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Abstract

This work presents a framework of coupling polygonal discrete elements and the lattice Boltz-

mann method using a direct forcing immersed boundary scheme. In this technique, an energy-

conserving contact algorithm is utilized to handle the interactions between convex and concave

polygonal particles. The surface of a polygon is represented by discrete boundary points which

includes vertices of polygonal particles and/or points interpolated from vertices. The fluid-

particle coupling is obtained through the interactions of the boundary points and the imaginary

fluid particles using a direct-forcing immersed boundary method. Validations of the proposed

technique are made by single particle and multiple arbitrarily-shaped particle sedimentation

tests, and the effect of particle shape is illustrated using a drafting-kissing-tumbling bench-

mark.

Keywords: concave polygonal particle, discrete element method, lattice Boltzmann method,

immersed boundary method, multiphase flow

1. Introduction

The coupled discrete element method and lattice Boltzmann method (DEMLBM) has

been attracting more and more attention in various disciplines because of its simpler imple-

mentation and higher computational efficiency (Cook et al., 2004; Feng et al., 2007) than the

coupled discrete element method and computational fluid dynamics (DEMCFD). Applications
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of DEMLBM can be found in geotechnical engineering, chemical engineering, multiphase fluid

flows and many other fields. The combination of DEM and LBM can be achieved by various

coupling schemes, such as the modified bounce-back (MBB) method (Ladd, 1994), momentum-

interpolation (MI) method (Mei et al., 1999), immersed moving boundary (IMB) scheme (No-

ble and Torczynski, 1998) and immersed boundary method (IBM) (Feng and Michaelides,

2004). Among them, the IMB and IBM are two most popular approaches.

The IMB method fully takes advantage of the particle nature of LBM by introducing an

additional collision operator to the lattice Boltzmann equation, which accounts for the con-

tribution of solid particles to the lattice nodes partially covered by the particles. Based on

the momentum conservation, the hydrodynamic forces applied to a solid particle can be di-

rectly determined from this additional collision term. Meanwhile, to smoothly represent the

boundary profile of a solid particle a weighting function associated with a nodal solid area was

introduced. Two key steps of the IMB scheme are to fast identify fluid and solid boundary

nodes and calculate the corresponding weighting functions associated with each nodal solid

area. These steps mainly govern the computational efficiency and accuracy of IMB. Differ-

ent approximate methods of calculating the nodal solid area, such as cell decomposition and

polygon approximation, were discussed by Owen et al. (2011). Recently, searching algorithms

for efficiently identifying boundary nodes were reported by Wang et al. (2017, 2018b), and a

fast computation method of a nodal solid area was proposed by Jones and Williams (2017).

To eliminate the relaxation time dependency of hydrodynamic forces, the two-relaxation-time

model was implemented into DEM-LBM and a modified weighting function for IMB was pro-

posed by Wang et al. (2018a). A more efficient searching algorithm and a Gaussian integration

for calculating a nodal solid area were developed to improve the computing efficiency in Wang

et al. (2019) and used by Zhao et al. (2019). Instability of IMB and its treatments for partic-

ulate simulations involving multi-covered nodes were reported in a recent work(Wang et al.,

2020b).

The IBM was first proposed for CFD by Peskin (1977). It was introduced to LBM by Feng

and Michaelides (2004). The basic idea of the initial IBM is to treat the particle boundary
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as a series of Lagrangian points with high stiffness. The desired position of a boundary point

can be determined from translation and rotation of the solid particle. The actual position of a

boundary node is updated by the fluid velocity, interpolated from surrounding fluid nodes, at

this boundary point. The hydrodynamic force can be obtained from the derivation between

the desired position of the boundary point and the current position using a spring model with

high stiffness. This force is dependent on the value of the specified spring stiffness. Then, a

direct forcing IBM proposed by Uhlmann (2005) based on momentum exchange was introduced

into LBM by Niu et al. (2006). Different from the calculation of the hydrodynamic force in

the initial IBM, the derivation of the desired velocity of the boundary point, which can be

determined from particle movement, and a virtual velocity of the boundary point interpolated

from the surrounding fluid nodes was used to determine the fluid-particle interaction from

momentum conservation. Meanwhile, the velocity difference is distributed to the surrounding

fluid nodes.

It is reported, however, that the non-slip boundary condition is not fully enforced in the

direct forcing IBM due to the one-time momentum exchange (Wu and Shu, 2009). Then,

an IB-LBM using an implicit force density formulation was developed in Wu and Shu (2009)

where an unknown velocity correction is prescribed. This implicit scheme can enforce the non-

slip boundary condition at the fluid-solid interface but requires complex matrix inversions and

a higher computational memory cost. To improve the accuracy of the direct forcing IBM, a

multi-direct forcing IBM proposed by Wang et al. (2008) was adopted in LBM by Hayashi et al.

(2012). A fixed momentum exchange iteration was used to approximately satisfy the non-slip

condition. Later, Dash et al. (2014) proposed an implicit flexible forcing IBM based on the

multi-direct forcing IBM. Instead of using a fixed iteration number in the multi-direct forcing

IBM, a flexible sub-iteration for the velocity correction is terminated when the convergence

criterion is satisfied. It was found that the implementation of IBM is simpler than IMB, but

some acceptable oscillation of hydrodynamic forces can be observed in IBM compared to IMB

(Wang et al., 2020a).

To the best of our knowledge, most simulations of particle-fluid systems by DEMLBM
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adopt disks and spheres for two and three dimensional problems respectively. However, the

angularity of irregular particles plays an important role in particle-fluid systems, and disks

or spheres are unable to capture some physical behaviour such as the sufficient resistance to

rolling motion. Only a few references accounted for irregular particle shapes in the DEMLBM

simulations coupled by IMB (Han et al., 2007; Galindo-Torres, 2013; Li et al., 2019). To han-

dle the contact interaction between irregular particles, a simplified spheropolyhedra method

(Galindo-Torres, 2013) and a convex decomposition method (Li et al., 2019) were respectively

utilized. As mentioned before, the fluid boundary nodes of each moving particle should be

identified every time step in IMB. Although an efficient boundary point searching algorithm

was proposed in our previous work (Wang et al., 2019), and can be extended to polygons,

this search has to be applied at each time step, and therefore can be very costly. In contrast,

using IBM the boundary points of a particle is exclusively determined before the simulation

and they can be explicitly updated from particle translation and rotation at each time step.

Thus no search is involved any more.

Given the straightforward implementation of IBM and a lesser computational cost than

IMB in the treatment of polygons or polyhedra, this work develops a coupled polygonal DEM-

LBM-IBM framework, in which the vertices or boundary points interpolated from vertices will

be directly used for momentum exchange and subsequent calculation of hydrodynamic forces.

Meanwhile, an advanced energy-conserving contact algorithm proposed in the references (Feng

and Owen, 2004; Feng et al., 2012; Feng, 2021a,b) is implemented to handle the contact

interaction between polygonal particles including concave shapes.

2. Methodologies

In this section, we will focus on the contact interaction between polygonal particles, the

direct forcing IBM and their coupling. Details of the fundamentals of DEM and LBM can be

found in the literature.
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2.1. Energy-conserving contact algorithm for polygons

Most existing contact algorithms for polygons are using a heuristic or simplified way to deal

with the contact between two polygons. Basic issues of polygon-polygon contact are mainly

how to determine contact point, unit normal and tangential vectors, and accurately calculate

the contact force and torque. A robust energy-conserving contact model for arbitrarily shaped

particles was proposed in (Feng and Owen, 2004; Feng et al., 2012), from which the detailed

derivation process of this energy-conserving contact model can be found. The rest of this part

will highlight the important issues mentioned before.

Based on the energy conservation principle, for two polygons in contact, the normal contact

force F n is defined as

F n = −∂φ(x, θ)

∂x
(1)

where φ(x, θ) is a contact energy/potential function; and x and θ are the centroid coordinates

and rotation angle of the first polygons in contact. F n is the force exerted from the second

polygon to the first one.

The corresponding contact moment M is defined as

M = −∂φ(x, θ)

∂θ
(2)

Take two polygonal particles in contact (the first case shown in Figure 1) for instance. Let

p(xp, yp) and q(xq, yq) be the penetrating vertices of particle 1 and particle 2 respectively, and

g(xg, yg) and h(xh, yh) be the two intersections. The contact energy function φ can be chosen

as a monotonically increasing function of the overlap area (A) of the two polygons. Then, the

normal contact force can be expressed as

F n = −∂φ(A)

∂xp

= −∂φ(A)

∂A
· ∂A
∂xp

= Fnn (3)

where Fn and n are the magnitude of normal contact force and normal direction to be defined
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below. The term ∂A
∂xp

is given by

∂A

∂xp

= {(yh − yg),−(xh − xg)} (4)

Thus, d = ‖ ∂A
∂xp
‖ is the contact width or distance between the two intersections g and h.

By choosing a special form of the function φ(A), the magnitude of the normal contact force

Fn in the form of a Hertz type can be defined as

Fn = knA
1
2d (5)

where kn is the normal stiffness.

The unit normal vector n and the tangential vector t are given by

n = −
∂A
∂xp

‖ ∂A
∂xp
‖

=
{−(yh − yg), (xh − xg)}

d
(6)

t =
{(xh − xg), (yh − yg)}

d
(7)

In this energy-conserving contact algorithm, the middle point m of the contact line gh is

proved to be the preferred choice as the contact point. The general normal contact model

also works for node-edge and edge-edge contact situations as special cases shown in Figure 1.

Treatments of other complex contact cases can be found in the reference (Feng et al., 2012;

Feng, 2021b).

Besides, Based on the classic Coulomb friction model, the friction force is updated by

adding the incremental tangential contact force ∆F t

F t = F t−∆t + ∆Ft; ∆F t = −kt∆S, |F t| ≤ |F t,max| = µ|F n| (8)

where kt is the tangential stiffness, ∆S is the incremental shearing displacement at the current
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time step, and µ is the coefficient of friction.

2.2. LBM-IBM

The lattice Boltzmann method is a mesoscopic particle-based CFD method where imagi-

nary particles are introduced and treated as clusters of fluid molecules. The flow behavior of

fluid is reproduced by collision and streaming processes of these imaginary particles. Collision

and streaming processes can be described by the lattice Boltzmann equation below derived

from statistical mechanics

f i(x + ei∆t, t+ ∆t)− f i(x, t) = Ωi + F i∆t (9)

where f i is the fluid density distribution function in the i-direction; x and e are the coordinates

of the lattice node under consideration and the velocity vectors of imaginary fluid particles; t,

Ωi and F i are, respectively, the current time, collision operator and body force term.

There are mainly two collision operators and they are known as the Bhatnagar-Gross-

Krook (BGK) (Qian et al., 1992) and multiple relaxation time (MRT) (d’Humieres, 2002)

collision operators. In this work, the BGK model, D2Q9, is used and the corresponding

collision operator, Ωi, is given by

Ωi = −∆t

τ
(f i(x, t)− f eq

i (x, t)) (10)

where τ > 0.5 is a relaxation parameter; f eq
i is the equilibrium distribution function in the

i-direction and defined as

f eq
i (x, t) = ωiρ(1 +

3

C2
ei · u +

9

2C4
(ei · u)2 − 3

2C2
u · u) (11)

in which ωi is the weighting factor of the fluid particle in the i-direction; ρ and u are the

macroscopic density and velocity of the lattice node; C is the lattice speed defined by

C =
h

∆t
(12)

7



with h as the lattice size.

The body foce term F i in Equation (9) is defined by

F i = ωi(1−
1

2τ
)(
ei − u

C2
s

+
ei · u
C4

s

) · f (13)

where Cs = C/
√

3, f is the body force (vector) density and needs to be determined from IBM.

In the direct forcing IBM, the solid boundary is discretized into several Lagrangian bound-

ary points (see Figure 2)). At each time step, the (desired) velocity at a boundary points

of a particle can be determined from the rigid body motion of the particle. Meanwhile, the

fluid velocity at the boundary point, with position Xb = (Xb, Yb), can be interpolated from

the four surrounding lattice nodes, with position xij = (xij, yij), using the Kernel distribution

function, D(xij −Xb), definded below.

D(xij −Xb) =
1

h2
δ(
xij −Xb

h
)δ(

yij − Yb
h

) (14)

where δ() is the discrete delta function(Dash et al., 2014).

Due to the non-slip boundary condition at the fluid-solid interface, the interpolated fluid

velocity needs to be equal to the desired boundary velocity. To achieve this non-slip condition,

the velocity difference, ∆U b, between the interpolated and desired velocities will be distributed

to its surrounding fluid nodes using the following equation

u(xij) = u(xij) + ∆u(xij) = u(xij) +
∑
k

∆U bD(xij)sk (15)

where xij and u(xij) are the coordinates and velocity of the lattice node around a boundary

point; k is the serial number of boundary points associated with the fluid lattice nodes and sk

is the arc length between two consecutive boundary points.

The force density of the fluid lattice node adjacent to a particle is updated by

f = f +
2ρ∆u(xij)

∆t
(16)
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The hydrodynamic force, F b, applied to the boundary point can be computed as

F b =
2ρ∆U b

∆t
(17)

Then, the resultant hydrodynamic force and torque applied to the solid particle can be ob-

tained from its boundary points.

2.3. Coupling procedures

In the simulation of fluid-particle systems, the timestep of LBM is normally greater than

that of DEM. A DEM subcycling algorithm was proposed within an LBM timestep in (Feng

et al., 2007). The specific DEMLBM coupling procedure is given in Figure 3. This framework

works for the polygonal DEM-LBM technique coupled by any IBM scheme which is employed

in Step S9 in Figure 3. For illustration, we only adopt the direct forcing IBM in this work.

It should be highlighted that the boundary points of polygonal particles are predefined once

before the time integration of LBMDEM.

3. Numerical experiments and validations

3.1. Single particle sedimentation

In this section, we will first validate the accuracy of our in-house code BPLBM. The single

particle sedimentation is one of the benchmark tests for the validation of disk/sphere-fluid

coupling, but there is no such benchmark for the coupling between polygon/polyhedron and

fluid. In the two-dimensional case, an indirect way is to approximate the disk using a multi-

vertex polygon.

As shown in Figure 4, a solid polygonal particle with 16 vertices, which is used to mimic a

disk with diameter 0.25 cm, is placed at the position (1 cm, 4 cm) in a fluid-filled tube with

2 cm width and 6 cm height. The density of the solid particle is 1.25 g/cm3. The density

and kinematic viscosity of the fluid are 1.0 g/cm3 and 10−5 m2/s respectively. In this model,

the relaxation parameter (τ) is 0.65. To ensure an accurate simulation, the lattice spacing

(h = 0.01) is selected so that the ratio of the particle diameter to the lattice spacing is greater
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than 20 which is sufficient for an accurate DEMLBM simulation (Feng and Michaelides, 2004;

Niu et al., 2006; Wang et al., 2020b). The contact stiffness between the solid particle and the

walls is 107 N/m. Due to the applied gravity force, the particle will fall through the fluid and

finally collide with the bottom wall and settle.

Figure 4 shows the snapshots of this particle sedimentation process at different time in-

stants. The velocity shown in the legend is in the dimensionless value of the lattice system.

To validate the accuracy of the polygonal DEMLBM technique coupled by the direct forcing

IBM, another numerical model with the same parameters except for using a circular particle is

carried out. Both simulations are compared with the result obtained by the direct numerical

simulation (DNS) of a disk sedimentation using CFD.

Figure 5 compares the vertical movement of the solid particle. It can be seen that the

movement of the 16 sided polygon matches the simulation of the disk using DEMLBM coupled

by IBM, and both of them are consistent with the DNS by CFD. To investigate the effect of

particle shape, Figure 6 compares the variation of particle rotation during the sedimentation

process. In the single-particle case, the rotation of the disk and polygon is opposite, but the

rotation magnitude of both is very limited, which is the primary reason that there is nearly no

difference in the movement of the disk and polygon. To further validate the DEMLBM-IBM

technique, velocities of particles and drag forces are compared in Figures 7 and 8, respectively.

An acceptable difference between DEMLBM and DNS simulations can be observed. Again,

the vertical velocity and drag force of the disk and polygon are in very good agreement.

3.2. Drafting-kissing-tumbling (DKT) phenomenon

To further validate the polygonal DEMLBM technique coupled by IBM, the DKT test of

two polygonal particles with 8 sharp vertices will be used for illustration and the investigation

of the effect of particle shape on particle-fluid coupling.

The numerical model with a rectangular domain of 2 cm × 8 cm is filled with water. Two

particles with a density of 1.01 g/cm3 are placed, respectively, at positions (1.0 cm, 7.2 cm)

and (1.0 cm, 6.8 cm). The fluid density and kinematic viscosity are 1.0 g/cm3 and 10−6 m2/s

respectively. The relaxation time and lattice spacing are selected as 0.65 and 0.01 cm. Two
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simulations are performed. The one simulates the DKT phenomenon of two disks of 0.2-cm

diameter with 16 boundary points. For comparison, the other simulates the sedimentation

process of two 8-vertex polygons. The stiffness of the solid particles is 107 N/m. To ensure

an accurate simulate, 8 more boundary points interpolated from the vertices are used in the

second simulation.

Figure 9 compares snapshots of DKT phenomenon in the two simulations at different time

instants. The variations of particle positions in both horizontal and vertical directions are

compared in Figure 10, where P1 and P2 represent particle 1 on the top of particle 2. At the

beginning of the sedimentation process, P1 and P2 start falling with a close distance. P2 is in

the front of movement and subject to a larger drag force than P1. Then the trailing particle

(P1) moves gradually faster. This is the drafting period. When P1 and P2 get closer, the

wake of P2 could cause a weak lateral disturbance due to the slight particle rotation. P1

then slightly deviates its original lateral position. Subsequently, they will contact with each

other. This period is the so-called Kissing phase. Gradually, P1 will overtake P2 because

of a larger instant vertical velocity. This is the tumbling period. It is found that the DKT

phenomenon can be observed from the two simulations, and it appears much earlier in the

simulation with two polygons. This test case clearly demonstrates the effect of particle shape

on the flow behavior of particles in the fluid-particle system.

Figure 11 compares the velocity variation of the two particles in the two simulations. The

variation magnitude of velocity is of the same order. In contrast, the variations of particle

rotation and angular velocity show apparent differences (see Figure 12). It indicates that when

the two particles are (nearly) in contact with each other, the angular velocity of the polygons

increases abruptly while the variation of the translational velocity is relatively small. When

the interaction between the boundary points and the fluid happens, the angular velocity will

cause a non-negligible velocity compared to the translational velocity. Therefore, there are

obvious differences of hydrodynamic forces applied to the particles in the two simulations,

which is confirmed by Figure 13 where both lift and drag forces are given.
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3.3. Multiple-particle sedimentation

A multiphase flow case involving arbitrarily-shaped polygons with different vertices is also

numerically tested to validate the robustness of the developed DEMLBM technique coupled

by the direct forcing IBM. In this 2 cm × 8 cm box filled with water, 18 convex and concave

polygonal particles with vertices ranging from 4 to 10 are considered. The density of polygonal

particles is 2.75 g/cm3. Other parameters of LBM and DEM are the same as those in the

above DKT model.

Snapshots of the velocity contour of the fluid and particle sedimentation process at dif-

ferent instants are given in Figure 14. The particles are all settled at the end. The whole

sedimentation process of all the particles is successfully simulated, which demonstrates the

robustness of the polygonal DEMLBM technique.

4. Conclusions

In this work, a coupled polygonal discrete element and lattice Boltzmann method is devel-

oped. The contact interaction between polygons is handled using an energy-conserving contact

model. Compared to simplified treatments of polygons or polyhedra, this contact model has

a rigorous theoretical foundation and a clear geometric perspective, which guarantees a ro-

bust contact treatment between any shaped particles. The coupling of fluid and particles

is achieved by the immersed boundary method, where the predefined boundary points are

used to represent the polygon profile. By applying the non-slip boundary conditions to the

boundary points and the corresponding imaginary fluid points at the same positions, hydrody-

namic forces can be directly determined from momentum conservation. Meanwhile, the fluid

properties of lattice nodes surrounding a boundary point is updated by the Delta distribution

function. From our preliminary investigation, there is a marginal difference between the direct

forcing and multi-direct forcing immersed boundary methods. Hence, only the direct forcing

IBM is considered in this paper.

The accuracy and robustness of the proposed framework is validated by both single-particle

and multiple-particle sedimentation tests. Comparisons with the DNS by CFD show good
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agreement. In addition, the drafting-kissing-tumbling phenomenon is investigated by two

polygons and two disks, respectively. It is found the particle shape has a significant influence

on the dispersed multiphase flow behaviour.

The proposed methodologies can be extended to arbitrarily shaped particles in 3D.
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Figure 1: Two polygons in contact
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Figure 2: illustration of IBM scheme

 

 

S1: Read boundary points, including vertices, of polygons; 
S2: Calculate centroid, area, mass, moment of inertia for particles; 
 Loop over LBM iterations: 
  
  Loop over DEM sub-cycling: 
  S3: Update bounding box of particles; 
  S4: Perform global contact detection to build up potential contact list; 
   Loop over contact pairs: 
  S5:  Check local contact and determine intersections; 
  S6:  Calculate contact force and corresponding torque; 
  S7: Update particle velocity and angular velocity; 
  S8: Update centroid and rotation of the polygon, coordinates of boundary points; 
   

 S9: Approach fluid-particle interactions using IBM: update velocity, force density of lattice nodes 
associated to the solid particle, and calculate the hydrodynamic force using Eqs. 14-16; 

 S10: Fluid particles collide at each lattice node (so-called collision process); 
 S11: Apply bounce-back rule to lattice nodes occupied by stationary walls and particles; 
 S12: Propagate fluid particles to adjacent nodes (so-called streaming process); 
 S13: Apply LBM boundary conditions. 

 

DEM 

LBM 

Figure 3: Coupling procedure of DEMLBM-IBM
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                 t = 0.0 s  

   
           t = 0.4 s            t = 0.7 s            t = 1.0 s 

 

Figure 4: Snapshots of plogonal particle sedimentation
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Figure 5: Comparison of vertical position with DNS
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Figure 6: Comparison of particle rotation
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Figure 7: Comparison of vertical velocity with DNS
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Figure 8: Comparison of drag force
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        t = 0.0 s         t = 1.2 s        t = 1.7 s        t = 2.5 s       t = 5.0 s 

 

     
a) Circular particles 

     
b) Polygonal particles 

Figure 9: Comparison of DKT phenomena with different particle shapes
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(a) X coordinates
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(b) Y coordinates

Figure 10: Comparisons of position of particles with different shapes
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(a) horizontal velocity
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(b) vertical velocity

Figure 11: Comparisons of translational velocities of particles with different shapes
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(a) rotation angle
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(b) angular velocity

Figure 12: Comparisons of rotation of particles with different shapes
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(a) lift force
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(b) drag force

Figure 13: Comparisons of hydrodynamic forces
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t = 0.0 s t = 2.5 s t = 7.5 s t = 10.0 s 

   
t = 12.5 s t = 18.0 s zoom-in  

 

Figure 14: Snapshots of multiple-particle sedimentation process
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