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Abstract

Background: Since cartilage-derived stem/progenitor cells (CSPCs) were first identified in articular cartilage using
differential adhesion to fibronectin, their self-renewal capacity and niche-specific lineage preference for chondrogenesis
have propelled their application for cartilage tissue engineering. In many adult tissues, stem/progenitor cells are
recognised to be involved in tissue homeostasis. However, the role of nasoseptal CSPCs has not yet been elucidated.
Our aim was to isolate and characterise nasoseptal CSPCs alongside nasoseptal chondrocyte populations and
determine chondrogenic capacity.

Methods: Here, we isolated nasoseptal CSPCs using differential adhesion to fibronectin and assessed their colony
forming efficiency, proliferation kinetics, karyotype and trilineage potential. CSPCs were characterised alongside non-
fibronectin-adherent nasoseptal chondrocytes (DNCs) and cartilage-derived cells (CDCs, a heterogenous combination
of DNCs and CSPCs) by assessing differences in gene expression profiles using PCR Stem Cell Array, immunophenotype
using flow cytometry and chondrogencity using RT-PCR and histology.

Results: CSPCs were clonogenic with increased gene expression of the neuroectodermal markers NCAM1 and N-Cadherin,
as well as Cyclins D1 and D2, compared to DNCs. All three cell populations expressed recognised mesenchymal stem cell
surface markers (CD29, CD44, CD73, CD0), yet only CSPCs and CDCs showed multilineage differentiation potential. CDC
populations expressed significantly higher levels of type 2 collagen and bone morphogenetic protein 2 genes, with greater
cartilage extracellular matrix secretion. When DNCs were cultured in isolation, there was reduced chondrogenicity and higher
expression of type 1 collagen, stromal cell-derived factor 1 (SDF-1), CD73 and CD90, recognised markers of a fibroblast-like
phenotype.
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CSPCs is proposed based on SDF-1 signalling.

Stem cell niche, Chondrogenic niche

Conclusions: Fibronectin-adherent CSPCs demonstrate a unique gene expression profile compared to non-fibronectin-
adherent DNCs. DNCs cultured in isolation, without CSPCs, express fibroblastic phenotype with reduced chondrogenicity.
Mixed populations of stem/progenitor cells and chondrocytes were required for optimal chondrogenesis, suggesting that
CSPCs may be required to retain phenotypic stability and chondrogenic potential of DNCs. Crosstalk between DNCs and

Keywords: Tissue-specific stem cell, Cartilage tissue engineering, Chondroprogenitor, Cartilage stem cell, Nasoseptal cartilage,

Introduction

The ability to successfully tissue engineer cartilage would
have a significant impact on the ability to reconstruct car-
tilaginous defects and thereby restore function. Contem-
porary cartilage tissue engineered implants, often using
unrelated adult stem cell sources, do not produce stable,
physiologically relevant cartilage [1, 2]. Diseases with great
health economic and physical burdens such as osteoarth-
ritis, propagated by the low self-repair properties of cartil-
age, have stimulated research into articular cartilage tissue
engineering [3-5]. There has been a wide range of allo-
plastic, autologous and composite attempts to produce
cartilage implants, which have been associated with a var-
iety of complications including inflammation, resorption,
extrusion, infection and migration [6—8]. Cell integration
in the form of chondrocytes has been used to reduce com-
plication rates with mixed results [6, 9-12]. The use of
stem cells in cartilage tissue engineering was a major de-
velopment in the field. Although mesenchymal stem cells
(MSCs) from unrelated sources including the bone mar-
row, adipose tissue and skeletal muscle demonstrate chon-
drogenic potential, the majority of studies have shown
that these MSCs often lead to fibrotic and calcified cartil-
age with poor mechanical properties and low physiological
relevance [10, 13-16].

Since they were first identified in the articular cartilage
using differential adhesion to fibronectin [17-20], cartilage-
derived stem/progenitor cells (CSPCs) have been added to
the repertoire for cartilage tissue engineering [21-24]. CPSCs
have been characterised by convention of the International
Society of Cellular Therapy (ISCT) based on the demonstra-
tion of plastic adherence, multipotency and positivity for
stem-cell-related surface markers [17, 19, 25, 26]. As a clono-
genic, renewable cell source derived from the specific tissue
that requires replacement, CSPCs are of interest due to their
niche-specific lineage preference for chondrogenesis [27-29].

In the present study, we isolated cells from human
nasoseptal cartilage due to relative ease of access for bi-
opsy and favourable donor site morbidity versus articular
cartilage [30]. This donor site offers several other advan-
tages including the ability of nasal chondrocytes to adapt
to heterotopic transplantation to articular sites and po-
tent chondrogenic potential which is hyaline specific

[31-33]. Although previous studies have suggested a role for
isolated CSPCs for cartilage tissue engineering, none have
characterised them alongside chondrocytes or in mixed pop-
ulations to investigate their possible role in phenotype modu-
lation and chondrogenesis. As seen in vivo, the tissue
microenvironment and stem cell niche plays a significant role
in contributing to the phenotypic stability of cells and chon-
drogenesis [34]. The aim of this study was therefore to fully
characterise heterogenous cell populations in nasoseptal car-
tilage. Cartilage stem/progenitor cells (CSPCs) were isolated
using differential adhesion to fibronectin and characterised
alongside differentiated nasoseptal chondrocytes (DNCs) and
cartilage-derived cells (CDCs, a combination of DNCs and
CSPCs). We demonstrate that heterogenous cell populations
have greater chondrogenic potential than the use of stem/
progenitor cells alone, indicating important crosstalk that
may contribute to phenotypic stability.

Materials and methods

Isolation of human nasoseptal cartilage stem/progenitor
cells (CSPCs)

Adult human nasoseptal cartilage was obtained from
healthy donors undergoing septorhinoplasty after
obtaining informed consent at Singleton and Morris-
ton Hospitals, Swansea, UK. All procedures were ap-
proved by the ABM University Health Board (IRAS
ID 99202). Surface fibrous tissue was removed, and
the remaining blood was washed away using Dulbec-
co’s modified Eagle medium (DMEM, Thermofisher
Scientific, Waltham, MA, USA) prior to mincing the
cartilage into ~ 1-mm?® pieces. Sequential tissue diges-
tion was performed with gentle agitation using 2 mg/
ml pronase (Roche, Basel, Switzerland) solution for
40 min and 2.4 mg/ml collagenase (Sigma-Aldrich, St.
Louis, MO, USA) for 16-18h, all at 37°C [35]. The
enzymatic solutions were prepared using DMEM sup-
plemented with 1% penicillin-streptomycin solution
(PS, Thermofisher Scientific)) 1 mM D-glucose solu-
tion (Thermofisher Scientific) and 0.1% minimum es-
sential medium (MEM) non-essential amino acids
(NEAA, Thermofisher Scientific). Digested tissue was
filtered through a 40-um cell strainer (VWR, Radnor,
PA, USA) and centrifuged for 5min at 500g. Cells
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were re-suspended in chondro-medium (CM, DMEM
supplemented with 10% foetal bovine serum (FBS,
Thermofisher Scientific), 1% PS, 1 mM D-glucose and
0.1% MEM NEAA) and plated (1) in culture grade
plastic surface (i.e. CDCs) or (2) in fibronectin-coated
surface using a previously reported protocol [18, 20,
29, 36]. Briefly, 6-well plates (Sigma-Aldrich) were
coated with 10 mg/ml fibronectin (Sigma-Aldrich) in
Dulbecco’s phosphate-buffered saline (DPBS, pH7.4,
Thermofisher Scientific) containing 0.5 mM magne-
sium chloride (MgCl,) and 0.9 mM calcium chloride
(CaCl,). Cells were seeded at low density (2000 cells/
well) in CM and incubated for 20 min in standard
culture conditions (i.e. 5% CO, and 37°C). Non-
adherent cells were collected and seeded on new non-
coated 6-well plates (i.e. DNCs). Fresh CM was added
to the fibronectin-adherent CSPCs. Once confluent,
all three cell populations were passaged on culture
grade plastic under standard culture conditions and
the same cell density, with medium changes every 2—
3 days. Cells were trypsinyzed (0.05% trypsin-EDTA,
Thermofisher Scientific) for 5min at 37°C, centri-
fuged at 587¢ for 5min, resuspended in fresh CM
and re-seeded at 6.7 x 10> cells/cm?. Cells were kept
in culture under standard conditions up to passage 13
(P13).

Growth kinetics of CDCs, DNCs and CSPCs

Short-term cell proliferation was determined using
the RTCA iCELLigence™ system (ACEA Biosciences,
San Diego, CA, USA). P2 cells were seeded in 8-well
E-plates at 10,000 cells/well and CM under standard
culture conditions. Cell attachment and proliferation
were monitored in real time based on cellular im-
pedance. Wells containing CM only were used as
negative controls. The cell index (CI) is a function
of the cell number and ratio of cells at different time
intervals; CI =0 when there is no cell adhesion. The
CI in a RTCA system is the result of the impedance
induced by adherent cells to the electron flow. CI is
calculated as follows: CI = (impedance at time point
n-impedance in the absence of cells)/nominal imped-
ance value. Measurements for CI were taken every
minute for the first 2 h and then every hour for 24h
for all three cell populations (CDC, DNC and
CSPC).

Long-term proliferative capacity in culture was deter-
mined by measuring cumulative population doublings
(PD) at each cell passage [37]. Cell growth was deter-
mined between P1 and P13 by direct cell counts using
trypan blue exclusion method. PDs were calculated using
the formula below where N represents cells harvested/
cells seeded and used to plot growth curves.
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PD = loglO(N)/ logl0(2)

Colony forming efficiency (CFE) assay of CSPCs

CSPCs were seeded at PO at 200 cells/cm? and cultured
in standard culture conditions with medium changes
every 2-3days. After 14 days, fibroblast-like colony
forming units (CFU-F) were counted under an optical
microscope. A colony was defined as > 32 cells [18]. Col-
ony forming efficiency (CFE) was calculated as a per-
centage of CFU-F from the initial number of cells
seeded [36, 38] and used as a predictor for the propor-
tion of CSPCs within the original nasoseptal cartilage
cell population.

Trilineage differentiation of CDCs, DNCs and CSPCs

For osteogenic and adipogenic differentiation, cells were
seeded (osteogenic, 20,000 cells/well and adipogenic, 40,
000 cells/well) onto 12-well plates (Sigma-Aldrich) and
cultured in CM for 3 days under standard culture condi-
tions. The medium was then changed to either StemPro™
osteogenesis differentiation medium (Thermofisher Scien-
tific) or StemPro™ adipogenesis differentiation medium
(Thermofisher Scientific). Cultures were maintained for
21 days under standard culture conditions with medium
changes every 2—3 days. For chondrogenic differentiation,
500,000 cells were resuspended in 1.5ml Eppendorf in
StemPro™ chondrogenesis differentiation medium (Ther-
mofisher Scientific) and centrifuged for 5 min at 783g. Pel-
lets were cultured for 21days under standard culture
conditions with medium changes every 2—3 days. Negative
control samples of each cell type were maintained in CM.
After 21days, cells were fixed in 4% paraformaldehyde
(PFA, Alfa Aesar, Haverhill, MA, USA) for 30 min. Osteo-
genesis and adipogenesis were confirmed using 2% Ali-
zarin Red S and 0.3% Oil Red O, respectively. A 1% Alcian
blue solution prepared in 0.1 N hydrochloric acid (HCI)
was used to confirm the presence of glycosaminoglycans
(GAGs) in chondrogenic differentiation. Stains were visua-
lised using phase-contrast AmScope MD35 microscope
(AmScope, Irvine, CA, USA).

Histological staining

Cells were fixed in 4% PFA for 30 min and washed in
phosphate-buffered saline (PBS, Thermofisher Scien-
tific). Cells were stained with 1% Alcian blue (TCS Bio-
sciences, Buckingham, UK) solution for 15min and
washed with water, while others were stained with 0.1%
toluidine blue (TCS Biosciences) solution in water for 3
min following wash with water. For safranin-O stain,
cells were exposed to 0.1% fast green (TCS Biosciences)
solution for 10 min, immersed in 1% acetic acid for 10s
(Sigma-Aldrich), stained with 0.1% safranin-O (TCS Bio-
sciences) for 20 min and washed with water. All stains
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were visualised using phase-contrast AmScope MD35
(AmScope).

Flow cytometry

CDCs, DNCs and CSPCs from P1 and P8 were immuno-
phenotypically characterised using flow cytometry and a
panel of mouse anti-human monoclonal antibodies
against CD29, CD34, CD44, CD45, CD56, CD73 and
CD90 (all from Biolegend, Supplementary Table S1). P1
and P8 cells were used to assess phenotype at both early
and late passages. Unstained cell populations were used
as controls. A minimum of 10,000 events were collected
for each sample, and data was acquired using a Novo-
cyte® flow cytometer (ACEA Biosciences) and analysed
by FlowJo® software (FlowJo, LLC, Ashland, OR, USA).
The geometric mean fluorescence intensity (MFI) for
each cell surface marker was used as quantitative meas-
ure of expression relative to the unstained controls to
allow the level of expression to be compared between
the three cell populations. Percentage of cells expressing
each cell surface marker was used as a further quantita-
tive measure to allow comparisons between the three
cell populations.

RNA extraction, quantitative real-time PCR and PCR array
Total RNA was extracted using Trizol (Thermofisher Sci-
entific) and chloroform (Sigma-Aldrich) and purified
using RNeasy Mini Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. RNA concentration
was determined using NanoDrop (Thermofisher Scien-
tific) and converted into ¢cDNA using Superscript IV re-
verse transcriptase (Thermofisher Scientific) following
manufacturer’s protocol. Quantitative PCR (qPCR) was
completed using Human Stem Cell RT? Profiler™ PCR
Array (Qiagen, Supplementary Figure S1) according to the
manufacturer’s protocol and using iCycler Real-Time PCR
system (Bio-rad, Hercules, CA, USA). Gene expression
was quantified using GeneGlobe Data Analysis Center
software (Qiagen) and normalised to RPLPO, using CDCs
as a control. A volcano plot was generated to compare
CSPCs and DNCs.

Cytogenetic analysis

Karyotyping was performed through a collaboration with
the Institute of Medical Genetics from Cardiff and Vale
University Health Board. Cells from passage 1 and passage
4 from 5 human donors were used to investigate whether
prolonged expansion during in vitro culture causes any
gross karyotype changes that may warrant further geno-
toxicology studies, with a view to autologous cartilage-
derived cells being utilised for tissue engineering in the fu-
ture. Passage 4 was chosen because it provides enough
cells for seeding into 3D scaffolds and there are several re-
ports in the literature that CSPCs can maintain capacity to
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be reprogrammed into chondrocytes even after passage 4
[39, 40]. Briefly, cells at 70% confluence were exposed
overnight and under standard culture conditions to Bio-
Whittaker® Amniochrome II medium (Lonza, Basel,
Switzerland) containing 37.5 pg/ml of 5'-Bromo-2'-deox-
yuridine (BrdU, Sigma-Aldrich) and 0.6 pg/ml Colcemid
(Invitrogen, Carlsbad, CA, USA). Cultures were washed
with PBS, trypsinised using trypsin/EDTA solution (Life
Technologies, Carlsbad, CA, USA) for 2min and resus-
pended in a 1:10 FBS (Thermofisher Scientific) and sterile
water solution. Cell suspensions were fixed by adding 3:1
methanol-acetic acid fixative (VWR, BDH Chemicals)
followed by centrifugation at 487¢ for 10 min (performed
twice) and 2:1 methanol-acetic acid followed by another
centrifugation. Pellets were resuspended in 2:1 methanol-
acetic acid fixative, spread on slides and dried at a relative
humidity of 50%. For Giemsa banding (GTG-banding),
slides (aged 3-5 days at room temperature) were placed in
trypsin solution for 5-10s, rinsed in 3 changes of normal
saline and stained in 10-20% RA Lamb Giemsa stain
(Thermofisher Scientific) in phosphate buffer pH 6.8
(VWR, BDH Chemicals) for 1.5 min. After rinsing in 3
changes of phosphate buffer pH 6.8, slides were dried and
mounted in Entellan mountant (Merck, Kenilworth, NJ,
USA).

Statistical analysis

Statistical data are represented as means + standard
error of the mean (SEM) unless otherwise indicated.
One-way ANOVA was applied to calculate p values.
Statistical differences between groups for the same ex-
perimental set were determined using Tukey post hoc
test. Statistical analysis was performed using Minitab® 18
(Minitab, Inc., State College, PA, USA). A p value <0.05
was considered significant.

Results

CSPCs show increased expression of CCND1, CCND2,
NCAM1 and CDH2 genes compared to DNCs

CSPCs were isolated using differential adhesion to fibro-
nectin from fifteen patient donors following routine sep-
torhinoplasties (Fig. 1). Cells which were not adhered to
fibronectin were referred to as DNCs, and the original
cell population containing both populations were re-
ferred to as CDCs. Nasoseptal cartilage samples (292 +
124 mg) yielded 11,022 cells/mg of tissue with over 90%
viability.

Genetic and flow cytometric profiles of the
fibronectin-adherent (CSPC) and non-adherent (DNC)
cell populations were examined at P1. There is an in-
crease in the expression of neural cell adhesion molecule
1 (NCAM1/CD56) by 2.2-fold (p value <0.01) and N-
cadherin (CDH2) by 1.7-fold (p value 0.001) in CSPC
versus DNC populations. Proliferative genes, cyclin D1
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Fig. 1 Isolation of nasoseptal cartilage-derived cells. a Gross morphology of nasoseptal cartilage taken from patients undergoing septorhinoplasty.
Scale bar, 4 mm. b, ¢ Safranin-O staining of nasoseptal cartilage indicating the fibrous tissue removed (dashed line) prior to enzymatic digestion.
Scale bars, 100 um. d Schematics of the isolation of CDC, DNC and CSPC populations. Briefly, at day 1, the tissue is subjected to enzymatic digestion for 16-18
h. CDCs are seeded in culture grade plastic while the remaining cells are separated based on fibronectin adherence: after 20 min on fibronectin, the non-
adherent population (DNCs) is transferred to a separate culture plate. Once confluent all three cell populations were passaged on culture grade plastic under

standard culture conditions and the same cell seeding density

(CCND1I) and cyclin D2 (CCND2), were also shown to
be significantly upregulated in CSPCs compared to
DNCs (p<0.05) (Fig. 2a). Additionally, a decrease in
type 1 collagen (COL1A1) expression (p value <0.01)
was observed (Fig. 2a). A hierarchical clustering dendro-
gram analysis of a heat map of mean 2-ACt values for
selected genes from PCR array revealed that the signifi-
cantly upregulated genes NCAM1, CDH2, CCND1 and
CCND?2 in CSPCs cluster together (Fig. 2b). Both CSPC
and DNC populations demonstrated cell surface expres-
sion of CD56, recognised MSC markers (CD29, CD44,
CD73, CD90) and a lack of haematopoietic markers
(CD34, CD45) (Fig. 2c¢).

CSPCs are a slow proliferating clonogenic subpopulation
from human nasoseptal cartilage

CSPCs were demonstrated to be clonogenic with an
average CFE of 3.2+ 0.15 (Fig. 3a), suggesting 3.2% of
cells in the original isolated nasoseptal cell population
are CSPCs. All three cell populations showed compar-
able long-term growth curves and achieved at least 20
population doublings over 13 passages (over 200 days in
culture). The slope of the CDC growth curve appeared
to reduce after passage 9 potentially indicating senes-
cence (Fig. 3b). The impedance-based proliferation assay
demonstrated that the DNC population had greater

proliferative capacity by reaching a significantly higher
maximal cell index compared to the slower-cycling
CSPC population (0.80 £0.05 and 0.58 + 0.04, respect-
ively, p <0.001, Fig. 3c). Karyotype analysis indicated no
chromosomal abnormalities for all three cell populations
after four passages in culture (P1 vs P4) and thereby
feasibility for in vitro expansion towards cartilage tissue
engineering applications (Fig. 3d). As part of the genes
evaluated by PCR array, CCND2 was shown to be sig-
nificantly downregulated in DNCs (8.3-fold, p <0.001)
and CSPCs (5.3-fold, p<0.001) with respect to CDCs
(Fig. 4a).

CDCs demonstrate greater chondrogenicity

The chondrogenic potential of the three populations was
investigated at the gene and protein level. PCR arrays
showed CDCs expressed significantly higher levels of
type 2 collagen (COL2A1) than DNC and CSPC popula-
tions (Fig. 4a). Interestingly, COL2A1 was significantly
downregulated in CSPC subpopulation by 24-fold (p <
0.01) with respect to CDCs and 5.5-fold (p < 0.05) with
respect to DNCs (Fig. 4a). Bone morphogenetic protein-
2 (BMP2) expression has exhibited significant downreg-
ulation in DNCs and CSPCs by 2.2-fold and 2.3-fold re-
spectively compared to CDCs (p<0.001, Fig. 4a).
However, aggrecan (ACAN) and SOX9 mRNA
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Flow cytometry characterisation of cell surface markers on CSPCs and DNCs

expression is observed to be expressed at similar levels
in all cell types (Fig. 4a). In contrast, at the protein level,
CDCs are observed to have enhanced glycosaminoglycan
secretion as evident by the intense Alcian blue (Fig. 4b, e
and h) and safranin O (Fig. 4¢, f and i) staining in com-
parison to DNC and CSPC populations. While the tolui-
dine blue staining is of similar intensity in all three cell
populations, the distribution of the staining is sparser in
the DNCs and CSPCs when compared to the CDC
population (Fig. 4d,g and j).

CDCs and CSPCs demonstrate multilineage potential

in vitro

The ability of chondrocyte populations to commit to tri-
lineage differentiation was compared in vitro (Fig. 5a—i).
CDC and CSPC populations demonstrated trilineage
commitment whereas DNCs have limited lineage plasti-
city. DNC cultures possessed no osteogenic and poor
adipogenic potential (Fig. 5e, h) as evident by limited
staining with Alizarin red and Oil Red O respectively.
All three subpopulations (CDCs, DNCs and CSPCs)
stained positively for Alcian blue following chondrogenic
differentiation in pellet culture (Fig. 5a—c).

DNCs commit to a fibroblastic lineage in the absence of
CSPCs

Early passage (P1) nasoseptal cells were further evaluated
to determine if the cultured cell populations present dis-
tinct immunophenotype profiles (Fig. 5j, k and Table 1).
CD29 expression was shown to be at a similar level across
all cell types, showing no significant differences (> 165
MEF]I, Fig. 5k and > 97%, Table 1). CD44 was significantly
downregulated in CSPCs in comparison to DNCs with a
MFI fold decrease of 2.1 (p<0.05, Fig. 5k). Although
CSPCs present lower CD44 MFI than CDCs (6.81 and
9.92 MF], respectively, p > 0.05, Fig. 5k), there is higher ex-
pression percentage in CSPCs (83.9% and 70.4%, respect-
ively, p > 0.05, Table 1), indicating that this population has
more cells expressing CD44, but those expressing it have
fewer receptors present. The expression of CD56 is signifi-
cantly higher in DNCs and CSPCs when compared to
CDCs (2.1 and 1.7 MFI fold increase, respectively, p <
0.05, Fig. 5k and 51.3% and 47.9% increase, respectively,
p <0.0001, Table 1).

DNCs showed a significantly higher MFI for CD73
and CD90 when compared to the two other cell popula-
tions (2.1- and 1.5-fold increase for CD73 when com-
pared to CDCs and CSPCs, respectively, p <0.05, and
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14.2- and 6.3-fold increase for CD90 when compared to
CDCs and CSPCs, respectively, p < 0.001, Fig. 5k). CD73
showed over 99% expression in all cell populations, with
DNCs showing higher expression, which was not found
to be significant (p > 0.05, Table 1). On the other hand,
CD90 expression was significantly increased in DNCs
when compared to the other two cell populations (6.6%
increase compared to CDCs, p<0.0001, and around
0.4% increase compared to CSPCs, p < 0.05, Table 1).

Other markers indicative of fibroblastic lineage were
found to be elevated in the DNC population including
COL1A1 (8.8-fold with respect to CDCs p < 0.001 and 5-
fold with respect to CSPCs p < 0.001, Fig. 4a) and C-X-C
motif chemokine 12 (CXCL12) (6.8-fold with respect to
CDCs p<0.001 and 5.3-fold in comparison to CSPCs
p <0.01, Fig. 4a). MSC markers have been investigated at
a later passage (P8) to determine the effects of culturing
DNC and CSPC populations separately; however, there
were no significant changes across cell populations indi-
cating that these immunophenotypic differences are not
maintained after prolonged culture (Fig. 5I).

Discussion
To date, no optimal cell source has been identified for
cartilage tissue engineering purposes. The aneural and

avascular nature of cartilage tissue should theoretically
make it an easier tissue to replicate compared to other
specialised tissue types with more heterogenous func-
tions. However, recapitulating native, functional cartilage
remains a challenge [2] and has therefore been the focus
for tissue engineering research for many years [41, 42].
Chondrocytes are well documented to undergo fibro-
blastic differentiation after prolonged expansion in trad-
itional monolayer culture with loss of chondrogenicity
[43, 44]. MSCs tend to produce calcified or hypertrophic
cartilage [10, 13, 14]. Cartilage-specific stem cells have
shown diminished capacity to retain optimal chondro-
genic potential when cultured in isolation [45, 46], exhi-
biting low chondrogenic markers and failing to form a
functional matrix in vivo [47-50]. Nevertheless, it is well
established that almost all connective tissues contain
tissue-specific stem/progenitor cells which have a signifi-
cant role in tissue homeostasis and maintenance [51,
52]. Recent studies also speculate that tissue-specific
stem/progenitor cells help limit dedifferentiation and
maintain phenotypic stability in other tissue types by
modulating the local environment [52].

In this study, we successfully isolated CSPCs from hu-
man nasoseptal cartilage and characterised them along-
side DNC and CDCs. Trilineage differentiation analysis
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Fig. 4 Chondrogenic potential of CDC, DNC and CSPC populations. a Relative gene expression of chondrogenic-, proliferative- and progenitor-
related genes in CDCs, DNCs and CSPCs. Expression levels were normalised to the level of RPLPO, and relative expression was calculated against
CDCs. CCND2, cell cycle cyclin D2; BMP2, bone morphogenetic protein 2; COLTAT, type 1 collagen; COL2AT, type 2 collagen; ACAN, aggrecan;
CXCL12, C-X-C motif chemokine 12; NCAMT, neural cell adhesion molecule 1; SOX9, sex-determining region Y box 9. Results as mean + SEM from 6
independent experiments (n = 6) in technical triplicates, *p < 0.05, **p < 0.01 and ***p < 0.001. b-j Histology staining of b—d CDCs, e-g DNCs and
h-j CSPCs at P2 using b, e and h Alcian blue; ¢, f and i Safranin-O; and d, g and j toluidine blue. Images are representative from 3 independent

indicated that the multilineage potential observed in
CDCs was due to the presence of the CSPC subpopula-
tion, evident from the absence of osteogenic and adipo-
genic staining in the DNC population. DNCs showed
higher proliferation rates than CSPCs, which is in line
with the literature addressing the slow proliferation rates
of stem/progenitors cultured separately [53]. Interest-
ingly, Cyclin D1 and Cyclin D2 gene expression was
greater in CSPCs despite their lower proliferation rates.
The differentiation fate of stem cells is tightly tied to cell
cycle regulation and cyclins D1 and 2, whose activity is
required for cell cycle G1/S transition, has been associ-
ated with stem/progenitor cells from a variety of tissue
types and can control cell fate and differentiation
through transcriptional networks and epigenetic modi-
fiers [54, 55].

All cell populations were positive for recognised MSC
markers including CD29, CD44, CD73 and CD90 while
being negative for the haematopoietic markers CD34
and CD45. To our knowledge, this is the first study to
report CD56/NCAMI expression in all subpopulations
of adult chondrocytes which may be attributed to the
previously reported neuroectodermal developmental ori-
gin of nasoseptal cartilage in the literature [32]. NCAM1

has been shown to be expressed in embryonic chondro-
progenitor cells and mediates cell-cell adhesion during
the early stages of cartilage development [56, 57]. How-
ever, NCAM1 was not previously thought to be
expressed in adult chondrocytes, where the primary in-
teractions were believed to be integrin mediated cell-
matrix contacts [58]. Accumulating evidence suggests
that biomechanical signals originating from cell-cell ad-
hesion are critical for stem cell lineage specification, and
studies have suggested CD56/NCAMI1 as a putative
marker of connective tissue stem/progenitor cells [59—
61], but further work is required to determine whether it
is a marker of stemness or dedifferentiation in nasosep-
tal chondrocytes. It may be that in the mixed CDC pop-
ulations chondrocytes remain in a more differentiated
state hence lower MFI and percentage CD56/NCAM1
expression, in keeping with its role during early conden-
sation stage of cartilage development [53].

Our findings suggest that CSPCs may act as a sup-
porter cell to stabilise the chondrogenic phenotype of
DNCs. When cultured in isolation, DNCs and CSPCs
demonstrated significantly reduced gene expression of
chondrogenic markers such as type 2 collagen as well as
proteoglycan histological staining compared to the
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mixed CDC population. DNCs and CPSCs also showed
significant downregulation of BMP2, which is recognised
in the literature for its requirement in chondrogenic
matrix synthesis [62]. Interestingly, DNCs adopt a fibro-
blastic phenotype in the absence of CSPCs, evidenced by
increased expression of COLIAI and cell surface expres-
sion of CD73 and CD90, which are known fibroblastic
markers [63, 64] whose expression increases in a time-
dependent manner [65]. The expression of the fibroblas-
tic marker, CXCL12, which encodes stromal cell-derived
factor 1 (SDF-1), was also observed to be significantly in-
creased in the DNC population following a similar trend
to COLIAI and CD90 [66]. This is of interest as SDF-1

Table 1 Percentage of expression of different cell surface markers in

is a chemokine that acts on surrounding cells and has
multiple roles including promoting proliferation and
progenitor differentiation [67, 68].

Our study indicates that the co-existence of CSPC and
DNC populations produces the optimal chondrogenic
phenotype in vitro and the putative mechanism for this is
proposed in Fig. 6. Collectively, the results indicate a po-
tential regulatory role for DNCs in recruitment of CSPCs
through SDF-1, which may in turn either differentiate into
chondrocytes or release extracellular signalling factors to
promote DNC chondrogenic phenotype stability, thereby
contributing to the greater chondrogenicity observed in
the CDC population [69, 70] (Fig. 6). DNC-CSPC

CDC, DNC and CSPC populations at P1. Results as mean + SEM

(n = 3). Significant p values are indicated; -- represents non-significant values
Percentage of expression (%) p values
CbC DNC CSPC CDC vs DNC CDC vs CSPC DNC vs CSPC
CcD29 97.86 + 092 9931 + 0.24 99.19 £ 0.27 - - -
CD44 70.39 £ 746 9643 £ 1.15 8391 +£ 295 0.026 - 0.017
CD56 367 +1.90 5502 + 637 5161 £ 1082 0.001 0.012 -
CD73 99.01 + 0.27 99.64 + 0.06 9947 £ 0.16 - - -
CD90 93.10 = 047 99.71 £ 0.02 9927 £ 013 0.000 0.000 0.031
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interaction may be essential, to maintain chondrogenic
gene expression and extracellular matrix synthesis. These
findings are supported by a previous in vivo study, where
mixed populations, i.e. CDCs, maintained a more chondro-
genic phenotype when injected intramuscularly in mice
when compared to an isolated population of chondropro-
genitors [48]. When cultured individually, the CSPC and
DNC populations have distinct CCNDI, CCND2, COLIA1I,
COL2A1, CXCLI12, NCAMI and CDH2 gene expression pro-
files, indicating either progenitor status or fibroblastic lineage
respectively [59, 60] but lacking optimal chondrogenicity.

Conclusions

This study provides insight into the role of nasoseptal
CSPCs in the in vitro chondrogenic niche and mainten-
ance of phenotypic stability of nasoseptal chondrocytes
through influence on dedifferentiation. Mixed popula-
tions of stem/progenitor cells and chondrocytes were re-
quired for optimal chondrogenesis. Further work will
elucidate the molecular mechanisms underlying this
phenomenon, enriching the translational potential of tis-
sue engineered cartilage and associated cell-based
therapies.
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