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A B S T R A C T   

Coastal vegetation such as seagrass fields, salt marshes, and mangroves, contributes to coastal defence by 
damping incoming waves. Yet, plant species differ in flexibility due to which they interact differently with 
incoming waves and damp waves to a variable degree. Current wave damping models struggle to balance ac
curacy against computational costs when accounting for wave-vegetation interactions. Instead, they often rely on 
a plant-specific calibration of the drag coefficient, which limits their application across plant species. Here we 
show, using novel simultaneous experimental data of wave damping, water velocities and stem motion, that 
wave damping by quasi-flexible cylindrical vegetation is controlled by the relative velocity between water and 
vegetation at the upright bottom section of a stem. For the quasi-flexible vegetation conditions considered in this 
manuscript (L > 1.4 and Ca < 700), our experimental evidence justifies the application of a model based on the 
Euler-Bernoulli beam theory to estimate plant motion. Building on the solution of plant motion, we simulate 
wave damping over flexible vegetation fields through a new work factor. Our model successfully predicts 
damping of regular waves by rigid and flexible artificial vegetation, and real S. Anglica, P. Maritima and 
E. Athericus plants in the right order of magnitude under medium and high energy wave conditions. The simu
lated wave damping is directly linked to vegetation and wave conditions and does not require a plant-specific 
calibration of the drag coefficient. It is anticipated that the model will be of wide practical use in simulating 
wave damping by quasi-flexible cylindrical coastal vegetation across large areas with diverse plant species and 
wave conditions.   

1. Introduction 

Coastal vegetation is found around the globe in the form of seagrass 
fields, kelp forests, salt marshes and mangrove forests (Mullarney et al., 
2018). The vegetation across and within these habitats differs signifi
cantly, ranging from flexible grasses to rigid shrubs and trees. When 
vegetation is present on or seaward of the coastline, it interacts with 
incoming waves (Leonardi et al., 2018). 

Vegetation contributes to coastal protection by damping incoming 
waves (Jadhav et al., 2013; Losada et al., 2016; Möller et al., 2014). 
When waves travel over vegetation, energy is dissipated due to the work 
done by wave forces on plants (Dalrymple et al., 1984). This can 
significantly reduce wave impact on beaches and hard structures, 
lowering their construction and maintenance costs (Temmerman et al., 
2013; Vuik et al., 2016). Additionally, vegetation reduces storm surge 
propagation, stabilises shorelines during storms, and contributes to 
sediment capture, carbon storage and recreational opportunities outside 

storm events (Bouma et al., 2014; Fagherazzi et al., 2012; Stark et al., 
2016; Sutton-Grier et al., 2015; Wamsley et al., 2009). 

Stem motion of flexible vegetation can impact wave damping 
significantly as has been demonstrated in experimental (Luhar et al., 
2017; Paul et al., 2016; Riffe et al., 2011) and computational studies 
(Luhar and Nepf, 2016; Mullarney and Henderson, 2010). Vegetation 
species are broadly classified as rigid or flexible. Rigid vegetation, like 
woody shrubs, does not move over a wave cycle, whereas flexible 
vegetation, like thin grass, sways as its rigidity is insufficient to resist 
stem bending. The excursion of flexible species increases when its flex
ural rigidity decreases or wave forces increase (Luhar et al., 2017). As 
stem bending increases, the plant frontal area and the relative velocity 
between water and stem decrease (Méndez et al., 1999; Paul et al., 
2016). Both limit the wave forces on the plant and may reduce wave 
damping by up to 50–70% (Luhar et al., 2017; Mullarney and Hender
son, 2010; Riffe et al., 2011; van Veelen et al., 2020). However, as the 
interaction between plant motion and wave forces is reciprocal, 
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quantifying wave damping over flexible species poses a challenge. 
Computational models can be a valuable tool to quantify wave 

damping for variable vegetation properties. For rigid vegetation, Dal
rymple et al. (1984) simplified vegetation fields to arrays of rigid cyl
inders on a flat bottom and assumed validity of linear wave theory to 
model damping of monochromatic waves. Under these assumptions, 
they demonstrated that wave damping is dominated by drag, and wave 
heights reduce proportionally to the distance travelled over vegetation. 
Using the same modelling framework, Mendez and Losada (2004) pro
posed to calibrate the drag coefficient to include the effect of stem 
motion. Their model was successfully applied in field (Bradley and 
Houser, 2009; Garzon et al., 2019; Jadhav et al., 2013) and flume studies 
(Anderson and Smith, 2014; Augustin et al., 2009; Koftis et al., 2013; 
Losada et al., 2016; Möller et al., 2014; van Veelen et al., 2020), but the 
calibrated drag coefficients vary widely between plant species and test 
conditions (Mullarney et al., 2018; Vuik et al., 2016), and when vege
tation conditions change (Schulze et al., 2019). Thus, site-specific cali
bration for each coastal habitat is required. 

Alternatively, an effective stem length can be employed to include 
the effect of stem bending in a rigid vegetation model. The effective stem 
length is the height of a rigid stem that generates equal drag as that of 
the (longer) flexible stem (Luhar and Nepf, 2011). Paul et al. (2016) 
proposed using observed frontal area as the effective vegetation length, 
based on experiments with lexaan strips. Instead, Luhar et al. (2017) 
fitted an analytical model for the effective length of flexible seagrass 
based on a scaling analysis of the equations of stem motion but sug
gested that different fits for different species are required. Their model 
was expanded to a predictive model for wave damping by Lei and Nepf 
(2019), who further discriminated between rigid and flexible stem sec
tions and introduced a new fit for the effective stem length. 

Other models have included vegetation motion explicitly by 
modelling stems as flexible rods. Mendez et al. (Méndez et al., 1999) 
solved the excursion of the tip using stem-averaged velocities and a 
linearised drag force in an idealised model. Vertical variations in the 
velocity profile were included by Mullarney and Henderson (2010) and 
the buoyancy force was included in Henderson (2019). However, these 
models are limited to stems with small deflections. Alternatively, com
plex computational models included friction, inertia and buoyancy 
forces to solve stem motion under strong plant bending for individual 
stems (Leclercq and de Langre, 2018; Luhar and Nepf, 2016) and 
vegetation fields (Chen and Zou, 2019; Maza et al., 2013). However, the 
computational cost for these models is high, which makes them un
suitable for large areas. 

The various modelling approaches show a trade-off between 
complexity, accuracy, computational cost, and applicability, but the 
optimal balance for practical cases remains unclear. Simple models can 
be easily applied, but require site and plant-specific calibration. Alter
natively, complex models add processes which can reduce the variation 
in calibration, but at a computational cost and potentially increasing 
model errors. Therefore, the accuracy gains by including additional 
mechanisms must be carefully weighed against the extra computational 
costs. Furthermore, no complex model has been successfully validated 
across multiple species of real vegetation that differ in flexibility. 

In the present study, we aim to provide a novel versatile mathe
matical modelling framework for wave damping over coastal vegetation 
under quasi-flexible vegetation conditions. Quasi-flexible vegetation 
conditions are defined as flexible vegetation that does not fold over or 
fully extent during a wave cycle. A balance between complexity and 
applicability is obtained by including only the key mechanisms involved 
in the wave-vegetation interaction. These mechanisms are identified by, 
for the first time, combining experimental data of wave damping, wave 
velocity fields, and plant motion. Based on the key physics, we develop a 
new modelling framework with applicability across cylindrical vegeta
tion species and hydrodynamic conditions without the need for plant- 
specific calibration. 

This manuscript is structured as follows: Section 2 discusses the 

wave-vegetation interaction. Section 3 presents and discusses the novel 
experimental data with the aim of justifying model assumptions. The 
modelling framework is described in Section 4 and validated in Section 
5. Finally, conclusions are provided in Section 6. 

2. Theoretical background 

2.1. Coordinate system 

Let us define a coordinate system at canopy-scale (Fig. 1a), where 
waves travel over a vegetation field on top of a flat bed. The direction of 
wave propagation is normal to the canopy and parallel to the x-axis with 
x = 0 at the upstream edge of the vegetation. The z-axis describes ver
tical position with respect to the water column such that z = 0 depicts 
the still water surface and z = − h the bed level. The waves are modelled 
by their height H(x), period T and velocity field U(x,z,t) = u+ iw, where 
the real and complex parts denote the horizontal and vertical di
mensions respectively. 

A single stem in the canopy is modelled as a cylinder with height hv, 
diameter bv, and flexural rigidity EIv. Cylinders are an accepted geom
etry for coastal vegetation types such as salt marsh grasses (Jadhav et al., 
2013; Rupprecht et al., 2017), mangrove branches (Strusińska-Correia 
et al., 2013) and coral (Lowe et al., 2005). Stem density nv defines the 
number of stems per unit ground area. We introduce a plant-scale co
ordinate system to define stem motion (Fig. 1b). Along-stem coordinate s 
is defined such that s = 0 is the root and s = hv is the tip of the stem. 
Stem posture X(s, t) = xv + izv follows the complex coordinate system. 
The stem moves at velocity Uveg = ∂X/∂t and its bending with respect to 
an upright stem is defined by bending angle θ(s, t). Finally, we define 
wave velocities Us(s, t) = us + iws and forces F(s, t) = Fx + iFz at the stem 
(Fig. 1c). 

Dimensionless parameters will be employed for all variables 
throughout this manuscript (denoted by asterisks). We introduce scaled 
coordinates 

x* =
x

Aw
, z* =

z
hv
, s* =

s
hv
, t* = tω, (1)  

and quantities 

X* =
X
hv
, H* =

H
h
,U* =

U
uc
, Uveg* =

Uveg

uc
, F* =

F
ρbvu2

c
. (2) 

Herein, ω = 2π/T is the wave angular frequency, uc is the velocity 
scale, Aw = uc/ω is the typical wave excursion length, and ρ = 1000 kg/ 
m3 is the water density. uc is defined as the amplitude of the horizontal 
wave orbital motion (Hu et al., 2014) according to 

uc =
1
2
(
uf + ub

)
(3)  

where uf is the peak forward velocity, ub is the peak backward velocity, 
and ν = 10− 6 m2/s is the kinematic viscosity of water. uf and ub may be 
measured or based on linear wave theory. Hu et al. (2014) measured 
velocities halfway of the water column, which was between 1/3 and 2/3 
of the vegetation height. However, it is more appropriate to define the 
velocity scale relative to the vegetation height, rather than the water 
column, for moving vegetation. Therefore, we consider the velocities 
halfway the vegetation height, which is the average of the height range 
used in Hu et al. (2014). Furthermore, we introduce two dimensionless 
quantities that control the wave-vegetation interaction for flexible 
vegetation (Luhar et al., 2017): the Cauchy number 

Ca=
ρbvu2

ch3
v

EIv
(4) 

being the ratio between wave forces and stem stiffness, and the 
excursion ratio 
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L=
hv

Aw
(5) 

being the ratio between stem length and wave excursion. 

2.2. Wave-vegetation interaction 

Vegetation interacts with dynamic forces induced by waves and the 
static buoyancy force (Fig. 1c). The interaction is one-way for rigid 
vegetation and two-way for flexible vegetation. We consider three wave- 
induced forces that act on vegetation. These are given per unit stem 
length: the drag force; 

FD* =
1
2
CD|urn*|urn*e− iθ, (6) 

the added mass force; 

FA* =
1
2
CA

π2

KC
∂urn*

∂t*
e− iθ, (7) 

the Froude-Krylov force; 

FFK* =
1
2

π2

KC
∂Us*

∂t*
. (8) 

Herein, urn* = R(Ur*eiθ) and urp* = I(Ur*eiθ) are the stem-normal and 
stem-parallel components of the relative velocity between water and 
stem Ur* = Us* − Uveg*. CD and CA are coefficients for drag and added 
mass respectively and KC = ucT/bv is the Keulegan-Carpenter number. 
The drag coefficient 

CD =

(
730
Re

)1.37

+ 1.04 (9) 

was derived via direct force measurements on a field of rigid cylin
ders in the range 300 < Re < 4700 by Hu et al. (2014), where Re = ucbv/

ν is the vegetation Reynolds number. Although KC may also be a strong 
predictor for CD (Chen et al., 2018; Keulegan and Carpenter, 1958; 
Ozeren et al., 2014), Rehas been selected in this study as Eq. (9) was 
derived via direct force measurements. The drag coefficient is commonly 
calibrated to include the effect of vegetation swaying (e.g. Mendez and 
Losada, 2004) but in this study we include plant motion explicitly such 
that Eq. (9) is applied to all vegetation types in this study. CA =

12.63KC0.0583 − 15.09 satisfies empirical data by Keulegan and Car
penter (1958) for KC ≥ 20. We note that their CM equals CA+ 1 in this 
study as we define the added mass and Froude-Krylov forces separately 
(Dean and Dalrymple, 1991). The friction force, based on Zeller et al. 
(2014), is of negligible magnitude for the conditions considered here 
(Re = 570–1500) and therefore omitted. 

The magnitude of FA* and FFK* relative to FD* is controlled by the 
ratio π2/(KC|urn*|). KC is of the order O(102) for conditions considered in 
this study as is realistic for field conditions (Jadhav et al., 2013). In case 

of rigid vegetation, |urn*| = |us*| = O(100) and the relative magnitude of 
FA* and FFK* is of order O(10− 1). The same scaling argument has also 
been employed for flexible vegetation (e.g. Mullarney and Henderson, 
2010), but when the relative velocity reduces due to vegetation swaying, 
FA* and FFK* may be of similar magnitude as FD*. Therefore, we do 
consider FA* and FFK* at this stage of our analysis. Finally, the net 
buoyant force 

FB* =
1
4

π(ρ′

− 1)
gbv

u2
c

i (10) 

is not exerted by waves but can modify plant posture (Zeller et al., 
2014). It features g = 9.81 m/s2 as the gravitational acceleration and 
ρ′

= ρv/ρ as the ratio between the vegetation density (ρv) and the water 
density. 

Swaying by flexible vegetation affects the magnitude and direction of 
the wave forces (Eqs. (6)–(8)). We consider inextensible stems, homo
geneous cylindrical cross-sections, homogeneous flexural rigidity, and 
no interaction between stems. Instead, the sheltering of downstream 
vegetation can be included through the velocity scale (Eq. (3)). Under 
these conditions, plant motion is controlled by the force balance (Luhar 
and Nepf, 2016; Mullarney and Henderson, 2010), according to 

1
2

π2

KC
ρ′Ca

∂Uveg*

∂t*
+

(
∂3θ
∂s3

*
− i

∂θ
∂s*

∂2θ
∂s2

*

)

e− iθ =Ca (FD* +FA* +FFK* +FB*).

(11) 

The first term on the left-hand side is the stem inertia and the second 
term expresses bending resistance. The wave and buoyancy forces con
trol plant motion via the forcing term on the right-hand side. Conversely, 
plant motion controls the direction and the magnitude of the wave 
forces. This two-way interaction between wave forces and stem motion 
poses the main challenge in solving wave forces on flexible vegetation. 
Therefore, our experiments, described in Section 3, aim to identify the 
key physical interactions relevant to wave damping to justify simplifi
cations of Eq. (11). Specifically, we will investigate the relative magni
tude of FA* and FFK*, the predominant stem section that contributes to 
stem bending, and whether the effect of plant bending on force direction 
(stem reconfiguration) or relative velocity (stem velocity) is most 
important. 

2.3. Wave damping 

Dalrymple et al. (1984) showed that wave damping over a flat bot
tom is controlled by the conservation of wave power, which is given in 
its dimensionless form by 

cg*
∂E*

∂x*
= − 8λf F2

r D− 1εv* (12)  

where E* = H2
* is the wave energy and cg* = 1

2k*
+ D

sinh 2k*D is the wave 

Fig. 1. Definition sketches of the coordinate system of the wave-vegetation interface at the (A) canopy and (B) plant scales. (C) shows the velocities and forces at the 
plant scale. 
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group velocity. We have introduced λf = nvbvhv as the frontal area per 
unit ground area (Britter and Hanna, 2003; Lowe et al., 2005), Fr = uc/
̅̅̅̅̅
gh

√
as the Froude number, D = h/Aw as the ratio between water depth 

and wave excursion, and k* = kAw as the dimensionless wave number. 
Furthermore, εv* is the energy dissipation per stem due to the work done 
by wave forces given by 

εv* =

∫1

s*=0

FD*⋅Us* ds*. (13) 

Here the overbar denotes phase-averaging over a wave cycle. 
Although FA* and FFK* can be of sufficient magnitude to control plant 
motion, they act out of phase with the water motion such that their 
phase-averaged work done is considered to be negligible. This argument 
strictly requires that the phase difference between Us* and urn* is small, 
which is reasonable given that the phase difference between water and 
stem motion reduces when vegetation velocities increase (Mullarney 
and Henderson, 2010). Finally, we will employ 

W* =F*⋅Us* (14) 

as a short-hand notation for the time-dependent work (W*) done by 
waves per unit stem length. 

The solution of Eq. (12) in terms of wave height expresses a decay in 
the direction of wave propagation. In case of rigid vegetation, Dalrymple 
et al. (1984) showed that the solution in terms of wave damping is given 
by 

H* =
H0*

1 + β*x*
, (15) 

Where H0* is the incident wave height and β* is the damping coef
ficient, scaled as β* = βAw. In case of flexible vegetation, Eq. (15) holds 
when the vegetation dynamics remain constant, i.e. urn* damps pro
portionally to H*. This is assumed to be the case in this study given that 

the vegetation fields in our experiments and validation cases are short 
with a length of 1.5 m and up to 40 m respectively. 

3. Wave damping analysis under observed plant motion 

3.1. Laboratory experimental setup 

Experiments of wave damping over rigid and flexible vegetation 
canopies were conducted in the wave flume of the Coastal Laboratory of 
Swansea University, UK, to identify key mechanisms in the wave- 
vegetation interaction. The wave flume measured 30.7 m in length, 
0.8 m in width and 1.2 m in height. It had a piston-type wavemaker with 
active wave absorption at one end and a parabolic wave damper of 
reticulated foam at the other end (Fig. 2a). We measured the wave 
height, the water particle velocity field and the plant motion simulta
neously. By observing plant motion, we avoid solving the force balance 
(Eq. (11)) as a requirement for calculating wave-induced forces (Eqs. 
(6)–(8)). 

Cylindrical rigid and flexible mimic canopies were fixed on the floor 
of the wave flume. The two stem types differed only in flexural rigidity. 
Rigid vegetation was created from bamboo dowels with EIv = 9.0 ± 4 ×

10− 2 Nm2 (mean ± standard deviation, measured using three-point 
bending testing). Silicon sealants were used to construct flexible vege
tation with EIv = 1.7 ± 0.3 × 10− 5 Nm2. All stems were 300 mm in 
height and had a diameter of 5 mm. Stems were aligned in a staggered 
formation to form a canopy with a length of 1.5 m and a stem density of 
1111 stems/m2. A 90 mm wide section was cleared near the downstream 
edge of the canopy for velocity measurements at 1.35 m from the up
stream edge of the vegetation field. 

The vegetation patches were subjected to regular waves with varia
tion in height, period, and water depth. The wave height varied between 
0.08 and 0.20 m, the wave period between 1.4 and 2.0 s, and water 
depth between 0.30 and 0.60 m. The 24 test conditions (Table 1) were 
selected to represent a range of wave intensities. Each condition was run 

Fig. 2. (A) Sketch of the experimental set-up. All dimensions are in metres. Figure is not to scale; (B) Artificial rigid vegetation; (C) Artificial flexible vegetation.  
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Table 1 
List of tested wave conditions and damping coefficients for rigid and flexible vegetation. uc is derived from measured velocities according to Eq. (3). The width of the 
95% CI of βexp is given in brackets after its value. * Based on 2 instead of 3 runs; † Based on 1 run; Data quantity was reduced by control runs (uc, rigid), or instrument 
malfunctioning. ‡ Plant motion not captured due to a moving floor plate.  

CaseCase H [m]H [m]  T [s]T [s]  h [m]h [m]  Rigid vegetation Flexible vegetation 

uc [m/s]  Ca  L  βexp [10− 3/m]  uc [m/s]  Ca  L  βexp [10− 3/m]  

R1 0.15 1.4 0.60 0.13† 0.02 11 42 (6) 0.15 178 8.9 20 (9)* 
R2 0.15 1.6 0.60 0.15* 0.04 7.6 38 (4) 0.19 278 6.2 16 (3)* 
R3 0.15 1.8 0.60 0.17* 0.04 6.3 49 (9) 0.20 326 5.1 23 (5)* 
R4 0.15 2.0 0.60 0.18* 0.05 5.3 42 (16) 0.22* 390 4.2 15 (16)* 
R5 0.10 1.8 0.60 0.11* 0.02 9.2 39 (8) 0.14 146 7.6 20 (8)* 
R6 0.20 1.8 0.60 0.21* 0.07 4.9 63 (9) 0.25 498 4.1 26 (19)* 
R11 0.15 1.4 0.50 0.17* 0.04 7.9 72 (10) 0.19 271 7.2 21 (7) 
R12 0.15 1.6 0.50 0.20* 0.06 6.0 67 (8) 0.21 352 5.5 17 (8)* 
R13 0.15 1.8 0.50 0.20* 0.06 5.2 80 (18) 0.23 411 4.6 32 (6) 
R14 0.15 2.0 0.50 0.22* 0.08 4.2 70 (30) 0.25 472 3.8 24 (12) 
R15 0.10 1.8 0.50 0.14* 0.03 7.4 59 (18) 0.16 191 6.7 26 (5) 
R16 0.20 1.8 0.50 0.26* 0.10 4.1 94 (22) 0.30 692 3.5 25 (15) 
R21 0.15 1.4 0.40 0.20* 0.06 6.9 145 (23) 0.23 397 6.0 27 (15) 
R22 0.15 1.6 0.40 0.21* 0.07 5.5 125 (13) 0.25 507 4.6 28 (13) 
R23 0.15 1.8 0.40 0.22* 0.07 4.8 138 (9) 0.27 556 3.9 22 (9)* 
R24‡ 0.15 2.0 0.40 0.23* 0.08 4.1 108 (4) 0.25 498 3.7 48 (10) 
R25 0.10 1.8 0.40 0.16* 0.04 6.7 97 (7) 0.18* 240 6.0 22 (12)* 
R26 0.12 1.8 0.40 0.18* 0.05 5.8 116 (9) 0.21* 355 4.9 32 (14)* 
R31 0.10 1.4 0.30 0.16* 0.04 8.6 210 (19) 0.18 266 7.3 56 (16) 
R32 0.10 1.6 0.30 0.16* 0.04 7.3 219 (32) 0.20 309 5.9 68 (28) 
R33 0.10 1.8 0.30 0.18* 0.05 5.9 197 (9) 0.21 333 5.1 62 (19) 
R34 0.10 2.0 0.30 0.17* 0.04 5.6 195 (9) 0.20 325 4.6 62 (9) 
R35 0.08 1.8 0.30 0.14* 0.03 7.5 169 (6) 0.17 238 6.0 51 (20) 
R36 0.12 1.8 0.30 0.20* 0.06 5.3 219 (27) 0.24 444 4.4 40 (11)  

Fig. 3. Schematisation of the data collection from (A) 
wave gauges and (B) PIV, and (C) comparison of β 
under conditions R13 with flexible vegetation. Top 
left: time series of the water surface elevation as 
measured by the three wave gauges and corrected for 
phase differences. Top right: the data of the three 
repeats (triangles, some data points are overlapping) 
is combined to fit βexp (solid line) with 95% confi
dence interval (dotted lines). Middle left: PIV derived 
horizontal particle velocities, vegetation velocity and 
relative velocity at s* = 0.5. Middle right: PIV- 
derived plant motion. The colouring denotes the 
time and ranges from yellow (start of run) to black 
(end of run). Bottom left: Magnitudes of the wave 
forces at s* = 0.5. Bottom right: Comparison of the 
force-derived βfor (dashed line) with βexp (solid line). 
The dotted lines (only one is visible due to over
lapping) denote βfor of the other repeats of R13. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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three times as reflection limited the number of undisturbed waves per 
run to 3–12 (Fig. 3a, left), which included a control run with reversed 
vegetation field to verify that the gap in the canopy did not affect wave 
dynamics. Although wave input was monochromatic, second order 
Stokes waves were observed due to shallow water conditions (Le 
Méhauté, 1976). Videos of the wave-vegetation interaction under con
ditions R3, R13, R23 and R33 can be found in the supplementary 
materials. 

Wave heights were measured using three resistance type wave 
gauges (HR Wallingford, accuracy ± 0.1 mm). They were located up
stream (WG1, 8.2 m downstream of the wave paddle), halfway (WG2, 
10.0 m) and downstream (WG3, 10.8 m) of the vegetation patches. Wave 
measurements started when the water level had reached 95% of the 
incident wave amplitude and at least five waves had passed, and were 
terminated when the first reflected wave would reach the vegetation 
field based on shallow water wave theory. A single damping coefficient 
βexp was fitted to Eq. (15) via the least-squares method using combined 
data of all three runs, providing 5 degrees of freedom (Fig. 3a, right). 
The damping coefficients of each condition and their confidence in
tervals are provided in Table 1. The average width of the 95% confi
dence interval (CI) of βexp was 0.013 m-1 for rigid vegetation and 0.012 
m-1 for flexible vegetation. The observed wave damping was significant 
with at least 3.3 mm for each condition, far exceeding the measurement 
error (0.1 mm). Furthermore, βexp exceeded the width of the 95% CI for 
all but one test case (R4, flexible). It was verified through control runs 
that the damping over the flume floor was negligible (β < 0.005). 

Water particle velocity fields inside and around vegetation were 
measured using Particle Image Velocimetry (PIV; Dantec systems). 
Polyamide seeding particles that follow water motion were added to the 
wave flume. These were tracked by a high-speed camera under laser 
illumination. The raw velocity field time series was obtained by cross- 
correlation of particle positions over consecutive camera frames. 
Following Luhar and Nepf (2016), a Fourier filter was applied to remove 
noise from the raw velocity time series. We retained only the 
wave-averaged velocities, the natural harmonic and the first higher 
order harmonic (Fig. 3b). The velocity time series aligned closely to the 
wave time series but were restricted to 11s due to the limitations on the 
number of frames that can be captured by the PIV-camera each run. 

The velocity at rigid stems was derived from the water particle ve
locities inside the canopy. The velocity structure was considered fully 
developed as the gap was more than five drag length scales (Lowe et al., 
2005) downstream of the canopy edge. The control runs with reversed 
vegetation prevented velocity measurements for one run per condition. 
Alternatively, the velocity at flexible stems was derived from the vertical 
velocity structure at the downstream edge for which stem motion can be 
identified simultaneously. Based on comparisons with control runs 
without vegetation, we found that flexible vegetation did not disturb the 
flow velocity structure apart from damping proportional to the wave 
height. Hence, the wave-vegetation interaction at the downstream edge 
is assumed to be representative for the whole canopy when velocity 
damping is accounted for. 

Wave-averaged currents were observed within rigid vegetation 
canopies but not within flexible canopies. These observations agree with 
the velocity structures as proposed in Pujol et al. (2013). However, 
Luhar et al. (2010) and Abdolahpour et al. (2017) also observed 
wave-driven currents within flexible vegetation canopies. Their exper
iment setup differed significantly from ours as they used blades instead 
of cylinders. Furthermore, their experiments considered different wave 
conditions, longer canopies (Lv = 3-9 m) and increased test durations 
(6–10 min), which may have promoted flow convergence. Yet, Pujol 
et al. (2013) did not observe wave-driven currents through flexible 
canopies over equally long timeframes. Also, our canopy length and test 
duration sufficed for the development of currents through rigid vege
tation. Given the contrasting observations and conditions, future 
research in this topic and its effect on plant motion and associated wave 

damping is advised. 
Plant motion of flexible vegetation was derived from the frames 

captured by the PIV-camera through fitting a circular arc between the tip 
and the root for each frame (Fig. 4). We assume stem inextensibility such 
that the arc length equals vegetation height, and downstream bending as 
this is the dominant direction under extreme motion (Rupprecht et al., 
2017). Under these assumptions, the stem position has a unique solution 
when the chord length d between the tip and the root satisfies 1 > d/
hv ≥ 2/π (Fig. 4a). If d = hv, a straight stem between root and tip is fitted 
(Fig. 4b). Finally, a circular arc cannot be fitted when d/hv < 2/π, which 
may occur under extreme bending. The smallest semi-circle with 
diameter d = 2hv/π is fitted instead (Fig. 4c). Tip positions of a stem at 
the downstream edge of the patch have been identified manually for 
each frame by two independent controllers (Fig. 4d). This was found to 
be more accurate than automatic identification due to the variation in 
illumination and the low contrast between stems in the canopy. It is 
noted that a circular arc may not accurately represent stem configura
tions with two inflection points nor configurations with an arc angle 
greater than that associated with a semicircle, but it does accurately 
represent the motion of the tip which sways the most as it is identified 
directly. Additionally, the errors in plant posture may have a limited 
impact on wave damping as we will show in the following sections. An 
example of the computed plant motion is included in Fig. 3b. Full videos 
of derived plant motion are included in the supplementary materials. 

The observed plant motion ranged from straight stems to fully flat
tened canopies. Plant motion developed during the measurement period 
with 25% of the runs exhibiting a change in maximum bending angle of 
more than 10◦. It is expected that this affected the measured wave 
damping and the wave forces equally. The vegetation velocity is derived 
numerically trough a central difference scheme on the plant configura
tion. Following the derivation of water particle velocities, we have 
applied a Fourier filter to retain only the natural and first order har
monics of the vegetation velocity. 

The wave-induced forces are computed based on the velocity signal 
and plant motion, according to Eqs. (6)–(8) (Fig. 3B). Then, the force- 
derived damping coefficients βfor was solved numerically through sub
stitution of Eq. (15) in Eq. (12) (Fig. 3C). This produces a third-order 
polynomial function which may provide three instead of one solution 
for βfor. In these instances, the βfor which is closest to βexp is selected. βfor 

successfully reproduces the wave damping over flexible vegetation an 
order of magnitude smaller than over rigid vegetation with goodness-of- 
fit r2 = 0.84 (Fig. 5), using a drag coefficient that was derived for rigid 
vegetation. This shows that explicitly including the plant motion effect 
in the drag force (Eq. (6)) can explain the reduction in wave damping by 
flexible vegetation. 

Whilst the confidence interval in βexp has been quantified from the 
water surface measurements, this was not possible for βfor. Therefore, we 
address the individual sources of error in βfor, namely: the Cd-relation 
(Eq. (9)), the velocity measurements, and the plant motion. Eq. (9) was 
fitted with a goodness-of-fit of r2 = 0.89 (Hu, pers. comm.), but a con
fidence interval is not known. The normalized standard deviation of the 
measured velocity amplitude (Eq. (2)) at identical water depth and 
vegetation type varied between 0.02 and 0.08 (van Veelen et al., 2020). 
Thirdly, the normalized standard deviation of the vegetation velocity 
ranged between 0.12 and 0.25 at the tip. Each error propagates into βfor, 
which contributes to the scatter of data seen in Fig. 5. The normalized 
root-mean-square errors (NMRSE) of βfor with respect to βexp are 0.39 
and 0.50 for rigid and flexible vegetation respectively. Whilst the r2 of 
our methodology is very good, the fit may improve further with data 
from additional wave gauges to estimate βexp more accurately, or when 
the uncertainty by any of the model errors is mitigated which can be 
recommended for future studies. 
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3.2. Key mechanisms in the wave-vegetation interaction 

Force magnitudes: We find that the drag force is the dominant wave 
force on flexible vegetation but the added mass and Froude-Krylov 
forces increase in relative magnitude when plant motion increases at 
higher Ca and towards the tip of the stem (Fig. 6). The plant motion is 
limited at low Ca and at the bottom of the stem, where the motion is 
constrained by its root. When plant motion increases, the ratio π2/

(KC|urn*|) increases such that the magnitudes of FA* and FFK* increase 

relative to FD*. Our experimental results show that the root-mean-square 
magnitudes of FA* and FFK* are in the range of 15–20% of FD* at s* =

0.17, 25–35% at s* = 0.5, and 100% at s* = 0.83. Although the relative 
magnitude of FA* and FFK* increases towards the tip, their magnitude 
remains low compared to the drag force exerted on the bottom section of 
the stem. 

Distribution of wave energy dissipation: The distribution of energy 
dissipation versus stem length shows that most energy is dissipated 
where the stem is upright and its motion is minimal (Fig. 7). The 

Fig. 4. Schematisation of the derivation of the plant position from a fixed root and identified tip position (red diamond) under three conditions: (A) a bent stem, (B) a 
straight stem and (C) extreme stem bending; and (D) application to a sample image. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 5. (A) The correlation between the force-derived damping coefficient βfor and the measured damping coefficient βexp, and (B) same as (A) with error bars that 
match the 95% confidence interval of βexp.The normalized root-mean-square error (NRMSE) is given separately for the rigid (RM) and flexible (FM) mimics. 

Fig. 6. Root-mean-square force magnitude of the drag force FD*, the added mass force FA*, and the Froude-Krylov force FFK* on flexible vegetation as function of the 
Cauchy number at (A) s* = 0.17, (B) s* = 0.5, and (C).s* = 0.83.
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dissipation over an upright rigid stem is approximately constant along 
its length with a peak in dissipation at the tip where amplified velocities 
were observed due to wave-driven currents through the top of the 
canopy (see e.g.,Abdolahpour et al., 2017; Pujol et al., 2013). Alterna
tively, the wave dissipation is concentrated at the bottom part of the 
stem for flexible vegetation with near-zero to negative contributions at 
the top section (s* > 0.7). The decreasing contribution to energy dissi
pation over the stem length is inversely proportional to stem motion, 
which is absent at the fixed root and maximum at the tip. 

Stem reconfiguration versus stem velocity: The swaying of flexible 
vegetation reduces wave damping in two ways. First, the reconfigura
tion of the stem posture reduces the stem frontal area (Paul et al., 2016) 
and modifies the direction of wave forces (Luhar and Nepf, 2016; Zeller 
et al., 2014). Second, stem velocity reduces the relative velocity between 
stem and water (e.g. Mendez and Loasada, 2004). Both mechanisms 
reduce the work done by the drag force but have not been quantified 
individually. To identify the dominant mechanism, we quantify ϵv by 
modifying Eq. (6) such that it solely includes stem reconfiguration or 
stem velocity. Wave damping by stem reconfiguration includes the 
directionality of the drag force relative to the stem, but the vegetation 
velocity is set at zero such that 

FD* =
1
2
CD|un*|un*e− iθ (16)  

with un* as the stem-normal component of the water velocity. Alterna
tively, stem velocity includes the relative velocity in the force equations, 
but the stem is considered upright for the directionality of the forces, i.e. 

FD* =
1
2
CD|ur*|ur*. (17) 

Finally, we consider the rigid stem drag force which excludes both 
stem reconfiguration and stem velocity as a reference for the relative 
contribution of each mechanism. The rigid stem drag force is given by 

FD* =
1
2
CD|us*|us*. (18) 

The respective wave energy dissipations per stem are obtained 

according to Eq (13). The contributions of the bending (Eq. (16)) and 
relative velocity (Eq. (17)) to wave energy dissipation are scaled against 
the dissipation that is simulated by the full drag force equations (Eq. (6)) 
and the dissipation simulated by the rigid stem drag force (Eq. (18)). 

Our results show that stem velocity is more important than stem 
reconfiguration. The inclusion of stem velocity explains 92.3% of the 
observed reduction in εv due to plant motion, whereas the individual 
contribution of the stem reconfiguration is 34.6% (Fig. 8). Thus, the 
stem velocity effect can explain almost all reduction in wave energy 
dissipation. Conversely, whilst stem bending can explain 34.6% of the 
reduction in wave energy dissipation individually, its added effect when 
the relative velocity is included is only 7.7%. These results fit with the 
concentration of energy dissipation at the lower section of the stem 
(Fig. 7), which is straighter than the top section. Stem bending is sig
nificant at the tip, but the contribution of the top section to wave energy 
dissipation is small. 

4. Model for wave damping over flexible vegetation 

4.1. Model assumptions 

The key mechanisms in the wave-vegetation interaction justify our 
assumptions for modelling wave damping of regular waves over flexible 
vegetation. We assume that  

1. Wave energy is dissipated where plant deflections are small and the 
plant posture is near-vertical;  

2. The drag force controls the wave-vegetation interaction;  
3. Stem-stem interactions can be neglected; 
4. Vegetation is cylindrical with homogeneous cross-sections and flex

ural rigidity;  
5. Stems are inextensible. 

Assumption 1 is supported by the concentration of energy dissipation 
in the upright lower part of a flexible stem and the dominant contri
bution of the relative velocity mechanism relative to stem bending, as 
supported by our experiments. Assumption 2 follows from the obser

Fig. 7. Average rate of energy dissipation versus the along-stem coordinate for 
(A) rigid and (B) flexible vegetation. 

Fig. 8. Individual contributions of stem reconfiguration (based on Eq. (16)) 
and stem velocity (based on Eq. (17)) effects to the reduction in the wave en
ergy dissipation. The average contribution of each effect is given between 
brackets. The contributions are scaled relative to the energy dissipations based 
on the full drag force (Eq. (6), upper dotted line) and the drag force based on a 
rigid stem (Eq. (18), lower dotted line). 
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vation that FA* and FFK* are an order of magnitude smaller than FD* in the 
bottom section of the stem which is key for wave damping. FA* and FFK* 
may be important at the top sections of a flexible stem but their 
magnitude remains an order of magnitude smaller than FD* in the bot
tom section. Assumptions 3–5 are required to derive the force balance 
(Eq. (11)), which was successfully applied to predict wave forces. 

Our model assumptions reflect those in small excursion models as in 
Méndez et al. (1999) and Mullarney and Henderson (2010), who used 
Euler-Bernoulli beam theory to solve vegetation motion. Here we have 
provided new experimental support for this type of model, and our 
model differs in the extension of plant motion to wave damping. Scaling 
analysis shows that small excursion models are valid for L≫ 1 (Luhar 
and Nepf, 2016). Our experimental results (L = 3− 9) show that the 
wave energy dissipation is concentrated at the bottom section of a stem 
where its velocity and excursion are low compared to the water velocity. 
This suggests that the model assumptions are valid for excursion ratios 
in the order O(100). The model validation (Section 5.2) includes wave 
and vegetation conditions with L as low as 1.4 which covers most salt 
marsh (L = 0.3–10 (Rupprecht et al., 2017; van Veelen et al., 2020)) and 
sea grass (L = 0.5–6 (Lei and Nepf, 2019)) conditions. In case of L < 1, 
flexible vegetation may be fully extended, and the vegetation velocity 
may reduce to 0. Under these conditions, our model will provide a 
conservative estimate of the energy dissipation. Furthermore, we have 
considered vegetation conditions up to Ca ≈ 700 in our experiments. 
The dominance of FD on the bottom stem section is well established by 
our experimental evidence within this range, but may not be extrapo
lated to more flexible vegetation. The conditions L > 1.4 and Ca < 700 
represent the quasi-flexible vegetation conditions for which our model 
will be validated. Finally, the model is derived for cylindrical vegetation 
but it can easily be extended to other plant geometries given appropriate 
relations for CD and Ca. 

4.2. Solution of plant motion 

Under the model assumptions, vegetation motion is governed by 
horizontal stem excursion (xv*) which must satisfy the force balance (Eq. 
(11)) in the horizontal direction. For a near-vertical stem, it is appro
priate to scale xv by the horizontal water particle excursion length Aw 
rather than by plant length hv as was done up to this point, i.e. xv* = xv/

Aw and uveg* = ∂xv*/∂t*. Furthermore, the bending angle is approxi
mated as θ ≈ ∂xv*/∂zv* and s* ≈ zv* at this small-deflection limit (Luhar 
and Nepf, 2016; Mullarney and Henderson, 2010). We consider thin 
stems for which stem inertia is negligible (1

2
π2

KCρ′≪1). Finally, the drag 
force, now given by Eq. (17), is linearised for the purpose of solving the 
force balance only. Under these conditions, Eq. (11) simplifies as 

∂4xv*

∂z4
v*

=Q
(

us* −
∂xv*

∂t*

)

(19)  

where scaled flexibility Q = 4
3πCDCaL

∫1

0
(au − av)dzv* is the linearised 

parameterisation of the magnitude of drag force, and au and av are the 
amplitudes of the water and vegetation velocity respectively. Equivalent 
work is done over a wave cycle by the linearised drag as would be by 
quadratic drag (Méndez et al., 1999; Zimmerman, 1982). The boundary 
conditions of Eq. (19) are defined as clamped at the root, xv* = ∂xv*/ ∂ 
zv* = 0 at zv* = 0, and free at the tip, ∂2xv*/∂z2

v* = ∂3xv*/∂z3
v* = 0 at 

zv* = 1. 
Wave and plant motion are periodic over a wave cycle and must 

satisfy the eigenvalue problem posed by Eq. (19). Therefore, we separate 
the motion quantities in a temporal mode following the monochromatic 
wave frequency and orthogonal spatial modes following the given 
eigenvalue problem (Mullarney and Henderson, 2010), according to 

us* =R

(

eit*
∑∞

n=1
Unψn

)

, uveg* =R

(

eit*
∑∞

n=1
Vnψn

)

, xv* =R

(

eit*
∑∞

n=1
Xnψn

)

.

(20) 

The spatiotemporal complex coefficients Un, Vn and Xn denote the 
weights of each mode in spectral space. The spatial modes ψn satisfy ∂ 
ψn/∂zv* = αnψn where αn are the eigenvalues of each spatial mode. 
Further details regarding the structure of ψn are provided in Appendix A. 

By substitution of Eq. (20) in Eq. (19) and summation over all spatial 
modes, we construct the transfer function G = aGeiφG between the water 
and stem motion in physical space according to 

Vf = GUf (21)  

where Uf (zv*) =
∑

Unψn = aueiφu and Vf (zv*) =
∑

Vnψn = aveiφu are 
complex temporal coefficients in physical space, and 

G =

∑

⎛

⎜
⎜
⎝

Unψn

1−
iα4

n
Q

⎞

⎟
⎟
⎠

∑
Unψn

. (22) 

Here, aG denotes amplitude transfer from water to stem motion and 
φG denotes the phase lag between water and stem motion. As Q is a 
function of av, Eq. (22) is solved iteratively. There is a unique solution as 
shown in Appendix B. The numerical implementation expands velocity 
structures to 10 spatial modes as additional modes did not change the 
resulting transfer function. 

Additionally, we define the transfer function R = aReiφR between 
water velocity and relative velocity, i.e. Uf − Vf = RUf . By substitution 
of this definition in Eq. (21), it follows 

R = 1 − G. (23)  

4.3. Work factor (χ) 

To include the effects of plant motion on energy dissipation, we 
define zv*-dependent work factor 

χ(zv*)=
W*

Wrig*
, (24) 

such that 

εv* =

∫1

zv*=0

χWrig* dzv*, (25)  

where W* is the phase-averaged work done over a flexible stem and Wrig* 

is the work done over a rigid stem with equal dimensions. By substitu
tion of Eqs. (17) and (23) in Eq. (14), the phase-averaged work done by 
the drag force on a stem is given by 

W* =
1

4πCD

∫2π

t*=0

⃒
⃒R
(
RUf eit*

)⃒
⃒R
(
RUf eit*

)
R
(
Uf eit*

)
dt*. (26) 

We note that R(eit* ) = cost* and set φu = − φR without loss of gen
erality as W* is averaged over a wave cycle. Then, Eq. (26) reduces to 

W∗ =
2

3πCDa2
Ra3

u cos φR. (27) 

In case of rigid vegetation, aR = 1 and φR = 0 as velocity transfer is 
absent, such that 

Wrig* =
2

3πCDa3
u (28)  

and, by substitution of Eqs. (27) and (28) in Eq. (24), 
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χ = a2
R cos φR. (29) 

Eq. (29) shows how the velocity transfer controls wave damping. 
Changes in amplitude and phase of the relative velocity directly affect 
the work done by waves on vegetation and, thereby, the wave damping. 
Defining χ is computationally more efficient than computing the vege
tation and relative velocity time series. 

4.4. Wave damping 

A formulation for wave damping coefficient β* is obtained by sub
stitution of Eqs. (15) and (25) in Eq. (12), which leads to 

β*

(1 + β*x*)
3 = 4

λf F2
r

Dcg*H2
0*

∫1

zv*=0

χWrig* dzv*. (30) 

Eq. (30) represents a third-order polynomial which is solved 
numerically. There may be up to three roots that satisfy Eq. (30), of 
which the root closest to the estimate by linear wave theory (Eq. (32), 
Section 4.5) is selected. 

4.5. Wave damping under linear wave theory 

When the validity of linear wave theory inside the canopy is 
assumed, the velocity structure is controlled by the ambient velocity 
field. The amplitude of the water particle velocities is given by 

au(x*, zv*)=
H*k*

2F2
r

cosh Lk*zv*

cosh Dk*
. (31) 

Substitution of Eqs. (15), (28) and (31) in Eq. (30) and application of 
the dimensionless dispersion relation DF2

r = k*tanh(Dk*) reduce the 
conservation of energy to a single expression for β*, according to 

Fig. 9. Validation of the velocity transfer function between water and stem motion. Top row: amplitude transfer aG; middle row: phase transfer φG; bottom row: work 
factor χ. The thick line denotes the mean of the measured (left column) or modelled (middle column) transfer functions, or the goodness-of-fit of the mean (right 
column). The dashed lines denote the 95% observation interval (mean ± 2 standard deviations; left and middle column), or the line of perfect fit (right column). The 
grey + signs represent the individual observations. 
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β* =
4

3πCDλf Dk2
*H0*

∫ 1
zv*=0 cosh 3(Lk*zv*)dzv*

(sinh 2 Dk* + 2Dk*)sinh Dk*
. (32)  

We note that for rigid vegetation, χ = 1 and Eq. (32) reduces to the rigid 
vegetation solution provided in Dalrymple et al. (1984). 

5. Model validation 

5.1. Validation of the velocity transfer function (G) 

The modelled velocity transfer function G is validated against a 
measured transfer function based on the observed water and plant mo
tion. The measured transfer function is derived from the amplitude and 
phase differences in the natural harmonic of the observed water particle 
and stem velocities (Section 3.1). The validation includes flexible 
vegetation only, as the transfer function for rigid vegetation is trivial. 

The amplitude aG of the transfer function is excellently reproduced 
by the model (Fig. 9, top row). The amplitude transfer is aG ≈ 0 at the 
root where the stem is clamped and increases towards the tip to aG ≈ 1 
for both measured and modelled transfer functions. This indicates that 
the tip closely follows the water motion and the relative velocity is 
small, which fits with observations that the energy dissipation is small at 
the tip. The coefficient of determination is excellent with r2 = 0.84. The 
velocity transfer is slightly overpredicted at the tip where the assump
tion of a near-vertical stem affected only by the drag force may not hold. 
Additionally, the modelled transfer function is steady state, but the 
measured transfer function was still developing in a quarter of the runs. 
In these cases, the measured transfer function is lower than the steady- 
state function, which may also contribute to the over-prediction of the 
modelled transfer function at the tip. The transfer function at the bottom 
section of the stem which is important for wave damping is modelled 
correctly. 

The phase φG is reproduced well for most experimental runs (Fig. 9, 
middle row). Both measured and modelled phases show that the stem 
velocities lead water motion by 45◦ at the root, which decreases towards 
the tip where the water motion leads stem motion by 10◦. The scattering 
of experimental data is larger than predicted by the model due to natural 
variation in wave-vegetation interaction not captured by the model and 
measurement errors in water and vegetation motion. The scattering is 
maximum at the root where stem motion is minimal and, therefore, 
phase calculations are most sensitive to measurement errors. A limited 

number of outliers (10 out of 68 successful runs) impact the coefficient 
of determination negatively (r2 = 0.37). Yet, a visual comparison shows 
that most data points are centred around the line of perfect fit. 

Work factor χ is excellently reproduced by the model (Fig. 9, bottom 
row). The measured work factor is derived from the measured transfer 
function via Eq. (29). The work done by waves on a flexible stem at the 
root is equal to the work done on a rigid stem as denoted by χ = 1 at s* =

0. The work factor decreases as the amplitude transfer from water to 
stem motion increases from root to tip. Here, a negative χ indicates that 
the stem velocities locally exceed the water velocities and the relative 
velocity is fully out of phase with the water velocities. This behaviour 
agrees with Mullarney and Henderson (2010) who showed that the tip 
motion of flexible stems can exceed the water motion that forces it. The 
agreement between measured and modelled work factors is excellent 
with r2 = 0.87. 

5.2. Validation of the damping coefficient 

Damping coefficient β is validated across five vegetation species with 
distinct biomechanical properties under medium and high energy wave 
conditions. These include wave damping by the rigid and flexible arti
ficial vegetation (Section 3.1) and against three species of real salt marsh 
vegetation: Spartina Anglica, Puccinellia Maritima and Elymus Athericus 
(Fig. 10). These species differ in dimensions and flexural rigidity 
(Table 2) and have been tested under regular waves in large-scale 
flumes. The test conditions varied in water depth, wave height, wave 
period and stem density such that the model is validated across a wide 
range of wave and vegetation conditions. 

S. Anglica and P. Maritima were tested in the Cantabria Coastal and 
Ocean Basin (CCOB) of the University of Cantabria, Spain (Lara et al., 
2016; Losada et al., 2016; Maza et al., 2015). S. Anglica is a stiff plant 
with the largest diameter of the species tested. Alternatively, P. Maritima 
is a thin and flexible salt marsh grass. The experimental conditions 
featured medium water depths (h = 0.4 - 0.6 m) and wave heights 
(H = 0.15 - 0.20 m) at a range of wave periods (T = 1.2 - 2.2 s) and 
vegetation densities (nv = 430 - 2436 stems/m2). 

E. Athericus was tested in the Grosser Wellenkanal (GWK) of For
schungszentrum Küste in Hannover, Germany (Möller et al., 2014; 
Rupprecht et al., 2017). E. Athericus is a thin and tall quasi-flexible salt 
marsh grass. A 40 m long vegetation field was submerged in deep water 
(h = 2 m) and subjected to medium and high energy wave conditions 

Fig. 10. The three real vegetation species that were used for model validation. Photo of P. Maritima and S. Anglica is adapted from Lara et al. (2016). Photo of E. 
Athericus is provided through the courtesy of Iris Möller (no scale available). 
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(H = 0.11 – 0.89 m, T = 1.5 - 5.1 s). The stem density decreased as the 
experiments progressed due to stem breaking. Therefore, the model was 
run following stem density data provided in Rupprecht et al. (2017). 

The model is run with plant and wave conditions of individual runs 
as input. It is assumed that wave damping by real vegetation is domi
nated by the cylindrical stems. Fig. 10 shows that the geometry of the 
tested S. Anglica and P. Maritima species is dominated by their stems, and 
the tested E. Athericus was considered cylindrical in Rupprecht et al. 
(2017). The velocity fields around real vegetation are based on linear 
wave theory (Section 4.5), which was also successfully applied in the 
wave damping analysis in Losada et al. (2016) and Möller et al. (2014). 
The drag coefficient for all species is given by Eq. (9). The velocity scale 
is based on linear wave theory halfway based on measured wave height 
halfway the vegetation field as an estimate of the spatially averaged 
velocity. This non-predictive definition of the velocity scale can be 
avoided if the vegetation field is divided into sufficiently short sections, 
as is typically done when calculating vegetation-induced wave damping 
in large-scale computational wave models that use a gridded computa
tional domain (e.g. SWAN (Booij et al., 1999)). 

The agreement between modelled and measured wave damping is 
good with r2 = 0.66 (Fig. 11), which shows that our model is applicable 
across a range of plant and wave conditions without plant-specific 
calibration. Excellent agreement is obtained for rigid and flexible arti
ficial vegetation and for E. Athericus. The absence of vegetation motion is 
correctly modelled for rigid vegetation, as is the reduction in wave 
damping by flexible vegetation and E. Athericus due to plant swaying. 
Wave damping by S. Anglica and P. Maritima are predicted in the right 
order of magnitude but with significant scattering of the data, as 
demonstrated by their NRMSE of 0.56 and 0.62 respectively. This is 
partly attributed to the experiment setup of CCOB. Unlike rectangular 
flumes where vegetation spans the entire flume width, the CCOB fea
tures a circular platform on which vegetation is positioned. A circular 
vegetation patch may contribute to wave diffraction and other three- 
dimensional hydrodynamic effects, which are not included in our 
model. Furthermore, our omission of wave damping by leaves and stem- 
stem interactions may have contributed to an underestimation of the 
measured wave damping, as is observed for P. Maritima. Finally, buoy
ancy, added mass, and Froude-Krylov forces may have initiated a non- 
passive plant motion, which is not captured by our model and thus 
contributes to uncertainty in βmodel. 

6. Conclusions and discussion 

We have developed a mathematical model for the damping of regular 
waves over coastal vegetation under quasi-flexible vegetation condi
tions, based on the key physical processes involved in the wave- 
vegetation interaction. Three mechanisms were identified during the 
experimental investigations as important for wave damping over rigid 

and flexible vegetation: (i) the drag force is the dominant force in the 
bottom section of a flexible stem; (ii) wave energy is dissipated in the 
bottom section of a flexible stem; (iii) wave energy dissipation is 
controlled by the velocity difference between water and stem rather 
than the reconfiguration of stem posture. We found that the energy 
dissipation by rigid stems was maximum at the stem tip where the wave 
velocities were the largest, while the dissipation by flexible stems was 
maximum at the upright bottom section where stem motion was the 
smallest. 

Supported by our experimental investigations, we model vegetation 
as near-vertical flexible rods in which wave damping is controlled by the 
velocity transfer from water to stem motion. The velocity transfer is 
linked to a new work factor, which describes the reduction in wave 
dissipation relative to rigid vegetation due to plant motion. Wave 
damping in the model is a function of vegetation and wave parameters 
and does not require the calibration of the drag coefficient for different 

Table 2 
List of vegetation species used for model validation. n denotes the number of unique wave conditions.  

Parameter Rigid mimics Flexible mimics S. Anglicab P. Maritimab E. Athericusc Unit 

Type Artificial Artificial Real Real Real – 
hv  300 300 284 473 700 mm 
bv  5.0 5.0 6.0 3.0 1.3 mm 
EIv  9.0× 10− 2  1.7× 10− 5  1.8× 10− 2  8.7× 10− 5  3.0× 10− 4  Nm2 

nv  1111 1111 430–729 877–2436 666–1225 m− 2 

uc  0.13–0.26 0.14–0.30 0.16–0.33 0.16–0.38 0.09–0.75 ms− 1 

Ca  0.02–0.10 146–692 0.20–0.84 96–530 11–824 – 
L  4.1–11 3.5–8.9 2.5–8.6 4.0–13 1.4–24 – 
Qa  0.19–0.29 1013–1601 0.82–2.0 1041–2314 654–1656 – 

n  24 24 14 18 10 –  

a At first iteration, i.e. av = 0. 
b Lara et al., 2016; Losada et al., 2016; Maza et al., 2015. 
c Moller et al., 2014; Rupprecht et al., 2017. 

Fig. 11. Validation of the modelled wave damping coefficients βmodel against 
the measured wave damping coefficients βexp across two types of artificial 
vegetation and three species of real vegetation. The dashed line denotes a 
perfect fit. The r2 goodness-of-fit is given, as well as the NMRSE of each specie. 
RM: Rigid mimics; FM: Flexible mimics; SA: S. Anglica; PM: P. Maritima; EA: 
E. Athericus. 
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plant species. 
Our model successfully reproduces wave damping over vegetation 

for five coastal vegetation species, which differ in geometry and flexural 
rigidity, and under different wave climates. The model validation 
included three real vegetation species tested in large-scale experiments. 
Our model reproduced wave damping in the right order of magnitude for 
each specie and for both medium and high energy wave conditions, 
which shows its validity across a wide range of representative field 
conditions. 

As our model does not require site-specific calibration, it is particu
larly suited to areas with spatiotemporal variations in vegetation and 
hydrodynamic conditions. It benefits large areas or areas where in
terventions such as managed realignment, grazing, and the introduction 
of new species are considered. Furthermore, the model can be applied to 
vegetation of different types, sizes and flexibilities when the plant ge
ometry can be represented as a cylinder. 

Despite the potential of our model shown in this research, it is 
important to emphasize the potential limitations that should be 
considered in the application of this model. First, the model assumptions 
rely on the experimental investigations, which limits their applicability 
to the quasi-flexible vegetation conditions considered in this study, i.e. 
L > 1.4 and Ca < 700. These conditions are applicable to most coastal 
vegetation species, but may be exceeded for very flexible species and 
during extreme wave conditions. Secondly, wave-vegetation mecha
nisms like vegetation-induced currents and inertia forces have been 
omitted in our modelling framework as they were not identified as key 
processes for wave damping in our experimental vegetation types. Our 
aim has been to develop a computationally fast model that balances 
complexity and applicability, justifying our focus only on key mecha
nisms. However, the selected key processes have been based on a spe
cific set of experiments, which for example showed a negligible impact 
of wave-induced currents within flexible vegetation canopies as opposed 
to other experimental studies (Abdolahpour et al., 2017; Luhar et al., 
2010). Although inertia forces have been included in other wave 
damping models (Luhar and Nepf, 2016; Maza et al., 2015), we found 
that they only had limited impact on wave damping in our experiments. 
Finally, the impact of leaves and stem-stem interactions were not 
considered in this study. Their influence on wave damping remains an 
open question. 

Finally, our model builds strongly on our experimental data although 
we validated wave damping against independent datasets found in 
literature with real vegetation. The strong tie between experimental 
work and modelling means that uncertainties in model observations 
may propagate into model simulations. The main uncertainties in the 
experimental work are the relatively short canopy, wave reflection in 
the wave channel, and a simplified method used to visualise vegetation 
motion. The canopy of 1.5 m meant that only three wave gauges could 
be fitted around the vegetation, which limited the number of data points 

that could be used to fit βexp and determine its accuracy. Additionally, 
the reflection in the wave tank limited the number of waves that could 
be used for the analysis. Finally, simplifying the vegetation postures to 
an arc meant that postures with a double infliction point or extreme 
bending could not be replicated. To reduce the impact of these un
certainties, each condition was repeated three times to increase data 
quantity and the final model was validated against two independent 
data sets with real vegetation fields. Nevertheless, the limitations of our 
experimental approach should be considered when applying our model. 
We recommend that our key mechanisms and wave damping predictions 
will be further validated with new independent datasets across a range 
of wave and vegetation conditions to enhance the predictive capacity of 
our model. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.coastaleng.2020.103820. 

Appendix A. Description of the spatial modes 

The orthogonal spatial modes of the plant and water motion are given by 

ψn(zv*)= (cosh αnzv* − cos αnzv*) +
cos αn + cosh αn

sin αn + sinh αn
(sin αnzv* − sinh αnzv*), (A.1)  

where eigenvalues αn satisfy 

cosh(αn)cos(αn) − 1 = 0. (A.2) 

The first three roots of Eq. A.2 are given by α1 = 0.5969π, α2 = 1.4942π, α3 = 2.5002π, and are approximated by αn = (n − 0.5)π thereafter. The 
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spatial modes satisfy Eq. 19 and their spatial derivative is given by 

∂ψn

∂zv*
=αnψn. (A.3) 

The four lowest order modes are shown in Fig. A.1a. The weights of the complex spatiotemporal coefficients of the water motion are obtained by 
solving the linear system 

ψnUn =Uf (A.4)  

where Uf (zv*) are the temporal coefficients of the water motion along the stem. To solve Eq. A.4, the wave motion along the stem is discretised 
following the number of modes considered, which is set at 10 in this study. A sample decomposition of a velocity profile based on linear wave theory by 
10 spatial modes is plotted in Fig. A.1b. Furthermore, the resulting vegetation velocity profile of an artificial flexible stem under the sample forcing is 
shown in Fig. A.1c. While higher order modes will better represent input velocity profile near the bottom, their effect on the resulting vegetation 
velocity is negligible due to their high eigenvalues (αn).

Fig. A.1. (A) The first four spatial modes ψn (Eq. A.1); (B) decomposition of a velocity structure given by linear wave theory into 10 spatial modes. The thin coloured 
solid lines denote the weighted spatial modes, the dotted black line denotes the input velocity profile and the thick black line denotes the sum of all spatial modes; (C) 
resulting vegetation velocity structure of the artificial flexible vegetation. 

Appendix B. Proof of a unique solution of the velocity transfer function (T) 

We substitute Eq. 21 and Q = 4
3πCDCaL

∫1

0
(au − av)dzv* in Eq. 22. Furthermore, we consider the stem-averaged magnitude of both sides of Eq. 24 to 

obtain an expression for the stem-averaged vegetation velocity according to 

∫1

0

avdzv* =

∫1

0

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Unψn

1 −
iα4

n

4
3πCDCaL

(∫ 1

0
audzv* −

∫ 1

0
avdzv*

)

⎞

⎟
⎟
⎟
⎟
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⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

dzv*. (B.1) 

The stem-averaged magnitude of the vegetation velocity 
∫1

0
avdzv* is bound by [0,

∫1

0
audzv*]. The lower bound denotes no vegetation motion and the 

upper bound represents full velocity transfer from water to vegetation motion. The left-hand side monotonically increases and the right-hand side 

monotonically decreases for increasing 
∫1

0
avdzv* within its range. Therefore, there is at most one solution of Eq. B.1. 

We evaluate 
∫1

0
avdzv* at its lower and upper bound. If 

∫1

0
avdzv* = 0, the left-hand side is smaller than the right-hand side of Eq. B.1. If 

∫1

0
avdzv* =

∫1

0
audzv*, then Q = 0 and the right-hand side of Eq. B.1 approaches 0. Yet 

∫1

0
avdzv* > 0 at its upper bound when wave forcing is present. Thus, the left- 

hand side is larger than the right-hand side at the upper bound. As both sides of Eq. B.1 are continuous functions of 
∫1

0
avdzv*, there is at least one 

solution of Eq. B.1. As we showed before that there is at most one solution, there must be exactly one solution of Eq. B.1 and Eq. 22. 

T.J. van Veelen et al.                                                                                                                                                                                                                          



Coastal Engineering 164 (2021) 103820

15

References 

Abdolahpour, M., Hambleton, M., Ghisalberti, M., 2017. The wave-driven current in 
coastal canopies. J. Geophys. Res. Oceans. 122, 3660–3674. 

Anderson, M.E., Smith, J.M., 2014. Wave attenuation by flexible, idealized salt marsh 
vegetation. Coast. Eng. 83, 82–92. 

Augustin, L.N., Irish, J.L., Lynett, P., 2009. Laboratory and numerical studies of wave 
damping by emergent and near-emergent wetland vegetation. Coast. Eng. 56, 
332–340. 

Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal 
regions: 1. Model description and validation. J. Geophys. Res. 104, 7649–7666. 

Bouma, T.J., van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A.J., Davies, A.J., 
Galvan, C., Hawkins, S.J., Hoggart, S.P.G., Lara, J.L., Losada, I.J., Maza, M., 
Ondiviela, B., Skov, M.W., Strain, E.M., Thompson, R.C., Yang, S., Zanuttigh, B., 
Zhang, L., Herman, P.M.J., 2014. Identifying knowledge gaps hampering application 
of intertidal habitats in coastal protection: opportunities & steps to take. Coast. Eng. 
87, 147–157. 

Bradley, K., Houser, C., 2009. Relative velocity of seagrass blades: implications for wave 
attenuation in low-energy environments. J. Geophys. Res. Earth Surf. 114. 

Britter, R.E., Hanna, S.R., 2003. Flow and dispersion in urban areas. Annu. Rev. Fluid 
Mech. 35, 469–496. 

Chen, H., Ni, Y., Li, Y., Liu, F., Ou, S., Su, M., Peng, Y., Hu, Z., Uijttewaal, W., Suzuki, T., 
2018. Deriving vegetation drag coefficients in combined wave-current flows by 
calibration and direct measurement methods. Adv. Water Resour. 122, 217–227. 

Chen, H., Zou, Q.-P., 2019. Eulerian-Lagrangian flow-vegetation interaction model using 
immersed boundary method and OpenFOAM. Adv. Water Resour. 126, 176–192. 
https://doi.org/10.1016/j.advwatres.2019.02.006. 

Dalrymple, R.A., Kirby, J.T., Hwang, P.A., 1984. Wave diffraction due to areas of energy 
dissipation. J. Waterw. Port, Coast. Ocean Eng. 110, 67–79. 

Dean, R.G., Dalrymple, R.A., 1991. Water Wave Mechanics for Engineers and Scientists. 
World Scientific Publishing Company, Singapore.  

Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S., 
D’Alpaos, A., van de Koppel, J., Rybczyk, J.M., Reyes, E., Craft, C., Clough, J., 2012. 
Numerical models of salt marsh evolution: ecological, geomorphic, and climatic 
factors. Rev. Geophys. 50, RG1002. 

Garzon, J.L., Maza, M., Ferreira, C.M., Lara, J.L., Losada, I.J., 2019. Wave attenuation by 
Spartina saltmarshes in the chesapeake bay under storm surge conditions. 
J. Geophys. Res. Oceans. 124, 5220–5243. 

Henderson, S.M., 2019. Motion of buoyant, flexible aquatic vegetation under waves: 
simple theoretical models and parameterization of wave dissipation. Coast. Eng. 152, 
103497. 

Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., Stive, M., 2014. Laboratory study on wave 
dissipation by vegetation in combined current–wave flow. Coast. Eng. 88, 131–142. 

Jadhav, R.S., Chen, Q., Smith, J.M., 2013. Spectral distribution of wave energy 
dissipation by salt marsh vegetation. Coast. Eng. 77, 99–107. 

Keulegan, G.H., Carpenter, L.H., 1958. Forces on cylinders and plates in an oscillating 
fluid. J. Res. Natl. Bur. Stand. Res. Pap. 2857, 423–440. 

Koftis, T., Prinos, P., Stratigaki, V., 2013. Wave damping over artificial posidonia 
oceanica meadow: a large-scale experimental study. Coast. Eng. 73, 71–83. 

Lara, J.L., Maza, M., Ondiviela, B., Trinogga, J., Losada, I.J., Bouma, T.J., Gordejuela, N., 
2016. Large-scale 3-D experiments of wave and current interaction with real 
vegetation. Part 1: guidelines for physical modeling. Coast. Eng. 107, 70–83. 
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