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Abstract: Double-network (DN) hydrogel exhibits high mechanical strength due to 

its reversibly mechanochemical transition and intrinsic self-healing reaction of 

dynamic bonds. In our study, a renormalized Flory-Huggins lattice model has been 

developed for the DN hydrogel, of which the mechanochemical kinetics and 

thermodynamics are originated from the stress-induced bond scission and entropic 

molecule rearrangement. A steric repulsive free-energy is firstly formulated to 

characterize the mechanochemical kinetics of bond scission. An extended free-energy 

model is then proposed for the extension and breakage of the newly formed bond in 

DN hydrogels, based on Gaussian distribution rule and Flory-Huggins theory. Finally, 

a variety of quantitative comparisons are conducted to identify the working mechanics 

with the experimental results, and the proposed model is able to provide a reliable 

metric for mechanochemical kinetics and dynamic complexity in the DN hydrogels.  
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1. Introduction 

Inspired by nature, self-healing polymers have attracted great attention in various 
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applications ranging from biomedicines, civil structures, robots and aerospace.1-4 

Therefore, a huge effort has been made to enable the polymers with self-healing 

capabilities using various types of dynamic bonds, i.e., Diels-Alder (DA) 

cycloaddition, hydrogen bond and ionic bond, etc.5-7 These dynamic bonds have 

embedded into polymer chains to provide the self-healing ability in response to a 

suitable external stimulus, such as heat, light or chemistry.8-10 

Hydrogel is one of the most popular polymeric soft matters, which have a wide 

range of tailorable properties. However, most hydrogels have low mechanical 

stiffness and strength because they do not have significant energy dissipation and self-

healing abilities.11 To overcome these drawbacks, the concept of double-network 

(DN) has been proposed for the hydrogels,12-19 in which the sacrificial bonds have 

been introduced to effectively dissipate the mechanical energy by means of 

mechanochemical transitions.20-26 It has been demonstrated that the fracture tensile 

stress and toughness of DN hydrogels have been significantly enhanced up to 10 MPa 

and 1000 J/m2, respectively.16 

To further improve the physical properties and self-healing abilities, reversible 

ionic bond,27 hydrophobic association,28 π-π stacking,20 host-guest interaction21 , and 

van der Waals force22 have been introduced into DN hydrogels to work as the 

sacrificial bonds23. For self-healing DN hydrogels, the mechanochemical kinetics and 

dynamic complexity are essential for a full understanding of their constitutive 

relationship between molecular thermodynamics and macroscopic behavior. However, 

self-healing DN hydrogels normally undergo chemical reactions and complex 

interactions, i.e., bond scission, mechanochemical transition and molecule 

rearrangement. So far, few studies have been proposed to explore the working 



mechanics and identify the constitutive relationship for the self-healing DN 

hydrogels.  

2. Flory-Huggins lattice theory and free-energy equation  

2.1 Steric repulsive free-energy equation 

Under an external loading applied onto the DN hydrogel, the dynamic bonds in 

polymer chains could be broken, resulting in the increased  number of chains. As 

shown in Figure 1, there are N1 solvent molecules and N2 polymer chains embedded 

in the Flory-Huggins lattice sites,29-31 where the volume ratio of polymer chain to 

solvent molecule is . Here, the lattice sites are N=N1+ N2. Each chain has a 

position probability of Z. A polymer chain (with a length of ) is broken into two 

chains with lengths of  and , respectively.33-34 These newly formed chains are also 

governed by the Gaussian distribution theory.29 Once the number of ways for 

arrangement ( ) is known, the entropy ( ) can be obtained according to the 

Boltzmann principle.29 

 

Figure 1. An illustration of Flory-Huggins lattice model for polymer chains immersed 

into a solvent, where there are mechanochemical reactions.  

Initially, N1 solvent molecules and N2 polymer chains are set into the lattice sites, 
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and the total number of ways for arrangement is . However, the broken chains are 

separated into two parts from the original ones, i.e., the first part occupies  sites, 

while the second one occupies  sites. The total number of ways to arrange the two 

parts are  and , respectively,  

                        (1)

               (2)

According to the Boltzmann principle,29 the entropic change ( ) is then written 

as: 

             (3) 

where,  is a Boltzmann constant.  

If  of the polymer chains are involved into mechanochemical reaction, the 

mixing free energy ( ) can be expressed as,29 

              (4) 

According to the Gaussian distribution theory,29 the probability of distribution ( ) 

of polymer chain is,  

                       (5) 

where, represents the radial distribution parameter ( ,  is the 

initial end-to-end distance of a polymer chain,  is the number of monomers in a 
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polymer chain and  is the length of a monomer) and  is the end-to-end distance of 

a polymer chain.  

The elastic free energy ( ) is incorporated into the entropic function ( ) 

and enthalpy function ( ),30,31  

        (6a) 

            (6b) 

where,  is the activation energy, both  and  are given constants. 

In combination of the Gaussian distribution theory and Flory-Huggins theory, 29-31 

the number of ways for the newly formed polymer chains can be expressed as:  

              (7) 

If we introduce rubber-elastic theory into equation (7),31 a constitutive relationship 

among elastic free energy ( ), end-to-end distance ( ) and number of monomer ( ) 

in a polymer chain can be obtained as:   

                       (8)

where  is the number of polymer chains and  is Huggins interactive parameter. 

When each polymer chain is broken into two parts, the change in elastic free-energy 

( ) can therefore be obtained as, 

             (9)
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And then, the steric repulsive free-energy ( ) of the newly formed polymer 

chains is introduced,32  

                  (10) 

where,  is the molar weight of the original macromolecule and  is the steric 

distance between new two macromolecules,  is the molar volume ratio of polymer 

to solvent, and  is the molar volume of polymer.  

Here, there are  number of polymer chains involved in the mechanochemical 

transition of the DN hydrogel. In combination of equations (9) and (10), the free-

energy equation can be further expressed as,  

    (11) 

By substituting equations (4) and (9) into (11), the free-energy function can be 

finally obtained as,  

    (12) 

2.2 Free-energy equation of mechanochemical kinetics  

For the self-healing DN hydrogel, the mechanochemical reaction is reversible, as 

illustrated in Figure 2. Two monomers are crosslinked by the dynamic bond in the 

polymer chains. Under an external force, the dynamic bond is broken resulting in two 

radicals of two monomers. Furthermore, the end-to-end distance of two monomers is 

further increased and is ruled by the Rouse diffusion motion35-38.  
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Figure 2. Schematic diagram of mechanochemical transition and Rouse diffusion of 

dynamic bond and monomers, respectively. 

According to the theory of Rouse sub-diffusive motion,35-38 the reaction rate ( ) is 

introduced to characterize the chemical kinetics that is governed by the Arrhenius 

formula,39 

                           (13) 

where,  is the force applied on polymer chains,  is the dissociation energy of 

dynamic bond, both  and  are given material constants.  

The length of the newly formed polymer chain ( ) can be expressed as,33,34 

                           (14) 

where,  is the initial length of a virginal chain, when =0. 

Here, it is assumed that there are  chains involved in the mechanochemical 

transition which can be expressed using,  

1k

1 0 exp( )a f

B

E k f
k k

k T
−

= −

f aE

fk 0k

j

0 exp( )
2

f

B

k f
j j

k T
−

=

0j f

cmN



                 (15) 

where,  is a given constant. 

According to the rubber-elastic theory,31 we can obtain,  

                            (16a) 

                 (16b)

        (16c)

where,  and  are the initial and final stretching ratios, respectively.  

By substituting equation (16a) into (15), we can obtain the following equation:  

                        (17) 

In combination of equations (12), (16) and (17), the free-energy function is 

obtained, 

    (18a) 

(18b) 
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stress as a function of stretching ratio can be expressed as follows,  

      (19) 

If the broken probability of dynamic bond is estimated by the Boltzmann function 

, the repulsive volume is then obtained as, 

    (20) 

Based the equations (10) and (20), the stress-strain relationship of repulsive free 

energy can therefore be obtained:  

  (21) 

where,  is the distance between two DN hydrogel networks, which is estimated as 

. In combination of equations (4), (8), and (21), the constitutive stress-

strain relationship of the DN hydrogel is finally obtained:  

      (22) 
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where,  and L is a normalized 

parameter. 

Based on the equations (19) and (20), the constitutive relationship between stress 

and elongation ratio is plotted in Figure 3, where the parameters used in equations 

(19) and (20) are =1.0J, =0.5MPa, =0.4, 

=0.03MPa, =1.5MPa and =0.2. Figure 3(a) plots the analytical results of 

repulsive stress as a function of elongation ratio. It revealed that the repulsive stress is 

initially increased with an increase in the elongation ratio, and then it turns to 

decrease with a further increase in the elongation ratio. As shown in Figure 3(b), the 

yielding stress is increased from =0.48 MPa, =0.51 MPa, =0.55 MPa, =0.62 

MPa to =0.72 MPa with an increase of  from -4 MPa to 12 MPa. These 

analytical results reveal that a large amount of polymer chains have been involved in 

the mechanochemical transitions (e.g., increases in  (or )), resulting in 

both repulsive and yielding stresses increased.  
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Figures 3. (a) Simulation results of repulsive stress as a function of elongation ratio 

for the DN hydrogel. (b) Simulation results of yielding stress as a function of 

elongation ratio for the DN hydrogel. 

3. Experimental verification of mechanical behavior of DN hydrogel 

Figure 4 plots theoretical and experimental results of mechanical stress at a variety 

of molar concentrations of PNaAMPS (poly(2-acrylamido-2-methylpropanesulfonic 

acid sodium salt) in PNaAMPS/PEA (PEA, poly(ethyl acrylate)) DN hydrogels. The 

parameters used are listed in Table 1. It is found that the theoretical results fit well 

with the experimental data18 of DN hydrogels with molar concentration of PNaAMPS 

network, whereas =2 mol%, 3 mol%, 4 mol%, and 6 mol%. With an increase in the 

molar concentration of PNaAMPS network, the yielding stress is increased from 1.18 

MPa, 2.03 MPa, 2.95 MPa to 4.75 MPa. In the DN hydrogels, the PNaAMPS network 

undergoes a mechanochemical transition in response to an external loading, while the 

PEA network is to resist an external loading by means of a mechanical stretching. 

Therefore, a larger amount of mechanical energy is used for mechanochemical 

transition than that is for the mechanical stretching.2,18 An increase in the molar 

concentration of the PNaAMPS network results in an increase in the mechanical 

energy, which is used for mechanochemical transition to be dissipated into the 

mechanical energy. Therefore, the mechanical strength is enhanced.  

Table 1. Values of parameters used in equations (19) for PNaAMPS/PEA DN 

hydrogels with various cross-linker concentrations of the PEA network.  

x

x(mol%)

2 2.29 0.21 -8 0.05 6.67 0.03
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Figure 4. Comparison of simulation results and experimental data18 for the stress as a 

function of elongation ratio of PNaAMPS/PEA DN hydrogels with a variety of cross-

linker concentration of the PEA network.  

Meanwhile, four groups of experimental data from Ref. 40 of DN0.1, PVA-DN0.1, 

DN0.6, and PVA-DN0.6 hydrogels, which were synthesized from PVA/PAMPS/

PAAm (PVA, poly(vinyl alcohol); PAAm, poly-acrylamide), have been employed to 

compare with the analytical results, where 0.1 or 0.6 mol% of 2-oxoglutaric acid has 

been used as the photoinitiator. The analytical and experimental results are both 

plotted in Figure 5, and the parameters used in calculation using the equation (19) are 

listed in Table 2. It is revealed that the yielding stresses are 0.77 MPa to 0.62 MPa for 

the DN0.1 and PVA-DN0.1 hydrogels, respectively, whereas those are 0.72 MPa and 

0.46 MPa for the DN0.6 and PVA-DN0.6 hydrogels, respectively. After the PVA 

network is embedded into the DN hydrogels, the yielding stress is decreased. These 

analytical results are in good agreements with the experimental ones.40 It is revealed 

3 3.71 0.21 -12 0.058 14 0.03

4 13.11 0.148 -15 0.06 15 0.05

6 22.13 0.16 -30 0.06 22 0.05



that the proposed model can be used to predict the mechanical behavior of DN and 

triple-network hydrogels.  

Table 2. Values of parameters used in equations (19) for the yielding stress of DN and 

PVA-DN hydrogels with 0.1 mol% and 0.6 mol% of 2-oxoglutaric acid photoinitiator.  

Figure 5. Comparisons of simulation results and experimental data40 for the yielding 

stress as a function of elongation ratio of DN and PVA-DN hydrogels with 0.1 mol% 

and 0.6 mol% of 2-oxoglutaric acid photoinitiator.  

Finally, the effect of molar fractions of network component on the mechanical 

property of DN hydrogels has been studied using our proposed model. Here, three 

groups of experimental data (reported in Ref. 41) of UM/NBOC (poly(ureidoethyl 

methacrylate (UM), nitrobenzyloxycarbonylaminoethyl methacrylate (NBOC)) DN 

hydrogels with a variety of molar fractions of NBOC network (e.g., fNBOC= 0.1, 0.15 

DN0.1 4.43 0.14 -4 0.03 2.38 0.08

PVA-DN0.1 3 0.16 -4 0.026 2.86 0.07

DN0.6 2.78 0.18 -4 0.022 1.63 0.08

PVA-DN0.6 1.87 0.15 -2 0.03 1.44 0.09
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and 0.2), have been employed to verify the proposed model. All parameters used in 

the model are listed in Table 3. As revealed in Figure 6, the yielding stress is 

significantly increased from 0.11 MPa to 0.35 MPa with an increase of molar fraction 

of the NBOC network from 0.1 mol% to 0.2 mol%. The analytical and experimental 

results are in well agreements with each other. Here, the NBOC network is worked as 

the dynamic cross-linkers and enables the DN hydrogel stretchable. Therefore, the 

yielding strength is significantly enhanced due to the dynamic crosslinking of NBOC 

network, which dissipates the mechanical energy by means of mechanochemical 

transitions. On the other hand, the NBOC network can also reform polymerization, 

resulting in the self-healing of DN hydrogels and recovery of the yielding strength.  

Table 3. Values of parameters used in equations (19) for different molar fraction fNBOC 

= 0.1, 0.15 and 0.2.  

 fNBOC

0.1 0.175 0.48 1 0.009 0.22

0.09 0.15 0.313 0.48 3 0.02 0.44

0.2 0.263 0.8 4 0.033 0.22
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Figure 6. Comparisons between numerical results using equation (19) and 

experimental data reported in Ref. 41 of the UM/NBOC hydrogels at a variety of 

molar fractions of the NBOC network of fNBOC=0.1, 0.15 and 0.2.  

To verify the proposed model further, the effect of water concentration ( ) on 

the nominal stress was investigated for the DN hydrogel, of which the mechanical 

behavior is critically determined by the swelling ratio ( ) according to the rubber-

elastic theory.31 Figure 7 plots the analytical results of nominal stress as a function of 

the tensile strain ( ) for DN hydrogel with various water concentrations. The values 

of parameters used in equation (23) have been collected in Table 4. It is found that the 

simulation results fit well with the experimental data of PDGI/PAAM (PDGI: 

poly(dodecyl glyceryl itaconate), PAAM: polyacrylamide) DN hydrogels with various 

water concentrations of 46%, 61%, 79%, 85% and 94%.42 With an increase in the 

water concentration, the yielding stress is gradually decreased from 0.60 MPa, 0.18 

MPa, 0.17 MPa, 0.16 MPa to 0.05 MPa. That is to say, the yielding stress is gradually 

decreased with an increase in the water concentration ( ) and swelling ratio 

( ), whereas these analytical and experimental results are coincident with the 

rubber-elastic theory.31 
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Figure 7. The comparison of simulation results and experimental data42 for the 

nominal stress as a function of tensile strain of DN hydrogel with various water 

concentrations.  

Table 4. Values of parameters used in equations (23) for DN hydrogels incorporated 

of various water concentrations, where =5.4.  

Finally, the proposed model is used to characterize the mechanically cyclic stress of 

the PMPTC/PNaSS (PMPTC: po ly(3- (methacry loy lamino) p ropyl -

trimethylammonium chloride); PNaSS: poly(p-styrene sulfonic acid sodium salt)) DN 

hydrogels. Figure 8 plots the analytical results of mechanical stress as a function of 

strain and the experimental data in Ref. 43 have been employed for verification. The 

parameters used for the loading processes have been listed in Table 5. Figure 8(a) 

2 3 2

3
1

1( )
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v B m
V

χ
π

−

water concentration

46% 0.05 0.0035 1.2 0.31

61% 0.04 0.002 0.9 -0.12

79% 0.035 0.0003 0.3 -0.34

85% 0.028 0.00024 0.25 -0.35

94% 0.0095 0.00015 0.4 -0.07
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plots the stress-strain curve of PMPTC/PNaSS DN hydrogel performed by cyclic 

tensile tests. These analytical results fit well with the experimental data. Furthermore, 

it is revealed that the recovery performance of the DN hydrogel is significantly 

improved with an increase in waiting time from 0.5 min to 30 min. That is to say, the 

self-healing property of the PMPTC/PNaSS DN hydrogel can be well characterized 

by the proposed model. On the other hand, Figure 8(b) has been further presented to 

characterize the recovery behavior of DN hydrogel in the cyclically loading-

unloading process. It should be noted that the unloading process is governed by the 

different equation in comparison with that of the loading process, owing to the 

difference in the chemical kinetics of bond breakage and the self-healing. The 

parameters used for the unloading processes are =0.054, =0.2, 

=2 and =2.5×103 J/mol. With an increase in the waiting time 

from 0.5 min to 10 min, the  is increased from 2.1 to 2.3, where it is =1.95 in the 

first loading process. After a comparison, it is revealed that the analytical results of 

the proposed model can well predict the both loading and unloading processes of the 

self-healing DN hydrogel.  

Table 5. The parameters used in equation (23) for the loading processes of PMPTC/

PNaSS DN hydrogel. 

aC aBk
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Figure 8. Recovery of the stress-strain curve for various waiting times performed by 

cyclic tensile test. (a) With the waiting time of 0.5 min, 2 min, 5 min, 10 min and 30 

min. (b) With the waiting time of 0.5 min and 10 min. 

4. Conclusions  

Based on the renormalized Flory-Huggins lattice theory and Gaussian distribution 

rule, we propose a free energy-based model to describe the entropic molecule 

rearrangement and bond scission in DN hydrogels, in which two types of networks 

synchronously undergo mechanical extensions and mechanochemical transitions. A 

series of experimental results have been employed to identify the working principles 

and critical factors, i.e., mechanochemical transition, molar concentration, on the 

mechanical and yielding behaviors of DN hydrogels. Results demonstrate that the 

proposed model is able to characterize and predict mechanical behavior of DN 

hydrogels. Furthermore, our proposed model provides an effective methodology to 

investigate the mechanochemical kinetics and dynamic complexity, which are the 

5min 0.75 0.046 0.0018 1.2 5.4 0.23

10min 0.5 0.038 0.0015 1.1 5.4 0.34

30min 0.2 0.042 0.0025 1.1 5.4 0.43



working principles to determine the mechanical properties of DN hydrogels 

undergoing self-healing bond scissions. Finally, the newly proposed model have been 

verified by the experimental results reported in the literature.  
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Tables caption  

Table 1. Values of parameters used in equations (19) for the DN hydrogel with various 

amount of polymer chains involved in the mechanochemical reactions. 

Table 2. Values of parameters used in equations (19) for PNaAMPS/PEA DN 

hydrogels.  

Table 3. Values of parameters used in equations (19) for the yielding stress of DN 

hydrogels with various types of network component. 

Table 4. Values of parameters used in equations (19) for the yielding stress of DN and 

PVA-DN hydrogels with 0.1 and 0.6 mol% of 2-oxoglutaric acid photoinitiator.  

Table 5. Values of parameters used in equations (19) for different molar fraction fNBOC 

= 0.1, 0.15 and 0.2.  



Figures caption 

Figure 1. An illustration of Flory-Huggins lattice model for polymer chains immersed 

into a solvent, where there are mechanochemical reactions. 

Figure 2. Schematic diagram of mechanochemical reaction of dynamic bonds and 

their Rouse diffusion motions. 

Figure 3. Simulation results of stress as a function of elongation ratio for the DN 

hydrogel at a given = -4 MPa, 0 MPa, 4 MPa, 8 MPa and 12 MPa. 

Figure 4. Comparison of simulation results and experimental data [18] for the stress 

as a function of elongation ratio of PNaAMPS/PEA DN hydrogels with a variety of 

molar concentrations of the PNaAMPS network.  

Figure 5. Comparison of simulation and experimental results [18] for yielding stress 

as a function of elongation ratio of DN hydrogels with various network components. 
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Figure 6. Comparisons of simulation results and experimental data [40] for the 

yielding stress as a function of elongation ratio of DN and PVA-DN hydrogels with 

0.1 and 0.6 mol% of 2-oxoglutaric acid photoinitiator.  

Figure 7. Comparisons between numerical results using equation (19) and 

experimental data reported in Ref. [41] of the UM/NBOC hydrogels at a variety of 

molar fractions of the NBOC network of fNBOC=0.1, 0.15 and 0.2.


