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Abstract

Reduced order models (ROM) are commonly employed to solve parametric

problems and to devise inexpensive response surfaces to evaluate quantities

of interest in real-time. There are many families of ROMs in the literature

and choosing among them is not always a trivial task. This work presents a

comparison of the performance of a priori and a posteriori proper generalised

decomposition (PGD) algorithms for an incompressible Stokes flow problem

in a geometrically parametrised domain. This problem is particularly chal-

lenging as the geometric parameters affect both the solution manifold and

the computational spatial domain. The difficulty is further increased because

multiple geometric parameters are considered and extended ranges of values

are analysed for the parameters and this leads to significant variations in the

flow features. Using a set of numerical experiments involving geometrically

parametrised microswimmers, the two PGD algorithms are extensively com-

pared in terms of their accuracy and their computational cost, expressed as
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a function of the number of full-order solves required.

Keywords: Reduced order models, A priori, A posteriori, Proper

generalised decomposition, Response surfaces, Geometry parametrisation

1. Introduction and literature review

Since their introduction by Box and Wilson in 1951 [1], response surfaces

have been extensively used in computational engineering to devise the re-

lationship between input variables or parameters and output quantities of

interest [2, 3]. This is especially interesting in the context of parametrised

partial differential equations (PDEs), where the solution depends both on the

spatial coordinates and on a set of user-defined parameters. The solutions

of such parametric problems are defined as multidimensional manifolds and

efficient strategies for their computation have been developed during the last

decades using reduced order models (ROMs) [4, 5]. In this context, surrogate

models of parametric response surfaces were devised by expressing the mul-

tidimensional quantities of interest in terms of the elements of the reduced

basis constructed for the ROM, see e.g. [6–12]. Interested readers are also

referred to the collection [13] and references therein.

Response surfaces based on a posteriori ROMs are constructed starting

from a series of snapshots obtained as full-order solutions of the problem un-

der analysis, for a given set of values of the parameters. A critical aspect to

devise competitive and accurate numerical strategies is the selection of the

snapshots, that is, the sampling procedure in the parametric space. Several

techniques were proposed to address this problem, starting from the classi-

cal Latin hypercube sampling [14] and centroidal Voronoi tessellation [15] to

greedy approaches based on a posteriori error estimates [16, 17] and model-

constrained adaptive sampling [18]. In this context, special attention was also
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devoted to hyper-reduction techniques [19, 20], required to achieve competi-

tive performance in the evaluation of nonlinear quantities of interest [21–23].

Once the sampling points are selected, the computation of the snapshots

is generally performed in parallel, exploiting the independence of each set of

parameters to one another, to reduce the computational cost of the offline

phase. Recently, an alternative strategy aiming to reduce the number of re-

quired full-order solutions was proposed via an incremental algorithm [24].

The idea is to compute snapshots sequentially and on-the-fly, corresponding

to the values of the parameters identified by an appropriate error estimate.

In a similar fashion, a priori model reduction strategies construct an ap-

proximation by means of a greedy algorithm which sequentially computes

the terms of the reduced solution [25]. Although such procedure cannot be

performed in parallel, a priori ROMs automatically determine the number of

terms in the reduced basis and do not require prior knowledge of the solution,

circumventing the sampling step.

Starting from the reduced solution obtained using either a priori, e.g. the

proper generalised decomposition (PGD) [25, 26], or a posteriori, e.g. reduced

basis (RB) [16, 17, 27] or proper orthogonal decomposition (POD) [28, 29],

approaches, parametric response surfaces can be efficiently devised. In this

context, a critical aspect is represented by the interpolation strategy used

to evaluate the quantities of interest depending on the solution manifold

constructed using the ROMs. The difficulty of effectively interpolating the

reduced solution in a multidimensional manifold was first addressed in [30].

Since then, different strategies were proposed to reduce the dimensionality

of the input space, e.g. via kernel principal component analysis [31] and

manifold learning [32–34], and to perform accurate interpolation using man-

ifold walking [35] and co-kriging [36] techniques. Recently, manifold learn-
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ing techniques and collocation methods inspired by sparse grids [37] have

been coupled with PGD-based separated representations of functions of in-

terest [38, 39]. The resulting methodologies, including sparse subspace learn-

ing [40] and sparse PGD [41], allow to concurrently devise low-dimensional

descriptions of the parameter space and functional approximation of the so-

lution manifold, leading to the so-called hybrid twins paradigm [42].

Although both a priori and a posteriori ROMs have been utilised to solve

parametrised PDEs and to devise parametric response surfaces, it is not

possible to know a priori which reduction approach will perform better for a

given problem. Indeed, to the best of the authors’ knowledge, no comparison

of these approaches in terms of their accuracy and their computational cost

is available in the literature. The present work aims to provide a comparison

of a priori and a posteriori model reduction techniques, with special emphasis

on their cost in terms of number of calls to the full-order solver. It is worth

noticing that the current development of a priori and a posteriori ROMs

shows different levels of maturity. Indeed, a posteriori approaches feature an

extended literature tackling various aspects critical for their efficiency, such

as sampling strategies and error control. On the contrary, in the context of

a priori ROMs, methodologies for the advanced treatment of the space of

parameters [43] or the embedded control of accuracy [44–46] represent an

active line of investigation. Hence, in order for the present comparison to be

unbiased, similar versions of the a priori and a posteriori ROM algorithms,

without targeted sampling or error control streatgies, are considered.

For the purpose of this comparison, the PGD framework, successfully ap-

plied in recent years to several problems [47–51], is considered to construct

both the a priori and the a posteriori ROM strategy. More precisely, this

study focuses on PGD for geometrically parametrised PDEs. Previous works,
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see e.g. [52–55], have shown that this class of parametric problems is particu-

larly challenging since the parameters under analysis affect both the solution

manifold and the computational spatial domain. In particular, the difficulty

of such problems increases when more than one parameter is considered and

when the parameters are responsible for extreme changes of the geometry.

Hence, PDEs on geometrically parametrised domains offer complex bench-

mark cases for ROM strategies, even when a low number of parameters is

considered.

The remainder of the manuscript is organised as follows. Section 2

presents the incompressible Stokes flow problem in a geometrically parametrised

domain and the full-order hybridisable discontinuous Galerkin (HDG) solver.

The PGD framework is introduced in section 3, where the a priori and a pos-

teriori algorithms are detailed and critically compared. An extensive set of

numerical simulations for geometrically parametrised Stokes flows in the con-

text of modelling of microswimmers is presented in section 4. More precisely,

a comparison of a priori and a posteriori PGD algorithms is performed in

terms of accuracy and computational cost by means of parametric problems

involving one or more geometric parameters, with different ranges of values,

to study the sensitivity of the PGD-based methodologies to the variability of

the multidimensional solution. Finally, section 5 summarises the presented

results and the open lines of investigation and Appendix A presents some

technical details on the separated form of the operators involved in the a

priori PGD algorithm.

2. Full-order Stokes solver in geometrically parametrised domains

The model problem for the present study is an incompressible Stokes flow

in a domain with parametrised geometry. More precisely, the parametrised
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domain is denoted by Ωµ ⊂ Rnsd , nsd being the number of spatial dimensions,

with boundary ∂Ωµ=Γµ
D ∪ Γµ

N ∪ Γµ
S , where the portions Γµ

D , Γµ
N and Γµ

S are

disjoint by pairs. The npa parameters µ ∈ I ⊂ Rnpa control the geometric

representation of the domain and are assumed to be independent, that is,

I := I1 × I2 × · · · × Inpa with µj ∈ Ij for j = 1, . . . , npa.

By considering the parameters µ as extra coordinates of a multidimen-

sional problem in the higher-dimensional manifold Ωµ × I, the solution of

the Stokes problem is the parametric velocity-pressure pair, u(xµ,µ) and

p(xµ,µ), such that

−∇µ· (ν∇µu− pInsd) = s in Ωµ × I,

∇µ·u = 0 in Ωµ × I,

u = uD on Γµ
D × I,

nµ ·
(
ν∇µu− pInsd

)
= gN on Γµ

N × I,

u ·Dµ + nµ ·
(
ν∇µu− pInsd

)
Eµ = 0 on Γµ

S × I,

(1)

where ν>0 is the kinematic viscosity of the fluid, s denotes the applied body

forces and nµ is the outward unit normal vector to the boundary. As men-

tioned above, the external boundary ∂Ωµ is partitioned in Dirichlet, Γµ
D ,

Neumann, Γµ
N , and slip, Γµ

S , boundaries which also depend on the parame-

ters µ. Thus, the velocity uD and the pseudo-traction gN are imposed on Γµ
D

and Γµ
N , respectively, for each value in the parametric space I. Similarly, on

Γµ
S , perfectly slip (i.e. symmetry) conditions are enforced by introducing the

matrices Dµ:=[nµ,0nsd×(nsd−1)] and Eµ:=[0, tµ1 , ..., t
µ
nsd−1], where the tangen-

tial directions tµk , k=1, . . . , nsd − 1 form an orthonormal system of vectors

{nµ, tµ1 , . . . , t
µ
nsd−1}, see [56].

Moreover, from the divergence-free equation in problem (1), the compat-
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ibility condition

〈uD · nµ, 1〉Γµ
D

+ 〈u · nµ, 1〉∂Ωµ\Γµ
D

= 0 for almost every µ ∈ I, (2)

is imposed, where 〈·, ·〉S denotes the L2 inner product defined on any surface

S ⊂ ∂Ωµ.

Finally, it is worth recalling that in case no Neumann boundary conditions

are considered, that is ∂Ωµ=Γµ
D ∪ Γµ

S , an additional constraint is required

to guarantee the uniqueness of the computed pressure field. A common

constraint, see [57–59], enforces a zero mean value of the pressure on the

domain, that is, for almost every µ ∈ I,(
1

|Ωµ|
p, 1

)
Ωµ

= 0, (3)

(·, ·)D being the L2 inner product in a generic subdomain D ⊂ Ω.

2.1. Multidimensional hybridisable discontinuous Galerkin solver

The multidimensional Stokes flow problem (1) is discretised using the full-

order HDG solver described in [55]. The choice of the HDG framework [57, 60]

allows to devise an LBB-compliant discretisation of the Stokes equations

with high-order isoparametric formulations using equal order polynomial ap-

proximations for all the variables, see e.g. [56, 58, 61–63]. In addition, the

PGD-ROM based on the HDG formulation provides an exact separation of

the integrals appearing in the geometrically parametrised PDE [55] and does

not rely on numerical separation techniques as discussed in [54].

In this section, the multidimensional HDG formulation of equation (1)

is briefly recalled, whereas for a complete derivation interested readers are

referred to [55]. First, the spatial, Ωµ, and parametric, Ij, j=1, . . . , npa,

domains are subdivided in nel and n
j
el disjoint subdomains, respectively, that
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is,

Ωµ =
nel⋃
e=1

Ωµ
e , such that Ωi ∩ Ωl = ∅ for i 6= l,

Ij =

n
j
el⋃

e=1

Ije , such that Iji ∩ I
j
l = ∅ for i 6= l.

Moreover, the mesh skeleton Γµ of the spatial domain is defined as

Γµ :=

[
nel⋃
e=1

∂Ωµ
e

]
\ ∂Ωµ.

The full-order HDG solver for geometrically parametrised Stokes flows is

devised according to the formulation introduced in [55]. More precisely, a

reference domain Ω, independent of the parameters µ, is introduced and a

mapping

Mµ : Ω× I −→ Ωµ

(x,µ) 7−→ xµ = Mµ(x,µ).
(4)

is considered to transform it into the geometrically parametrised domain Ωµ,

see [52–55].

The HDG formulation of the Stokes equations is thus written on the ref-

erence domain Ω by applying the mapping (4). Following [55], the functional

spaces

Vh(Ω) := {v ∈ L2(Ω) : v|Ωe ∈ Pk(Ωe) ∀Ωe , e = 1, . . . , nel},

V̂h(S) := {v̂ ∈ [L2(S)]nsd : v̂|Γi ∈ Pk(Γi) ∀Γi ⊂ S ⊆ ∂Ω ∪ Γ},

Lh(Ij) := {v ∈ L2(Ij) : v|Ije ∈ P
k(Ije) ∀Ije , e = 1, . . . , njel},

Lh(I) := Lh(I1)⊗ · · · ⊗ Lh(Inpa),

are introduced, where Pk(Ωe), Pk(Γi) and Pk(Ije) denote the spaces of poly-

nomial functions of complete degree at most k in Ωe, on Γi and in Ije , re-

spectively. Moreover, for the sake of readability, the following scalar-valued,
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Vµ, vector-valued, Vµ and V̂
µ
, and tensor-valued, Wµ, discrete functional

spaces are defined

Vµ := Vh(Ω)⊗Lh(I), Vµ :=
[
Vh(Ω)⊗Lh(I)

]nsd
,

V̂
µ

:=
[
V̂h(Γ ∪ ΓN ∪ ΓS)⊗Lh(I)

]nsd
, Wµ :=

[
Vh(Ω)⊗Lh(I)

]nsd×nsd
.

As usual in the context of HDG formulations of the Stokes equations [56–

59, 61–64], the mixed variable L=−ν∇µu, i.e. a scaling of the gradient of

velocity, the hybrid variable û representing the trace of the velocity on the

element faces and the mean pressure ρ on the boundary of the element are

introduced.

First, a static condensation of the degrees of freedom inside each element

is performed via the HDG local problems: for e=1, . . . , nel, velocity, ue,

pressure, pe, and mixed variable, Le, are written element-by-element in terms

of the hybrid velocity û and the mean pressure ρe. The weak form of the

HDG local problems on the spatial reference element Ωe is: given uD on ΓD

and ûh on Γ ∪ ΓN ∪ ΓS, find (uhe , p
h
e ,L

h
e ) ∈ Vµ × Vµ ×Wµ such that

ALL(W ,Lhe ;µ) + ALu(W ,uhe ;µ) = LL(W ;µ) + ALû(W , ûh;µ),

AuL(v,Lhe ;µ) + Auu(v,u
h
e ;µ) + Aup(v, p

h
e ;µ)

= Lu(v;µ) + Auû(v, û
h;µ),

Apu(v,u
h
e ;µ) = Lp(v;µ) + Apû(v, û

h;µ),

Aρp(1, p
h
e ;µ) = Aρρ(1, ρ

h
e ;µ),

(5)

for all (v, v,W ) ∈ Vµ×Vµ×Wµ. The multidimensional bilinear and linear

forms appearing in equation (5) are obtained by applying the mapping (4) to

the integrals defined on the geometrically parametrised elements Ωµ
e , leading
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to

ALL(W ,L;µ) := −
(
W , ν−1 det(Jµ)L

)
Ωe×I

,

ALu(W ,u;µ) :=
(

adj(Jµ)∇·W ,u
)

Ωe×I
,

ALû(W , û;µ) := 〈adj(Jµ)n ·W , û〉(∂Ωe\ΓD)×I ,

AuL(v,L;µ) :=
(
v, adj(Jµ)∇·L

)
Ωe×I

,

Auu(v,u;µ) := 〈v, τu〉∂Ωe×I ,

Aup(v, p;µ) :=
(
v, adj(Jµ)∇p

)
Ωe×I

,

Auû(v, û;µ) := 〈v, τ û〉(∂Ωe\ΓD)×I ,

Apu(v,u;µ) :=
(

adj(Jµ)∇v,u
)

Ωe×I
,

Apû(v, û;µ) := 〈v, û · adj(Jµ)n〉(∂Ωe\ΓD)×I ,

Aρp(w, p;µ) :=
(
w, |Ωe|−1p

)
Ωe×I

,

Aρρ(w, ρ;µ) :=
(
w, ρ

)
I ,

(6a)

where (·, ·)D×I stands for the L2 inner product in a generic subdomain D×I

with D ⊂ Ω and 〈·, ·〉S×I denotes the L2 inner product in any domain S×I,

with S ⊂ ∂Ωµ. Moreover, Jµ=Jµ(x,µ) and det(Jµ) represent the Jacobian of

the mapping and its determinant, respectively, whereas its adjoint is defined

as adj(Jµ)= det(Jµ)J−1
µ . The corresponding linear forms are given by

LL(W ;µ) := 〈adj(Jµ)n ·W ,uD〉(∂Ωe∩ΓD)×I ,

Lu(v;µ) :=
(
v, det(Jµ)s

)
Ωe×I

+ 〈v, τuD〉(∂Ωe∩ΓD)×I ,

Lp(v;µ) := 〈v,uD · adj(Jµ)n〉(∂Ωe∩ΓD)×I .

(6b)

It is worth noticing that the bilinear and linear forms introduced in equa-

tion (6) depend both on spatial, x, and parametric, µ, variables. On the

one hand, the integrals obtained from the application of the mapping (4)

are defined on the spatial reference domain Ω, which is independent of the

parameters µ. On the other hand, the Jacobian of the mapping being a func-
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tion of space and parameters, it follows that the terms det(Jµ) and adj(Jµ)

depend both on x and µ, as further detailed in the following section.

Remark 1 (Stabilisation in hybridisable discontinuous Galerkin methods).

The HDG stabilisation tensor τ is known to play an important role in the

accuracy and convergence properties of the numerical approximation [59, 60,

65, 66]. In the context of Stokes flow problems, see [56], an isotropic stabilisa-

tion tensor is considered, namely τ := (τν/`)Insd , where ` is a characteristic

length of the domain and τ a positive scaling factor selected equal to 10 in

the present work.

Second, the globally-coupled degrees of freedom, namely the hybrid veloc-

ity and the mean pressure, are computed by solving the HDG global problem

whose weak form reads: find ûh ∈ V̂
µ

and ρh ∈ Rnel ⊗Lh(I) such that

nel∑
e=1

{
AûL(v̂,Lhe ;µ) + Aûu(v̂,u

h
e ;µ) + Aûp(v̂, p

h
e ;µ)

+Aûû(v̂, û
h;µ)

}
=

nel∑
e=1

{Lû(v̂;µ)} ,

Apû(1, û
h;µ) = −Lp(1;µ),

(7)

for all v̂ ∈ V̂
µ
, with the multidimensional bilinear and linear forms

AûL(v̂,L;µ) :=〈v̂, adj(Jµ)n ·L〉(∂Ωe\(ΓD∪ΓS))×I

− 〈v̂, adj(Jµ)n ·LE〉(∂Ωe∩ΓS)×I ,

Aûu(v̂,u;µ) :=〈v̂, τu〉(∂Ωe\(ΓD∪ΓS))×I − 〈v̂, (τu)·E〉(∂Ωe∩ΓS)×I ,

Aûp(v̂, p;µ) :=〈v̂, p adj(Jµ)n〉(∂Ωe\(ΓD∪ΓS))×I ,

Aûû(v̂, û;µ) :=− 〈v̂, τ û〉(∂Ωe\(ΓD∪ΓS))×I

+ 〈v̂, û·adj(Jµ)D + (τ û)·E〉(∂Ωe∩ΓS)×I ,

Lû(v̂;µ) :=− 〈v̂, gN〉(∂Ωe∩ΓN )×I .

(8)
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Similarly to what observed for the local problem, the bilinear and linear

forms of the global problem presented in equation (8) are defined on the

reference domain Ω, independent of µ, whereas the adjoint of the Jacobian

adj(Jµ) incorporates the dependence on the space and on the parameters.

Interested readers are referred to [55] for the details of the derivation of the

local and global problems of the multidimensional HDG method for a Stokes

flow in a geometrically parametrised domain. For the sake of readability and

except in case of ambiguity, the subscript e and the superscript h will be

henceforth omitted.

3. Separated response surfaces based on the proper generalised

decomposition

In order to construct response surfaces for the real-time evaluation of

quantities of interest, the parametric problem (1) needs to be efficiently

computed for a large number of configurations. Nonetheless, the solution

of the geometrically parametrised Stokes flow problem in a space of dimen-

sion nsd+npa using the previously introduced multidimensional HDG solver

is computationally unaffordable, even when only few parameters are consid-

ered.

In this section, two PGD-based strategies are presented to construct re-

sponse surfaces in terms of separated functions. Before detailing the two al-

gorithms, the framework to construct a separated approximation using PGD

is briefly recalled.

As classical in the context of ROMs for parametric PDEs [67, 68], the bi-

linear and linear forms introduced in section 2.1 require an affine dependence

on the parameters µ. For the problem involving geometrically parametrised

domains introduced in section 2.1, the bilinear and linear forms are approxi-
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mated by the sum of products of parameter-dependent functions and spatial

operators independent of the parameters, as detailed in Appendix A. As

previously mentioned, the integrals in the weak forms (5) and (7) of the

HDG local and global problems are defined on the parameter-independent

reference domain, whereas the determinant and the adjoint of the mapping

incorporates the dependence on the parameters.

It is worth noticing that a fixed mesh is generated once for the spatial

reference domain. Hence, no mesh quality issues due to the deformation of

the mesh of the reference domain arise. Of course, if the transformation (4)

is responsible for extreme deformations of the reference configuration, the

Jacobian of the isoparametric mapping may degrade, leading to the need

of a larger number of integration points for the computation of the terms in

equations (6) and (8). It is worth noticing that this is especially critical in the

context of high-order curved meshes. Hence, it is still advisable to perform

a preliminary study of mesh quality for the configurations corresponding to

the limit of the geometric mapping, as reported for the examples in section 4.

3.1. Separated representation of the unknown variables

According to the PGD framework [25], the unknown variables are written

as rank-m separable approximations as

um
PGD

(x,µ) = σmu f
m
u (x)ψm(µ) + um−1

PGD
(x,µ),

pm
PGD

(x,µ) = σmp f
m
p (x)ψm(µ) + pm−1

PGD
(x,µ),

Lm
PGD

(x,µ) = σmL F
m
L (x)ψm(µ) +Lm−1

PGD
(x,µ),

ûm
PGD

(x,µ) = σmû f
m
û (x)ψm(µ) + ûm−1

PGD
(x,µ),

ρm
PGD

(x,µ) = σmρ f
m
ρ (x)ψm(µ) + ρm−1

PGD
(x,µ),

(9)

where each term in the expansion, referred to as mode, is the product of a

spatial function and a function depending on the parameters and σmL , σmu ,
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σmp , σmû and σmρ denote the amplitudes of the corresponding modes. For the

sake of simplicity, the parametric terms are assumed to be factorisable using

one-dimensional functions, that is,

ψm(µ) =

npa∏
j=1

ψmj (µj). (10)

Remark 2 (Factorisation of the parametric space). In the context of PGD

approximations, spatial and parametric modes are computed alternatively. In

order to guarantee the computational efficiency of the PGD algorithm, it is

critical for the number of degrees of freedom in the parametric problem to

be considerably smaller than the number of unknowns in the spatial problem.

Assumption (10) is commonly employed to enforce that the number of di-

mensions of each parametric subdomain is inferior to the number of spatial

dimensions nsd. Hence, the computational cost of the problem in the PGD

parametric step is reduced by devising it as a sequence of lower dimensional

problems. It is worth noticing that the number of modes computed by the

PGD algorithms without separating the parametric modes in terms of one-

dimensional functions will, in general, differ from the one computed starting

from equation (10). Since it is not possible to know a priori which approach

will perform better for a given problem, assumption (10) will be henceforth

considered to minimise the number of degrees of freedom involved in each

parametric problem.

Remark 3 (PGD initial approximation). No initial information is consid-

ered in the construction of the PGD approximation (9), that is, u0
PGD

=0,

p0
PGD

=0, L0
PGD

=0, û0
PGD

=0 and ρ0
PGD

=0. More precisely, contrary to traditional fi-

nite element-based PGD algorithms requiring the construction of initial modes

to account for Dirichlet boundary conditions, see e.g. [25], the HDG method

employed as spatial solver in this work relies on the weak imposition of essen-

14



tial boundary conditions. Hence, no prior computation needs to be performed

to initialise the approximations in equation (9).

More recently, a predictor-corrector approach has been introduced [69]

by splitting the m-th modes to be computed into the predictions σmL F
m
L ψ

m,

σmu f
m
u ψ

m, σmp f
m
p ψ

m, σmû f
m
û ψ

m and σmρ f
m
ρ ψ

m and the corrections σmL ∆L
m
PGD

,

σmu ∆u
m
PGD

, σmp ∆p
m
PGD

, σmû ∆û
m
PGD

and σmρ ∆ρ
m
PGD

, namely,

um
PGD

(x,µ) = σmu [fmu (x)ψm(µ) +∆um
PGD

(x,µ)] + um−1
PGD

(x,µ),

pm
PGD

(x,µ) = σmp [fmp (x)ψm(µ) +∆pm
PGD

(x,µ)] + pm−1
PGD

(x,µ),

Lm
PGD

(x,µ) = σmL [Fm
L (x)ψm(µ) +∆Lm

PGD
(x,µ)] +Lm−1

PGD
(x,µ),

ûm
PGD

(x,µ) = σmû [fmû (x)ψm(µ) +∆ûm
PGD

(x,µ)] + ûm−1
PGD

(x,µ),

ρm
PGD

(x,µ) = σmρ [fmρ (x)ψm(µ) +∆ρm
PGD

(x,µ)] + ρm−1
PGD

(x,µ),

(11)

with the corrections given by

∆um
PGD

(x,µ) := ∆fu(x)ψm(µ) + fmu (x)∆ψ(µ) +∆fu(x)∆ψ(µ),

∆pm
PGD

(x,µ) := ∆fp(x)ψm(µ) + fmp (x)∆ψ(µ) +∆fp(x)∆ψ(µ),

∆Lm
PGD

(x,µ) := ∆FL(x)ψm(µ) + Fm
L (x)∆ψ(µ) +∆FL(x)∆ψ(µ),

∆ûm
PGD

(x,µ) := ∆fû(x)ψm(µ) + fmû (x)∆ψ(µ) +∆fû(x)∆ψ(µ),

∆ρm
PGD

(x,µ) := ∆fρ(x)ψm(µ) + fmρ (x)∆ψ(µ) +∆fρ(x)∆ψ(µ).

(12)

It is worth noticing that, ∆ being a variation, the last term in equation (12)

represents a high-order variation and can thus be neglected in the computa-

tion.

Remark 4 (Choice of the parametric function). According to the single-

parameter approach described in [49], a unique parametric function ψm is

considered in (9) and (11) for all the variables at the m-th mode. Alternative

strategies for the definition of the parametric function in PGD approxima-

tions of incompressible flow problems are also explored in [49].
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Following both the approach in (9) and (11), the number of terms in the

PGD expansion is not known a priori. Indeed, assuming the modes up to

m−1 to be known, a greedy procedure is performed to compute the m-th

mode. For this purpose, a nonlinear iterative algorithm, namely the alter-

nating direction (AD) scheme, is devised to alternately compute the spatial

and parametric modes of the PGD approximation. More precisely, first,

the m-th parametric mode is assumed to be known and the corresponding

spatial functions are computed by solving an HDG problem independent of

the parameters. Second, the recently computed spatial function is fixed and

the corresponding parametric mode is determined solving a linear system of

equations. The procedure is thus repeated until a convergence criterion is

fulfilled or a maximum number of iterations is achieved. In the following

sections, the details of this greedy strategy are presented, highlighting the

main differences between the a priori and a posteriori PGD algorithms.

3.2. A priori proper generalised decomposition

The a priori PGD relies on solving a separated version of the HDG local

and global problems introduced in section 2.1. In this context, no a priori

information is required and the computation of the PGD solution does not

depend on any previously determined snapshot. In order to construct such

an approximation, a separable representation of the geometric mapping and

the user-defined data is required.

3.2.1. Separated representation of geometric mapping and user-defined data

16



Following [54, 55], the mapping (4) and its Jacobian are assumed to be

separable, namely,

Mµ(x,µ) =
nM∑
k=1

Mk(x)φk(µ),

Jµ(x,µ) =
nM∑
k=1

Jk(x)φk(µ).

(13)

In addition, the determinant and the adjoint of the Jacobian can also be

expressed in separated form, see [54], as

det(Jµ)(x,µ) =
nd∑
k=1

Dk(x)θk(µ),

adj(Jµ)(x,µ) =
na∑
k=1

Ak(x)ϑk(µ).

(14)

In case an analytical separation of the mapping is not available, the sep-

arated forms in equation (13) may be numerically approximated, e.g. by

means of a singular value decomposition or a high-order PGD projection.

Recently, a more general approach for the construction of separated geo-

metric mappings was proposed in [54], starting from a representation of the

boundary parametrised through the control points of non-uniform rational

B-splines and solving a linear elastic problem inspired by high-order curved

mesh generation techniques [70, 71]. The scope of the present work being the

comparison of a priori and a posteriori PGD algorithms, the mapping (13) is

henceforth assumed to be analytically separable for the sake of simplicity.

Similarly, user-defined data like body forces, Dirichlet and Neumann

boundary terms are assumed to be provided in separated form either an-
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alytically, that is,

uD=
nD∑
l=1

glD(x)λlD(µ),

gN =
nN∑
l=1

glN(x)λlN(µ),

s=
nS∑
l=1

glS(x)λlS(µ),

(15)

or approximated using appropriate numerical separation techniques [25].

3.2.2. The a priori PGD algorithm

To devise the a priori PGD algorithm for the geometrically parametrised

Stokes flow, first the separated functions (11) and the separated expres-

sions (14)-(15) of mapping and data are introduced into the multidimensional

HDG problems (5) and (7). The resulting equations are thus alternately pro-

jected on the tangent manifold associated with the spatial and parametric

coordinates to perform the iterations of the AD algorithm.

The tangent manifolds for the vector-valued, Vµ and V̂
µ
, and scalar, Vµ

and Rnel ⊗Lh(I), multidimensional discrete functional spaces, are obtained

by selecting the test functions in (5) and (7) as

v = δfuψ
m + σmu f

m
u δψ, v̂ = δfûψ

m + σmû f
m
û δψ,

v = δfpψ
m + σmp f

m
p δψ, w = δfρψ

m + σmρ f
m
ρ δψ,

(16)

where the spatial test functions are such that δfu ∈ Vh :=
[
Vh(Ω)

]nsd
,

δfû ∈ V̂
h

:=
[
V̂h(Γ ∪ ΓN ∪ ΓS)

]nsd
, δfp ∈ Vh(Ω) and δfρ ∈ Rnel , whereas

the parametric test function is given by δψ ∈ Lh(I). In a similar fashion,

the tangent manifold for the tensor-valued space Wµ is characterised by the

test function

W = δFLψ
m + σmL F

m
L δψ, (17)

for δFL ∈Wh :=
[
Vh(Ω)

]nsd×nsd
.
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Hence, in the AD scheme, the parametric function ψm is first fixed in

the spatial iteration. It follows that δψ=0 and the multidimensional prob-

lems (5) and (7) reduce to a parameter-independent spatial HDG problem.

In the parametric step, the spatial functions are assumed to be known and,

consequently, δfu=δfp=δFL=δfû=δfρ=0. The parametric iteration thus results

in npa linear systems of equations, each associated with a one-dimensional

problem, which are solved sequentially. A detailed derivation of the spatial

and parametric equations in the AD scheme of the a priori PGD algorithm

is presented in [55].

The resulting a priori PGD strategy is reported in algorithm 1. Given

a guess for the prediction of the parametric mode, the loop for the PGD

enrichment first determines a prediction of the spatial mode by solving the

HDG global and local problems (Algorithm 1 - Step 4). Then, the AD scheme

computes the parametric (Algorithm 1 - Steps 6-7) and spatial (Algorithm 1 -

Steps 8-9) corrections solving a parametric linear system and the HDG global

and local problems, respectively. The procedure in the AD scheme is then

repeated until the maximum number of iterations ni is achieved. Finally, the

greedy iterations stop when the ratio of the amplitude of the current mode

to the one of the first mode is negligible (Algorithm 1 - Step 2).

Remark 5 (Choice of the stopping criteria). Alternative stopping crite-

ria may be considered for both the AD scheme and the greedy algorithm.

A common approach for the former relies on checking the relative ampli-

tude of the computed correction with respect to the amplitude of the current

mode [55, 69]. Concerning the latter, the ratio of the amplitude of the cur-

rent mode to the cumulative amplitudes of the previously computed modes has

also been utilised as stopping criterion, see [69]. Alternative strategies to stop

the enrichment procedure rely on the computation of measures obtained from
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Algorithm 1 The a priori PGD algorithm

Require: For the greedy enrichment loop, the value η? of the tolerance. For

the AD loop, the number of iterations ni.

1: Set m← 1 and initialise the amplitude of the spatial mode σ1
û ← 1.

2: while σmû /σ
1
û > η? do

3: Set q ← 1 and initialise the parametric prediction.

4: Solve the HDG global and local problems to compute the spatial pre-

diction.

5: while q < ni do

6: Solve the parametric linear system to compute the parametric cor-

rection.

7: Update the parametric prediction with the correction.

8: Solve the HDG global and local problems to compute the spatial

correction.

9: Update the spatial prediction with the correction.

10: Increase the counter of the AD iterations q ← q + 1.

11: end while

12: Increase the mode counter m← m+ 1.

13: end while
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the problem under analysis, e.g. the norm of the residual of the governing

equations or the goal-oriented estimate for a quantity of interest [44, 72, 73].

3.3. A posteriori proper generalised decomposition

Contrary to the a priori PGD introduced above, the a posteriori frame-

work relies on constructing a reduced basis starting from a series of snapshots.

Each snapshot is defined as a vector

UT
s :=

[
ûT , ρT , uT , pT , LT

]
s

, s = 1, . . . , ns, (18)

where û, ρ, u, p and L denote the vectors of nodal values of the unknowns

of problem (1), computed using the full-order HDG spatial solver for a given

set of the parameters. Hence, the size of each snapshot vector is equal to the

number of degrees of freedom of the HDG global and local problems. The ns

snapshots are thus gathered in a multidimensional tensor structure G. For

the case of a unique parameter, this is given by a tensor of order 2, that is,

a matrix

G =
[
U1, U2, . . . , Uns

]
, (19)

where the rows correspond to the degrees of freedom of the HDG spatial

discretisation and the columns are associated with the snapshots in the para-

metric interval. In case more than one parameter is considered, the snapshots

structure is constructed as the tensor product of the matrix (19) with each

extra parametric dimension, leading to a multidimensional tensor of order

npa+1, with one dimension for each parameter plus one dimension for the

space.

The a posteriori PGD, also known as PGD separation or least-squares

PGD [48, 74, 75], computes the separated approximation of G in the form

21



of product of rank-one approximations (9) using a greedy approach, that is,

given m−1 modes, the m-th term in the PGD expansion is computed as(
fmU ,ψ

m
1 , . . . ,ψ

m
npa

)
= arg min

∥∥∥G−Gm−1
PGD
− σmU f̃mU ⊗ ψ̃

m

1 ⊗ · · · ⊗ ψ̃
m

npa

∥∥∥
2
,

(20)

where each vector f̃mU , ψ̃
m

1 , . . . , ψ̃
m

npa
is sought in a subspace of Rd of appropri-

ate dimension, namely the sizes of f̃mU and ψ̃
m

j , j=1, . . . , npa being the number

of degrees of freedom of the HDG spatial solution U and of the parametric

discretisations in the directions Ij, j=1, . . . , npa, respectively. The greedy

procedure presented above aims to compute, at each step, the best approxi-

mation σmU f̃mU ⊗ψ̃
m

1 ⊗· · ·⊗ψ̃
m

npa
to describe the unresolved part G−Gm−1

PGD
of the

target tensor G. It is straightforward to observe that the m-th enrichment

in the PGD loop tackles the approximation of the remaining residual from

iteration m−1, thus improving the overall separated approximation of G.

Numerical experiments, see e.g. [48, 75], have shown that the resulting pro-

cedure is responsible for errors decreasing monotonically with the inclusion

of new modes in the PGD approximation. A similar behaviour is observed

for the amplitude of the modes: this is considered as a relative measure of

the relevance of the newly computed mode and is thus employed to devise an

appropriate stopping criterion. Of course, this strategy may be improved by

equipping the a posteriori PGD algorithm with an appropriate error control

step targeting the unknowns of the problem or a given quantity of interest.

From a practical point of view, the nonlinear problem (20) is solved us-

ing an AD scheme. It is worth noticing that in this context, both spatial

and parametric iterations are determined as rank-one approximations on a

purely algebraic level and they do not require any information on the under-

lying multidimensional HDG discretisation. Hence, their computation relies

on elementary tensorial operations, i.e. products and sums of separated ob-
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jects [75], and the resulting cost is proportional to the size of the vectors of

spatial and parametric modes.

The resulting a posteriori PGD strategy is reported in algorithm 2. First,

a set of ns snapshots is constructed using the full-order HDG spatial solver

(Algorithm 2 - Step 1). Then, in each PGD enrichment iteration, the para-

metric mode is initialised with a user-defined guess and the AD loop alter-

nately computes the spatial (Algorithm 2 - Step 6) and parametric (Algo-

rithm 2 - Step 7) modes solving two rank-one problems at the algebraic level.

The above routine is repeated until a convergence criterion (Algorithm 2 -

Step 8) is fulfilled or the maximum number of iterations ni is achieved. Sim-

ilarly to the a priori PGD algorithm, the greedy enrichment loop stops when

the ratio of the amplitude of the current mode to the one of the first mode

is negligible (Algorithm 2 - Step 3).

3.4. Devising separated response surfaces

Once the reduced solution is computed for all the variables using either

the a priori or the a posteriori algorithms presented above, parametric re-

sponse surfaces can be easily devised as a postprocess of the separated PGD

solutions. More precisely, separated response surfaces are obtained as ex-

plicit functions of the parameters of interest. For the case of the drag force

on an object of surface B, the rank-m separated approximation is given by

FmDPGD(µ) =

∫
B

(
−pm

PGD
(x,µ)Insd− (Lm

PGD
(x,µ) +Lm

PGD
(x,µ)T )

)
n dΓ

=
m∑
j=1

Djψj(µ)
(21)

where the Dj corresponds to the drag coefficient of the j-th spatial mode and

is obtained as

Dj :=

∫
B

(
−σjp f jp (x)Insd− σ

j
L(F j

L (x) + F j
L (x)T )

)
n dΓ. (22)
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Algorithm 2 The a posteriori PGD algorithm

Require: For the greedy enrichment loop, the value η? of the tolerance. For

the AD loop, the value ησ of the tolerance on the amplitude variation

and the maximum number of iterations ni.

1: Compute ns snapshots solving the HDG global and local problems.

2: Set m← 1 and initialise the amplitude of the spatial mode σ1
û ← 1.

3: while σmû /σ
1
û > η? do

4: Set q ← 1 and initialise the parametric mode.

5: while εσ > ησ or q < ni do

6: Compute the rank-one spatial mode.

7: Compute the rank-one parametric mode.

8: Update the stopping criterion εσ = (σm,qû − σm−1
û )/σm,qû .

9: Increase the counter of the AD iterations q ← q + 1.

10: end while

11: Increase the mode counter m← m+ 1.

12: end while
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It is worth noticing that the accuracy of the separated response surface

of a quantity of interest directly depends upon the precision achieved by

the PGD approximation of the variables utilised for its computation (e.g.

pressure and gradient of velocity in the case of the drag). In this context, the

HDG method used as full-order solver allows to achieve optimal convergence

of order k+1 for both the pressure and the mixed variable respresenting

the gradient of velocity [55, 63]. Thus, it provides additional accuracy in the

approximation of the viscous part of the drag with respect to classical primal

finite element formulations, in which this is obtained as a postprocess of the

computed velocity field. To construct separated approximations assessing

the accuracy in a given quantity of interest, interested readers are referred

to [44, 72, 73], where PGD algorithms with goal-oriented error control were

investigated.

3.5. Critical comparison of a priori and a posteriori PGD algorithms

Both the a priori and a posteriori approach introduced above have attrac-

tive properties and their performance differs depending upon the problem

under analysis and the parameters of interest. As it is not possible to know

which of the two methodologies will perform better for a given problem, this

section offers a critical comparison of the two approaches, highlighting the

main advantages and disadvantages of each method. It is worth noticing that

geometric parameters are one of the more challenging problems to consider

in the context of parametric PDEs as the changes induced by such parame-

ters not only have an influence on the discretised equations but also on the

computational spatial domain.

The main drawback of the a posteriori PGD approach is that the user

is required to select of a set of snapshots, corresponding to the simulations

of the full-order problem, for a given set of values of the parameters. In
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order to provide a comparison of the cost of a priori and a posteriori PGD

in terms of full-order solves, in this work no problem-specific sampling is

considered and the snapshots are computed in correspondence of the nodes

of the parametric intervals used by the a priori algorithm. Although more

advanced sampling techniques have been proposed, see section 1, the selected

points are expected to produce accurate representations of the solution in

the parametric domain inheriting the good approximation properties of the

utilised Fekete nodal distributions.

Despite the vast literature on sampling methods, it is not possible to

initially know the number of snapshots the a posteriori ROM will require

to capture the multidimensional solution accurately. In contrast, the a pri-

ori PGD approach requires no previous knowledge of the solution and no

snapshots need to be selected by the user. Instead, a set of modes is auto-

matically constructed in the enrichment process and the required number of

terms is automatically determined by the greedy algorithm according to a

user-defined tolerance.

An important advantage of the a posteriori approach is that the snapshots

can be computed in parallel as they are completely independent of each other.

In contrast, the a priori approach computes the modes sequentially within

the enrichment process. The computation of each mode involves several calls

to the spatial solver in order to obtain the solution of the nonlinear problem

by using the AD scheme.

The main drawback of the a priori PGD approach is that its standard im-

plementation is generally intrusive with respect to the spatial solver, see [54,

55]. This means that access to the code is required to devise the PGD algo-

rithm starting from the spatial solver. Despite some recent advances towards

non-intrusive implementations of the a priori PGD [69, 76, 77], this aspect
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still represents an important challenge for the application of the methodology

in an industrial context, where the use of commercial software is preferred.

On the contrary, the a posteriori approach does not require access to the

code sources as it simply relies on a set of snapshots, which can be obtained

using any computational code.

Concerning the two types of separated approximations introduced in sec-

tion 3.1, it is worth mentioning that equation (9) and (11) are equivalent.

In the latter, the computation of each new mode is split into a prediction

and a correction step. This approach is fostered for the a priori PGD as

it allows to refine the stopping criterion of the AD scheme (Algorithm 1 -

Step 5) by introducing an additional check to end the iteration loop when

the amplitude of the correction is negligible with respect to the amplitude

of the current mode, see [55]. This test has been omitted in the present

work to perform a more transparent comparison with the a posteriori PGD

algorithm in which no information is provided a priori to reduce the number

of computed snapshots.

The points previously discussed are general for any parametric problem,

but a crucial aspect specific to geometrically parametrised problems concerns

the mesh generation process. More precisely, for each parametric configura-

tion of the geometry, a different mesh is required. It is worth noticing that

these meshes need to have the same number of nodes and the same connec-

tivity matrix. A common approach for a posteriori ROMs is thus to generate

one mesh and morph it to obtain the mesh corresponding to each geometric

configuration of interest. In this context, special attention needs to be paid

to the morphing algorithm, especially in a high-order framework, as this de-

formation can significantly decrease the quality of the resulting meshes. An

alternative approach, used in the context of a priori PGD in [52–55], relies
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on defining a reference configuration and an appropriate geometric mapping.

Henceforth, only one mesh is required to compute the snapshots for the a

posteriori PGD and to perform the computation of the a priori PGD solution,

for any geometric configuration of interest.

4. Numerical experiments

This section presents a set of numerical examples to investigate the per-

formance of a priori and a posteriori PGD approaches in the context of Stokes

flows in geometrically parametrised domains. The problem of interest is the

Stokes flow around the so-called push-me-pull-you microswimmer, a geome-

try extensively studied in the context of microfluidics devices [78, 79]. The

swimmer consists of two bladders of spherical shape that can change their

volume and mutual distance, with the constraint that the total volume of the

two bladders is kept constant. Several numerical tests will be presented, in-

volving one and two parameters. First, parametric studies involving a unique

parameter will be performed, with special attention on the influence of the

range of parameters starting from the configurations of interest described in

the literature [78, 79]. Then, the concurrent treatment of two parameters will

be analysed. In this context, special attention will be devoted to analysing

the possibility of extending the previously obtained results to multidimen-

sional cases.

4.1. Description of the geometry and parametrised mappings

First, the axial symmetry of the problem is exploited and the computa-

tional domain is defined as Ω = ([−L,L]× [0, H]) \ (B+ ∪ B−), where

B± = {x ∈ R2 : ‖x± x0‖2 ≤ Rref}, (23)

where L=6, H=2, x0=(1.5, 0) and Rref=0.116, as represented in figure 1.
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Figure 1: Computational domain for the simulation of the axisymmetric flow around

the push-me-pull-you microswimmer. The inflow boundary is highlighted in orange, the

outflow boundary in blue, the slip boundary in red and the no-slip boundary in black.

A Dirichlet boundary condition is imposed on the left portion of the

boundary to simulate an inlet with unitary horizontal velocity. A homoge-

neous Neumann condition is applied on the right vertical boundary to sim-

ulate an outlet surface. On the surface of the two bladders, a homogeneous

Dirichlet condition describes a no-slip boundary. Finally, on the remaining

boundaries of the domain a perfect slip condition is enforced.

The geometry of the computational domain is described using two pa-

rameters: the parameter µ1 characterises the radius of the two spherical

bladders; the parameter µ2 controls the distance between the centres of the

two spheres. It is worth noticing that only one parameter is required to con-

trol the radius of the spheres because the total volume of the two bladders

is kept constant.

Let Mµ1 be the mapping controlling the radius of the two spheres. Fig-

ure 2(a) reports a sketch of the piecewise definition of the mapping in the

vicinity of one sphere, Rout=0.45 being the interface between the deformable

region (inside) and the fixed one (outside). Following [54, 55], the mapping
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Rout

Rref

x0

(a) Mµ1

Rint

x0

(b) Mµ2

Figure 2: Piecewise mapping (a) Mµ1
and (b) Mµ2

controlling the variation of radius

and distance, respectively. Detail of the mapping in the vicinity of the sphere centred at

x0.

Mµ1 is defined in the separable form (13) as

M1
1(x) =


1

r
x−0 if ‖x−0 ‖ ≤ Rout

0 otherwise

φ1
1(µ1) =

Rout(R
+(µ1)−Rref)

Rout −Rref

,

M2
1(x) =

x
−
0 if ‖x−0 ‖ ≤ Rout

0 otherwise
φ2

1(µ1) =
Rout −R+(µ1)

Rout −Rref

,

M3
1(x) =

x0 if ‖x−0 ‖ ≤ Rout

0 otherwise
φ3

1(µ1) = 1,

M4
1(x) =


1

r
x+

0 if ‖x+
0 ‖ ≤ Rout

0 otherwise

φ4
1(µ1) =

Rout(R
−(µ1)−Rref)

Rout −Rref

,

M5
1(x) =

x
+
0 if ‖x+

0 ‖ ≤ Rout

0 otherwise
φ5

1(µ1) =
Rout −R−(µ1)

Rout −Rref

,

M6
1(x) =

−x0 if ‖x+
0 ‖ ≤ Rout

0 otherwise
φ6

1(µ1) = 1,

(24)

where x±0 :=x±x0. In this work, the interval for the first parameter is defined
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as I1=[−1, 1]. In addition, the radius of the second sphere, centred at x0,

is defined as R+(µ1)=−0.0372µ2
1+0.0968µ1+0.25, whereas the radius of the

first sphere, centred at −x0, is given by

R−(µ1) =

(
1

32
−
[
R+(µ1)

]3)1
3

. (25)

Hence, for µ1=−1, the radii of the two spheres are R−=0.3096 and R+=0.116,

respectively, whereas their values are R−=0.116 and R+=0.3096 for µ1=1.

Similarly, the mapping Mµ2 for the distance is defined in a piecewise

form as represented in figure 2(b). Let Rint=0.47 denote the location of the

interface between the fixed and deformable region for the mapping affecting

the distance of the spheres. The definition of the separable form of the

mapping is given by

M1
2(x) =

d(x)

0

 φ1
2(µ2) = −1

3
x0µ2,

M2
2(x) = x φ2

2(µ2) = 1,

(26)

where the distance function d(x) is

d(x) :=



x+ L

x0 +Rint − L
if x ∈ [−L,−x0 −Rint]

−1 if x ∈ [−x0 −Rint,−x0 +Rint]

x

x0 −Rint

if x ∈ [−x0 +Rint, x0 −Rint]

1 if x ∈ [x0 −Rint, x0 +Rint]

x− L
x0 +Rint − L

if x ∈ [x0 +Rint, L]

. (27)

For the parameter µ2, two different intervals are considered. The objec-

tive of this study is to evaluate the sensitivity of a priori and a posteriori

PGD algorithms to variations in the amplitude of the parametric intervals,

with special emphasis on the case in which large deformations of the domain
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are induced by the geometric parameters. On the one hand, the interval

I2=[−2,−1] induces a maximum and minimum distance between the blad-

ders equal to Dmax=5 and Dmin=4, respectively. On the other hand, the

interval I2=[−3, 2] is responsible for a maximum and minimum distance be-

tween the bladders equal to Dmax=6 and Dmin=1, respectively. It is worth

noticing that in the latter setup, extreme deformations are introduced by

the mapping, leading to complex variations of the flow features near the

microswimmer.

Finally, when the two parameters are concurrently analysed, the result-

ing mapping is obtained as the composition of the two mappings associated

with the radius and the distance. It is worth noticing that given the above

piecewise definitions of Mµ1 and Mµ2 , the resulting mappings are only C0

in the spatial domain. Hence, the meshes introduced in the following section

need to be conforming with the artificial interfaces utilised to define the map-

pings, that is, the dashed lines in figure 2. Of course, alternative definitions

of these mappings may be devised, e.g. by imposing higher regularity across

the interfaces [80]. Consequently, different intervals of the parameters µ1 and

µ2 may arise. The choices above stem from the works [54, 55] and interested

readers can compare the results computed for the small and large interval I2

with the ones reported in [54] and [55], respectively.

4.2. Problem setup and comparison criteria

Figure 3 shows the computational mesh of the reference domain for the

push-me-pull-you microswimmer. The mesh has 1,426 fourth-order triangu-

lar elements. The spatial discretisation leads to a global HDG system of

22,260 equations.

For the a priori PGD approach, 10 elements are used to discretise the

parametric domain I1, whereas 20 and 100 elements are employed for the
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Figure 3: Computational mesh for the simulation of the axisymmetric flow around the

push-me-pull-you microswimmer.

intervals I2=[−2,−1] and I2=[−3, 2], respectively. The different number of

elements in each parametric interval has been selected after observing that

the variation in the flow induced by the first parameter is weaker than the

variation induced by the second one [54, 55]. It is worth noticing that the

set of nodes used to discretise the second parametric dimension in the first

case, I2=[−2,−1], is a subset of the nodes selected for the second case,

where I2=[−3, 2]. In all the numerical tests, a degree of approximation k=4

is utilised for both the spatial and the parametric discretisations and non-

uniform Fekete nodal distributions are employed. For the a posteriori PGD

algorithm, the snapshots are computed in correspondance of the position of

the nodes in the parametric space utilised for the a priori approach.

To compare the accuracy of the a priori and the a posteriori PGD algo-

rithms, two error measures are considered.

First, a multidimensional L2(Ω × I) error is defined for each variable,

namely velocity, pressure and gradient of the velocity, by using a reference

solution. For instance, the multidimensional L2(Ω×I) error measure for the

velocity field is given by

Eu :=

(∫
I

∫
Ω

(u
PGD

(x,µ)− u
REF

(x,µ))·(u
PGD

(x,µ)− u
REF

(x,µ))dΩ dµ∫
I

∫
Ω
u

REF
(x,µ)·u

REF
(x,µ) dΩ dµ

)1/2

.

(28)
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It is worth noticing that the evaluation of the multidimensional error (28)

requires the definition of a reference solution u
REF

at each integration point of

the space of parameters. For each integration point of the space I, the refer-

ence solution is thus computed using the HDG spatial solver on a new, finer,

mesh of the reference domain and with a higher order polynomial approxima-

tion. It is worth mentioning that an increased number of integration points

on the spatial mesh is considered for this computation in order to guarantee

that the reference solution is not affected by the introduction of the mapping

in the HDG solver. It follows that the error introduced by the interpolation

of the reference solution defined on the fine mesh onto the mesh used for the

PGD computation is negligible and the quantity in equation (28) provides an

accurate description of the error of the reduction strategy. For the example

with I1=[−1, 1] and I2=[−3, 2], a total of 25,000 reference solutions were

required to compute this error measure, since five integration points in each

parametric element are utilised for k=4.

Second, the separated response surface for the drag force FD and its error

are considered to assess the accuracy of the PGD-based strategies analysed.

More precisely, the L2(I) error measure for the drag force in the parametric

space is defined as

ED =

(∫
I(FDPGD(µ)− FDREF(µ))2 dµ∫

I FDREF(µ)2 dµ

)1/2

, (29a)

whereas the error in the quantity of interest FD as a function of the parameters

is given by

εD(µ) =
|FDPGD(µ)− FDREF(µ)|

|FDREF(µ)|
. (29b)

4.3. One geometric parameter

In this section, two geometric mappings, affecting independently the ra-

dius of the spherical bladders and their distance, are considered. An extensive
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comparison of accuracy and computational cost of the a priori and the a pos-

teriori PGD approaches is presented for these two cases and special attention

is devoted to the PGD-based separated response surfaces for the drag force.

4.3.1. Varying the radius of the spherical bladders

The first example involves the simulation of the Stokes flow past the push-

me-pull-you microswimmer when the domain is parametrised using µ1 and

the distance between the centres of the two spheres is fixed and equal to 3.

To evaluate the influence of the number of nonlinear iterations in the AD

scheme of the a priori PGD, different numbers of iterations are considered,

namely ni=1, 2, 3, 5. In addition, to evaluate the influence of the number

of snapshots used in the a posteriori PGD approach, different numbers of

snapshots are employed, namely ns=11, 21, 41.

First, the effect of the geometric mapping on the quality of the meshes is

investigated. Figure 4 displays the mesh configurations associated with the

two extreme values of the parameter µ1 controlling the radius of the blad-

ders. Moreover, the mesh quality, measured as the scaled Jacobian of the

isoparametric mapping [70, 71], is reported for the corresponding geomet-

ric configurations. The mesh quality map shows that for the sphere with

minimum radius, 0.116, the quality is lower than one only in the elements

with an edge on the boundary or on the interior interface used to define the

piecewise geometric mapping described in [55]. This is due to the use of the

mesh generation technique described in [70, 71], where only the elements in

contact with curved entities are represented with high-order polynomials. In

contrast, for the sphere with maximum radius, 0.3096, all the elements in the

region where the mapping is different from the identity are deformed. It is

worth noticing that in all the presented cases, the majority of the elements

features a mesh quality of 0.9 or higher and only few elements experience an
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(a) Mesh, µ1 = −1

(b) Quality, µ1 = −1

(c) Mesh, µ1 = 1

(d) Quality, µ1 = 1

Figure 4: (a-c) Mesh configurations and (b-d) mesh quality of two deformed microswim-

mers for the mapping with µ1 as a geometric parameter.

extreme distortion reducing the value of the scaled Jacobian of the isopara-

metric mapping to 0.7. Hence, the mesh in figure 3 is confirmed to be suitable

for the parametric study of the influence of the radius in the microswimmer

configuration.

Figure 5 shows the evolution of the L2(Ω×I1) error measure for velocity

and pressure as a function of the number of modes, m, for both the a priori
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(a) u (b) p

Figure 5: Evolution of the L2(Ω×I1) error for (a) velocity and (b) pressure as a function

of the number of PGD modes for the problem with one geometric parameter controlling

the radius of the spherical bladders. The legend details the number ns of snapshots used

by the a posteriori PGD approach (blue) and the number ni of nonlinear AD iterations

used by the a priori PGD approach (red).

and the a posteriori PGD approaches. The results in figure 5(a) show that

the a posteriori approach is able to provide highly accurate results, with an

error below 10−3, with only five modes and using 11 snapshots. Increasing

the number of snapshots to 21, the accuracy of the approximation is not

improved and the error with five modes stagnates at approximately the same

level achieved by the PGD with 11 snapshots. The additional ten snapshots

introduced for ns=21 are responsible for slightly perturbing the PGD solution

computed using 11 snapshots, without providing valuable information on

the parametric solution. Of course, this result is strongly influenced by the

choice of the sampling points and advanced sampling techniques are expected

to improve the a posteriori approximation in this case. Nonetheless, since

the a priori PGD algorithm constructs an approximation without any prior

information, no specific sampling has been considered for the a posteriori

PGD in order to present a fair comparison of the cost of the two solvers
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under similar working conditions. If a higher accuracy is required for the

approximation in figure 5(a), the number of snapshots needs to be increased

to 41. In this case, with seven computed modes, the a posteriori PGD is able

to provide an error below 10−4.

For the a priori approach, the results show that with only one iteration

in the AD scheme, the accuracy of the computed modes is limited and the

error stagnates at a level almost two orders of magnitude higher than the

corresponding results obtained performing two iterations. In addition, this

example also shows that two iterations is the optimal value as higher values,

for instance three or five iterations, provide results with almost the same

accuracy but they require additional solutions of the spatial problem. With

two iterations in the AD scheme, the a priori PGD approach requires up to

20 modes to reach an accuracy that is comparable to the accuracy obtained

by the a posteriori approach with five modes and 41 snapshots.

To further analyse the accuracy of the two PGD approaches, the evolution

of the L2(Ω × I1) error for the gradient of velocity and the L2(I1) error

for the drag force on the two spherical bladders is computed as a function

of the number of modes (Fig. 6). It can be observed that the results for

the gradient of velocity are very similar, qualitatively and quantitatively, to

the ones presented in figure 5(b) for the pressure field. This is due to the

extra accuracy provided by the HDG formulation in the gradient of velocity,

compared to other approaches based on primal formulations. Furthermore,

this example also confirms that the accuracy that is obtained in the drag

force is similar to the accuracy obtained in the pressure and in the gradient

of velocity, from which it is computed. In all cases, the a posteriori PGD

approach requires five modes and 41 snapshots to construct a solution with

an error in the drag force below 10−3, whereas the a priori approach achieves
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(a) L (b) FD

Figure 6: Evolution of (a) the L2(Ω × I1) error for the gradient of velocity and (b) the

L2(I1) error for the drag force as a function of the number of PGD modes for the problem

with one geometric parameter controlling the radius of the spherical bladders. The legend

details the number ns of snapshots used by the a posteriori PGD approach (blue) and the

number ni of nonlinear AD iterations used by the a priori PGD approach (red).

a similar level of accuracy using two iterations and 15 modes. Hence, the

results show that the two PGD approaches require a similar computational

cost to reach an error in the drag force below 10−3. The a priori approach

requires the solution of 45 spatial problems (i.e. 15 modes, each computed

with two iterations of the AD scheme plus the initial solve to perform the

prediction of the mode, see algorithm 1), whereas the a posteriori approach

utilises 41 snapshots to reach the same level of accuracy.

Figure 7 reports the evolution of the relative amplitude of the velocity and

pressure modes computed using the a priori and a posteriori PGD algorithms.

For the a priori PGD algorithm with ni=2, 24 modes are required to lower the

relative amplitude of both the velocity and the pressure modes below 10−3,

whereas the a posteriori algorithm with ns=41 only computes six modes. It

is very important to emphasise that no compression of the modes obtained

in the a priori approach, see [48], has been performed to enable the reader
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(a) A priori PGD (b) A posteriori PGD

Figure 7: Convergence of the mode amplitude computed using the (a) a priori and (b) a

posteriori PGD algorithms for the parametric study of the radius.

to clearly see the number of calls to the spatial solver required. However,

the number of modes computed by the two approaches is expected to be the

same when the PGD compression is performed. It is also worth noticing that

both the a priori and the a posteriori algorithms stagnate at the same level

of error as this is the error induced by the assumption of separability of the

exact solution of the problem.

As previously observed in figure 5, the a posteriori PGD requires seven

modes to achieve an error below 10−4, whereas 20 modes are computed by

the a priori PGD algorithm. Hence, the first modes computed using the a

posteriori approach capture a larger variability of the solution than the corre-

sponding modes obtained by the a priori PGD. This result is also confirmed

by figure 8 and 9 where the first four modes of the module of the velocity

computed using the a priori and the a posteriori PGD , respectively, are re-

ported. It is worth noticing that this behaviour stems from the orthogonality

of the modes computed by the a posteriori PGD approach. On the contrary,

the modes computed using the a priori PGD feature repeated information
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 8: First four normalised spatial modes of the module of the velocity computed

using the a priori PGD algorithm for the parametric study of the radius.

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 9: First four normalised spatial modes of the module of the velocity computed

using the a posteriori PGD algorithm for the parametric study of the radius.

which can be eliminated through the above mentioned PGD compression

strategy [48]. The corresponding normalised modes for pressure are dis-

played in figure 10 and 11. Finally, figure 12 shows the first eight parametric

modes computed using the two algorithms. It is worth observing that the

first two modes feature a comparable global behaviour, whereas, starting

from the third one, the parametric functions computed by the a priori and

a posteriori PGD approaches noticeably differ. On the one hand, the para-

metric modes provided by the a posteriori PGD present a regular structure

in the interval I1, reminding the well-known hierarchical basis functions in
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 10: First four normalised spatial modes of the pressure computed using the a priori

PGD algorithm for the parametric study of the radius.

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 11: First four normalised spatial modes of the pressure computed using the a

posteriori PGD algorithm for the parametric study of the radius.

1D. As mentioned above, this follows from the orthogonal construction of

the modes performed via the high-order PGD projection [48]. On the other

hand, the modes obtained using the a priori PGD approach display a less

regular structure in the parametric domain. Nonetheless, it is expected that

such a structure may be retrieved after eliminating redundant information

in the PGD approximation by means of the PGD compression [48].

Once the modes are computed, it is possible to perform queries in real-

time by particularising the generalised velocity and pressure fields for a value

of the parameter of interest. As an example, figure 13 displays the velocity
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(a) A priori PGD (b) A posteriori PGD

Figure 12: First eight normalised parametric modes computed using the (a) a priori and

(b) a posteriori PGD algorithms for the parametric study of the radius.

(a) Module of velocity, µ1 = −1 (b) Pressure, µ1 = −1

(c) Module of velocity, µ1 = 0 (d) Pressure, µ1 = 0

(e) Module of velocity, µ1 = 1 (f) Pressure, µ1 = 1

Figure 13: Module of velocity and pressure field for three values of the parameter µ1

corresponding to the radius of the first sphere being maximum (top), equal to the radius

of the second sphere (middle) and minimum (bottom).

and pressure fields corresponding to three different values of the parameter

µ1. Only the solution obtained using the a priori PGD is reported, since the
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velocity and pressure approximations computed by the two approaches are

almost identical as shown in figure 5. Of course, with the a priori algorithm,

it is of interest to perform a compression of the PGD solution, see [48, 75],

before the online evaluation, in order to eliminate redundant information and

reduce the global number of modes.

In a similar fashion, separated response surfaces for quantities of inter-

est can be devised as explicit functions of the parameter. Figure 14 reports

the response surface of the drag force as a function of the radius of the two

spherical bladders, computed using the a priori PGD. As expected, the drag

is maximum on the first sphere when its radius is maximum (i.e. µ1=−1)

and it decreases monotonically until reaching the configuration of minimum

radius for µ1=1. An analogous behaviour is observed for the second sphere,

with the drag force spanning from its minimum value at µ1=−1 to its max-

imum at µ1=1. Moreover, the forces on the two spheres are equal for the

geometric configuration of µ1=0, that is, when the two bladders have the

same volume (Fig. 14(a)). For the sake of completeness, figure 14(b) displays

the total drag on the two spheres as a function of the geometric parameter

µ1. The results obtained with the a posteriori PGD are qualitatively and

quantitatively similar, whence they are omitted for the sake of brevity. A

detailed comparison of the accuracy of the two approaches is presented in

section 4.3.3.

4.3.2. Varying the distance between the spherical bladders

The second example considers a geometrically parametrised problem,

where the parameter controls the distance between two equal spherical blad-

ders with radius 0.25. It is worth recalling that the reference geometry in

figure 1 is characterised by two equal spheres of radius Rref=0.116. Hence,

for the cases studied in this section, the geometric mapping accounts for both
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(a) Drag force on each sphere (b) Total drag force

Figure 14: Response surfaces of the drag force as a function of the radius µ1 of the first

sphere.

a parameter-dependent variation of the distance between the two bladders

and an expansion of the spheres, independent of the parameter.

Two intervals I2 are considered to analyse the sensitivity of the PGD

solutions to the range of variations of the parameter.

The first interval is taken as I2=[−2,−1] and figure 15 reports the evolu-

tion of the L2(Ω×I2) error for velocity, pressure and gradient of velocity and

the L2(I2) error for the drag force as a function of the number m of modes.

The results show that with only four modes, the a posteriori PGD approach

is able to produce the most accurate results for all the variables, including

the drag force computed from the pressure and the gradient of velocity. It

is worth noticing that in this example the accuracy of the a posteriori ap-

proach in the drag force does not improve when increasing the number of

snapshots and 21 snapshots are sufficient to provide a drag force with an er-

ror below 10−5. For the a priori approach, five modes computed with two AD

iterations are required to obtain the maximum accuracy in all the variables.

With one iteration, the error in the drag force is more than one order of

45



(a) u (b) p

(c) L (d) FD

Figure 15: Evolution of (a-c) the L2(Ω × I2) error for velocity, pressure and gradient of

velocity and (d) the L2(I2) error for the drag force as a function of the number of PGD

modes for the problem with one geometric parameter controlling the distance between the

spherical bladders and I2=[−2,−1]. The legend details the number ns of snapshots used

by the a posteriori PGD approach (blue) and the number ni of nonlinear AD iterations

used by the a priori PGD approach (red).

magnitude higher than the one obtained with two iterations. Furthermore,

a higher number of iterations does not produce any gain in accuracy despite

the increased computational cost. In this case, the two PGD approaches

show similar performance as the a priori algorithm provides an error in the

drag force below 10−5 with 12 solutions of the spatial problem (i.e. four
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modes, each computed with two iterations of the AD scheme plus the initial

solve to perform the prediction of the mode, see algorithm 1), whereas the a

posteriori approach requires 21 snapshots for a similar level of accuracy.

Second, the parametric interval is extended to I2=[−3, 2]. Figure 16

presents the meshes of two microswimmer configurations obtained from the

extreme values of the parameter µ2 describing the distance between the blad-

ders. The figure also displays the mesh quality, measured as the scaled Jaco-

bian of the isoparametric mapping, of the two deformed configurations. The

results report that the mesh quality is not affected by the mapping considered

as the change in distance is piecewise linear and the lower mesh quality only

concentrates in the vicinity of the spheres. This is due to the deformation

required to transform the reference mesh with radius 0.116 into the geometric

configuration under analysis, associated with the bladders of equal volume,

in which the radius achieves the value 0.25. As previously observed for the

case of the parametrised radius, only few elements present a mesh quality of

0.7 whereas most elements feature a scaled Jacobian of 0.9 or higher. Hence,

the mesh in figure 3 also provides a good approximation for the parametric

study of the distance between the bladders.

Figure 17 shows the evolution of the L2(Ω×I2) error for velocity, pressure

and gradient of velocity and the L2(I2) error for the drag force as a function

of the number m of modes. It is worth empasising that a simple visual

comparison of the results in figures 15 and 17 clearly illustrates the challenge

that a larger interval of variation of the geometric parameter induces for both

PGD approaches.

The results show that the a posteriori approach requires 10 modes in order

to reach the maximum accuracy for velocity, pressure and gradient of velocity.

In addition, it can be observed that the a posteriori algorithm requires eight
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(a) Mesh, µ2 = −3

(b) Quality, µ2 = −3

(c) Mesh, µ2 = 2

(d) Quality, µ2 = 2

Figure 16: (a-c) Mesh configurations and (b-d) mesh quality of two deformed swimmers

for the mapping with µ2 as a geometric parameter.

modes and 201 snapshots to provide an error in the drag force below 10−5. A

higher number of snapshots does not lead to a further reduction in the error,

whereas a lower number of snapshots, 101, is responsible for a slight increase

in the error. Concerning the a priori PGD, the AD scheme with one iteration

leads to a stagnated error that is several orders of magnitude higher than the

one obtained with two or more iterations. For two iterations, the number of
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(a) u (b) p

(c) L (d) FD

Figure 17: Evolution of (a-c) the L2(Ω × I2) error for velocity, pressure and gradient of

velocity and (d) the L2(I2) error for the drag force as a function of the number of PGD

modes for the problem with one geometric parameter controlling the distance between the

spherical bladders and I2=[−3, 2]. The legend details the number ns of snapshots used by

the a posteriori PGD approach (blue) and the number ni of nonlinear AD iterations used

by the a priori PGD approach (red).

modes required to reach the maximum accuracy is 15 and for three or five

iterations the number of modes required varies between 10 and 12. When the

drag force is considered, the a priori approach shows that an accuracy below

10−5 can be obtained with two iterations and 14 modes, three iterations and
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10 modes or five iterations and 10 modes. The most efficient alternative thus

consists of computing 10 modes with three AD iterations for a total of 40

spatial solves, requiring a marginally lower cost than the computation of 14

modes with two AD iterations, that is, 42 calls to the HDG spatial solver.

Comparing the performance of the a priori and a posteriori approaches

for this more challenging problem, it is clear that the a priori approach is

capable of producing the same accuracy as the a posteriori approach with

a significant lower computational cost. For instance, to reach an accuracy

in the drag force below 10−5, the a priori approach requires 40 solutions of

the spatial problem whereas the same level of accuracy cannot be reached by

the a posteriori approach with 101 snapshots. In this case the a posteriori

approach requires 201 snapshots, which is five times more than the a priori

method. Although this may seem a clear disadvantage of the a posteriori

PGD, it is worth noticing that the 201 snapshots could be easily computed

in parallel. On the contrary, the a priori PGD solves the spatial problems

following a sequential approach. Hence, the resulting computational time of

the a posteriori PGD may still be competitive despite the higher number of

full-order HDG solves required. In addition, recall that the number of snap-

shots required by the a posteriori PGD algorithms strongly depends on the

sampling strategy employed. Several advanced sampling methods proposed

in the literature, see section 1, can be utilised to reduce the number of snap-

shots and to improve the performance of the a posteriori PGD scheme. As

previously mentioned, this is out of the scope of the current work: in order to

perform an unbiased comparison of a priori and a posteriori PGD strategies,

two versions of the algorithms exploiting neither prior information nor tai-

lored improvements such as advanced sampling and error control techniques,

are considered.
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 18: First four normalised spatial modes of the module of the velocity computed

using the a priori PGD algorithm for the interval I2 = [−2,−1] of the parametric distance.

To further highlight the additional difficulty of constructing a ROM for

the extended range of values of the parameter µ2, the first normalised spa-

tial modes of the module of the velocity are reported in figure 18 and 19

for the interval I2 = [−2,−1] and I2 = [−3, 2], respectively. The results,

computed via the a priori PGD with ni=3, display an increased variability

of the flow in the region between the two bladders, where modes accounting

for localised spatial phenomena appear. A similar behaviour is experienced

by the pressure modes, not reported here for brevity. The importace of the

presented modes in the final PGD approximation is analysed in figure 20.

The evolution of the relative amplitude of the computed modes for the in-

terval I2 = [−3, 2] displays that the first four modes have a comparable

importance in the PGD approximation. On the contrary, the fourth mode

in the case of I2 = [−2,−1] already has a relative amplitude below 10−3. To

achieve this level of truncation when the extended interval I2 is considered,

the a priori PGD needs to compute nine modes. Finally, figure 21 shows the

corresponding parametric modes computed using the a priori PGD strategy

for the two parametric intervals studied above. The results display that the

parametric functions for the small interval I2 = [−2,−1] present a smooth
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6

(g) m = 7 (h) m = 8

Figure 19: First eight normalised spatial modes of the module of the velocity computed

using the a priori PGD algorithm for the interval I2 = [−3, 2] of the parametric distance.

(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 20: Convergence of the mode amplitude computed using the a priori PGD algorithm

for different intervals of the parametric distance.
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(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 21: First normalised parametric modes computed using the a priori PGD algorithm

for different intervals of the parametric distance.

transition between the extreme values of µ2 and no localised phenomena are

identified. On the contrary, when the extended interval I2 = [−3, 2] is con-

sidered, several parametric functions feature large variations in a localised

region between µ2=1 and µ2=2. These region of the parametric domain is

associated with the configurations of minimum distance between the blad-

ders. In these scenarios, the influence of the two spheres on one another

is maximum and small variations of the distance are expected to generate

complex flow patterns.

As in the previous example, the separated response surface of the total

drag force on the two spheres is computed using the a priori PGD algorithm.

It is worth noticing that the range of values of µ2 considered in figure 22(a) is

a subinterval of the one analysed in figure 22(b). The scales of the two figures

confirm the higher variability of the flow quantities when larger parametric

intervals are considered and the consequent additional difficulties faced by

the PGD-ROM strategies to cope with the sensitivity to the range of values

considered.
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(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 22: Response surfaces of the total drag force as a function of the distance µ2

between the two spheres, for two different ranges of values of the parameter.

4.3.3. Accuracy of a priori and a posteriori response surfaces

The previous examples with one geometric parameter have shown that,

when the error in equation (29a) is considered, the computational cost of the

a priori PGD is as competitive as the a posteriori one and outperforms it for a

larger range of the parametric interval. However, this quantity measures the

average accuracy over the whole parametric domain, without considering the

worst case scenarios, that is, the cases where the maximum error is observed.

To further compare the two approaches, figure 23 displays the value of the

error in equation (29b) in the drag force, as a function of the parameter µ1

for the first example with one geometric parameter controlling the radius of

the spherical bladders. The minima observed for both the a priori and the

a posteriori approaches in figure 23(a) coincide with the midpoints of the

elements I1
e , e=1, . . . , n1

el as these locations correspond to both a high-order

node and an integration point for the fourth-order polynomial approximation

used in each element of the parametric space. More importantly, the results

show that the accuracy of the a priori and the a posteriori approaches is
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(a) Error measure (b) Smoothed error measure

Figure 23: Error in the drag, defined in equation (29b), as a function of the parameter µ1.

almost identical, not only when measured in the L2(I1) norm (Fig. 6(b)),

but also when the pointwise error in the drag force is displayed for every

configuration in I1. To capture the qualitative behaviour of the error as a

function of µ1, a smoothing is displayed in figure 23(b). The results clearly

show that the error is slightly higher near the boundary of the parametric

interval. The smoothing is performed by considering a single value for the

error in each element, obtained as the average of the error at all integration

points.

Similarly, figure 24 compares the value of the smoothed error measure

in the drag force as a function of the parameter µ2 for the second example,

with one geometric parameter controlling the distance between the spherical

bladders. The results of the two cases previously studied, with I2=[−2,−1]

and I2=[−3, 2], display the increased difficulty of computing an accurate

response surface as the range of values in the parametric space increases.

For I2=[−2,−1], the accuracy is almost independent of the value of the pa-

rameter, whereas for I2=[−3, 2] a more significant dependence is observed,

especially near µ2=2, that is, when the distance between the spherical blad-
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(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 24: Smoothed error measure in the drag force, defined in equation (29b), as a

function of the parameter µ2.

(a) Module of velocity, µ2 = −3 (b) Pressure, µ2 = −3

(c) Module of velocity, µ2 = 2 (d) Pressure, µ2 = 2

Figure 25: Module of velocity and pressure field for two values of the parameter µ2 corre-

sponding to maximum (top) and minimum (bottom) distance of the bladders.

ders is minimum. It is clear that for large values of µ2, there is a strong

influence in the flow impinging onto the second sphere caused by its prox-

imity to the first sphere. Figure 25 reports the particularisation of the PGD

solution computed for two values of the parameter of interest, highlighting

the additional difficulties due to the small distance between the two bladders

for µ2=2.

Finally, the comparison of the results in figures 23 and 24 clearly illus-
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trates the rationale behind the choice of the resolution for the discretisation

of the intervals I1 and I2. Given the limited variation of the solution in

figure 23(b), only 10 elements were considered in the first parametric dimen-

sion, whereas the discretisation of the second parametric dimension contains

20 elements for the interval I2=[−2,−1] and 100 elements for the case of

I2=[−3, 2].

4.4. Two geometric parameters

In this section, the two geometric parameters studied separately in the

previous examples are considered in a single simulation.

First, the interval for the parameter that controls the distance is set to

I2=[−2,−1]. Figure 26 shows the evolution of the L2(Ω×I) error for veloc-

ity, pressure and gradient of velocity and the L2(I) error for the drag force as

a function of the number m of modes. The results reveal that the a posteri-

ori approach provides almost identical accuracy using 231 and 861 snapshots.

The errors in velocity and pressure are below 10−2 and the error in the gra-

dient of velocity is almost 10−2. In this case, four modes are sufficient to

obtain the maximum accuracy in velocity, pressure and gradient of velocity,

whereas an additional mode is required to achieve the most accurate results

in the drag force. Using 3,321 snapshots, the a posteriori PGD computes 10

modes and provides much more accurate results, with an error one order of

magnitude lower, compared to the computation with 861 snapshots. To ob-

tain an error in the drag force below 10−2, the a posteriori approach requires

four modes and 231 snapshots, whereas seven modes and 3,321 snapshots are

required to achieve an error below 10−3. When the a priori PGD algorithm is

employed, one nonlinear iteration in the AD scheme is sufficient to obtain an

accuracy almost identical to the one provided by the a posteriori approach

with 231 and 861 snapshots. In addition, by considering only two nonlinear
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(a) u (b) p

(c) L (d) FD

Figure 26: Evolution of (a-c) the L2(Ω × I) error for velocity, pressure and gradient of

velocity and (d) the L2(I) error for the drag force as a function of the number of PGD

modes for the problem with two geometric parameters and I2=[−2,−1]. The legend

details the number ns of snapshots used by the a posteriori PGD approach (blue) and the

number ni of nonlinear iterations used by the a priori PGD approach (red).

iterations, the a priori approach is capable of producing the same accuracy

as the a posteriori PGD with 3,321 snapshots. In both cases, the number of

modes required by the a priori and the a posteriori approaches to obtain the

maximum accuracy is the same.

For this example, the a priori approach is therefore extremely competitive
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as, for an error in the drag force below 10−2, it only requires the solution

of 10 spatial problems (i.e. five modes, each computed with one iteration of

the AD scheme plus the initial solve to perform the prediction of the mode,

see algorithm 1), whereas the a posteriori approach needs 231 snapshots.

For higher accuracy, namely for an error in the drag force below 10−3, the a

priori approach requires the solution of 21 spatial problems (i.e. seven modes,

each computed with two iterations of the AD scheme plus the initial solve to

perform the prediction of the mode, see algorithm 1), whereas 3,321 snapshots

are needed by the a posteriori approach. As mentioned in section 3.5, the

a posteriori approach benefits from the possibility to compute the snapshots

in parallel, but this example shows that the number of calls to the spatial

solver required is significantly larger than the ones performed using the a

priori algorithm. In addition, the results suggest that the higher the accuracy

requested by the user, the more competitive the a priori approach is. In this

example, for an error in the drag force below 10−2, the a priori approach

requires less than 5% of the number of calls to the HDG solver performed by

the a posteriori PGD algorithm, whereas for an error in the drag force below

10−3, the number of spatial solutions required by the a priori approach is less

than 1% of the corresponding a posteriori approximation.

The last example considers the more challenging scenario with two geo-

metric parameters and with the interval for the distance between the bladders

equal to I2=[−3, 2]. Figure 27 reports the evolution of the L2(Ω× I) error

for velocity, pressure and gradient of velocity and the L2(I) error for the

drag force as a function of the number m of modes. The results are qual-

itatively similar to the previous example but the number of snapshots and

modes required by the a posteriori and a priori PGD approaches changes sig-

nificantly. The a posteriori approach with 1,111 and 4,221 snapshots provide
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(a) u (b) p

(c) L (d) FD

Figure 27: Evolution of (a-c) the L2(Ω × I) error for velocity, pressure and gradient of

velocity and (d) the L2(I) error for the drag force as a function of the number of PGD

modes for the problem with two geometric parameters and I2=[−3, 2]. The legend details

the number ns of snapshots used by the a posteriori PGD approach (blue) and the number

ni of nonlinear iterations used by the a priori PGD approach (red).

almost identical accuracy in all the variables. In this case, 15 modes are suf-

ficient to provide the maximum accuracy in velocity, pressure and gradient

of velocity. One order of magnitude more accurate results are obtained if the

number of snapshots is increased to 16,441. In terms of the drag force, with

1,111 snapshots and 10 modes the a posteriori approach is able to provide
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an accuray below 10−2. To obtain an accuracy below 10−3, the a posteriori

approach requires 16,441 snapshots and 13 modes. In this example, the a

priori approach with only one nonlinear AD iteration is not able to produce

results with an error in the drag force below 10−2. It is worth noticing that,

despite an accurate velocity field is obtained, the error in both pressure and

gradient of velocity is higher than 10−2. However, by performing only two

nonlinear iterations in the AD scheme and computing enough modes, the er-

ror in the velocity field drops of two orders of magnitude and accurate results

are obtained for both pressure and gradient of velocity, with an error below

10−3.

The a priori approach with 14 modes and two nonlinear iterations provides

a solution with an error in the drag force below 10−3. To obtain the same

accuracy, the a posteriori approach also requires 14 modes but the number

of snapshots needed for this challenging problem is 16,441. This means that

the a posteriori approach requires 391 times extra spatial solutions to provide

the same error as the a priori approach. The results illustrate again that the

higher the accuracy required and the higher the variability in the solution

introduced by the geometric parameters, the more beneficial is the use of the

a priori approach. It is worth recalling that the presented results compare two

basic versions of the a priori and a posteriori PGD algorithms which could be

improved by introducing techniques to handle the space of parameters and

error control strategies. While these techniques represent frontier research

in the context of a priori ROMs, they are well established for a posteriori

strategies. In particular, the employment of sampling methods is expected to

reduce the number of snapshots required by the a posteriori PGD, whereas

error control will provide more accurate information on the capability of

the reduced basis to represent the multidimensional solution. These studies,
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(a) Module of velocity, (µ1 = −1, µ2 = −3) (b) Pressure, (µ1 = −1, µ2 = −3)

(c) Module of velocity, (µ1 = 1, µ2 = 2) (d) Pressure, (µ1 = 1, µ2 = 2)

Figure 28: Module of velocity and pressure field for two sets of parameters µ1 and µ2

describing the extremal configurations of the microswimmer.

which are out of the scope of the present work, represent promising lines of

investigation to better understand advantages and disadvantages of different

ROMs strategies.

For the sake of brevity, only real-time evaluations of the velocity and

pressure fields obtained from the a priori PGD computation are reported

hereafter. Interested readers are referred to [55] for more in-depth presenta-

tion of the spatial and parametric modes for the problem under analysis. To

illustrate the online stage, figure 28 reports the velocity and pressure fields

corresponding to the two extremal configurations of the push-me-pull-you

microswimmers described by the parameters µ1 and µ2.
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(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 29: Response surfaces of the total drag force as a function of the radius µ1 of the

first sphere and the distance µ2 between the two bladders, for two different ranges of values

of the parameter µ2.

4.4.1. Accuracy of a priori and a posteriori response surfaces

The separated response surfaces for the total drag force on the spheres

computed using the a priori PGD are presented in figure 29, as a function

of the parameters µ1 and µ2. The results confirm the increased sensitivity of

the quantity of interest to the extended range of the parameter µ2, as already

observed in figure 22, with the appearence of localised variations of the drag

force in the vicinity of the value µ2=2 (Fig. 29(b)).

The previous two examples with two geometric parameters have shown

that the a priori PGD approach is competitive when the multidimensional

error measure in equation (29a) is considered. To further analyse the perfor-

mance of both PGD approaches, figure 30 reports the smoothed pointwise

error of the drag force as a function of the two parameters µ1 and µ2 for

the first example in this section, when the second parameter belongs to the

interval I2=[−2,−1]. The results show that both the a priori and the a pos-
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(a) εD, a priori PGD (b) εD, a posteriori PGD

Figure 30: Error map for the drag force as a function of the two parameters µ1 ∈ [−1, 1]

and µ2 ∈ [−2,−1].

teriori approaches produce almost identical results for each value of the two

geometric parameters. The behaviour is very similar to the one observed for

the solution with only one parameter, as reported in figures 23(b) and 24(a).

A slightly higher error is observed for the a priori PGD near the left and

right boundaries of the parametric domain, corresponding to the maximum

and minimum radius of the first sphere, respectively. In addition, the accu-

racy obtained is almost independent on the value of the second parameter.

This is attributed to the fact that, with the interval I2=[−2,−1] considered

here, the minimum distance between the spheres does not induce a significant

variation of the flow impinging onto the second sphere.

The same study is repated for the case of I2=[−3, 2]. Figure 31 shows the

smoothed error of the drag force as a function of the two parameters µ1 and µ2

for the second example, with µ2 ∈ [−3, 2]. Despite the L2(I) error measure

is almost identical for the a priori and the a posteriori PGD approaches

(Fig. 27(d)), the error map displays important differences between the two
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(a) εD, a priori PGD (b) εD, a posteriori PGD

Figure 31: Error map for the drag force as a function of the two parameters µ1 ∈ [−1, 1]

and µ2 ∈ [−3, 2].

methods. More precisely, the error map of the a priori approach reveals

higher error in the vicinity of the boundary of I, whereas the error of the a

posteriori PGD does not show such increase near the boundary. It is worth

noticing that the higher errors observed in the a priori approach are very

localised and therefore they are not observed when the L2(I) error measure

is computed. In addition, the higher errors are not only observed for the

maximum value of the parameter µ2 but also for lower values of µ2.

This result reveals the increased difficulty in addressing problems with

more than one geometric parameter with the a priori approach. Furthermore,

the study shows that the conclusions of independent studies with only one

geometric parameter do not extend to problems with the same parameters

considered in a single simulation.
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5. Concluding remarks

A comparison of a priori and a posteriori PGD algorithms was presented

for the challenging problem of an incompressible Stokes flow in geometrically

parametrised domains. The full-order solver is based on a multidimensional

HDG method which allows the use of equal order polynomial approximations

for all the variables leading to an LBB-compliant discretisation with high-

order isoparametric formulations. In addition, the HDG-PGD framework

provides an exact separation of the terms appearing in the formulation of

the geometrically parametrised PDE on a reference domain.

The a priori PGD algorithm, see [55], is obtained devising a separated

formulation of the multidimensional HDG solver and does not require any

prior snapshot computation. The a posteriori PGD, also known as least-

squares PGD [75], constructs a separated approximation starting from a

series of snapshots obtained as full-order solutions of the spatial problem.

The challenging problem of the flow around a geometrically parametrised

push-me-pull-you microswimmer is employed to test the performance of the

two PGD approaches. More precisely, extensive numerical experiments are

performed to test the sensitivity of the ROMs to the range of variation of

the parameters and to the number of parameters considered. For problems

with a unique geometric parameter inducing limited variations in the flow,

accuracy and performance of the two approaches are comparable. When the

range of variation of the parameter is extended and extreme geometric trans-

formations are considered, the a priori approach requires a significantly lower

computational cost, measured in terms of number of full-order HDG solves,

with respect to the a posteriori PGD. Nonetheless, it is worth recalling that

snapshots in the a posteriori PGD can be easily computed in parallel, whereas

the computation of the modes in the a priori approach is sequential. The
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presented numerical results also highlight the additional difficulty introduced

by the presence of multiple geometric parameters. In this case, the a priori

PGD requires up to 391 times less calls to the full-order HDG solver than the

a posteriori approach to achieve an accuracy in the drag force below 10−3.

Hence, the numerical results display the superior performance of the a pri-

ori PGD when either the parametric solution features increased variability,

due to the range of values of the geometric parameters or to their number,

or higher accuracy is required by the user. Nonetheless, the employment of

advanced sampling techniques in the a posteriori PGD is expected to reduce

the number of required snapshots and competitive computing times may be

achieved via their parallel computation.

It is worth emphasising that the conclusions of parametric studies con-

sidering only one geometric parameter at a time do not extend to parametric

PDEs in which multiple parameters are concurrently considered in a unique

problem. Hence, prompted by these results, further comparisons involving

problems with more than two geometric parameters and a posteriori algo-

rithms based on tailored sampling techniques are expected to provide addi-

tional insights on the applicability and limitations of PGD-based strategies

in the context of industrial parametric studies.
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Algebraic Toolbox Operating with High-Dimensional Data, Archives of

Computational Methods in Engineering 27 (2020) 1321–1336.
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Appendix A. Separated expressions of the bilinear and linear forms

In this appendix, the separated form of the PGD approximation of the

HDG local (5) and global (7) problems is briefly reported. For its detailed

derivation, interested readers are referred to [55].

From the separated form (11), the computation of the m-th mode is

performed in two steps, corresponding to the HDG local and global prob-

lems. The PGD spatial equation arising from the local problem (5) is: find

(σmL ∆FL, σ
m
u ∆fu, σ

m
p ∆fp) ∈Wh × Vh × Vh such that

nd∑
k=1

βkθAkLL(δFL, σ
m
L ∆FL) +

na∑
k=1

βkϑAkLu(δFL, σmu ∆fu)

=Rm
L (δFLψ

m) +
na∑
k=1

βkϑAkLû(δFL, σmû ∆fû),

na∑
k=1

βkϑAkuL(δfu, σ
m
L ∆FL) + βAuu(δfu, σmu ∆fu)

+
na∑
k=1

βkϑAkup(δfu, σmp ∆fp) =Rm
u (δfuψ

m) + βAuû(δfu, σmû ∆fû),

na∑
k=1

βkϑAkpu(δfp, σmu ∆fu) =Rm
p (δfpψ

m) +
na∑
k=1

βkϑAkpû(δfp, σmû ∆fû)

βAρp(1, σmp ∆fp) =Rm
p (ψm) + βAρρ(1, σmρ ∆fρ),

(A.1)

for all (δFL, δfu, δfp) ∈Wh × Vh × Vh.
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The separated bilinear forms in equation (A.1) are given by

AkLL(δFL,FL) := −
(
δFL, ν

−1DkFL
)

Ωe
, AkLu(δFL,fu) :=

(
Ak∇· δFL,fu

)
Ωe
,

AkLû(δFL,fû) := 〈Akn · δFL,fû〉∂Ωe\ΓD , AkuL(δfu,FL) :=
(
δfu,A

k∇·FL
)

Ωe
,

Auu(δfu,fu) := 〈δfu, τfu〉∂Ωe , Akup(δfu, fp) :=
(
δfu,A

k∇fp
)

Ωe
,

Auû(δfu,fû) := 〈δfu, τfû〉∂Ωe\ΓD Akpu(δfp,fu) :=
(
Ak∇δfp,fu

)
Ωe
,

Akpû(δfp,fû) := 〈δfp,fû ·Akn〉∂Ωe\ΓD , Aρp(δfρ, fp) :=
(
δfρ, |Ωe|−1fp

)
Ωe
,

Aρρ(δfρ, fρ) := δfρ fρ,

(A.2)

whereas the corresponding linear forms are

Rm
L (δFLψ) :=

na∑
k=1

nD∑
l=1

〈Akn · δFL, glD〉∂Ωe∩ΓDAkϑ(ψ, λlD)

−
m∑
i=1

nd∑
k=1

AkLL(δFL, σ
i
LF

i
L)Akθ(ψ, ψi)

−
m∑
i=1

na∑
k=1

{
AkLu(δFL, σiuf iu)−AkLû(δFL, σiûf iû)

}
Akϑ(ψ, ψi)

Rm
u (δfuψ) :=

nd∑
k=1

nS∑
l=1

(
δfu, D

kglS
)

Ωe
Akθ(ψ, λlS)

+
nD∑
l=1

〈δfu, τglD〉∂Ωe∩ΓDA(ψ, λlD)

−
m∑
i=1

na∑
k=1

{
AkuL(δfu, σ

i
LF

i
L) +Akup(δfu, σipf ip )

}
Akϑ(ψ, ψi)

−
m∑
i=1

{
Auu(δfu, σiuf iu)−Auû(δfu, σiûf iû)

}
A(ψ, ψi)

Rm
p (δfpψ) :=

na∑
k=1

nD∑
l=1

〈δfp, glD ·Akn〉∂Ωe∩ΓDAkϑ(ψ, λlD)

−
m∑
i=1

na∑
k=1

{
Akpu(δfp, σiuf iu)−Akpû(δfp, σiûf iû)

}
Akϑ(ψ, ψi)

Rm
p (δfρψ) :=−

m∑
i=1

{
Aρp(δfρ, σipf ip )−Aρρ(δfρ, σiρf iρ )

}
A(ψ, ψi).

(A.3)
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Finally, the parametric constants appearing in equation (A.1) are defined as

βkθ := Akθ(ψm, ψm) βkϑ := Akϑ(ψm, ψm), β := A(ψm, ψm), (A.4)

where the bilinear forms in the parametric space are given by

Akθ(δψ, ψ) :=
(
δψ, θkψ

)
I ,

Akϑ(δψ, ψ) :=
(
δψ, ϑkψ

)
I ,

A(δψ, ψ) :=
(
δψ, ψ

)
I .

(A.5)

The separated approximation of the trial and test functions, see equa-

tions (11) and (16), is also exploited to construct the separated form of the

HDG global problem (7): find σmû ∆fû ∈ V̂
h

and σmρ ∆fρ ∈ Rnel such that, for

all δfû ∈ V̂
h
, it holds

nel∑
e=1

{
na∑
k=1

βkϑAkûL(δfû, σ
m
L ∆FL) + βAûu(δfû, σmu ∆fu)

+
na∑
k=1

βkϑAkûp(δfû, σmp ∆fp) + βAûû(δfû, σmû ∆fû)

+
na∑
k=1

βkϑAkûû(δfû, σmû ∆fû)

}
=

nel∑
e=1

Rm
û (δfûψ

m),

na∑
k=1

βkϑAkpû(1, σmû ∆fû) = Rm
ρ (ψm),

e = 1, . . . , nel.

(A.6)

The bilinear forms in equation (A.6) are defined as

AkûL(δfû,FL) := 〈δfû,Akn · FL〉∂Ωe\(ΓD∪ΓS) − 〈δfû,Akn · FLE〉∂Ωe∩ΓS ,

Aûu(δfû,fu) := 〈δfû, τfu〉∂Ωe\(ΓD∪ΓS) − 〈δfû, (τfu)·E〉∂Ωe∩ΓS ,

Akûp(δfû, fp) := 〈δfû, fpAkn〉∂Ωe\(ΓD∪ΓS),

Aûû(δfû,fû) := −〈δfû, τfû〉∂Ωe\(ΓD∪ΓS) + 〈δfû, (τfû)·E〉∂Ωe∩ΓS ,

Akûû(δfû,fû) := 〈δfû,fû ·AkD〉∂Ωe∩ΓS ,

(A.7)
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whereas the corresponding linear form are given by

Rm
û (δfûψ) :=−

nN∑
l=1

〈δfû, glN〉∂Ωe∩ΓNA(ψ, λlN)

−
m∑
i=1

{
Aûu(δfû, σiuf iu) +Aûû(δfû, σiûf iû)

}
A(ψ, ψi)

−
m∑
i=1

na∑
k=1

{
AkûL(δfû, σ

i
LF

i
L)Akϑ(ψ, ψi)

+
[
Akûp(δfû, σipf ip ) +Akûû(δfû, σiûf iû)

]
Akϑ(ψ, ψi)

}
,

Rm
ρ (δfρψ) :=−

na∑
k=1

nD∑
l=1

〈δfρ, glD ·Akn〉∂Ωe∩ΓDAkϑ(ψ, λlD)

−
m∑
i=1

na∑
k=1

Akpû(δfρ, σiûf iû)Akϑ(ψ, ψi).

(A.8)

Following from remark 4, a unique parametric function is considered for

all the variables in the PGD approximation (11). Hence, the PGD parametric

problem is: find ∆ψ ∈ Lh(I) such that

nd∑
k=1

γkLLAkθ(δψ,∆ψ) +
na∑
k=1

γkϑAkϑ(δψ,∆ψ) + γA(δψ,∆ψ) = Rm(δψ), (A.9)

for all δψ ∈ Lh(I), where

γkϑ :=γkLu − γkLû + γkuL + γkup + γkpu − γkpû + γkûL + γkûp + γkûû + γkρû,

γ :=γuu − γuû + γρp − γρρ + γûu + γûû,

Rm(δψ) :=Rm
L (σmL F

m
L δψ) +Rm

u (σmu f
m
u δψ) +Rm

p (σmp f
m
p δψ)

+Rm
p (δψ) +Rm

û (σmû f
m
û δψ) +Rm

ρ (δψ).

(A.10)
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The spatial constants appearing in equation (A.9) are defined as

γkLL := AkLL(σmL F
m
L , σ

m
L F

m
L ), γkLu := AkLu(σmL Fm

L , σ
m
u f

m
u ),

γkLû := AkLû(σmL Fm
L , σ

m
û f

m
û ), γkuL := AkuL(σmu f

m
u , σ

m
L F

m
L ),

γuu := Auu(σmu fmu , σmu fmu ), γkup := Akup(σmu fmu , σmp fmp ),

γuû := Auû(σmu fmu , σmû fmû ), γkpu := Akpu(σmp fmp , σmu fmu ),

γkpû := Akpû(σmp fmp , σmû fmû ), γρp := Aρp(1, σmp fmp ),

γρρ := Aρρ(1, σmρ fmρ ),

γkûL := AkûL(σmû f
m
û , σ

m
L F

m
L ), γûu := Aûu(σmû fmû , σmu fmu ),

γkûp := Akûp(σmû fmû , σmp fmp ), γûû := Aûû(σmû fmû , σmû fmû ),

γkûû := Akûû(σmû fmû , σmû fmû ), γkρû := Akpû(1, σmû fmû ).

(A.11)
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