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A Moving Least Square Reproducing Kernel Particle Method for Unified
Multiphase Continuum Simulation

ANONYMOUS AUTHOR(S)
SUBMISSION ID: 233
In physically based-based animation, pure particle methods are popular
due to their simple data structure, easy implementation, and convenient
parallelization. As a pure particle-based method and using Galerkin dis-
cretization, the Moving Least Square Reproducing Kernel Method (MLSRK)
was developed in engineering computation as a general numerical tool for
solving PDEs. The basic idea of Moving Least Square (MLS) has also been
used in computer graphics to estimate deformation gradient for deformable
solids. Based on these previous studies, we propose a multiphase MLSRK
framework that animates complex and coupled fluids and solids in a unified
manner. Specifically, we use the Cauchy momentum equation and phase
field model to uniformly capture the momentum balance and phase evolu-
tion/interaction in a multiphase system, and systematically formulate the
MLSRK discretization to support general multiphase constitutive models.
A series of animation examples are presented to demonstrate the perfor-
mance of our new multiphase MLSRK framework, including hyperelastic,
elastoplastic, viscous, fracturing and multiphase coupling behaviours etc.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: reproducing kernel particle method,
physically-based animation, modelling and simulation, fluids and solids

1 INTRODUCTION
Multiphase materials with multi-physics interactions are common
in our daily life, e.g. frying egg, making coffee and dipping bread, but
these trivial phenomena present nontrivial technical challenges for
computer simulation. A simulation framework that can conveniently
work with multiple media and multi-physics coupling remains a
major target in the research of physically-based animation. Thanks
to the simplicity in concept, data structure and implementation,
particle-based methods are widely used in computer graphics to
animate various continua. With easy implementation, particles can
be used alone in a simulation, such as the popular SPH (Smoothed
Particle Hydrodynamics) method. Phase-field model used with SPH
[Yang et al. 2017] can simulate various phenomenon like diffusion,
reaction, dissolving, melting etc. Particles can also be combined with
a background mesh/grid to improve interpolation accuracy, such
as the PIC/MPM (Particle-in-Cell / Material Point Method) which
has attracted growing attention in recent years. The MPM is well
known for simulating snow [Stomakhin et al. 2013], and successful
simulations of various materials and phase-change phenomena have
also been achieved. The versatility of MPM comes from its capa-
bility of using nonlinear continuum models. But the inclusion of a
background grid makes the system more complex, and this gives
us the motivation to incorporate general continuum models into a
pure particle-based approach.
Continuum constitutive models are widely used in MPM to an-

imate various complex materials, but due to the higher accuracy
requirement on derivative calculation it is not straightforward to
support them in a pure particle-based simulation. Smoothed Par-
ticle Hydrodynamics, as its name indicates, was mainly used for

Fig. 1. Tearing Wet Paper A paper scroll is hit by a water ball, wetted and
then teared apart into two pieces. Paper, water and their interaction are
uniformly handled in our MLSRK framework. The fracture begins at the
wet part as it is softened by water.

fluid simulation historically. In the attempt of extending SPH to
solids, many problems of the original SPH have been exposed, e.g.
interpolation inconsistency and tensile instability. In the field of
engineering computation, extensive efforts have been made to im-
prove the original SPH scheme for better accuracy and stability, and
some of these improvements have also been adopted and further de-
veloped by the graphics community. For example, linear consistent
gradient estimation [Bonet and Lok 1999] was used for elastic and
elastoplastic solid simulation [Gissler et al. 2020; Peer et al. 2018]. Us-
ing consistent interpolation and Galerkin discretization, the RKPM
[Liu et al. 1995] is another well-known SPH improvement, which is
widely used in engineering for modelling various physical processes
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of materials. In the wider context, the RKPM can be viewed as a
variation of the MLS (Moving Least Square) approach, and thus it is
sometimes referred to as the MLSRK [Liu et al. 1997]. The general
idea of point-based MLS has been used in computer graphics for
solid simulation [Gerszewski et al. 2009; Jones et al. 2014; Müller
et al. 2004], where it is mainly used to enhance the estimation of
deformation gradient in deformable solids. However, compared with
the successful applications in engineering fields, the full potential
of MLS in terms of improving discretization accuracy for differen-
tiation and integration appears to be less explored. The uniform
discretization for partial differential equations (PDEs) in MLSRK
makes it particularly suitable for unified simulation of multiphase
materials with multi-physics interactions.
Based on these existing studies, we propose a quasi-linear ML-

SRK framework for unified simulation of multiphase materials and
phase-change phenomena, which is accurate, robust and purely
based on particles. The proposed framework handles both solids
and fluids and supports such complex material behaviors as elasto-
plasticity, fracture andmultiphase phenomena like diffusion, dissolu-
tion. Using only particle data structure, the new multiphase MLSRK
framework is also conceptually simpler than hybrid methods for
implementation. Our main technical contributions include:

• A pure particle-based approach is established for unified sim-
ulation of multiphase continua simulation. Different kinds of
fluids and solids and their interactions are uniformly handled,
including hyperelasticity, viscosity, elatoplasticity etc.

• Phase-field model is integrated into our MLSRK framework
by discretizing Cahn-Hilliard equation, which enables simu-
lation of multiphase phenomenon like diffusion, dissolving,
reaction etc. Material volume change in phase evolution is
handled by adding a phase related factor in deformation de-
composition.

2 RELATED WORK
As a pure particle-based method, SPH was first created to solve as-
trophysics problems [Gingold and Monaghan 1977], and later used
for simulate hydrodynamics problems. In computer graphics, SPH
was used to simulate water with splashes [Müller et al. 2003], and it
quickly became popular for fluid animation due to its simplicity in
surface tracking and splashes handling. Becker and Teschner [2007]
used the weakly compressible state equation to approximate incom-
pressibility of fluid. Adams et al. [2007] used adaptive sampling
to capture more details with less computational cost. To improve
performance for animating incompressible flow, pressure solving
techniques were developed. Solenthaler and Pajarola [2009] and
Ihmsen et al. [2013] solved the pressure field to make the estimated
density a constant. The Position-based Fluid (PBF) method was
proposed in [Macklin and Müller 2013] for incompressible flow by
using SPH density estimation with Position-based Dynamics (PBD),
and it was later combined with PBD for a unified simulation frame-
work in [Macklin et al. 2014]. Bender and Koschier [2015] solved
the incompressibility condition by combining a constant density
solver and a divergence free solver, which allowed the use of larger
time steps. More recently, Reinhardt et al. [2019] used a modified
Shepard interpolation to reduce noise in SPH fluid simulation. The

SPH method can work for other types of flow. Alduán and Otaduy
[2011] used SPH for simulating granular flow. Simulation of highly
viscous fluids in SPH is also achieved in [Peer et al. 2015], which was
later improved to correctly handle rotational motion using vorticity
diffusion by Peer and Teschner [2016]. Weiler et al. [2018] used
a Galilean invariant formulation of Laplacian operator to obtain
physically consistent results of viscous fluids.

Linear inconsistency of the standard SPH interpolation can cause
artifacts in rotational motion. This drawback becomes fatal in solid
simulation thus correction is required to obtain good simulation
result. There are already some successful solutions used in computer
graphics. Becker et al. [2009] generalized shape matching [Müller
et al. 2005] to fit rotation on each particle, and corotational formu-
lation was used to be rotational invariant. Peer et al. [2018] used
corrected SPH gradient formulation and coupled the simulator with
SPH liquids. Based on this gradient correction, Gissler et al. [2020]
further improved the SPH scheme to support elastoplastic materials.

Researchers in engineering fields have been developing more gen-
eral meshfree methods that can be used to solve a wide range of PDE
systems. The Reproducing Kernel Particle Method (RKPM) devel-
oped by Liu et al. [1995] is a successful meshfree method, which has
been widely tested in engineering problems for modeling various
mechanical processes of practical materials, including non-linear de-
forming solids [Chen et al. 1996], fragment-impact problems [Guan
et al. 2009], air-blast–structure interaction [Bazilevs et al. 2017;
Moutsanidis et al. 2018]. The RKPM can be viewed as a variation
of the MLS approach, whose idea has been used in graphics Müller
et al. [2004] for estimating deformation gradient of elastoplastic and
melting solids. Pauly et al. [2005] modified weight of MLS near the
fracture surface to handle discontinuity of fracturing solids, and it
was later combined with SPH fluids [Keiser et al. 2005]. Gerszewski
et al. [2009] allowed dynamically changing topology by updating de-
formation gradient per step, instead of fitting deformation gradient
from initial configuration. Jones et al. [2014] handles both elastic
and plastic solids by globally fitting plastic deformation into a em-
bedded space. Martin et al. [2010] used Generalized MLS (GMLS) to
construct shape function and avoid singularity problem of moment
matrix in degenerated configuration like sheet and rod, and used
“elaston” as a general tool to perform quadrature for volumes, sheets
and rods, achieving unified simulation of elastic solids of different
dimension.

Hybridmethods use bothmoving particles and a fixed background
mesh/grid for numerical interpolation, and they have good accuracy
and stability for the regularity of grid. The PIC/FLIP was introduced
into graphics by Zhu and Bridson [2005] for fluid and sand animation.
The use of MPM in computer animation has been increasing steadily
since Stomakhin et al. [2013] used it to simulate snow. The APIC
transfer [Jiang et al. 2015] was proposed to preserve affine motion,
removing unwanted damping in PIC. It was later extended to Poly-
PIC [Fu et al. 2017] and finally unified as MLS-MPM [Hu et al. 2018].
Various materials were successfully handled by MPM, including
snow [Stomakhin et al. 2013], sand [Klár et al. 2016], cloth [Jiang
et al. 2017] and thin shell [Guo et al. 2018]. There have been some
studies focusing on the performance improvement ofMPM. Gao et al.
[2017] developed an adaptive sampling technique which can give
more detailed result. GPU optimized MPM simulator was developed
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in [Gao et al. 2018b]. Hu et al. [2019] proposed a domain specific
programming language to efficiently implement and execute MPM
algorithms.

In order to animate complex scenes involving multiphase materi-
als and their interactions, some multiphase simulation techniques
have been developed. Multiphase mixture fluids were modeled by
integrating the mixture model with SPH [Ren et al. 2014]. Yang et al.
[2015] used Cahn-Hilliard equation to handle chemical reaction in
multiphase phenomena. Yan et al. [2016] extended this framework
for solids. Yang et al. [2017] extended the phase field model using
Alan-Cahn equation to simulate phase-change processes related to
temperature. The mixture model was also ported to MPM [Yan et al.
2018]. The MPM was augmented to handle phase-change in [Stom-
akhin et al. 2014]. Baking and cooking scenes were animated using
MPM in [Ding et al. 2019]. Although the simulation of single type
of materials is well studied, coupling of multiple materials is still
a challenging task. As different simulation methods need to work
together, the interaction between them must be explicitly handled.
The coupling between rigid body and liquid was handled in [Akinci
et al. 2012], and later improved in [Gissler et al. 2019] with better
performance in strongly coupled scenes. Sand and water mixtures
were simulated in [Tampubolon et al. 2017] with two species solved
on two grids coupled by a linear drag force. Coupling between rigid
body and viscous liquid was studied in [Takahashi and Lin 2019].
Gao et al. [2018a] simulated particle-laden flow. The coupling be-
tween hair and liquid was modelled in [Fei et al. 2017], cloth and
liquid in [Fei et al. 2018], strands and shear-dependent fluid in [Fei
et al. 2019].

3 MOVING LEAST SQUARE REPRODUCING KERNEL
INTERPOLATION

The basic idea of MLS has already been used in graphics [Ger-
szewski et al. 2009; Jones et al. 2014; Müller et al. 2004] to improve
the accuracy of deformation gradient estimation, but the general ap-
plication in numerical interpolation remains less explored. Moving
least square interpolation can guarantee interpolation consistency
to any selected order. In this section, the formulation of MLSRK is
briefly recapped in § 3.1 and § 3.2 following the derivation of [Liu
et al. 1997].

3.1 MLSRK Interpolation in Continuous Space
Reproducing kernel interpolation can be obtained by applying the
idea of MLS to continuous space. In a d-dimensional space, to ap-
proximate a function u : Rd → R in a neighborhood of a point
x0 ∈ Rd , one can use a linear combination of a set of basis functions
hα : Rd → R (α = 1, . . . ,Nb ) as follows:

ũ(x; x0) =
Nb∑
α=1

cα (x0)hα (x) (1)

where cα denotes the combination coefficient. The basis functions
hα is often formed by polynomials. This can be written in matrix
form as ũ(x; x0) = c(x0)T h(x) = h(x)T c(x0). Over the domain of
interest Ω, the weighted square error functional is:

E(ũ; x0) =
∫
Ω
[ũ(x; x0) − u(x)]2 Φ(x − x0)dx (2)

where the weight functionΦ is usually set similar to Gaussian kernel
with a finite support radius.

Minimizing the error functional E with respect to the coefficient
c gives the optimal approximation ũ for the original functionu. This
leads to a quadratic optimization problem that can be solved by
setting ∂E/∂c = 0. The resulting linear equation is

M(x0)c(x0) = r(x0) (3)

where M(x0) =
∫
Ω

h(x)h(x)TΦ(x − x0)dx is called moment matrix
and r(x0) =

∫
Ω

h(x)Φ(x − x0)u(x)dx. The linear problem in Eqn. (3)
has the same dimension as the number of basis functions. As linear
and quadratic basis are often used in 2D and 3D space, the dimension
of the linear system is usually not more than 10, thus it can be easily
solved. If the moment matrix is non-singular, a unique solution c
can be obtained.
Using the optimal coefficients c(x0) = M−1(x0)r(x0) to evaluate

ũ with x0 = x yields the reproducing kernel interpolated function
uh (x) = ũ(x; x) = h(x)T c(x) = h(x)T M−1(x)r(x). Substituting r
into the expression, the reproducing kernel interpolation can be
rewritten as:

uh (x) =
∫
Ω

[
h(x)T M−1(x)

]
h(x′)Φ(x′ − x)u(x′)dx′

=

∫
Ω

b(x)T h(x′)Φ(x′ − x)u(x′)dx′

=

∫
Ω
C(x′, x)Φ(x′ − x)u(x′)dx′

(4)

where b(x)T = h(x)T M−1(x) andC(x′; x) = b(x)T h(x′). Comparing
Eqn. (4) with the standard SPH interpolation uh (x) =

∫
Ω
Φ(x′ −

x)u(x)dx, the only difference is the factorC(x′, x), which corrects the
inconsistency of standard SPH interpolation. In this sense, MLSRK
can be viewed as an improvement to standard SPH.
If the original function happens to be a combination of basis

functions, i.e. u(x) = cT0 h(x), where c0 is the vector of the com-
bination coefficients, the unique optimal solution of coefficient c
is c = c0, which makes ũ = u and E is minimized to be 0. Conse-
quently, uh = u, i.e. the interpolated function is exactly the same as
the original function, or the function is reproduced. This property
guaranties completeness of the interpolation.

3.2 Interpolation with Particles and Polynomial Basis
The reproducing kernel interpolation described above can be readily
applied to a particle system. Consider a domain sampled by a set
of particles, where the i-th particle has its position xi , volume Vi
and some other general quantity ui . Using these particles as the
quadrature points to approximate the integrations in Eqns. (3) and
(4), the quantity u can be interpolated as

uh (x) =
∑
i

b(x)T h(xi )Φ(xi − x)Viui (5)

where b(x)T = h(x)T M−1(x) andM(x) =
∑
i h(xi )h(xi )TΦ(xi−x)Vi .

Note that, the summation is for all particles theoretically, but due
to the finite support of kernel function Φ, the actual computation
may include only neighborhood particles. This rule applies to all
other summations in this paper. The above interpolation can be
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reorganized as:
uh (x) =

∑
i

Ni (x)ui (6)

where Ni (x) = b(x)T h(xi )Φ(xi − x)Vi is the shape function corre-
sponding to particle i .

Basis functions are usually selected to be polynomials, and some
commonly used options are listed in Table 1. For the kernel Φ, cubic
spline kernel is widely adopted for its smoothness:

cubicspline(x) =


1
2
|x |3 − |x |2 +

2
3

|x | < 1,

1
6
(2 − |x |)3 1 ≤ |x | < 2,

0 else

(7)

The kernel can be formed as Cartesian product of each coordinate,
i.e. Φ(x,y) = cubicspline(x) cubicspline(y) for 2D, and Φ(x,y, z) =
cubicspline(x) cubicspline(y) cubicspline(z) for 3D. Radial basis
cubic spline kernel is also applicable, i.e. Φ(x) = cubicspline(| |x| |).
Note that the normalization factor is not necessary in MLSRK, as a
positive constant factor will not affect the result of minimizing E in
Eqn. (2).

Table 1. Commonly used basis functions in MLSRK

Consistency Dimension Basis functions
Constant any h = [1]T

Linear 1D h = [1 x]T
2D h = [1 x y]T

3D h = [1 x y z]T

Quadratic 1D h = [1 x x2]T

2D h = [1 x y x2 y2 xy]T

3D h = [1 x y z x2 y2 z2 xy yz zx]T

In practice, polynomial basis functions should be shifted to point
x and scaled according to the kernel radius scale a for numerical
stability. The shifted and scaled interpolation functions are:

Ni (x) =b(x)T h(
xi − x
a

)Φ(
xi − x
a

)Vi ,

b(x)T =h(0)T M−1(x),

M(x) =
∑
i

h(
xi − x
a

)h(
xi − x
a

)TΦ(
xi − x
a

)Vi .

(8)

Comparing with the MLS directly applied on points, an additional
volume factorVi present in the MLSRK formulation. The derivatives
of above interpolation functions are required in later discussions and
for convenience, they are summarized in Appendix A. The radius
of kernel is selected to be proportional to the diameter of particles,
and it should be set to include a sufficient number of neighborhood
particles. In most examples, the radius of kernel support is selected
to be around 2 ∼ 3 times the diameter of particles.

The consistency of MLSRK interpolation depends on the selection
of basis functions. For constant basis, constant is reproduced, i.e.∑
i Ni (x) = 1, which leads to

∑
i ∇Ni (x) = 0. For linear basis, we

additionally have
∑
i Ni (x)(xi −x) = 0 and

∑
i ∇Ni (x) ⊗ (xi −x) = I.

Note that, if constant basis is used, the interpolation is exactly the
same as Shepard interpolation. Generally, using higher order basis

Fig. 2. Rolling Snowball A snow ball rolls down a slope covered with snow,
and smashes into a stack of snow balls [Gissler et al. 2020; Stomakhin et al.
2013]. Snow on the slope can stick to the rolling ball, making it grow, and
fractures occur when the falling ball hits the stacking balls at the foot of
slope.

functions gives better accuracy in interpolation, but the computation
cost also increases. We found that linear basis is accurate enough
for animation purpose and is used in all our examples.

3.3 The relationship of SPH, MPM and MLSRK
SPH, MPM and MLSRK can all handle complex continuum models
in the current state of the art. A demo snowball simulation using
MLSRK is illustrated in Fig. 2, where similar visual effects as previous
methods [Gissler et al. 2020; Stomakhin et al. 2013] are produced.

MLSRK can be viewed as an improved SPH scheme, which intro-
duces a correction factor to remove the interpolation error caused by
poor particle distribution. There are also other SPH improvements,
and some of them have been explored by the graphics community.
For example, corotated formulation [Becker et al. 2009] and linear
consistent gradient formulation [Gissler et al. 2020; Peer et al. 2018]
have been used to simulate elastic and elastoplastic solids. These
SPH improvements share similar data and program structures, and
information only flows among neighborhood particles in each iter-
ation step. In addition, they all require solving a small matrix for
each particle to improve the approximation accuracy. Nevertheless,
MLSRK has some technical advantages that make it a more suit-
able foundation for establishing a unified simulation framework for
multiphase materials. Specifically, by using Galerkin discretization,
MLSRK provides a systematic way to discretize a wide range of
PDEs. Compared to the collocation discretization used in other SPH
schemes, it is much easier to uniformly discretize the various PDEs
encountered in complex multiphase systems following the Galerkin
approach (see § 4).
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SPH and MLSRK use only particles for discretization, while MPM
requires an additional background grid as a scratch pad for compu-
tation. MPM interpolation has a simpler form due to the regularity
of background grid, but the additional grid data structure increases
the complexity of theoretical analysis and implementation. Pure
particle-based methods can easily obtain unbounded region adap-
tivity and as the particles only have information transfer within
neighborhood particles, the program structure is simply two nested
loops with a cached neighborhood list (Algorithm 1). To simulate un-
bounded domain, MPM usually requires the algorithm to be tightly
coupled with sophisticated sparse grid structures like OpenVDB
[Museth 2013] or SPGrid [Setaluri et al. 2014]. Implementing P2G
and G2P transfer for MPM is not an easy job, especially when spatial
data structure is used. To simplify the implementation of MPM, the
Taichi programming language [Hu et al. 2019] with built-in support
for sparse data structure is designed recently for programming with
spatial sparsity.
Compared with pure particle-based methods, the information

transfer between MPM particles and MPM grids can cause informa-
tion loss. The standard PIC P2G velocity transfer is linear inconsis-
tent, and causes error especially near boundaries of sampled domain
with unwanted damping effects. This problem is addressed in APIC
[Jiang et al. 2015] and Poly-PIC [Fu et al. 2017] by tracking higher
order neighborhood information on particles, and these methods
are later unified as MLS-MPM [Hu et al. 2018]. In particular, Hu et al.
[2018] used the same shape functions as RKPM/MLSRK. Benefiting
from the regular background grid, the moment matrix is constant
in MLS-MPM, which saves some computation effort. However, the
information loss in P2G transfer is still not fully avoided by these
improvements. Because particles usually have at least two times
resolution of the grid, the quantities tracked on the grid are practi-
cally “blurred” compared to the information captured by particles.
Consequently, the sub-grid particle motion cannot be captured in
MPM simulation. Pure particle-based methods do not suffer from
this issue, and therefore produces much better results in simulating
multiphase separating processes (Fig. 3). Refining resolution does
not help with this issue. This advantage makes pure particle-based
methods more suitable than MPM for multiphase simulation.

AsMLS interpolation and Galerkin discretization are used by both
MLSRK and MLS-MPM, they share some similarity. Benefiting from
the regularity of background grid, MLS-MPM always has constant
moment matrix, while MLSRK has varying moment matrix to be
computed. For MPM, the grid tracks degrees of freedom (DoFs),
and particles serve as quadrature points. For MLSRK, particles are
used to track DoFs and are also used as quadrature points. Knowing
this difference, comparison can be made with the same number of
particles or DoFs. For a fair comparison, we implemented an MLSRK
simulator with Taichi programming language [Hu et al. 2019] and
compared the performancewith Taichi’sMLS-MPM implementation.
Using the same number of particles, MPM is faster than MLSRK
but delivers less details, because the grid has significantly less DoFs.
Using the same number of DoFs, MPM produces similar splashes
like MLSRK, but runs slower than MLSRK. If more particles are used,
MPM can provide better results in surface tracking.

Fig. 3. Mixture Dam-breakDam-break of a two-phase liquid mixture with
density of 104 and 103 is simulated with MLSRK and MPM. As MPM has
less DoFs on the grid, it cannot capture sub-grid flow details, and fails to
simulate the unmixing process. MLSRK successfully captures the phase
separation behavior without the information bottleneck of grids. Using
same DoFs as MLSRK, MPM can produce similar motion as MLSRK, but
this does not help for simulating the unmixing process, because DoFs on
grid are always significantly less than the particles.

4 MLSRK FORMULATION FOR MULTIPHASE
CONTINUA

In this section, we describe how to discretize multiphase systems
using MLSRK shape functions and Galerkin scheme, thereby animat-
ing multiple coupled media with a unified simulation framework
that is based on particles only and easy to implement. In continuum-
based simulation, governing equations are formulated as partial
differential equations, which can be discretized using numerical
schemes and then solved by computers to obtain an approximate
solution. In SPH, PDEs are satisfied only at the particle location, and
such discretization approach is known as the collocation method,
with SPH particles serving as the collocation points. In FEM (Finite
Element Method), PDEs are converted to equivalent weak form
formulations, and then projected onto the approximate solution
space using shape functions as trial functions, which is known as
the Galerkin method. The Galerkin method is preferred for more
general numerical discretization, as a wide range of PDEs can be
easily discretized in a similar manner.
We follow the Galerkin approach to discretize the governing

equations of multiphase systems with MLSRK interpolation. First,
the PDE governing equations for multiphase continua including
momentum conservation and phase evolution are described in § 4.1
and § 4.2, respectively. Next, the general constitutive models for
multiphase continua are explained in § 4.3 together with the cor-
responding MLSRK discretization. Finally, § 4.4 describes a new
regularization technique to cope with ill particle distribution and
the overall MLSRK algorithm framework for multiphase continuum
simulation.

4.1 Momentum Conservation of Multiphase Continua
Momentum conservation have different versions in fluid dynamics,
e.g. Euler equation and Navier-Stokes equation. A more general
momentum conservation equation for a continuum in Eulerian
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viewpoint is Cauchy momentum equation:

ρ
Du
Dt
= ∇ · σ + ρg (9)

where ρ denotes mass density, u velocity, σ Cauchy stress and g
body force per unit mass (gravitational acceleration in most cases).
Using the Cauchy momentum equation, both fluids and solids can be
handled in a unified manner. Its equivalent weak form formulation
is: ∫

Ω
[ρ(Du/Dt − g)v + ∇v · σ ] dV −

∮
∂Ω

n · σvdS = 0 (10)

where v denotes the trial function. For simplicity, only free bound-
ary is considered, thus the second term is always zero. Using the
previously defined shape function Ni as trial function, i.e. v = Ni ,
and performing nodal integration on particles yields∑

j

[
ρ j ( Ûuhj − g)Ni (xj ) + ∇Ni (xj ) · σj

]
Vj = 0,

where Ûuhj =
∑
k ÛukNk (xj ). This can be rewritten in matrix form

M Ûu = f :∑
j

(∑
k

Ni (xk )Nj (xk )ρkVk

)
( Ûuj − g) = −

∑
j
∇Ni (xj ) · σjVj .

Using mass lumping, we can avoid solving the linear problem of
mass matrix. While mass matrix is Mi j =

∑
k Ni (xk )Nj (xk )ρkVk ,

the lumpedmassmatrix is then M̃i j = δi j
∑
k Mik = δi j

∑
l Ni (xl )ρlVl .

The final discretized formulation is:

Ûui = −

∑
j ∇Ni (xj ) · σjVj∑
j Ni (xj )ρ jVj

+ g. (11)

Direct nodal integration is inaccurate, and causes noise and insta-
bility in the motion. Voronoi diagrams were generated in [Chen et al.
2001] to improve the integration accuracy. However, such approach
is not suitable for our case which involves frequently changing
topology, as dynamically maintaining Voronoi diagrams in every
time step will be very complicated. To address the instability issue,
we borrow ideas from PIC/FLIP [Zhu and Bridson 2005] and XSPH
[Monaghan 1992], the velocity of each particle is blended with the
interpolated velocity:

ũi = αbui + (1 − αb )u
h (xi ) (12)

where uh (xi ) =
∑
j Nj (xi )uj is the interpolated velocity at xi . This

gives a similar effect as the artificial viscosity and helps stabilize
the simulation. We tested a set of αb values from 0 to 1 (see Fig. 4),
and found αb = 0.8 ∼ 0.95 delivers good stabilization effect in all
our examples without influencing the simulation result too much.
We expect to replace this with more sophisticated methods in the
future, like APIC replacing FLIP [Jiang et al. 2015].
We assumed free boundary in the above derivation. But fixed

boundary is also useful in animation, for which we adopt a velocity
collision for all particles as described in [Stomakhin et al. 2013] to
mimic the effect of external boundary force. Velocity fixed particles
are also used for boundary of complex shape in some examples.

Fig. 4. Stabilization An elastic Jell-O drops onto the ground. To test the
effect of velocity blending coefficient αb in Eqn. (12), different αb values
are used to simulate the scenario. Without stabilization, the simulation is
unstable. With a proper αb , reasonable results are obtained. A larger αb
results in more flexible motion (red tails indicate velocity).

4.2 Phase Evolution
By carrying concentrations of each component on the particle sys-
tem and evolving it during the simulation, multi-materials mixture
can be simulated. In this system, each particle represents a certain
amount of mass, its velocity presents the averaged motion of all
different components. These different components can exchange
among neighborhood particles, in which each particle keeps invari-
ant mass. Cahn-Hilliard equation works well in simulating many
phenomena dominated by phase-field evolution [Yang et al. 2017,
2015]. The PDE governing equation is

∂η

∂t
= ∇ · (L∇µc ), (13)

where η denotes the volume density of a certain conservative order
parameter, L degenerate mobility, and µc chemical potential. Using
trial function v , the weak form of the above PDE reads:∫

Ω
(
∂η

∂t
v + L∇µc · ∇v)dV −

∮
∂Ω

vL∇µc · ndS = 0. (14)

Assuming free boundary condition and following the Galerkin ap-
proach, we can obtain∑

j

[(
∂η

∂t

)h
Ni (xk ) + Lk∇µc (xk ) · ∇Ni (xk )

]
Vk = 0.

Applying a row-summing operation similar to mass lumping yields(
∂η

∂t

)
i
= −

∑
j ∇Ni (xj ) · ∇µc (xj )LjVj∑

j Ni (xj )Vj
.

Note that, Cahn-Hilliard equation is a conservation form for order
parameter η. Thus η should be density of a conservative physics
quantity. Yang et al. [2015] chose mass concentration c , i.e. η = c .
As mainly focused on incompressible flow, the volume is conserved
in their simulation, this choice worked without noticeable artifact.
In reality, when two different material merge together, the total
volumewill be less than the sum of original volume. In such situation,
volume varies, and using η = c as in [Yang et al. 2015] does not
conserve mass (see Fig. 5). In order to handle such volume varying
phenomena, we choose η to be mass density of component materials
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Fig. 5. Mass conservation Powder drops and dissolves in water. The for-
mulation for Cahn-Hilliard equation used in [Yang et al. 2015] does not
preserve mass. The total volume shrinks in this process, and mass conserva-
tion for each components is violated in the original formulation η = c of
[Yang et al. 2015], but it is met by our formulation by using η = ρc .

which is related to mass concentration c and net mass density ρ,
i.e. η = cρ. The degenerate mobility is scaled by density L = L̃ρ to
eliminate the difference in diffusion rate caused by different density.
The derivative of mass concentration is:(

∂c

∂t

)
i
= −

1
ρi

∑
j ∇Ni (xj ) · ∇µc (xj )L̃jρ jVj∑

j Ni (xj )Vj
. (15)

The mass conservation is met in our revised formulation as shown
in Fig. 5.
The chemical potential µc is evaluated as:

µc =
∂H

∂c
− ϵ2∇2c (16)

where H = H (c) is the Helmholtz free energy of the material and
the second term is related to the free energy caused by interface
effect. For simplicity, we consider only diffusion in our examples, for
which the free energy function is set as H (c) = (c − 0.5)2. It is noted
that other more sophisticated Helmholtz energy functions can also
be used to handle chemical reaction. In our linear MLSRK implemen-
tation, the Laplacian is estimated by (∇2c)i =

6
a2

∑
j Ni (xj )(c j − ci )

to avoid the calculation of the second derivative for shape functions,
where a is the kernel radius scale used in Eqn. (8). Further expla-
nation can be found in Appendix B. It is assumed ϵ is similar to
a, which works well for simulating interface effects. After phase
evolution, the mass concentration is then advected on particles.

4.3 Constitutive Models for Multiphase Continua
The uniform MLSRK Galerkin discretization enables the use of gen-
eral constitutive models, whose effectiveness to animate complex
material behaviors has been demonstrated in the literature using
MPM. In this section, we describe how to work with general con-
stitutive models in a unified framework based on the proposed
quasi-linear MLSRK scheme. The unified continuum model is capa-
ble of handling various materials behaviors including hyperelastic,
elastoplastic and viscous behaviors. Elastic and viscous stresses are
added to get net stress inside the continuum. In our framework,
fluids share the same continuum model as solids, and they are mod-
elled by setting the friction angle to 0 in the Drucker-Prager yield
condition. But other fluid constitutive model like WCSPH can also
be used.

4.3.1 Deformation Gradient Update. Continuum constitutive mod-
els are often defined using the deformation gradient F, which is
commonly adopted in MPM. Likewise, they can be readily used with
MLSRK. Specifically, the evolution of deformation gradient follows

ÛF = (∇u)T F, (17)

where the velocity gradient ∇u can be estimated using MLSRK
interpolation as

(∇u)i =
∑
j
∇Nj (xi ) ⊗ uj . (18)

Different methods were used in previous MLS-related works to
estimate deformation gradient. It can be obtained by fitting the
initial position as in [Müller et al. 2004], or updated in each step
as in [Gerszewski et al. 2009]. Our updating method is similar to
[Gerszewski et al. 2009]. With initial position explicitly tracked on
particles, the topology is fixed, which is suitable for elastic solids.
If topology changes, as in plastic solids and fluids, the topology
change cannot be handled in the algorithm. In the updated method,
the initial configuration is not tracked, the topology is dynamically
changing during the simulation, thus makes it more suitable for
fluid simulation and also for solid merging and breaking behaviors.
But during updating, the volume is estimated with errors caused by
discretization, and the error accumulates as time advances, causing
volume changing artifacts. MPM and FLIP fluid simulations also
suffer from this problem. We propose a simple correction to ad-
dress this issue in MLSRK. In SPH, the volume of a particle can be
estimated by [Solenthaler and Pajarola 2008]:

Vi =
1∑
jWi j

, (19)

whereWi j is SPH kernel function. Although this estimation is af-
fected by particle distribution, but the error does not accumulate as
the time step advances. We use the above particle volume estimation
to correct the deformation gradient, and the corrected deformation
gradient is F̃ = (

Vi
V 0
i J

)1/dF, where J = det(F) and d is the dimension

of space. This makes deformation volume change J̃ = det(F̃) consis-
tent with volume change Vi/V 0

i . This correction is used for liquid
and granular material in our examples. Fig. 6 shows the effect of the
correction.

4.3.2 Hyperelasticity. Given the deformation gradient, the Cauchy
stress is determined for hyperelastic material by its property. We
directly take the neo-Hookean solid model from [Jiang et al. 2016].
Specifically, the elastic energy density is

Ψ(F) =
µe
2
tr(FFT − I) − µe log(J ) +

λe
2
log2(J ), (20)

where J = det(F ), and Lamé parameters µe and λe are related to
Young’s modulus E and Poisson ratio ν as:

µe =
E

2(1 + ν )
, λe =

Eν

(1 + ν )(1 − 2ν )
. (21)

Consequently, given the deformation gradient, the Cauchy stress is:

σe =
1
J
(µe (FFT − I ) + λe log(J )I). (22)

The effect of elastic parameters are shown in Fig. 7.
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Fig. 6. Galton Board A water ball passes through a Galton board. With the
proposed volume correction, the simulation is stable and delivers visually
plausible results. Without volume correction, the simulation is unstable
so that smaller time step and smaller blending coefficient αb are used in
Eqn. (12) to run the simulation, but still the results suffer from severe volume
changing artifacts.

4.3.3 Viscosity. The viscous stress of a Newtonian fluid depends
only on the velocity gradient, and is given as:

σv = µv

[
∇u + (∇u)T −

2
d
(∇ · u)I

]
+ ζv (∇ · u)I. (23)

where µv is the shear viscosity coefficient, ζv is the volume viscosity
coefficient. The effect of these viscous coefficients are shown in Fig.
7. In our experiments, this term is not very useful as large viscous
coefficients limit time step of our explicit scheme, and reduce the
performance and makes the simulation time impractical.

4.3.4 Elastoplasticity. To handle elastoplasticity, the deformation
gradient F is decomposed into an elastic part Fe and a plastic part
Fp :

F = FeFp . (24)

Then return mapping is adopted with certain yield criterion to
model plasticity. The elastic is first updated by Eqn. (17), then de-
composed as Fe = UΣVT using singular value decomposition. The
singular values are then projected to the region that satisfies the
yield condition, obtaining Σ̃. Then new elastic deformation gradi-
ent is constructed as F̃e = UΣ̃VT , while new plastic deformation
gradient is F̃p = F̃−1e FeFp to maintain the deformation gradient
unchanged F = F̃e F̃p = FeFp .

Fig. 7. Viscoelastic Block An viscoelastic cube drops onto the ground.
Four groups of examples are tested to show the effect of different values of
viscoelastic parameter E , ν , µv and ζv .

We can directly take return mapping used in MPM literatures. To
simulate snow, we adopt the same return mapping as [Stomakhin
et al. 2013], and the singular values σi (i = 1, 2, 3) are clamped to
range [1− θc , 1+ θs ], where θc and θs is the criteria of compression
and stretch. To better cope with fracture, we add a hardening factor
to Lamé parameters like in [Stomakhin et al. 2013]:

µ̂e = µee
ξ (1−Jp ), λ̂e = λee

ξ (1−Jp ). (25)

where ξ is the hardening coefficient and Jp = det(Fp ) is the deter-
minant of plastic deformation gradient.

The Drucker-Prager yield condition is adopted for plasticity:

| |σd | |F ≤ a + bσm, (26)

where σm = tr(σ )
d I is mean stress, σd = σ − σm is deviator stress,

a represents cohesion, and b represents friction. Klár et al. [2016]
used this model to animate sand. We adopt a similar return mapping
augmented with cohesion handling like in [Tampubolon et al. 2017].
Before return mapping, the plastic volume change is first added back
to the elastic part to avoid the volume gain like in [Tampubolon
et al. 2017], F̃e = (Jp )

1/dFe , F̃p = (Jp )
−1/dFp . The singular values

are first mapped to shifted log space

ϵ = log(Σ) − ϵc I, (27)

where ϵc > 0 determines the criteria deformation under tensile
stress, and then projected to the conewhich satisfies Drucker–Prager
condition. Let

ϵ̃ = ϵ −
tr(ϵ)
d

I, δ = | |ϵ̃ | |F +
dλe + 2µe

2µe
tr(ϵ)α, (28)

where α is determined from friction angle φf by

α =

√
2
3

2 sinφf
3 − sinφf

. (29)
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Then three difference cases are handled according to the relation
to the cone. If tr(ϵ̃) > 0, H = 0, else if δ > 0, H = ϵ − δϵ̃/| |ϵ̃ | |F ,
otherwise the Drucker–Prager condition is already satisfied H = ϵ .
With H being the projected ϵ in log space, new singular values
are reconstructed as Σ̃ = exp(H + ϵc I). With cohesion added to
Drucker–Prager yield condition, more material can be handled in-
stead of being limited to sand. The capability of simulating fracture
with the Drucker-Prager criterion is shown in Fig. 8, where the
hardening term is also used for better handling of fracture.

4.3.5 Material Change in Phase Evolution. In multiphase simulation,
the volume of a material phase may change with its concentration,
and likewise the motion of a material may be affected by its phase
evolution. For example, a wet sponge will shrink as it gets dried.
To handle this mechanics and phase-field coupling phenomenon,
we introduce an extra deformation gradient Fr to represent the
deformation caused by concentration variation like in [Lubarda
2004], and incorporate this factor into multiplicative decomposition
of deformation in Eqn. (24):

F = FeFpFr (30)

where Fr = (Vr est /V
0
r est )

1
d I represents the rest volume change

caused by concentration variation. As each particle tracks a cer-
tain amount of mass, it can be calculated from rest density Fr =
(ρ0r est /ρr est )

1
d I. After updating phase concentration, ρr est may

change according to the material property. When the concentration
changes, the change of Fr is compensated by updating elastic de-
formation gradient to make F unchanged. Knowing the new F̃r the
updated elastic deformation gradient is

F̃e = FeFpFr F̃−1r F−1p . (31)

where tilde mark denotes the value after phase concentration upda-
tion. This effect can be noticed in Fig. 1 and Fig. 5.
When materials get wet, the strength may vary. To describe the

change of material behaviors caused by phase evolution, the param-
eters of a constitutive model vary with the phase concentration. For
example a material tends to be softer and easier to tear when it is
wet, we use a lower ϵc in Eqn. (27) in Fig. 1 and Fig. 13.

4.4 Regularization for Ill Particle Distribution and
Algorithm Framework

The moment matrix M is assumed to be non-singular in MLSRK
formulation. This is true in the continuous space, but not guaranteed
when discretized with particles. The singularity of M depends on
the distribution of neighborhood particles and the basis functions.
For example, the moment matrix is always non-singular with con-
stant basis if there is at least one neighborhood particle. With linear
basis functions, the moment matrix is singular iff all neighborhood
particles are co-planar. In dynamic scenes, e.g. water splashes and
fracture fragments, individual particles often occur and cause sin-
gular moment matrices. To address this issue, adaptive basis can
be set according to the distribution of neighborhood particles, but
so doing introduces discontinuity in shape function. Generalized
Moving Least Square (GMLS) was used to handle this problem for
thin shell and rod simulation [Martin et al. 2010], but this requires

more DOFs for each GMLS point and two set of points for interpola-
tion and quadrature. Yreux and Chen [2017] tackled the problem by
adding more quadrature points near the particles, which can violate
linear consistency.

Considering the aforementioned solutions all complicate the im-
plementation, we propose a simpler approach at no extra cost to
avoid the singularity of M. Specifically, a regularization term Er =

ad
∑Nb
α=1

rα
2 c

2
α is introduced to the error functional in Eqn. (2), i.e.

Ẽ = E+Er . Here a is the kernel radius scale used in Eqn. (8) to make
rα dimensionless, so the value is independent of simulation scale.
The correction coefficient is obtained by c = argminc(E+Er ). This is
equivalent to adding a diagonal matrix Mr = addiag(r1, r2, . . . , rn )
to the moment matrix M. Constant consistency is more important,
without which momentum is not conserved (see Fig. 9). To ensure
constant consistency, the coefficient for constant basis should not
be penalized. We only penalize the linear coefficients, and conse-
quently the linear consistency is a bit violated. The regularization
matrix used in our quasi-linear MLSRK framework is:

Mr = ad

0 0 0
0 r 0
0 0 r

 for 2D linear basis,

Mr = ad


0 0 0 0
0 r 0 0
0 0 r 0
0 0 0 r

 for 3D linear basis.

(32)

With the proposed regularization term, the modified matrix is al-
ways non-singular if r > 0. If r = 0, the formulation is exactly
the same as linear MLSRK. If r = +∞, it is equivalent to constant
MLSRK (also equivalent to Shepard interpolation), because linear
coefficients are forced to be zero. In order to hold linear consistency
better, r should be set a small value. The influence of different r val-
ues is demonstrated in Fig. 10. We also find a smaller r is necessary
for simulating thin objects. The r in range 10−4 ∼ 10−3 is used in
our examples, which produces good results.

In our multiphase MLSRK framework, all physical quantities are
tracked by a particle system. Each particle has its own position,
velocity, mass, deformation gradient, velocity gradient, phase con-
centration, etc. Using explicit symplectic Euler integrator for time
step advance, our MLSRK algorithm workflow is described in Algo-
rithm 1. The algorithm mainly contains the following steps:

(1) Cache correction coefficient and its gradient for later use;
(2) Calculate stress from deformation gradient and velocity gra-

dient;
(3) Calculate acceleration from stress and update velocity;
(4) Calculate chemical potential and update phase field parameter

(only if multiphase simulation is involved);
(5) Update deformation gradient (perform return mapping if

elastoplastic is involved), position.
A simple 2D MLSRK program implemented in less than 200 lines of
readable C++ code is attached in the supplementary material of this
paper, which implements the neo-Hookean model. This code only
depends on standard library and OpenGL Mathematics (GLM) for
vector operations, thus is handy for understanding the algorithm or
using as an implementation reference.
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Fig. 8. Shooting Armadillo A Jell-O Armadillo is shot by a cannonball and smashed into pieces, demonstrating the capability to simulate fracture of complex
materials.

Fig. 9. Falling Block An elastic cube is dropped to the ground. Constant
consistency plays an important role to ensure momentum conservation.
With a regularization that guarantees constant consistency (left), the cube
drops to the ground and behaves correctly. Without constant consistency
(right), the cube floats unnaturally in the air due to erroneous ‘drag force’.

5 RESULTS
A series of scenes with various materials are simulated to test the
performance of the proposed multiphase MLSRK framework. In
some examples, objects move at very fast speed, so we used higher
framerate to generate a slow motion video. The program is coded
with C++, using Intel TBB library for parallelization, except for the
example in Fig 3 implemented in Taichi for performance comparison.
The material density in most examples is set as 1.0× 103. Discretiza-
tion parameters and runtime performance data for all examples are
listed in Table 2, and physical parameters are listed in Table 3. To
save time, we run different examples on different machines. The
computing hardware used for these simulations include an Intel
Core i7-7700HQ platform with 8 threads, an Intel Xeon E5-2620 x2
platform with 24 threads, an Intel Xeon E5-2620 v3 x2 platform with
24 threads and an Intel Core i9-9980XE platform with 36 threads.
These detailed information can be found in Table 2.

Rolling Snowball To demonstrate the capability of MLSRK for
complex material, snow ball scene in [Gissler et al. 2020; Stomakhin
et al. 2013] is revisited (see Fig. 2). At the top of the slope, the
snowball is released and driven by gravity, it rolls down the slope,
sticks snow on the slope and then smashes into the stack of balls.
Our MLSRK simulation produces reliable results. The fracture path
becomes regular and smooth if points are sampled on a regular grid,
so point positions are jittered to get more natural fracture effect.
Mixture Dam-break The MPM cannot handle sub-grid particle-

wise motion, because the grid discretization has less DoFs than

Fig. 10. Spinning TopA fast spinning elastic top is simulated in ourMLSRK
framework. To indicate the spinning speed, images are rendered withmotion
blur. Our method is robust in handling rotational motion with a proper
regularization coefficient r . Different r values are tested: smaller values give
more realistic results, while larger values prevent the rotational motion and
result in incorrect behavior. The angular momentum along vertical axis is
plotted for clarity.

the particles (see § 3.3). To demonstrate this, a scene of mixture
dam-break is simulated with both methods as shown in Fig. 3. The
densities of two liquid phases are set as 104 (blue) and 103 (orange),
respectively. The volume correction described in § 4.3.1 is used
in the MLSRK simulation. The WCSPH state equation is used like
in [Tampubolon et al. 2017]. The phase separation process is suc-
cessfully captured by the MLSRK simulation, but not by the MPM.
Simply refining the resolution of MPM does not help, because grid
always have less DoFs than the particles.

Galton Board Water ball passes through a Galton board, which
shows our MLSRK framework can handle the complex interaction
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Fig. 11. Pseudo-dog A water ball hits a pseudo-dog, and it rotates body to shake off water.

Fig. 12. Starch Powder Dissolution Starch powder is poured into a cup of water, which first floats on top the water accumulating into a pile and then
slowly dissolves in water forming a sticky paste.

Fig. 13. Biscuit A ring-shape biscuit is first half dipped in a bowl of water and then pulled apart in the air, which causes the softer wet parts to drop into the
bowl.

between fluid and obstacle (see Fig. 6). With the volume correction
proposed in § 4.3.1, the simulation is stable. Without the volume
correction, the simulation is less stable, so smaller time step and
blending coefficient are used, but the resulted simulation still suf-
fers from severe volume changing artifacts. In the plot, volume is
estimated by measure the volume of the mesh produced by surface
tracking.

Viscoelastic Block Four groups for parameters are used for sim-
ulating the same scene (see Fig. 7). Each groups varies in viscoelastic
parameter E, ν , µv and ζv , showing the effect of these parameters.

Spinning Top To demonstrate the robustness of our MLSRK
method in handling complex rotational motion, an elastic spinning
top is simulated as shown in Fig. 10. The spinning top is made
of a neo-Hookean material. Different values for the regularization
coefficient r , defined in Eqn. (32), are tested. Using r in range 10−4 ∼
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ALGORITHM 1: Multiphase MLSRK Workflow

repeat
for each particle do

find neighborhood particles inside kernel support range;
calculate MLSRK correction coefficient b and its gradient for
the particle neighborhood from Eqn. (8);

end
for each particle do

calculate stress tensor σ from deformation gradient F and
velocity gradient ∇u with Eqns. (22) and (23);

end
for each particle do

calculate acceleration from stress σ using Eqn. (11), update
velocity un+1 = un + an∆t ;

apply boundary condition to velocity;
end
for each particle do // optional for phase evolution

calculate chemical potential µc from concentration with
Eqn. (16);

end
for each particle do // optional for phase evolution

update mass concentration c according to chemical
potential with Eqn. (15);

end
for each particle do

calculate velocity gradient ∇u from Eqn. (18), update
deformation gradient Fn+1 = (I + (∇un+1)T ∆t )Fn

following Eqn. (17);
perform return mapping according to certain yield
condition; // optional for elastoplasticity

end
for each particle do

update position xn+1 = xn + uhn+1∆t and perform velocity
blending in Eqn. (12);

end
until simulation stops;

10−3 results in realistic results, while larger values cause artifacts
to different extent.
Shooting Armadillo To demonstrate the capability of fracture

simulation, a Jell-O Armadillo is shot by a cannonball as shown in
Fig. 8. The cannonball penetrates Armadillo and smashes it into
pieces. The cannonball has a specified trajectory, and is used as
boundary condition in simulation. The Drucker-Prager yield con-
dition is used for handling elastoplasticity of Jell-O material. The
hardening factor in Eqn. (25) is used to better handle fracture.
Pseudo-dog To demonstrate the capacity of animating coupled

multiphase systems, a scene of water pouring onto a pseudo-dog
is considered, as shown in Fig. 11. The pseudo-dog consists of a
cylindrical body and a hemispherical head, both are rigid. Dog
hairs are modelled as soft strings uniformly distributed around the
cylindrical body. A water ball hits the pseudo-dog on the back,
and it rotates body to shake off water. Dog hairs are treated as
a neo-Hookean material. Each hair string is sampled with 2 × 2
particles on its cross section. The collision between water and hairs
is automatically handled by the multiphase MLSRK framework. As
shown in Fig. 11, plausible visual effects are obtained.

Starch PowderDissolution To demonstrate the power of phase-
fieldmodel, a scene of starch powder dissolving inwater is simulated,
as shown in Fig. 12. There is also a 2D version shown in Fig.5. The
mass concentration ofwater c is recorded on each particle, with c = 0
indicating completely dry powder and c = 1 indicating pure water.
We treat particles with c > 0.3 as water by setting the friction angle
of Drucker–Prager condition to 0. A smoothly varied rest density
function ρr est = (0.45+1.15c−0.6c2)×103 is used to determine the
volume changing factor Fr (see Eqn. (30)) and volume correction is
also used to solve volume changing artifacts, as described in § 4.3.1.
After pouring into the water cup, starch powder first floats on top of
the water and then slowly dissolves in water to form a sticky paste.

Biscuit In this example, as shown in Fig. 13, a biscuit is first half
dipped in a bowl of water and then taken out and pulled apart in
the air. Each particle has a tag attribute, which determines whether
it is a biscuit particle or a water particle. The mass concentration of
water c is also recorded on each particle. For biscuit particles, the
cohesion criteria ϵc in Eqn. (27) decays as c increases, described by
a smoothstep function, which causes the wet biscuit to be softer.
After breaking the biscuit, the soft wet part cannot hold itself against
gravity and drops into the bowl.

Tearing Wet Paper In this example, as shown in Fig. 1, a piece
of paper is hit by a water ball and then the wet paper is teared into
two pieces. The paper is sampled by two layers of particles, which
is sufficient for stable MLSRK simulation of the paper sheet. The
paper has a density map, which models the volume expansion of
wet paper. The wet paper gets softened in the same way as Biscuit
by changing ϵc according to c , which makes it break first when tore.

6 LIMITATIONS AND FUTURE WORK
Our MLSRK framework is not without limitation and some of the
most demanding ones are highlighted here.

The first problem is performance. We used a conditionally stable
explicit time scheme. When used with stiffer or more viscous ma-
terial, smaller time step is required, which limits the performance
and makes the simulation time impractical. It would be interesting
to speed up the simulation by developing suitable implicit schemes
for larger time step and using adaptive sampling techniques. For
optimal performance, we are also interested in CPU acceleration
with SIMD instructions and GPU computing. The improvement of
performance will make the simulation of higher resolution and more
details more affordable and allow larger stiffness and viscosity in
Eqn. (22) and Eqn. (23).

In our deformation gradient updating scheme, each particle only
influences its neighborhood within a fixed radius. When large de-
formation occurs, particles tend to be more sparse, they get out
of neighborhood region of each other, artificial plasticity and arti-
ficial fracture will happen, for example a few hair get lost in the
Pseudo-dog case (Fig. 11). A simple solution is to use larger radius,
but doing so greatly increases the number of neighborhood parti-
cles and causes a loss in performance. Using varying neighborhood
radius may help to address this issue in the future, and embedding
Lagrangian particles like [Peer et al. 2018] in our framework may
also help for extreme cases.
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Table 2. Discretization parameters and runtime performance data

Particle Number Frame Rate
(frames/s)

Simulation Speed
(s/frame)

Particle Diameter
(m)

Kernel Radius
(m) Time Step (s) CPU

Rolling Snowball 6004 (snow) +
3000 (boundary) 24 0.81 0.005 0.015 4.0 × 10−4 E5-2620 x2

Mixture Dam-break
(MLSRK)

(MPM, same #particles)
(MPM, same DoFs)

6.4k
24x2

1.05 0.005 0.0125 1.0 × 10−4
i9-9980XE6.4k 0.45 0.005 0.03 1.0 × 10−4

25.6k 1.17 0.0025 0.015 5.0 × 10−5

Falling Block 250 24x2 0.031 0.05 0.15 1.0 × 10−3 i7-7700HQ

Spinning Top 37.5k 24x2 20 0.02 0.06 4.0 × 10−5 E5-2620 x2

Stabilization 1156 24x2 0.072 0.02 0.06 4.0 × 10−4 E5-2620 x2

Mass Conservation 1887 24 0.65 0.01 0.03 2.0 × 10−4 E5-2620 v3 x2

Galton Board (with correction)
(without correction) 1876 24x2 0.077 0.01 0.03 5.0 × 10−4 i9-9980XE

0.38 1.0 × 10−4 i9-9980XE

Viscoelastic Block 250 24x2 0.037 ∼ 0.7 0.05 0.15 2.5 × 10−5 ∼ 1.0 × 10−3 i7-7700HQ

Shooting Armadillo 238k 24x8 82 0.01 0.03 1.2 × 10−4 E5-2620 x2

Pseudo-dog 259k (hair) +
262k (water) 24x8 1017 ∼ 294 0.001 0.003 1.0 × 10−5 E5-2620 v3 x2

Starch Powder Dissolution 175k (material) +
139k (boundary) 24x4 58 0.002 0.0054 1.0 × 10−4 i9-9980XE

Biscuit 65k (biscuit) +
296k (water) 24x8 357 0.001 0.002 3.3 × 10−5 E5-2620 x2

Tearing Wet Paper 400k (paper) +
493k (water) 24x16 217 0.002 0.006 2.0 × 10−5 i9-9980XE

Table 3. Physical parameters for various materials in our examples

Lamé parameters Drucker-Prager Snow Hardening Mobility
µe λe φf ϵc θc θs ξ L̃

Rolling Snowball 4.2 × 105 2.8 × 105 - - 2.0 × 10−2 7.5 × 10−3 10 -

Mixture Dam-break 0 4.0 × 105 0 0 - - - -

Spinning Top 1.0 × 107 1.0 × 107 - - - - - -

Stabilization 5.0 × 104 5.0 × 104 - - - - - -

Mass Conservation (powder)
(water) 1.0 × 105 1.0 × 105 57.3◦ 0 - - - 1.0 × 10−3

0 0 - - - 1.0 × 10−4

Galton Board 1.0 × 105 1.0 × 105 0 0 - - - -

Shooting Armadillo 5.0 × 105 1.0 × 106 45.8◦ 0.05 - - 10 -

Pseudo-dog (hair)
(water) 5.0 × 104 5.0 × 104 - - - - - -

0 0 - - - -

Starch Powder Dissolution (powder)
(water) 1.0 × 105 1.0 × 105 17.2◦ 0 - - - 1.0 × 10−5

0 0 - - - 1.0 × 10−4

Biscuit (biscuit)(water) 1.0 × 105 1.0 × 105 28.7◦ 0.012(dry) ∼ 0.002(wet) - - - 2.0 × 10−50 0 - - -

Tearing Wet Paper (paper)(water) 4.0 × 106 4.0 × 106 57.3◦ 0.1(dry) ∼ 0.02(wet) - - - 5.0 × 10−40 0 - - -

The phase field model implemented in this work is relatively
simple with limited capacity (e.g. it does not consider percolation),
and it would be an interesting future work to examine other more
advanced phase-field models in the MLSRK framework.

7 CONCLUSION
We propose an MLSRK approach for unified multiphase continuum
simulation. This is achieved via two steps: (1) formulate accurate
and stable MLSRK discretization of Cauchy momentum equation

for general constitutive models in a systematic manner, to sup-
port hyperelastic, elastoplastic, viscous, fracturing with general
continuum constitutive model to uniformly capture motion of all
materials and their mechanical interaction; (2) describe phase evolu-
tion/interaction with phase field model to handle diffusing, dissolv-
ing material behaviors. The volume change caused by phase change
is incorporated into constitutive model. Being a pure particle-based
method with uniform discretization, our proposed MLSRK frame-
work is as easy as SPH for implementation and as extensible as
MPM for animating complex materials.
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A DERIVATIVE OF MLSRK SHAPE FUNCTION

∂M(x) =−
1
a

∑
i
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xi − x
a

)h(
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)]Vi ,

∂M−1(x) = − M−1(x)∂M(x)M−1(x),

∂b(x)T =h(0)T ∂M−1(x),

∂Ni (x) = [∂b(x)T h(
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)Φ(
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−
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−
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)∂Φ(
xi − x
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)]Vi ,

where ∂ can be partial derivative of coordinate x , y and z.

B LAPLACIAN ESTIMATION WITHOUT CALCULATING
SECOND DERIVATIVE

In finite difference formulation, Laplacian is often calculated by a
stencil. For example, Laplacian on a 2D grid is estimated as

(∇2u)i , j =
1

∆x2
(ui+1, j + ui−1, j + ui , j+1 + ui , j−1 − 4ui , j )

=
4

∆x2
(
ui+1, j + ui−1, j + ui , j+1 + ui , j−1

4
− ui , j ),

where ∆x is the size of grid cell. This indicates the possibility that
(uh −u)/a2 can approximate Laplacian for MLSRK, where uh is the
interpolated value and a is the kernel scaling factor in Eqn. (8).

Consider the second order Tayler approximation of a function u
at origin,

u(x) = c + gT x +
1
2

xT Hx,

where g is the gradient, and H is the Hessian matrix. According to
Eqn. (4), MLSRK interpolation of this function at origin is

uh (0) = h(0)T M−1(0)
∫
Ω

h(x)Φ(x)u(x)dx.

If linear basis (Table 1) and Cartesian cubic spline kernel (Eqn. (7)) is
used and Ω covers the support of Φ, the integration can be directly
integrated analytically

uh (0) = c +
tr(H)

6
.

Knowing tr(H) = ∇2u(0) and c = u(0), it is equivalently

∇2u(0) = 6(uh (0) − u(0)).

With the shifted and scaled formulation, an extra factor appears in
the integration. We have

∇2u(x) =
6
a2

(uh (x) − u(x)).

Using particle discretization, we can rewrite this with shape func-
tion:

(∇2u)i =
6
a2

∑
j
Nj (xi )(uj − ui ).
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