 

burn-off occurring during pyrolysis. CO2 sorption analysis at 273 K reveals that P-H3-TM 

and P-Na3-TM uptake considerably less CO2 than P-K3-TM at 760 torr (90 cm3 g-1 or 4.0 

mmol g-1 for P-H3-TM; 113 cm3 g-1 or 5.0 mmol g-1 for P-Na3-TM; 150 cm3 g-1 or 6.7 mmol 

g-1 for P-K3-TM; Fig. 7c). PSD derived from the CO2 isotherms at 273 K displays similar 
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pore structure, with P-K3-TM having a much larger share of ultra-micropores than the other 

two samples (Fig. 7d and Fig. S23 see SI).  

 

 

Fig. 7 N2 adsorption isotherms collected at 77 K (a) and resulting pore size distribution (b), 

CO2 adsorption isotherms collected at 273 K up to 760 torr (c) and resulting pore size 

distribution (d) for P-H3-TM (red), P-Na3-TM (blue) and P-K3-TM (olive). Displayed lines 

connect experimental points. 

 

Table 4. Textural properties and CO2 uptake values at various pressures for P-H3-TM, P-
Na3-TM and P-K3-TM. 

Sample 
BET 
s.a. 

(m2 g-1) 

Total pore 
volumea 
(cm3 g-1) 

Micropore 
volumeb 
(cm3 g-1) 

Ultramicropore 
volumec 
(cm3 g-1) 

CO2 uptake at 25 °Cd 
(mmol g-1) 

0.15 bar 1 bar 10 bar 

P-H3-TM 681 0.25 0.25 0.19 1.1 3.0 5.6 

P-Na3-TM 708 0.31 0.26 0.23 1.2 3.3 6.5 

P-K3-TM 1533 0.63 0.57 0.32 1.3 4.4 10.1 
a Measured at P/P0 = 0.9; b From t-plot applied to N2 isotherm; c Cumulative pore volume at pore width of 8 Å 
from pore size distribution derived from CO2 sorption at 273 K (Figure S18); d From high pressure CO2 
isotherms. 
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High pressure CO2 isotherms, measured up to 10 bar at 25 °C, show that P-K3-TM performs 

best over the whole pressure range (Fig. 8a and Table 4). This is due to the fact that P-K3-TM 

has the largest volume of micropores and ultra-micropores and the highest oxygen content of 

the series. The trends of Qst show that P-H3-TM has the highest value at zero coverage (32.5 

kJ mol-1), exceeding those of P-Na3-TM and P-K3-TM, both displaying 30 kJ mol-1 (Fig. 8c, 

Fig. S24-28, Tables S17-20). This observation is not straightforward to rationalise, as P-H3-

TM has both the lowest oxygen content and the lowest ultra-micropore volume. A possible 

explanation is that this sample features peculiar surface chemistry within the bulk that 

enhances the affinity for CO2 and escapes the range probed by XPS. High pressure N2 

isotherms show that P-K3-TM uptakes the least amount of N2, whereas the other samples 

show very similar trends (Fig. 8b). This further confirms that a combination of ultra-

micropores and high oxygen content is crucial to reduce the affinity to N2. Also in this case, 

the calculated CO2/N2 selectivity at 1 bar total pressure of P-K3-TM (32) is much higher than 

that displayed by the other samples in the same conditions (20) (Fig. 8d, Fig. S29-30, Tables 

S21-22 see SI). These results suggest that neutralisation with KOH is essential to produce a 

PC with a combination of high micropore volume and oxygen content, which performs much 

better than the products obtained from either direct pyrolysis of the polyacid precursor or 

pyrolysis of a NaOH neutralised precursor. 

 

 

Fig. 8 High pressure CO2 adsorption isotherms (with inset up to 1 bar) collected at 25 °C (a), 

high pressure N2 adsorption isotherms collected at 25 °C (b), isosteric heats of CO2 
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adsorption (Qst, c) derived from Virial fitting and IAST selectivity in the 1-10 bar pressure 

range at 25 °C for a 0.15:0.85 CO2/N2 mixture (d) for P-H3-TM (red), P-Na3-TM (blue) and 

P-K3-TM (olive). Displayed lines are Dual Site Langmuir fits in (a) and Langmuir fits in (b). 

 

Effect of the degree of deprotonation 

We found that also H6-M could be pyrolysed with no need to neutralise with KOH, which 

suggested that we could look at the effect of a different degree of deprotonation for the 

mellitic precursor. Therefore, we prepared one sample starting from a half deprotonated 

mellitic acid precursor, named P-H3K3-TM. 

A notable feature that emerges from STEM analysis is that, while P-H6-M and P-K6-

M resulted in elliptical and spherical particles of similar size (about 50 nm), partial 

deprotonation, resulting in P-H3K3-M, yielded ultrafine and transparent carbon sheets (Fig. 

9). SEM and TEM images for all samples can be found in Fig. S31-32 (see SI).  

 

 

Fig. 9 STEM images of P-H6-M, P-HK3-M, P-K6-M. 

 

CHN elemental analysis shows that the oxygen content found in the pyrolysed 

products depends on the degree of deprotonation and increases in the order K6 < H3K3 << 

H6 (Table 5). Thus, there is an evident difference between the retention of oxygen of TM and 

M precursors: while H3-TM retains much less oxygen than K3-TM, H6-M retains much more 

oxygen than K6-M. A notable difference between TM and M precursors is in the relative 

position of carboxylate groups: in TM, the three carboxylates are in meta position with 

respect to each other, whereas in M the six carboxylates are in ortho position with respect to 

each other. In the latter case, high temperature treatment can lead to condensation of adjacent 

carboxylates to form anhydrides, which are likely to stabilise the system, leading to higher 

oxygen retention during pyrolysis. When half of the carboxylates in M are deprotonated, 
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there is no possibility anymore for anhydrides to form, with consequent loss of most of the 

oxygen during pyrolysis. A similar explanation can be extended to the fully deprotonated 

mellitate precursor. XPS (Fig. 10) shows that, with increasing deprotonation, the oxygen 

tends to be more concentrated on the external surface (Table 5 and Table S23 see SI). Whilst 

the spectra of the deprotonated materials are similar to those discussed earlier in the 

manuscript, there are some differences for P-H3K3-M: this sample does not display the O-H 

feature in the O 1s spectrum. P-H6-M also differs in that there is no contribution to the C 1s 

spectrum from pi-pi* interactions. Raman spectra display very similar G-D ratio for all 

samples (Fig. S33, see SI). 

 

Table 5. Elemental composition of porous carbons derived from mellitate precursors at 
different deprotonation degrees. 

Precursor Pyrolysed Product 
Elemental analysis (wt%) O/C molar ratio 

(from EA) 
O/C molar ratio 

(from XPS) C H O 

 

P-H6-M 66.32 0.64 33.04 0.375 0.110 

 

P-H3K3-M 89.88 0.88 9.24 0.077 0.131 

 

P-K6-M 91.20 0.83 7.97 0.066 0.258 
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Fig. 10 XPS spectra of the samples P-H6-M, P-H3K3-TM and P-K6-M. High resolution 

spectra of (left) C 1s and (right) O 1s. 

 

N2 sorption analysis at 77 K reveals that P-H6-M and P-H3K3-M also display 

isotherms indicative of abundant microporosity, but their N2 uptake at saturation is 

considerably different, leading to determine BET surface areas of 1214 m2 g-1 and 2252 m2 g-

1, respectively (Fig. 11a and Table 6). Both these values are, in turn, quite different from that 

of P-K6-M (1933 m2 g-1, Fig. 11a and Table 6). The same trend can be seen for total pore 

volume, micropore volume and ultra-micropore volume (Table 6). The pore size distribution 

(PSD) derived from the N2 isotherms at 77 K shows that P-H3K3-M and P-K6-M feature a 

similarly large share of large micropores, much larger than P-H6-M, (Fig. 11b and Fig. S34 

see SI). CO2 sorption analysis at 273 K reveals that P-H3K3-M is able to uptake more CO2 

than the other samples at 760 torr (163 cm3 g-1 or 7.3 mmol g-1 for P-H3K3-M; about 126 cm3 

g-1 or 5.6 mmol g-1 for P-H6-M and P-K6-M; Fig. 11c). PSD derived from the CO2 isotherms 

at 273 K displays similar pore structure, with P-H3K3-M having a much larger share of ultra-

micropores than the other two samples (Fig. 11d and Fig. S27, see SI).  
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Fig. 11 N2 adsorption isotherms collected at 77 K (a) and resulting pore size distribution (b), 

CO2 adsorption isotherms collected at 273 K up to 760 torr (c) and resulting pore size 

distribution (d) for P-H6-M (red), P-H3K3-M (blue) and P-K6-M (olive). Displayed lines 

connect experimental points. 

 

Table 6. Textural properties and CO2 uptake values at various pressures for P-H6-M, P-
H3K3-M and P-K6-M. 

Sample 
BET 
s.a. 
(m2 g-1) 

Total pore 
volumea 
(cm3 g-1) 

Micropore 
volumeb 
(cm3 g-1) 

Ultramicropore 
volumec 
(cm3 g-1) 

CO2 uptake at 25 °Cd 
(mmol g-1) 

0.15 bar 1 bar 10 bar 

P-H6-M 1214 0.54 0.43 0.25 1.4 4.2 8.4 

P-H3K3-M 2252 0.94 0.85 0.31 1.0 4.0 12.2 

P-K6-M 1933 0.88 0.69 0.24 0.9 3.8 12.4 
a Measured at P/P0 = 0.9; b From t-plot applied to N2 isotherm; c Cumulative pore volume at pore width of 8 Å 
from pore size distribution derived from CO2 sorption at 273 K (Figure S27); d From high pressure CO2 
isotherms. 
 

High pressure CO2 isotherms, measured up to 10 bar at 25 °C, show that P-H6-M 

performs best in the pressure range below 1 bar (Fig. 12a and Table 6). P-K6-M and P-H3K3-

M display similar trends, with the latter performing slightly better at low pressure. We 
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attribute this to the fact that P-H6-M has by far the largest oxygen content (33.04%) of the 

series, most of which is concentrated in the bulk and probably compensates its relatively low 

ultra-micropore volume. This is corroborated by the value of Qst for this sample, which tops 

at 32 kJ mol-1 at zero coverage, 6 kJ mol-1 higher than P-K6-M and P-H3K3-M (Fig. 12c, Fig. 

S36-40, Tables S24-27 see SI). High pressure N2 isotherms show that all the samples uptake 

similar amounts of N2 (Fig. 12b, Fig. S41-42, Tables S28-S29 see SI). Thanks to the higher 

CO2 uptake at low pressure, the calculated CO2/N2 selectivity of P-H6-M at 1 bar total 

pressure (18) is 50% higher than that displayed by the other samples (12) (Fig. 12d). These 

results suggest that a high oxygen content in PCs is mainly beneficial at low partial pressures, 

affording improved uptake and selectivity. Partial neutralisation of the precursor affords a 

different product from full neutralisation in terms of textural properties, but with similar 

oxygen content, even though the distribution of this oxygen within the sorbent changes. 

However, in terms of CO2 capture performance the main differences are seen when moving 

from the product of direct pyrolysis of the polyacid precursor to those obtained by pyrolysis 

of activated precursors. 

 

 

Fig. 12 High pressure CO2 adsorption isotherms (with inset up to 1 bar) collected at 25 °C 

(a), high pressure N2 adsorption isotherms collected at 25 °C (b), isosteric heats of CO2 

adsorption (Qst, c) derived from Virial fitting and IAST selectivity in the 1-10 bar pressure 
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range for a 0.15:0.85 CO2/N2 mixture (d) for P-H6-M (red), P-H3K3-M (blue) and P-K6-M 

(olive). Displayed lines are Dual Site Langmuir fits in (a) and Langmuir fits in (b). 

 

Conclusion 

In this work, we studied the morphology, chemical composition, textural properties and 

CO2/N2 separation performance of PCs obtained by pyrolysis of benzene polycarboxylate 

precursors. Carboxylic groups provide an opportunity to produce oxygen doped PCs by 

employing stoichiometric amounts of hazardous alkali metal based activating agents. In all 

cases, PCs with high share of micropores were obtained, whereas ultra-microporosity and 

oxygen content proved to be dependent on the nature of the precursor. Systematic 

investigation of three parameters was undertaken to understand their effect on the properties 

of the resulting PCs: (i) number of carboxylate groups in the KOH neutralised precursor, 

ranging from two to six; (ii) nature of the charge balancing species in a trimesate precursor, 

namely H, Na and K; (iii) degree of deprotonation in a mellitate precursor. We found that 

increasing the number of carboxylic groups - and therefore the amount of K - in the precursor 

led to decreasing oxygen content and ultra-microporosity, accompanied by lower uptake of 

CO2 at low pressure and CO2/N2 selectivity. Changing the cation in the trimesate precursor 

showed that K+ affords a PC with higher oxygen content and ultra-microporosity (P-K3-TM), 

resulting in better separation performance, than H+ and Na+. The main effect of the degree of 

deprotonation was observed when moving from a fully protonated mellitate (P-H6-M) to a 

half deprotonated one (P-H3K3-M). Overall, the best performance, in terms of both CO2 

uptake at 0.15 and 1 bar and CO2/N2 selectivity, was observed for P-K3-TM, which features 

the third highest oxygen content and highest ultra-micropore volume of all the investigated 

samples. High oxygen content (as exemplified by P-H6-M) or high ultramicroporosity (as 

exemplified by P-H3K3-M) alone were not enough to boost both CO2 uptake and CO2/N2 

selectivity. This indicates that the interplay between ultra-microporosity and oxygen content 

matters more than the two features taken singularly. P-K3-TM shows competitive 

performance with other PCs reported in the literature and activated using excess of alkali 

metal based activating agents. Moreover, it displays a singular increase in CO2/N2 selectivity 

with increasing pressure, reaching a maximum of 55 at 10 bar, which makes it an attractive 

sorbent for PSA. 
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