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Abstract: Pouring large quantities of hot metal (HM) can release substantial amounts of flame. This problem is 

frequently encountered within the Basis Oxygen Furnace (BOF) steelmaking process where large quantities of 

HM (frequently exceeding 300 t) are poured into the converter vessels. The HM is contained in specially designed 

ladles and poured using overhead girder cranes. Excess release of flame may damage surrounding components 

such as crane ropes and consequently reduce their lifecycle. Therefore, limiting the release of flame during 

pouring, allows extending the lifetime of the components located in proximity of the ladle. The scope of this paper 

is to characterise flame generation during different pouring operations at a BOF steelmaking plant and to relate 

the amount of flame generated to process factors. Due to the complexity of the process under investigation, this 

paper does not aim to eliminate flame generation, but rather to identify approaches to its mitigation. The proposed 

approach utilises a standard CCTV camera to record videos of pours. An image segmentation analysis is then 

performed, where the flame is separated from the background image using pixel information in the CIE L*a*b* 

colour space. For each frame, flame intensity is then calculated. This process is partially automated for each video 

making use of MATLAB. A total of 169 videos are analysed and the pours that cause higher flame intensity are 

identified. In the last steps of the analysis, the process factors with the most significant impact on the flame release 

are identified and mitigating solutions are proposed.  
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1. Introduction 

In a Basic Oxygen Furnace (BOF) a mixture of hot liquid iron and steel scrap is turned into steel through a 

process where oxygen is blown into the molten metal at supersonic speeds, removing carbon from the melt through 

oxidation. The BOF process involves three main stages: charging, blowing and tapping. During charging phase, 

the scrap and the hot liquid iron are loaded into the converter vessel. In the blowing stage, fluxes are added to aid 

the oxidation process and a water-cooled lance, through which oxygen is supplied, is inserted into the vessel and 

oxygen blowing is initiated. The last stage involves tapping of the converter vessel, to allow liquid steel to exit 

through a tapping nozzle, separating molten steel from carbon heavy slag.  

Scrap amount, varying between 15 and 25% of the total metal weight in the converter vessel, are loaded during 

the charging phase and vary by size and composition depending on the grade of steel being manufactured [1]. 

Charging with hot metal (HM) then takes place where hot iron is poured into the converter vessel from hot metal 

ladles. In modern Basic Oxygen Steelmaking (BOS) plants, the ladles have a capacity to hold over 300 t of HM. 

Specialised overhead girder charging cranes are used to transport the full hot metal ladles and pour their contents 

in to the converter vessel. Heat, in the form of flame, is released during pouring, reaching temperatures of 1300o 

C, and causing thermal damage to the crane and surrounding structures [2]. To minimise damage to these 

components, the release of flame during HM charging needs to be minimised. The flame intensity and propagation 

vary with each consecutive charge and depends on several process factors. A diagram of flame release during HM 

pouring into a BOF converter vessel is displayed in Figure 1, where the main components involved in the process 

are shown: the ladle, the converter vessel and the hooks used to lift and tilt the ladle. 

The above concerns are well-known in the steelmaking industry and several research groups have studied this 

process. The heat front from HM pouring into a converter vessel was previously recorded in [3] using infrared 

imaging. The aim of this work was to analyse the thermal damage caused to charging crane cables and to develop 

a cable condition monitoring system.  

Along with flames, metallic fumes and dusts are released while pouring the HM. In [4], several video 

recordings were used to analyse the amount of fumes released during charging. The average fume flow rate and  
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Figure 1. Diagram of HM pouring into BOF converter vessel. 

total mass were then evaluated and used in a Computational Fluid Dynamic (CFD) model. Similarly in [5], CFD 

simulations were carried out based on analysis performed by recording emissions releases during HM pouring. 

The following data was used as an input to the model: flame temperature, recorded using a thermocouple device 

positioned in the vicinity of the flame front, gas concentration and flow velocity. For a separate model, the volume 

of smoke plume released was determined using structural particle image velocimetry.  

The use of flame segmentation has been applied in other industrial processes, specifically those in relation to 

the metal manufacturing industries. In [6], the flame from an iron ore sintering furnace was segmented by first 

pre-treating images containing furnace flame using Discrete Fourier transformation and then by applying Red 

Green Blue (RGB) colour space decomposition. Examples of processing flame images in rotary sintering kilns 

can be found in [7] and [8], providing designs for complex flame recognition systems. A system for recognising 

flame regions in a Blast Furnace raceway for the estimation of temperature using pixel colour information is 

presented in [9].  

Flame segmentation has also been applied to study the behaviour of flame in industrial boilers. In [10], a flame 

segmentation algorithm for use with infrared images is presented, where the shape of the flame is divided into 

multiple geometries. A Bayesian approach is used to estimate the boundary regions of each geometry. This 

segmentation algorithm was tested on a flame generated by a boiler burner and characterised against process 

conditions. An algorithm based on visible light spectrum images has also been developed for this application [11]. 

This boiler flame segmentation is based on YCbCr colour space with automatic thresholding of luma (Y) and 

chroma (Cr) components.  

According to the literature review carried out, no previous studies have been performed where image 

segmentation was used to analyse flame produced during HM charging. In this paper, a method of analysing the 

causes of high flame release is proposed. The approach consists in performing a colour segmentation analysis on 

video recordings of HM pouring into a converter vessel to estimate the intensity of the produced flame. Flame 

intensity is then related to process factors. A case study was performed at the Tata Steel Port Talbot BOS plant, 

where a CCTV camera (Pelco Sarix Enhanced IME322 [12]) was positioned in proximity to the converter mouth 

to record the HM charging operation. Using MATLAB, each video was transformed into CIE L*a*b* colour space 

and a segmentation algorithm was applied to calculate flame intensity. An evaluation was then made against 

known process conditions. The results from this case study, where 169 pouring videos were analysed, are 

presented in this paper. 

2. CIE L*a*b* colour space. 

The majority of commercially available video acquisition devices, including the CCTV camera used for this 

project, output video in an RGB format. For each pixel, this method encodes a value ranging from 0-255 for the 

individual R (red), G (green) and B (blue) colour component. Although colour segmentation in images is possible 

using the RGB format, in this paper the CIE L*a*b* colour space was utilised since it is more uniform than other 

colour spaces, allowing for better colour representation of the flame [13].  

The CIE L*a*b* colour space consists of 3 components: L* - Luminance (or lightness) , which ranges from 0 

(black) to 100 (white), a* - ranging from -128 (green) to 128 (red), and b* - ranging from -128 (blue) and 128 

(yellow). As a result, the CIE L*a*b* colour space provides a spherical 3D representation of the colour spectrum, 



where each individual colour has its own cartesian coordinate [14]. This is displayed in Figure 2. Colour space 

conversion from RGB to CIE L*a*b* can be done using the following equations [15]: 

[
𝑋
𝑌
𝑍

] = [𝑀] [
𝑅
𝐺
𝐵

] (1)  

𝐿∗ = {
116 × √𝑌 𝑌𝑟⁄3

− 16, for (𝑌 𝑌𝑟⁄ ) > 0.008856,

903.3 × (𝑌 𝑌𝑟⁄ ), otherwise,
(2) 

𝑎∗ = 500 × (𝑓(𝑋 𝑋𝑟⁄ ) − 𝑓(𝑋 𝑋𝑟⁄ )), (3) 

𝑏∗ = 200 × (𝑓(𝑌 𝑌𝑟⁄ ) − 𝑓(𝑍 𝑍𝑟⁄ )), (4) 

𝑓(𝑡) = { √𝑡
3

 ,        for 𝑡 > 0.008856,
7.787 × 𝑡 + 16 116          otherwise,⁄

 

Where [𝑀] is the RGB to XYZ conversion matrix (in this case [𝑀] is the conversion matrix for standard RGB 

(sRGB) [16]), R, G and B are the data channels from RGB encoding ranging from 0-255 and 𝑋𝑟 , 𝑌𝑟  and 𝑍𝑟 are 

reference values of colour white (in this case taken as 0.9504, 1.0000 and 1.0888 respectively [17]). 

 

Figure 2. CIE L*a*b* 3D coordinate representation. 

3. Nearest Neighbour Colour Segmentation  

Image segmentation based on the analysis of colour spectrum, falls under two categories: supervised and 

unsupervised. In supervised classification, the segmentation region classifiers are typically pre-identified by the 

user. In unsupervised classification, these regions are estimated using the spectral colour information of a given 

image [18]. Although requiring prior knowledge to establish classifiers by the user, the use of supervised 

classification may lead to higher accuracy image segmentation results [19].  

In the videos recorded for this work, colour variation was caused only by the appearance of flame. Since the 

camera was placed in a fixed location, and an indoor environment, variations due to ambient conditions were 

excluded. Due to the lack of external factors influencing colour variation, a supervised classification method was 

chosen as it was deemed possible to determine the classification parameters using a single example video.  

The Nearest Neighbour (NN) algorithm [20, 21] was used in this analysis due to its simple implementation 

and accurate results [19, 22]. The NN algorithm works by evaluating a distance metric between a point of interest 

𝑥 and classifiers 𝑦 = {𝑦1, 𝑦2 , 𝑦3, … 𝑦𝑛}, where the smallest distance indicates the classification of 𝑥. When applied 

in colour-based image segmentation, points of interest are the individual pixels and the classifiers are colours to 

undergo segmentation. The distance calculation is performed on the colour space encoding values. Typically, the 

Euclidean distance metric is applied to find the minimum distance according to the following expression:  

𝑑(𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖)
2

𝑛

𝑖=1

(5) 



where 𝑑(𝑎, 𝑏) is the calculated distance, 𝑎 and 𝑏 are the cartesian coordinates of 𝑥 and 𝑦 respectively and 𝑛 is the 

dimensionality of 𝑥 and 𝑦. 

In this analysis, the CIE L*a*b* colour space was utilised for the classification of pixels and the distance 

metric 𝑑(𝑎, 𝑏) for each pixel was calculated using the L*, a* and b* encoding values [23]. Therefore, the 

dimensionality value 𝑛 in (5) was set to 3 where the difference of 𝑎𝑖 and 𝑏𝑖 was calculated as the difference 

between the values of L*, a* and b* for pixel 𝑥 and classifier 𝑦, respectively.  

For this analysis, four classifiers were selected, and their corresponding L*, a* and b* values were determined 

from a single video recording of a HM charge. These four colours were further sub-classified as the primary 

colours of the flame and the secondary colours of the background image. The primary colours were white, and a 

yellow shade taken as a cumulative average from sampling the recorded flame images at different points. The 

secondary colours are brown and grey: the first used for the identification of background with flame reflection 

and the second without reflection. The L*, a* and b* values corresponding to the four classifiers are displayed in 

Table 1.  

Table 1. L*, a* and b* classifiers 

 L* (𝑏1) a* (𝑏2) b*(𝑏3) Colour  

𝑦1 - White 99 0 0  

𝑦2 - Yellow 90 -8 39  

𝑦3 - Brown 70 0 30  

𝑦4 - Grey 70 0 0  

4. Methodology  

Image segmentation was performed using MATLAB ver. R2018a with Image Processing Toolbox [24] and 

Parallel Computing Toolbox [25]. The analysis was performed on each frame of the recorded videos: for example, 

with the recording set at 30 fps (frames per second), a 2:00 minute recording resulted in the analysis of 3600 

frames. To reduce the computational time, a region of interest (ROI) was selected: each frame was cropped to 

display only the region where the flame is most prominent, resulting in an analysis window measuring 670x1100 

pixels. Each pixel in this window was then transformed from RGB to the CEI L*a*b* colour space. The NN 

classification was then performed on each pixel using classifiers displayed in Table 1 and subsequently the image 

of flame was segmented from the background image. The last step in this analysis was the estimation of flame 

intensity, which was taken as the total count of the segmented pixels displaying flame. The flow diagram for the 

analysis of a single frame is displayed in Figure 3. 

 

Figure 3. NN Flame segmentation flow chart 

The analysis was repeated for each frame. The flame intensity for the entire video was taken as the average 

value of calculated flame intensity for the individual frames. Figure 4a displays a frame prior to the application 

of flame segmentation and Figure 4b displays the identical frame with the flame segmented from the background. 

For this image, the flame intensity was 37754. The overall average flame intensity for 169 recorded videos ranged 

from 7626 (Low flame) and 101523 (High flame).  

5. Analysis of Results 

In this section the results obtained from flame segmentation are compared against process factors. Pouring rate 

and scrap use are the two factors investigated in this work as main contributors to the production of flame. Other 

factors that may impact the amount of flame generated are not considered in this paper, although they may be 

taken into the account in future works.  

At first, the relationships between 1. flame intensity and pouring rate and 2. flame intensity and total amount 

of scrap used are presented. Then, the contribution of different types of scrap to flame generation is assessed. 

Lastly, further analysis is carried out to determine the combination of pouring rate and scrap types to flame 

 



generation. This section is concluded by providing suggestions on modifications of the pouring process to reduce 

flame intensity. 

5.1. Average Pouring Rate and Flame Intensity 

The first factor considered for the impact on flame intensity was average pouring rate. This parameter was 

determined by dividing the HM weight (ranging between 275 and 315 t) by the total pouring time. The total 

pouring time was calculated from the video recordings of each individual pour. The average pouring rate for the 

videos considered varied between 1.79 and 5.43 t/s. The actual rate differs at different stages of a pour due to the 

geometry of the ladle and individual pouring behaviours of the crane drivers. Figure 5 displays a scattered graph 

where pouring rate is plotted against the average flame intensity for each recording.  

 

Figure 5. Plot showing Pouring Rate vs Average Flame Intensity 

With the application of a trend line, a linear relationship is identified, suggesting that flame intensity increases 

with the increases in pouring rate. However, more insights are provided when the coefficient of determination 

(R2) is calculated: this parameter is a statistical measure of how close the data is to the fitted regression line [26]. 

In theory, the value of R2 ranges between 0 and 1, where values close to 1 signify that the regression line provides 

a good description of the data. For the case in Figure 5, the R2 value is close to 0.11, indicating substantial 

scattering of the results. Therefore, a relationship between pouring rate and flame intensity could not be concluded 

based on this graph alone. This result suggests that there are other factors contributing to the generation of flame. 

5.2. Scrap Amount and Flame Intensity  

A comparison between scrap amounts and the average flame intensities is carried out in Figure 6. Similarly, 

to the previous graph a trend line was interpolated. The slope of the line in this case too suggests that flame 

intensity increases with the increase of scrap weight. However, the R2 value in this case is close to 0.06: this 
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(a) (b) 

Figure 4. Example of flame segmentation: (a) original image and (b) after flame segmentation is 

applied. 



number is even lower than the one obtained in Figure 5 and indicates that scrap weight alone is not the only 

contributing factor in flame generation. Eight pours where no scrap was used were discarded from the results in 

Figure 6.  

 

Figure 6. Plot showing Scrap wight vs Average flame intensity 

5.3. Scrap Type – Frequency of Occurrence Analysis 

At the Port Talbot BOS plant scrap is classified in to 9 groups: Turnings, A Steel Skull, C Steel Skull, Cold 

Iron, Tin/Steel Cans, Incinerated Bales, Mill Products/Slabs, Tundish Skull and A0/Demo. These scrap types can 

be further sub-categorised into internally (A and C Steel Skulls, Cold Iron, Mill Products/Slabs and Tundish Skull) 

and externally (Turning, Tin/Steel Cans, Incinerated Bales and AO/Demo) sourced scrap types [1]. Internal scrap 

arises from leftover solidified iron and steel and trimmings of steel strips/slabs. External scrap incorporates a 

variety of old commercial and industrial equipment, incinerator scrap and used tin coated steel cans [1]. Each 

scrap type varies in size and composition and its use depends on the grade of steel being manufactured. Internally 

sourced scrap is typically quite homogenous in its composition. Compositional variations are more prominent 

with externally sourced scrap types, varying in iron and impurity contents from batch to batch.  

A further analysis was carried out to identify a pattern between the use of different scrap types and the 

generated flame intensity. In this analysis, the top and bottom quartile of pours with the highest and lowest 

recorded flame intensity, respectively, were considered. Excluding the pours where no scrap was used, a total of 

40 pours were included in each top and bottom quartile. Each scrap type was further categorised into Low amount 

and High amount. These two categories were determined by taking the midpoint value between the maximum and 

minimum amounts recorded for each individual scrap type, where the values above the midpoint categorised as 

High and values equal to or below as Low. The maximum, minimum and midpoint weights for each scrap type 

are displayed in Table 2.  

Table 2. Maximum, minimum and classification High/Low Limit value of scrap weight 

Scrap Type Max (t) Min (t) Midpoint (t) 

Turnings 13 1 7 

A Steel Skull 16 1 9 

C Steel Skull 13 1 7 

Cold Iron 25 3 14 

Tin/Steel Cans 17 1 9 

Incinerated Bales 15 2 9 

Mill Products/Slabs 39 2 21 

Tundish Skull 23 4 14 

A0/Demo 3 2 2 

The frequency of occurrence of each scrap type was determined for the pours included in the top and bottom 

quartiles using the Low and High scrap weight classifiers. Figure 7 shows the results for Low scrap: the frequency 

of occurrence is plotted for each scrap type. Two bars are shown: the orange corresponding to the top quartile and 

the blue to the bottom quartile. The frequency of occurrence appears to be uniform, with a maximum difference 

observed for Incinerated Bales and Mill products/Slabs. Figure 8 shows the same results for the case of High 
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scrap: in this case, the frequency of occurrence varies more visibly, where the uses of High A Steel Skull, C Steel 

Skull, Cold Iron, Tin/Steel Cans and Incinerated Bales are more frequent in the Top quartile. The uses of High 

Mill products/Slabs and Tundish Skull are more frequent in the Bottom quartile.  

 

Figure 7. Bar chart of Top vs Bottom quartiles – Low scrap weight frequency 

  

Figure 8. Bar chart of Top vs Bottom quartiles – High scrap weight frequency.  

These results suggest that individual scrap types, when used in small amounts, have little to no influence on 

the intensity of generated flame. For high scrap amounts, a possible correlation between certain scrap types and 

flame intensity could be established, since A Steel Skull, C Steel Skull, Cold Iron, Tin/Steel Cans and Incinerated 

Bales are used in the highest amount in the top quartile. In turn, this suggests that the use of these scrap types, in 

high amounts, contributes to the production of flame.  

5.4. Pouring Rate and Scrap Classification – High amount, high frequency scrap 

In this section, the results from scrap classification and individual scrap type frequency use are analysed 

against pouring rates. The results from section 5.3 showed that there is a potential correlation between the use of 

high amounts of A Steel Skull, C Steel Skull, Cold Iron, Tin/Steel Cans and Incinerated Bales and high flame 

generation.  The weights of the above mentioned five scrap types were summed for each pour, for the pours where 

their value was above the midpoint limit value (displayed in Table 2). Five groups were then identified, arranged 

by increasing value of the sum. These groups were: <10 t, 10-19 t, 20-29 t, 30-39 t and >39 t. The frequency of 

occurrence for each weight group were: 28, 53, 36, 19 and 26, respectively. Charges with no scrap were not 

considered in this analysis. Figure 9 displays the average value of flame intensities in each weight group. An 

increase of average flame intensity with increase of scrap amounts is observed, further indicating a correlation 

between the use of these scrap types and the generation of flame.  

For each identified scrap weight group, the relationship between pouring rates and flame intensity is visualised 

via scatter graphs in Figures 10 (<10 t and 10-19 t), Figure 11 (20-29 t and 30-39 t) and Figure 12 (>39 t). By 

interpolating a trend line, a linear relationship between pouring rate and flame intensity is established and for each 

scrap group an increase in flame generation is expected with faster pouring rates. Referring to the R2 value for  
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Figure 9. Bar chart of High freq. scrap weight groups vs average flame intensity 

 

Figure 10. Plot showing pouring rate vs average flame intensity by High freq. weight, <10 t and 10-19 t. 

 

Figure 11. Pouring rate vs average flame intensity by High freq. weight, 20-29 t and 30-39 t. 

Figure 12. Pouring rate vs average flame intensity by High freq. weight, >39 t. 
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each scrap group, the best result is displayed for group <10 t, where R2 is calculated to be 0.57. This value is 

deemed as acceptable in industrial process analysis, where human factors should be considered. In this context, 

the value is high enough to allow predicting the amount of flame generated with pouring rate to an acceptable 

level of accuracy. For groups 10-19 t, 20-29 t, 30-39 t and >39 t, the R2 value is much lower, approximately 

measuring 0.1, 0.13, 0.12 and 0.24, respectively. This can also be shown by the increased scattering of points in 

these weight groups. This result can be explained by two factors: the pouring process is determined by the 

approach of individual crane drivers and the number of videos analysed is relatively small. It is expected that the 

analysis of more videos will provide further insights into the process factors. 

5.5. Suggestions on Process Improvement  

Based on the results obtained in this paper, suggestions can be made to improve the pouring process with the 

aim of reducing the amount of flame generated.  

Firstly, from the results in Figure 9, by reducing the amount of scrap types that were identified to be major 

contributors to flame generation it is possible to reduce the generation of flame. However, this might not be a 

financially viable option since different scrap types have different costs and substituting them with scrap identified 

to have a lower impact could increase manufacturing costs. Additionally, the type of scrap used for each pour 

depends on the grade of steel being manufactured.  

Secondly, it may be possible to reduce the generation of flame by adjusting the pouring rates in accordance to 

scrap weight groups and to the trend lines in Figures 10-12. For example, to keep the intensity of flame below an 

arbitrary value of 40000, for group <10 t, the pouring should be below 3.5 t/s and for 30-39 t pouring rate should 

be kept below approximately 2.5 t/s.  

6. Conclusion  

In this paper an analysis was carried out to correlate process factors to the generation of flame during charging 

of a converter vessel with HM. The two process factors considered in this work were the pouring rate and the use 

of metal scrap in the converter vessel. Image segmentation techniques were applied to 169 videos recording HM 

charging, in order to establish the average flame intensity for each pour. Regression analysis was then applied to 

find a correlation between the process factors described above and flame intensity. It was established that fast 

pouring and high amounts of total scrap contributed to the generation of flame. However, it was difficult to 

establish a linear relationship due to high spreading of results using these two factors alone.  
By looking at the frequency of occurrence of individual scrap types in the bottom and top quartiles, arranged 

by their flame intensity, scrap types that have a major contribution to the generation of flame were established. 

Then, using the weight information of the identified high frequency scrap types, a refined relationship between 

the use of scrap, the pouring rate and the recorded flame intensity was established.  

Through this analysis, possible process improvement suggestions were identified: specifically, using lower 

amounts of identified scrap and pouring liquid metal at a lower rate. Although it was difficult to establish a defined 

linear relationship between pouring rate, scrap weight and flame intensity, these results can be used as a basis for 

further analysis, to establish other process factors contributing to the generation of flame.  
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