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Abstract

This paper presents a novel computational framework for the in silico analysis of rank-one mul-
tilayered electro-active polymer composites exhibiting complex deformation patterns. The work
applies the principles of rank-n homogenisation in the context of extremely deformable dielectric
elastomers actuated beyond the onset of geometrical instabilities. Following previous work by
the authors [31, 52, 53], Convex Multi-Variable (CMV) energy density functionals are used to
describe the physics of the individual microscopic constituents, which is shown to guarantee ab
initio the existence of solutions for the microstructure problem, described in terms of the so-called
deformation gradient and electric displacement amplitude vectors. The high nonlinearity of the
quasi-static electro-mechanical problem is resolved via a monolithic multi-scale Newton-Raphson
scheme, which is enhanced with a tailor-made arc length technique, used to circumvent the on-
set of geometrical instabilities. A tensor cross product operation between vectors and tensors
and an additive decomposition of the micro-scale deformation gradient (in terms of macro-scale
and fluctuation components) are used to considerably reduce the complexity of the algebra. The
possible loss of ellipticity of the homogenised constitutive model is strictly monitored through
the minors of the homogenised acoustic tensor. A series of numerical examples is presented in
order to demonstrate the effect that the volume fraction, the contrast and the material properties,
as well as the level of deformation and electric field, have upon the response of the composites
when subjected to large three dimensional stretching, bending and torsion, including the possible
development of wrinkling.

Keywords: finite element method, nonlinear electro-elasticity, composite materials, rank-one
laminates

1. Introduction

Electro-Active Polymers (EAPs) have emerged as a class of smart materials capable of dis-
playing significant change in shape in response to electrical stimuli. EAPs have been thoroughly
studied over the years [3, 18, 41, 56] with main properties being their high resilience, short cou-
pled response time and their capacity to sustain large strains. EAPs can be broadly classified
[12] into Ionic EAPs, activated by transport of ions, and Electronic EAPs, actuated through the
application of an electric field.
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Dielectric elastomers (DEs) are recognised as one of the most popular Electronic EAPs [43, 55,
57] due to their outstanding actuation capabilities (i.e., light weight, fast response time, flexibility,
low stiffness properties), which makes them ideal for their use as soft robots [3, 4, 10, 13, 14, 41,
46, 51, 62] or flexible energy generators [42, 48]. However, an extremely large electric field is
generally required in order to access the large actuation regime in DEs, an aspect that very often
places them on the risk of electromechanical instabilities or even electrical breakdown [5].

With the aim of reducing the high operational voltage required for actuation in DEs, some
authors have advocated for the design of composite-based DEs [37, 38, 78], typically combining
an ultra-soft and low-permittivity elastomer matrix with a stiffer and high-permittivity inclusion
randomly distributed in the form of fibres or particles [36, 58]. Experimental studies [37, 70] have
demonstrated a significant enhancement in the electromechanical coupling performance of DE
composites, thus reducing the operational voltage required for actuation. Due to the continuous
improvement in layer-by-layer fabrication techniques [26], multi-layered laminated DE composites
have gained considerable momentum over alternative DE composites.

From the modelling point of view, Li et al. [44, 45] highlighted the strong nonlinearity of the
electromechanical coupling in layered DE composites and deBotton et al. [20] demonstrated that
the contrast between the properties of the composite constituents is one of their critical design
factors. More recently, Tian et al. [72] demonstrated that the actuation performance of a DE
composite subjected to simple in-plane stretching can be amplified by several orders of magnitude
with respect to that of a single-phase DE, even in the linearised regime (i.e., in the proximity
of the origin of deformations and electric fields). Gei et al. [28] confirmed the same finding in
the moderate strain regime, where an optimisation analysis in terms of the contrast and volume
fraction of the DE composite constituents was carried out. For the case of composites different
to laminated EAPs (out of the scope of this paper), Shrimali et al. [68] have presented explicit
analytical formulae (analytical homogenisation) for the behaviour of porous-type materials, and
Göküzüm et al. [33, 34] have made use of Fourier transforms and artificial neuronetworks.

Other works presenting modelling studies of layered DE composites are those in [5, 18, 29,
61, 72]. Specifically, Bertoldi and Gei [5] and Rudykh et al. [60, 61, 63] focused on the study
of instabilities (namely, geometrical buckling, microscopic modes, macroscopic modes, dielectric
breakdown) in rank-one DE laminated composites, whereas in [26, 66, 67] the authors focus
on the study of wave propagation and its application into phononic band gaps. Typically, small
amplitude shear wave propagation is studied in DE layered media comprised of two incompressible
isotropic electro-elastic phases, and the effect of the contrast of the constituents on the slowness
(i.e., inverse of the wave speed) is analysed. A common feature of all of the above modelling studies
lies in the search for closed-form solutions, which are achieved for the case of simple in-plane
stretching deformation scenarios, primarily described by plane strain and exact incompressibility,
in conjunction with the use of ideal dielectric neo-Hookean phases. As a result, one of the
objectives of this paper is the study of more realistic three-dimensional deformation scenarios
(namely, combined bending/torsion/stretching), way beyond the onset of geometrical instabilities
and without the need to resort to any simplifications in the kinematics of the problem (e.g., plane
strain, exact incompressibility).

With the aim of modelling more complex deformation scenarios, the use of computational
methods constructed on the basis of variational principles is nowadays acknowledged as the pre-
ferred method of choice. Building upon the early works of Toupin [73, 74] and those of Dorfmann,
Ogden, MacMeeking, Suo and co-workers in [21, 22, 49, 71], recent contributions in the field of
computational electro-mechanics can be found in [6, 23, 40, 75, 76]. In these works, the constitu-
tive behaviour of a single-phase electro-mechanical material is encoded within a carefully (phe-
nomenologically) defined energy functional which depends upon appropriate strain measures, a
Lagrangian electric variable and, if dissipative effects are considered, an electromechanical internal
variable [47]. In previous publications [31, 52, 54, 59], the authors put forward a new computa-
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tional framework for single-phase reversible electro-mechanics, where the existence of solutions is
always ensured via the selection of objective (frame-invariant) and Convex Multi-Variable (CMV)
energy functionals, that is, convex with respect to the minors of the deformation gradient ten-
sor {F ,H , J}, the Lagrangian electric displacement D0, and the spatial electric displacement
d = FD0. CMV energy functionals (generally referred to as polyconvex [69]) guarantee ellip-
ticity [31] in the quasi-static case and hyperbolicity in the dynamic case [52], thus precluding
anomalous mesh dependency effects. Accordingly, a second objective of this paper is the use of
CMV-based energy functionals (at the micro level) in order to describe each of the individual
microscopic constituents of the multi-layered DE composite, adding further complexity to that of
the standard incompressible ideal dielectric elastomer.

As a result, from the constitutive modelling standpoint, this paper will apply the principles
of rank-n homogenisation of CMV phases in the context of extremely deformable dielectric elas-
tomers actuated well beyond the onset of geometrical instabilities. From the numerical standpoint,
a novel computational framework for the finite element analysis of rank-one multi-layered electro-
active polymer composites will be presented. The high nonlinearity of the quasi-static electro-
mechanical problem will be addressed via a monolithic multi-scale Newton-Raphson scheme, with
an arc length technique used to bypass geometrical instabilities. As a further novelty, a tensor
cross product operation between vectors and tensors [7, 8] and an additive decomposition of the
micro-scale deformation gradient (in terms of macro-scale and fluctuation components) will be
used to considerably reduce the complexity of the algebra.

The outline of this paper is as follows. Section 2 describes the necessary elements of nonlinear
continuum electro-mechanics. Section 3 revisits the concept of Multi-Variable Convexity as a basis
for the constitutive models for the description of the individual microscopic components in multi-
layered DE composites. Section 4 presents the homogenisation theory applied to rank-one electro-
mechanical laminates and demonstrates the necessary conditions of existence for the microscopic
and macroscopic problems to be solved. Section 5 succinctly describes the variational principles
and the finite element implementation method used in this work. Section 6 presents a series
of numerical examples in order to assess the capabilities of the new computational framework.
Specifically, in a first example, a local analysis is conducted at a quadrature (Gauss point) level
where the effect of volume fraction, contrast and laminate orientation upon electro-mechanical
performance, macroscopic stability and shear wave speed propagation is presented. In a second
example, complex three-dimensional bending/torsion/stretching combined modes of deformation
are studied for a soft robot actuator, monitoring macroscopic stability. In a third example, the
onset of first and second order buckling (as referred to in [32]) is explored in a prototypical
laboratory configuration. Eventually, Section 7 provides some concluding remarks.

2. Nonlinear continuum electro-mechanics

2.1. Kinematics: motion and deformation

Let us consider the motion of an Electro-Active Polymer (EAP) with reference configuration
given by the open bounded set B0 ⊂ R3 with boundary ∂B0 and unit outward normalN . After the
motion, the EAP occupies a deformed configuration given by the open bounded set B ⊂ R3 with
boundary ∂B and unit outward normal n. The motion of the EAP is defined by a deformation
mapping φ linking material particles X ∈ B0 to the deformed configuration x ∈ B as

φ : B0 ⊂ R3 → B ⊂ R3

X 7→ x = φ(X).
(1)

This motion is represented in Figure 1. Associated with φ (X), the deformation gradient
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tensor F [9, 16, 35] is defined as5

F = ∇0φ (X) ; FiI =
∂φi
∂XI

= ∂XI
(φi). (2)

Associated with F , its co-factor H and its Jacobian J [8, 15] are defined as

H =
1

2
F F ; J =

1

3
H : F , (3)

with (A B)iI = EijkEIJKAjJBkK , ∀A,B ∈ R3×3, where Eijk (or EIJK) symbolises the third-order
alternating tensor components and the use of repeated indices implies summation6.

Figure 1: Deformation mapping φ (X).

2.2. Governing equations in nonlinear electromechanics

In the absence of inertia and magnetic effects, the system of partial differential equations
governing the behaviour of the EAP comprises the conservation of linear momentum and the
compatibility equation (2)a along with the quasi-static version of the Gauss’s and Faraday’s laws.
The complete Boundary Value problem can be recast in a Total Lagragian formalism as

F = ∇0φ; in B0;

DIVP (F ,E0) + f 0 = 0; in B0;

PN = t0; on ∂tB0;

φ = φ̄; on ∂φB0;︸ ︷︷ ︸
Conservation of linear momentum and kinematics

E0 = −∇0ϕ; in B0;

DIVD0(F ,E0)− ρ0 = 0; in B0;

D0 ·N = −ω0; on ∂ωB0;

ϕ = ϕ̄; on ∂ϕB0,︸ ︷︷ ︸
Gauss and Faraday laws

(4)
where f 0 represents a body force per unit undeformed volume B0; t0, the traction force per unit
undeformed area on ∂tB0 ⊂ ∂B0; φ̄, the value of the Dirichlet boundary condition on ∂φB0 ⊂ ∂B0,
with ∂tB0 ∪ ∂φB0 = ∂B0 and ∂tB0 ∩ ∂φB0 = ∅. Furthermore, ρ0 represents an electric volume
charge per unit of undeformed volume B0, and ω0 an electric surface charge per unit of undeformed
area ∂ωB0 ⊂ ∂B0. In addition, E0 is the Lagrangian electric field vector; ϕ : B0 → R, the scalar

5Lower case indices {i, j, k} will be used to represent the spatial configuration, whereas capital case indices
{I, J,K} will be used to represent the material description.

6In addition, throughout the paper, the symbol (·) indicates the scalar product or contraction of a single index
a · b = aibi; the symbol (:), double contraction of two indices A : B = AijBij ; the symbol (×), the cross product
between vectors (a× b)i = Eijkajbk; and the symbol (⊗), the outer or dyadic product (a⊗ b)ij = aibj .
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electric potential; and ∂ϕB0, the part of the boundary ∂B0 where essential electric potential
boundary conditions are applied so that ∂ωB0 ∪ ∂ϕB0 = ∂B0 and ∂ωB0 ∩ ∂ϕB0 = ∅. Finally,
P (F ,E0) and D0(F ,E0) represent the first Piola-Kirchhoff stress tensor and the Lagrangian
electric displacement field, respectively, which, in the reversible case, depend upon F and E0.

3. Constitutive equations in nonlinear electro-elasticity: phenomenological macro-
scopic models

The scope of this paper is on analytical homogenisation of layered EAP composites. However,
we devote the current section to the simpler case where a macroscopic phenomenological elec-
tromechanical model is available, in order to introduce some key concepts which will be exploited
in subsequent sections.

3.1. Multi-variable convexity

In the case of reversible electro-elasticity, the internal energy density e per unit of undeformed
volume can be defined in terms of the deformation and the electric displacement field, namely
e = e(F ,D0) [50]. In addition, the requirement of objectivity implies that the internal energy
e can be re-expressed in terms of a set of objective arguments (namely, D0 and C = F TF ) as
e (F ,D0) = ẽ (C,D0), where e and ẽ denote alternative functional representations of the same
internal energy density. From standard thermodynamical arguments [31], the first directional
derivative of the internal energy gives the first Piola-Kirchhoff stress tensor P and the electric
field E0 as

De[δF , δD0] = P : δF +E0 · δD0, (5)

with
P (F ,D0) = ∂F e; E0(F ,D0) = ∂D0e, (6)

where ∂A(•) denotes the partial derivative of (•) with respect to the field A. The second di-
rectional derivative of the internal energy yields the Hessian operator [He], expressed in terms
of an elasticity tensor Ce ∈ R3×3×3×3, the third order tensor Q ∈ R3×3×3 and the inverse of the
dielectric tensor θ ∈ R3×3, namely

D2e [δF , δD0; δF , δD0] = [δF : δD0·] [He]

[
: δF
δD0

]
; [He] =

[
Ce QT

Q θ

]
, (7)

where
Ce(F ,D0) = ∂2

FF e; Q(F ,D0) = ∂2
D0F

e; θ(F ,D0) = ∂2
D0D0

e, (8)

with
(
QT
)
jJI

= (Q)IjJ . To ensure existence of solutions in the vicinity of the origin, namely

when F ≈ I (with I the second order identity matrix) andD0 ≈ 0, the internal energy functional
must be (strictly) convex, i.e.,

D2e[δF , δD0; δF , δD0]
∣∣
F=I,D0=0

> 0; ∀ δF , δD0, (9)

which requires positive definiteness of Ce and θ, independently, and further restrictions on the
form that the third-order tensor Q can adopt7. However, convexity away from the origin is not a
physical restriction as it precludes buckling in the purely mechanical context, as well as the pos-
sibility of voltage-induced buckling, inherent to soft dielectric materials. Alternatively, the most
well-accepted mathematical restriction is the so-called ellipticity or rank-one convexity condition,
closely related to the concept of material stability, which can be deduced as a particularisation of

7Sufficient smoothness of the internal energy e is assumed, so that [He] is well defined.
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the convexity condition for the case when δF = u ⊗ V and δD0 = V ⊥, with V ⊥ · V = 0 and
u,V ,V ⊥ any arbitrary non-zero vectors. Thus, (strict) ellipticity implies

D2e [u⊗ V ,V ⊥;u⊗ V ,V ⊥] = [u⊗ V : V ⊥·] [He]

[
: u⊗ V
V ⊥

]
> 0; ∀u,V ,V ⊥. (10)

Remark 1. Notice that the vector V ⊥ in (10) is orthogonal to D0. The reason for this choice has
its roots in the analysis of the hyperbolicity of the system of PDEs in (4) in the dynamic context.
In this case, it is customary to express the fields φ and D0 as a perturbation with respect to
equilibrium states φeq andDeq

0 , respectively, by means of the addition of travelling wave functions
as

φ = φeq + uφ̂(X · V − ct); D0 = Deq
0 + V ⊥φ̂(X · V − ct), (11)

where V represents the polarisation vector of the travelling wave and c the associated speed of
propagation of the perturbation with amplitudes u and V ⊥. Introduction of the ansatz for D0

into equation (4) reveals that

DIVD0 − ρ0 = DIVDeq
0 − ρ0︸ ︷︷ ︸

=0

+ (V ⊥ · V ) φ̂′(X · V − ct) = 0, (12)

and hence, V ⊥ must be orthogonal to V .

Motivated by considerations of material stability, Gil and Ortigosa [31, 52–54] extended the
concept of polyconvexity [1, 2, 39, 64, 65] from elasticity to electro-magneto-elasticity and pro-
posed new convexity restrictions on the internal energy, postulating a Convex Multi-Variable
(CMV) definition as

e (F ,D0) = W (V) ; V = {F ,H , J,D0,d}; d = FD0, (13)

where W must be a convex function with respect to the extended set V . As shown in Remark
1 below, the new extended set of convex restrictions proved to be a sufficient condition for the
satisfaction of the ellipticity condition (10). Shortly after the work in [31], Šilhavý [69] proved
that multi-variable convexity, or A-polyconvexity, as he denoted it in his work, in conjunction
with suitable growth conditions, ensures existence of minimisers in nonlinear electro-magneto-
elasticity.

Remark 2. As shown in Reference [31], the second directional derivative of the internal energy
can be equivalently expressed in terms of its extended representation W (V) as

D2e [δF , δD0; δF , δD0] = D2W [δV ; δV ] + (∂HW + ∂JWF ) : (δF δF ) + 2∂dW · δF δD0

= [S]T [HW ] [S] + (∂HW + ∂JWF ) : (δF δF ) + 2∂dW · δF δD0,
(14)

with [S] and the extended Hessian operator [HW ] defined as

[S] =


: δF

: (δF × F )
δF : H
·δD0

· (δFD0 + F δD0)

 ; [HW ] =


∂2
FFW ∂2

FHW ∂2
FJW ∂2

FD0
W ∂FdW

∂2
HFW ∂2

HHW ∂2
HJW ∂2

HD0
W ∂2

HdW
∂2
JFW ∂2

JHW ∂2
JJW ∂2

JD0
W ∂2

JdW
∂2
D0F

W ∂2
D0H

W ∂2
D0J

W ∂2
D0D0

W ∂2
D0d

W
∂2
dFW ∂2

dHW ∂2
dJW ∂2

dD0
W ∂2

ddW

 . (15)

As presented in [54], it is possible to relate the components of the Hessian [HW ] to those of
the Hessian [He] via appropriate algebraic transformations. Replacing now δF and δD0 in (14)

6



with δF = u⊗V and δD0 = V ⊥, respectively, permits to cancel the last two terms (also known
as geometric terms) on the right-hand side of (14), and leads to

D2e[u⊗ V , δV ⊥;u⊗ V , δV ⊥] = [S]T [HW ] [S] . (16)

Equation (16) clearly illustrates that CMV internal energy functionals, characterised by a
positive definite Hessian operator [HW ], guarantee positiveness of the left-hand side of equation
(16), and hence the fulfillment of the strong ellipticity condition in (10).

3.2. Simple examples of convex multi-variable electro-mechanical constitutive models

In the definition of electromechanical constitutive models for dielectric elastomers, it is cus-
tomary to propose an additive decomposition of the internal energy e (F ,D0) into a purely
mechanical contribution and a coupled electromechanical contribution [11, 39, 75] as

e (F ,D0) = em (F ) + eem (F ,D0) . (17)

The simplest expression for the electromechanical contribution corresponds to that of an ideal
dielectric elastomer, defined as

eem (F ,D0) = Wem (J,d) =
1

2εrε0J
IId, (18)

where ε0 represents the vacuum permittivity, with ε0 = 8.8541× 10−12 C2N−1m−2; εr, the relative
permittivity; and II•, the square of the Euclidean norm. Alternative CMV electromechanical
contributions can be defined as

eem (F ,D0) =
g1(J)

ε1
IId +

g2(J)

ε2
IID0 , (19)

with {ε1, ε2}material parameters with units of electric permittivity. It can be shown that sufficient
conditions for g1(J) and g2(J) to ensure that eem (F ,D0) is CMV compliant are

gi(J)g
′′

i (J) ≥ 2
(
g

′

i(J)
)2

, ∀J > 0; g
′′

i (J) > 0, gi(J) > 0, ∀J > 0; i = {1, 2}. (20)

A possible example complying with above conditions (20) is

gi(J) = Jα; α ∈ [−1, 0) . (21)

Remark 3. We derive the conditions shown in equation (20). For that, and without loss of
generality, we consider only the first contribution in (19), excluding the constant ε1 for simplicity.
Therefore, we consider the following simplified electromechanical contribution

eem = g1(J)IId. (22)

The second directional derivative of eem in (22) with respect to its arguments yields

D2eem[δJ, δd; δJ, δd] = g
′′
(J)δJ2IId + 2IIδdg(J) + 4g

′
(J)δJ(d · δd). (23)

Introduction of the following notation a =
√

2g(J)δd, and b =
√
g′′(J)δJd into (23) yields

the following expression

D2eem[δJ, δd; δJ, δd] = IIa + IIb + 4g
′
(J)δJ(d · δd), (24)
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which can be conveniently manipulated as

D2eem[δJ, δd; δJ, δd] = IIa + IIb − 2|a · b|+ 2|a · b|+ 4g
′
(J)δJ(d · δd)

= (|a| − |b|) · (|a| − |b|) + 2|a · b|+ 4g
′
(J)δJ(d · δd)

≥ 2|a · b| − 4|g′
(J)||δJ(d · δd)|.

(25)

Making use of the definition of the vectors a and b into the last inequality in (25), the following
inequality is obtained

D2eem[δJ, δd; δJ, δd] ≥
(

2
√

2g(J)g′′(J)− 4|g′
(J)|

)
|g′

(J)||δJ(d · δd)|. (26)

Hence, the convexity conditions in (20) follow from previous equation (26).

For the purely mechanical contribution em(F ), different models can be considered. A possible
example includes the Mooney-Rivlin model (eMR

m ), i.e.,

eMR
m (F ) =

µ1

2
IIF +

µ2

2
IIH + UMR(J); UMR(J) = − (µ1 + 2µ2) ln J +

λ

2
(J − 1)2 , (27)

where {µ1, µ2, λ} are material parameters, with units of stress, related to the shear modulus µ0

and the bulk modulus λ0 in the origin as µ0 = µ1 + µ2 and λ0 = λ + 2µ2. Notice that the
Mooney-Rivlin model eMR

m is convex with respect to {F ,H , J} (polyconvex).

3.3. The Helmholtz energy function

Alternatively, electromechanical constitutive models can be formulated in terms of a Helmholtz
energy functional Ψ(F ,E0), defined as

Ψ (F ,E0) = − sup
D0

{E0 ·D0 − e (F ,D0)} . (28)

As it is well known, it is possible to establish relationships between the first and second direc-
tional derivatives of above energy Ψ(F ,E0) and those of e(F ,D0). Indeed, the first directional
derivative gives

DΨ[δF , δE0] = ∂FΨ : δF + ∂E0Ψ · δE0, (29)

with the partial derivatives of Ψ and e related as

∂FΨ = ∂F e = P ; ∂E0Ψ = −D0. (30)

As for the second directional derivative of Ψ, this can be formulated in terms of the Hessian
[HΨ] in F ,E0 as

D2Ψ [δF , δE0; δF , δE0] =
[
δF : δE0·

]
[HΨ]

[
: δF
δE0

]
; [HΨ] =

[
C −PT

−P −ε

]
, (31)

where C ∈ R3×3×3×3 is an elasticity tensor; P ∈ R3×3×3, the piezoelectric tensor, with
(
PT
)
jJI

=

(P)IjJ ; and ε ∈ R3×3, the dielectric tensor; and their expressions are given by

C(F ,E0) = ∂2
FFΨ; P(F ,E0) = −∂2

E0F
Ψ; ε(F ,E0) = −∂2

E0E0
Ψ. (32)

It is possible [54] to relate the components of the Hessian operators of Ψ and e as

ε = (θ)−1 ; PT = −Q · ε; C = Ce + QT ·P , (33)
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where the inner product · above indicates contraction of the indices placed immediately before
and after. It is now interesting to compute the second directional derivative of the internal
energy e with respect to arguments F and E0 (instead of the natural D0). With that in mind,
it is necessary to consider D0 expressed (implicitly) as a function of F and E0, namely D0 =
D̃0(F ,E0), to obtain

DD̃0[δF , δE0] = ∂F D̃0 : δF + ∂E0D̃0 δE0

= −∂2
E0F

Ψ : δF − ∂2
E0E0

ΨδE0

= P : δF + ε δE0,

(34)

where we have made use of equation (32) in the last line of above equation. Making now use of (33)
and (34), we can express, after some algebraic manipulation, the second directional derivative of
the internal energy e with respect to F and E0 in terms of the second derivatives of the Helmholtz
functional Ψ(F ,E0) as

D2e[δF , DD̃0[δF , δE0]; δF , DD̃0[δF , δE0]] = δF : C : δF + δE0 · ε δE0. (35)

As remarked in (9), to ensure existence of solutions in the vicinity of the origin, namely when
F ≈ I and E0 ≈ 0, the internal energy functional must be strictly convex, i.e.,

D2e[δF , DD̃0[δF , δE0]; δF , DD̃0[δF , δE0]]
∣∣∣
F=I,E0=0

> 0; ∀δF , δE0, (36)

which requires positive definiteness of tensors C and ε, independently, that is, the Helmholtz
energy functional Ψ must be separately convex with respect to F and concave with respect to
E0 (refer to (32)). The behaviour of both internal energy and Helmholtz functionals in the
vicinity of the origin is illustrated in Figure 2. Unfortunately, away from the origin, it is very
challenging to establish restrictions for the existence of solutions in terms of the Helmholtz free
energy functional. That is the reason why it is preferable to define constitutive models in terms of
the internal energy e, where, as it was shown in the previous section, the use of CMV functionals
ensures the satisfaction of ellipticity in the most general case of electro-deformation. Indeed,
even when the internal energy functional e(F ,D0) complies with the multi-variable convexity
condition in (13), the dual Helmholtz functional Ψ(F ,E0), which will be concave with respect to
E0, can potentially lose its polyconvexity with respect to F .

Finally, notice that the Helmholtz free energy Ψ and its first and second directional derivatives
can still be accessed via equations (28), (30) and (33), which is extremely useful in the case of
using variational principles based on displacements and electric potential, as it is the case of this
paper. Furthermore, in the case of using CMV energy functionals, the internal energy W (V) and
its first and second directional derivatives can be related to those of e as presented in [31, 53].

4. Constitutive equations in nonlinear electro-elasticity: Application to Rank-One
layered EAPs

4.1. Effective or macroscopic internal energy functional

In this paper we study the homogenised behaviour of rank-one layered EAPs. The resulting
biphasic layered structure is comprised of constituents or phases a and b with volume fractions
ca = ha0/

(
ha0 + hb0

)
and cb = 1− ca, respectively, where ha0 and hb0 denote the thickness of phases

a and b in the undeformed configuration B0, with ha0, h
b
0 << 1 to comply with homogenisation

theory. The interface between both phases is characterised by the normal vector N 8, spherically

parametrised as N =
[
sin β̄ cos ᾱ, sin β̄ sin ᾱ, cos β̄

]T
. A scheme illustrating the structure of

the rank-one layered composite is shown in Figure 3.

8Throughout this Section, this unit normal is not to be confused with the outward unit normal to the boundary
presented in Section 2.
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Figure 2: Convexity of the internal energy functional e(F ,D0) in the vicinity of the origin. Simultaneous convexity
and concavity (saddle point nature) of the (dual) Helmholtz functional Ψ(F ,E0) in the origin with respect to F
and E0, respectively.

(a) (b)

Figure 3: Description of a 3-D rank-one laminated composite material: (a) general case, (b) particularisation for
ᾱ = 0◦, β̄ = 0◦, for visualisation purposes.

Under the assumption of a homogeneous response in each phase, the macroscopic deformation
gradient F and the macroscopic electric displacement field D0 are defined as the weighted sum
of those in each phase, namely

F = caF a + cbF b; D0 = caDa
0 + cbDb

0, (37)

where the upper indices a and b are used to indicate the respective microscale phases. In addition,
we enforce strong continuity of the tangential and normal components of the deformation gradient
and the electric displacement, respectively, across the laminate interface, that is,

JF K N = 0; JD0K ·N = 0, (38)

where J•K denotes the standard jump operator across the interface, defined as J•K = (•)a − (•)b.
Above jump conditions (38) can alternatively be written in a more convenient form as

JF K = α⊗N ; JD0K = TN β, (39)

where α ∈ R3 denotes the microscale deformation gradient amplitude vector; β ∈ R2, the mi-
croscale electric displacement amplitude vector; and TN ∈ R3×2, a projection operator onto the
plane normal to the unit vector N defined as TN = T 1 ⊗E1 + T 2 ⊗E2, where T 1 and T 2 are
two linearly independent unit vectors contained within the laminate plane, and E1 = [1 0]T and
E2 = [0 1]T .
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Combination of equations (37) and (39) permits to obtain the microscale deformation gradient
F a,b and electric displacement Da,b

0 as

F a(F ,α) = F + cbα⊗N ; Da
0(D0,β) = D0 + cbTNβ; (40a)

F b(F ,α) = F − caα⊗N ; Db
0(D0,β) = D0 − caTNβ, (40b)

from where their first directional derivatives can be computed as

DF a[δF ] = δF ; DF a[δα] = cbδα⊗N ; (41a)

DDa
0[δD0] = δD0; DDa

0[δβ] = cbTNδβ, (41b)

for phase a, and similarly for phase b as

DF b[δF ] = δF ; DF b[δα] = −caδα⊗N ; (42a)

DDb
0[δD0] = δD0; DDb

0[δβ] = −caTNδβ. (42b)

It is customary to postulate the homogenised or effective internal energy functional of the
composite e(F ,D0) as

e (F ,D0) = min
α,β
{ê(F ,D0,α,β)} , (43)

with

ê(F ,D0,α,β) = caea (F a (F ,α) ,Da
0 (D0,β)) + cbeb

(
F b (F ,α) ,Db

0 (D0,β)
)
, (44)

where ea = ea(F a,Da
0) and eb = eb(F b,Db

0) are the microscale internal energy functions expressed
in terms of their respective microscale fields. The stationary conditions of (44) with respect to
the microscale amplitude vectors are defined as

Dê[δα, δβ] = Dê[δα] +Dê[δβ] = 0; ∀δα, δβ, (45)

where

Dê[δα] = ca∂F aea : DF a[δα] + cb∂F beb : DF b[δα]

= cacb(∂F aea − ∂F beb) : (δα⊗N )

= cacb(P a − P b) : (δα⊗N ); (46a)

Dê[δβ] = ca∂Da
0
ea ·DDa

0[δα] + cb∂Db
0
eb ·DDb

0[δβ]

= cacb(∂Da
0
ea − ∂Db

0
eb) · (TNδβ)

= cacb(Ea
0 −Eb

0) · (TNδβ). (46b)

In above equations (46a) and (46b), we have made use of the directional derivatives in (41) and
(42) and the constitutive relationships (6) for each phase a and b. Considering now independent
variations δα and δβ, the stationary conditions (45) become

JP KN = 0; TNT JE0K = 0 ⇐⇒ JE0K×N = 0, (47)

which represent the strong enforcement of the normal and tangential components of the traction
vector and the electric field vector, respectively. Thus, above homogenised energy functional
e(F ,D0) can be re-written as

e(F ,D0) = ê(F ,D0,α,β)|s.t. {JP KN=0; JE0K×N=0} . (48)

11



Remark 4. The expression for the microscopic deformation gradient tensors {F a,F b} in terms of
the macroscopic deformation gradient tensor F and the spatial amplitude vector α in equation
(40) follows an unconventional additive decomposition. Although this decomposition was shown
first in [19] in the mechanical context, a multiplicative decomposition [5, 19] has been traditionally
preferred, whereby {F a,F b} are defined in terms of a material amplitude vector α̃ as

F a = F
(
I + cbα̃⊗N

)
; F b = F (I − caα̃⊗N ) . (49)

Notice that both additive and multiplicative decompositions are equivalent. Indeed, compari-
son of equations (49) and (40) enables to establish a relationship between the material amplitude
vector α̃ in (49) and its Eulerian or spatial counterpart α, associated with the additive decom-
position, in (40) as

α = Fα̃. (50)

However, the choice of the additive decomposition followed in this paper is not motivated by
a pure formalism. On the contrary, the lower degree of nonlinearity associated with this additive
decomposition entails a considerable simplification from the algebraic standpoint. Specifically,
this reflects in a higher tractability of the second directional derivatives of the effective internal
energy functional e(F ,D0), and hence of the effective constitutive tensors associated with it,
namely {Ce,Q,θ}.

4.2. Solution of the amplitude vectors α and β

The stationary conditions (45), or their equivalent jump conditions (47), represent a system
of nonlinear equations where the microscale amplitude vectors {α,β} can be resolved in terms of
the macroscale homogenised fields F ,D0. To ensure existence of solutions, the second directional
derivative of ê with respect to the microscale amplitude vectors must be (strictly) convex, namely

D2ê[δα, δβ; δα, δβ] > 0; ∀δα, δβ, (51)

where

D2ê[δα, δβ; δα, δβ] = D2ê[δα; δα] +D2ê[δα; δβ] +D2ê[δβ; δα] +D2ê[δβ; δβ], (52)

and each of the terms on the right-hand side of above equation (52) can be found as

D2ê[δα; δα] = (δα⊗N ) : cacb
[
∂2
F aF aea : DF a[δα]− ∂2

F bF be
b : DF b[δα]

]
= (δα⊗N ) : cacb

[
cb∂2

F aF aea + ca∂2
F bF be

b
]

: (δα⊗N )

= (δα⊗N ) : cacb
[
cbCae + caCbe

]
: (δα⊗N ); (53a)

D2ê[δβ; δα] = (TNδβ) · cacb
[
∂2
Da

0F
aea : DF a[δα]− ∂2

Db
0F

be
b : DF b[δα]

]
= (TNδβ) · cacb

[
cb∂2

Da
0F

aea + ca∂2
Db

0F
be
b
]

: (δα⊗N )

= (TNδβ) · cacb
[
cbQa + caQb

]
: (δα⊗N ) = D2ê[δα; δβ]; (53b)

D2ê[δβ; δβ] = (TNδβ) · cacb
[
∂2
Da

0D
a
0
ea ·DDa

0[δβ]− ∂2
Db

0D
b
0
eb ·DDb

0[δβ]
]

= (TNδβ) · cacb
[
cb∂2

Da
0D

a
0
ea + ca∂2

Db
0D

b
0
eb
]

(TNδβ)

= (TNδβ) · cacb
[
cbθa + caθb

]
(TNδβ). (53c)
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In above equations (53a), (53b) and (53c), we have made repetitive use of the directional deriva-
tives (46a) and (46b) and the constitutive relationships (8). Substitution of above equations
(53a), (53b) and (53c) into (52), and grouping, yields

D2ê[δα, δβ; δα, δβ] =
[
δα⊗N : TNδβ·

]
cacb[Ĥe]

[
: δα⊗N
TNδβ

]
, (54)

where [Ĥe] represents an average Hessian operator of the microscale constituents, defined as

[Ĥe] = cb[Ha
e ] + ca[Hb

e]; [Ĥe] =

[
Ĉe Q̂

T

Q̂ θ̂

]
; [Ha,b

e ] =

[
Ca,be Qa,b,T

Qa,b θa,b

]
, (55)

where [Ha,b
e ] represent the Hessian operators of the microscale internal energy contributions with

respect to their own fields {F a,b,Da,b
0 }. Notice that an alternative representation to equation

(54) can be formulated in terms of the reduced Hessian of the internal energy ê with respect to
the microscale amplitude vectors, that is,

D2ê[δα, δβ; δα, δβ] =
[
δα· δβ·

]
cacb[ĤNe ]

[
δα
δβ

]
, (56)

where

[ĤNe ] =

[
Ĉe,NN N · Q̂

T
TN

TNTQ̂N TNT θ̂TN

]
, (57)

where (Ĉe,NN )ij = (Ĉe)iIjJNINJ . It remains to demonstrate that convexity condition (51) is

fulfilled or, alternatively, the positive definiteness of the reduced Hessian operator [ĤNe ]. This is
straightforward to notice by re-writing (54) as

D2ê[δα, δβ; δα, δβ] =
[
δα⊗N : N⊥·

]
cacb[Ĥe]

[
: δα⊗N
N⊥

]
> 0; ∀δα,N ,N⊥, (58)

where TNδβ has been renamed asN⊥ by noticing that it represents a vector contained within the
laminate plane. As it is immediate to see, the right-hand side of above equation (58) is (strictly)
positive provided that microscale internal energy functionals ea and eb are individually elliptic
(refer to equation (10)). Thus, provided that each of the phases is defined via CMV functionals,
above inequality (58) is fulfilled, and thus existence of solution α,β is always guaranteed.

Once the existence of solution α,β is shown, its computation can be carried out via a k-
iterative Newton-Raphson algorithm, namely

Dê[δα, δβ]|k + D2ê[δα, δβ; ∆α,∆β]
∣∣k = 0; αk+1 = αk + ∆α; βk+1 = βk + ∆β, (59)

which can alternatively be written as[
∆α
∆β

]
= −[ĤNe ]−1

k

[
JP KN

TNT JE0K

]
k

, (60)

which involves an iterative scheme where microscale amplitude vectors are iterated until conver-
gence (strong satisfaction of jump conditions) is fulfilled.
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4.3. Effective stress and electric field

Solution of the microscale amplitude vectors {α,β} in terms of the macroscale deformation
gradient and electric displacement {F ,D0} permits to express the microscale deformation gradi-
ent and electric displacement of the phases as

F̃
a
(F ,D0) = F + cbα̃(F ,D0)⊗N ; D̃

a

0(F ,D0) = D0 + cbTN β̃(F ,D0); (61a)

F̃
b
(F ,D0) = F − caα̃(F ,D0)⊗N ; D̃

b

0(F ,D0) = D0 − caTN β̃(F ,D0), (61b)

where the sign ˜(•) is used to indicate the implicit dependence of the amplitude vectors in terms
of the macroscale fields. As a result, the directional derivatives for phase a are

DF̃
a
[δF ] = δF + cbDα̃[δF ]⊗N ; DD̃

a

0[δF ] = cbTNDβ̃[δF ]; (62a)

DF̃
a
[δD0] = cbDα̃[δD0]⊗N ; DD̃

a

0[δD0] = δD0 + cbTNDβ̃[δD0], (62b)

and, analogously, for phase b are

DF̃
b
[δF ] = δF − caDα̃[δF ]⊗N ; DD̃

b

0[δF ] = −caTNDβ̃[δF ]; (63a)

DF̃
b
[δD0] = −caDα̃[δD0]⊗N ; DD̃

b

0[δD0] = δD0 − caTNDβ̃[δD0]. (63b)

Making use of expressions in (62a), (63a), the directional derivative of the effective energy
e(F ,D0) in (43) with respect to the macroscopic deformation gradient tensor F yields

De[δF ] = ca∂F aea :
(
δF + cbDα̃[δF ]⊗N

)︸ ︷︷ ︸
DF̃

a
[δF ]

+cb∂F beb : (δF − caDα̃[δF ]⊗N )︸ ︷︷ ︸
DF̃

b
[δF ]

+ ca∂Da
0
ea ·

(
cbTNDβ̃[δF ]

)
︸ ︷︷ ︸

DD̃
a
0 [δF ]

+cb∂Db
0
eb ·
(
−caTNDβ̃[δF ]

)
︸ ︷︷ ︸

DD̃
b
0[δF ]

.
(64)

Suitable manipulation of above equation (64) permits to arrive at the following expression

De[δF ] =
(
caP a + cbP b

)
: δF + cacbDα̃[δF ] · (JP KN )︸ ︷︷ ︸

=0

+ cacbDβ̃[δF ] ·
(
TNT JE0K

)︸ ︷︷ ︸
=0

, (65)

where use of the stationary conditions in (47) enables to cancel the last two contributions in (65).
Similarly, making use of expressions in (62b), (63b), the directional derivative of the effective
energy e(F ,D0) in (43) with respect to the macroscopic electric displacement D0 yields

De[δD0] = ca∂F aea :
(
cbDα̃[δD0]⊗N

)︸ ︷︷ ︸
DF̃

a
[δD0]

+cb∂F beb :
(
−caDβ̃[δD0]⊗N

)
︸ ︷︷ ︸

DF̃
b
[δD0]

+ ca∂Da
0
ea ·

(
δD0 + cbTNDβ̃[δD0]

)
︸ ︷︷ ︸

DD̃
a
0 [δD0]

+cb∂Db
0
eb ·
(
δD0 − caTNDβ̃[δD0]

)
︸ ︷︷ ︸

DD̃
b
0[δD0]

.
(66)

Careful re-arrangement of (66) permits to arrive at the following expression

De[δD0] =
(
caEa

0 + cbEb
0

)
· δD0 + cacbDα̃[δD0] · (JP KN )︸ ︷︷ ︸

=0

+ cacbDβ̃[δD0] ·
(
TNT JE0K

)︸ ︷︷ ︸
=0

, (67)

where use of the stationary conditions (47) enables to cancel the last two contributions in (67).
Finally, equations (65) and (67) enable to obtain the expressions for the effective first Piola-
Kirchhoff stress tensor P and the effective electric field E0 as

P = caP a + cbP b; E0 = caEa
0 + cbEb

0, (68)

which correspond to the weighted average of their corresponding microscale contributions.
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4.4. Sensitivity of the microscale amplitude vectors with respect to macroscale fields

The stationary conditions (47) can be recalled as

RF (F ,D0) = (δα⊗N ) : (P a − P b) = 0; ∀δα; (69a)

RD0(F ,D0) = (TNδβ) · (Ea
0 −Eb

0) = 0; ∀δβ, (69b)

which provide a set of equations where the microscale amplitude vectors can be expressed in
an implicit manner in terms of the macroscale deformation gradient and electric displacement.
Computation of the sensitivities of {α,β} with respect to {F ,D0} will be accomplished taking
advantage of the implicit function theorem. As a result, we can now compute the directional
derivative DRF [δF ] as

DRF [δF ] = (δα⊗N ) : Cae :
(
δF + cbDα̃[δF ]⊗N

)︸ ︷︷ ︸
DF̃

a
[δF ]

−(δα⊗N ) : Cbe : (δF − caDα̃[δF ]⊗N )︸ ︷︷ ︸
DF̃

b
[δF ]

+ (δα⊗N ) : Qa,T ·
(
cbTNDβ̃[δF ]

)
︸ ︷︷ ︸

DD̃
a
0 [δF ]

−(δα⊗N ) : Qb,T ·
(
−caTNDβ̃[δF ]

)
︸ ︷︷ ︸

DD̃
b
0[δF ]

= 0,

(70)
where the last equality to zero holds due to the implicit function theorem. A similar derivation
can be carried out for the rest of the directional derivatives, namely DRF [δD0], DRD0 [δF ] and
DRD0 [δD0]. After suitable re-arrangement, the directional derivatives can be written as

DRF [δF ] = (δα⊗N ) : JCeK : δF

+ (δα⊗N ) : (cbCae + caCbe) : (Dα̃[δF ]⊗N )

+ (δα⊗N ) : (cbQa,T + caQb,T ) · (TNDβ̃[δF ]) = 0; (71a)

DRD0 [δF ] = (TNδβ) · JQK : δF

+ (TNδβ) · (cbQa + caQb) : (Dα̃[δF ]⊗N )

= (TNδβ) · (cbθa + caθb)(TNDβ̃[δF ]) = 0, (71b)

and

DRF [δD0] = (δα⊗N ) : JQKT · δD0

+ (δα⊗N ) : (cbCae + caCbe) : (Dα̃[δD0]⊗N )

+ (δα⊗N ) : (cbQa,T + caQb,T ) · (TNDβ̃[δD0]) = 0; (72a)

DRD0 [δD0] = (TNδβ) · JθKδD0

+ (TNδβ) · (cbQa + caQb) : (Dα̃[δD0]⊗N )

= (TNδβ) · (cbθa + caθb)(TNDβ̃[δD0]) = 0. (72b)

It is now possible to combine above equations as follows

−
[

JCe,N•K
TNT JQK

]
[: δF ] = [ĤNe ]

[
Dα̃[δF ]

Dβ̃[δF ]

]
; (73a)

−
[
N · JQKT

TNT JθK

]
[δD0] = [ĤNe ]

[
Dα̃[δD0]

Dβ̃[δD0]

]
, (73b)
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where (Ce,N•)ijJ = (Ce)iIjJNI . As a result, it is possible to obtain the desired sensitivities as
follows [

Dα̃[δF ]

Dβ̃[δF ]

]
= −[ĤNe ]−1

[
JCe,N•K
TNT JQK

]
[: δF ] ; (74a)

[
Dα̃[δD0]

Dβ̃[δD0]

]
= −[ĤNe ]−1

[
N · JQKT

TNT JθK

]
[δD0] . (74b)

The computation of the sensitivities in (74) is always well-defined due to the invertibility of
the Hessian operator [ĤNe ]. Notice that these sensitivities not only are interesting in order to
analyse the effect that macroscale fields have on microscale fields, but also are instrumental in
order to compute the effective constitutive tensors, as it will be shown in the following section.

4.5. Effective constitutive tensors

In order to obtain the effective constitutive tensors, we must first compute the components of
the second directional derivative of the internal energy e(F ,D0), namely,

D2e[δF , δD0; δF , δD0] = D2e[δF ; δF ] +D2e[δF ; δD0] +D2e[δD0; δF ] +D2e[δD0; δD0]. (75)

As an example, we can compute

D2e[δF ; δF ] = δF : caCae :
(
δF + cbDα̃[δF ]⊗N

)︸ ︷︷ ︸
DF̃

a
[δF ]

+δF : cbCbe : (δF − caDα̃[δF ]⊗N )︸ ︷︷ ︸
DF̃

b
[δF ]

+ δF : caQa,T ·
(
cbTNDβ̃[δF ]

)
︸ ︷︷ ︸

DD̃
a
0 [δF ]

+δF : cbQb,T ·
(
−caTNDβ̃[δF ]

)
︸ ︷︷ ︸

DD̃
b
0[δF ]

.
(76)

A similar derivation can be carried out for the rest of the second directional derivatives fea-
turing in (75) and, after suitable re-arrangement, they can all be written as

D2e[δF ; δF ] = δF : (caCae + cbCbe) : δF

+ δF : cacbJCeK : (Dα̃[δF ]⊗N ) + δF : cacbJQKT (TNDβ̃[δF ]); (77a)

D2e[δF ; δD0] = δF : (caQa,T
e + cbQb,T

e )δD0

+ δF : cacbJCeK : (Dα̃[δD0]⊗N ) + δF : cacbJQKT (TNDβ̃[δD0]); (77b)

D2e[δD0; δF ] = δD0 · (caQa + cbQb) : δF

+ δD0 · cacbJQK : (Dα̃[δF ]⊗N ) + δD0 · cacbJθK(TNDβ̃[δF ]); (77c)

D2e[δD0; δD0] = δD0 · (caθa + cbθb)δD0

+ δD0 · cacbJQK : (Dα̃[δD0]⊗N ) + δD0 · cacbJθK(TNDβ̃[δD0]). (77d)

In order to provide a more insightful representation of (75), above expressions (77) can be
combined more effectively into two terms as follows

D2e[δF , δD0; δF , δD0] = Ḡ(δF , δD0) + H̃(δF , δD0), (78)
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where Ḡ(δF , δD0) denotes an average-type term, defined as

Ḡ(δF , δD0) =
[
δF : δD0·

] [
H̄e

] [: δF
δD0

]
;

[
H̄e

]
= ca [Ha

e ] + cb
[
Hb
e

]
=

[
C̄e Q̄T

Q̄ θ̄

]
, (79)

and H̄(δF , δD0) denotes a jump-type contribution, defined as

H̃(δF , δD0) =
[
δF : δD0·

]
cacb

[
JCe,•N K JQKTTN
JQKN JθKTN

] [
Dα̃[δF ] +Dα̃[δD0]

Dβ̃[δF ] +Dβ̃[δD0]

]
, (80)

where (Ce,•N )iIj = (Ce)iIjJNJ . Moreover, it is now possible to further elaborate on the last term
of the right-hand side of above equation (80) by means of the sensitivities computed in (74).
Specifically, [

Dα̃[δF ] +Dα̃[δD0]

Dβ̃[δF ] +Dβ̃[δD0]

]
= −[ĤNe ]−1

[
JCe,N•K N · JQKT

TNT JQK TNT JθK

] [
: δF
δD0

]
. (81)

Thus, substitution of equation (81) into (80) yields

H̃(δF , δD0) = −
[
δF : δD0·

] [JCe,•N K JQKTTN
JQKN JθKTN

]
cacb[ĤNe ]−1

[
JCe,N•K N · JQKT

TNT JQK TNT JθK

] [
: δF
δD0

]
= −

[
δF : δD0·

]
[H̃e]

[
: δF
δD0

]
,

(82)
where

[H̃e] =

[
C̃e Q̃T

Q̃ θ̃

]
; [H̃e] =

[
JCe,•N K JQKTTN
JQKN JθKTN

]
[ȞNe ]−1

[
JCe,N•K N · JQKT

TNT JQK TNT JθK

]
, (83)

where [ȞNe ] = [ĤNe ]/(cacb) represents a harmonic mean type of Hessian with an expression as

[ȞNe ] =

[
Če,NN N · Q̌TTN

TNTQ̌N TNT θ̌TN

]
; [Ȟe] =

1

ca
[Ha

e ] +
1

cb
[Hb

e] =

[
Če Q̌T

Q̌ θ̌

]
. (84)

Finally, we arrive at

D2e[δF , δD0; δF , δD0] =
[
δF : δD0·

]
([H̄e]− [H̃e])

[
: δF
δD0

]
, (85)

with [H̄e] and [H̃e] defined in (79) and (83)-(84), respectively. Hence, equation (85) reveals
that the effective constitutive tensors {Ce,Q,θ} can be additively decomposed into two distinct
contributions: a simple average of the individual phases in the microscale, and an additional
term associated with the sensitivities of the (micro) amplitude vectors {α,β} with respect to
the macroscopic deformation gradient tensor F and electric displacement field D0. We will
demonstrate that the first contribution (simple averaging of micro-constituents) complies with the
ellipticity condition (10) provided that the internal energy functionals ea(F a,Da

0) and eb(F b,Db
0)

are CMV compliant. However, the second term can potentially induce loss of ellipticity of the
homogenised tangent operator. Specifically,

Ce = C̄e(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

(Average) ellipticity-preserving contr.

− C̃e(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

Macro ellipticity-breaking contr.

;

Q = Q̄(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

(Average) ellipticity-preserving contr.

− Q̃(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

Macro ellipticity-breaking contr.

;

θ = θ̄(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

(Average) ellipticity-preserving contr.

− θ̃(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

Macro ellipticity-breaking contr.

.

(86)
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As for the average-type term Ḡ(δF , δD0), adopting δF = u ⊗ V and δD0 = V ⊥, it is
immediate to realise that

Ḡ(u⊗ V ,V ⊥) = [u⊗ V : V ⊥·] [H̄e]

[
: u⊗ V
V ⊥

]
> 0; ∀u,V ,V ⊥, (87)

provided that the phases a and b are CMV compliant. Proceeding in an analogous manner with
the jump-type contribution, it results in

H̃(u⊗ V ,V ⊥) = − [u⊗ V : V ⊥·] [H̃e]

[
: u⊗ V
V ⊥

]
= − [u⊗ V : V ⊥·]

[
JCe,•N K JQKTTN
JQKN JθKTN

]
[ȞNe ]−1

[
JCe,N•K N · JQKT

TNT JQK TNT JθK

] [
: u⊗ V
V ⊥

]
= −

[
u· v·

] [ JCe,V N K V · JQKTTN
TV T JQKN TV T JθKTN

]
︸ ︷︷ ︸

[a· b·]

[ȞNe ]−1

[
JCe,NV K N · JQKTTV

TNT JQKV TNT JθKTV

] [
u
v

]
︸ ︷︷ ︸a

b


= −

[
a· b·

]
[ȞNe ]−1

[
a
b

]
< 0; ∀u,V ,V ⊥,

(88)
where use of the projection operator TV (i.e., V ⊥ = TV v) has been made in the third line above,
and vectors a and b have been introduced. It is immediate to realise that above term is negative
due to the positive definiteness of the Hessian [ȞNe ]. It is at this juncture when it is important
to emphasise the use that we have made of Remark 4 in order to drastically simplify the algebra
associated with above computation. In summary,

(a) the consideration of CMV (and thus rank-one convex) constitutive models for the mi-
croscale constituents guarantees that the analytical homogenisation (computation of the
micro-amplitude vectors {α,β}) can be accomplished for any value of the macroscopic
fields {F ,D0};

(b) the high nonlinearity associated with the microscopic problem can result in an intricate
dependence of both {α,β} upon {F ,D0}, permitting the contributions {C̃e, Q̃, θ̃} in (86)
to potentially induce an overall loss of ellipticity (or rank-one convexity condition) of the
effective tensors {Ce,Q,θ}, by neutralising, and even counterbalancing, the uncondition-
ally rank-one convex contribution resulting from the averaging of the micro-constituents
{C̄e, Q̄, θ̄}.

Crucially, the mathematical connotations associated with point (b) above imply that the ho-
mogenisation procedure can eventually jeopardise the well-posedness of the system in (4). From a
physical standpoint, as shown in [5], the onset of loss of ellipticity corresponds with the develop-
ment of localised deformations, and it is an expected phenomenon related to the development of
long wavelength diffuse modes in the microscale. Indeed, loss of ellipticity can occur in the solely
mechanical case, even when (polyconvex) Neo-Hookean strain energies are considered for the con-
stitutive models of the micro-constituents of layered composites (see Reference [24]). Suitable
relaxation techniques, such as rank-one convexification, can be applied [24] in order to restore
the mathematical well-posedness of the problem. Notwithstanding, the latter is out of the scope
of this paper. In the numerical examples considered in this paper, loss of ellipticity has not been
observed.
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5. Variational principles and Finite Element implementation

The most widely used variational principle, from which the weak forms associated with the
PDEs in equation (4) emerge, is the following

Π (φ, ϕ) = inf
φ

sup
ϕ

{∫
B0

Ψ (F ,−∇0ϕ) dV − Πm
ext (φ)− Πe

ext (ϕ)

}
, (89)

where Πm
ext and Πe

ext represent the external energetic contributions, defined as

Πm
ext (φ) =

∫
B0
f 0 · φ dV +

∫
∂tB0

t0 · φ dA; Πe
ext (ϕ) = −

∫
B0
ρe0ϕdV −

∫
∂ωB0

ωe0ϕdA. (90)

Notice that in our work we advocate for constitutive models defined in terms of the ho-
mogenised or effective internal energy e(F ,D0) (43), and hence an explicit definition of the
homogenised Helmholtz functional Ψ(F ,E0) is no longer necessarily available. In order to cir-
cumvent this drawback, we make use of the Legendre transformation in (28) and re-express the
homogenised functional Ψ(F ,E0) in (89) in terms of the homogenised internal energy functional
e(F ,D0(F ,E0)), yielding the following equivalent variational principle

Π̃ (φ, ϕ) =


inf
φ

sup
ϕ

{∫
B0
e (F ,D0) dV +

∫
B0
D0 ·∇0ϕdV − Πm

ext (φ)− Πe
ext (ϕ)

}
;

s.t. −∇0ϕ = ∂D0e(F ,D0).

(91)

Then we introduce the functional spaces for the fields {φ, ϕ} ∈ Vφ×Vϕ and the test functions
{δφ, δϕ} ∈ Vφ0 × Vϕ

0 featuring in the variational principle (91) as

Vφ =
{
φ : B0 → R3; (φ)i ∈ H

1 (B0) | J > 0
}

; Vϕ =
{
ϕ : B0 → R1; ϕ ∈ H1 (B0)

}
;

Vφ0 =
{
∀φ ∈ Vφ; φ = 0 on ∂φB0

}
; Vϕ

0 = {∀ϕ ∈ Vϕ; ϕ = 0 on ∂ϕB0} .
(92)

Clearly, the stationary conditions of the variational principle Π̃ in (91) yield the weak forms
associated with the PDEs in equation (4), namely

DΠ̃[δφ] =

∫
B0
P : DF [δφ] dV −

∫
B0
f 0 · δφ dV −

∫
∂tB0

t0 · δφ dA = 0;

DΠ̃[δϕ] =

∫
B0
D0 ·∇0δϕ dV +

∫
B0
ρe0δϕ dV +

∫
∂ωB0

ωe0δϕ dA = 0,

(93)

with D0 obtained from constraint in (91) and with P obtained as in (6)a. A Newton-Raphson
scheme can be used for the solution of the weak forms in (93), which implies the following
linearisation with respect to incremental fields ∆φ ∈ Vφ0 and ∆ϕ ∈ Vϕ

0

0 =DΠ̃[δφ] +DΠ̃[δϕ] +D2Π̃[δφ; ∆φ] +D2Π̃[δφ; ∆ϕ] +D2Π̃[δϕ; ∆φ] +D2Π̃[δϕ; ∆ϕ], (94)

with

D2Π̃[δφ; ∆φ] =

∫
B0

∇0δφ : C : ∇0∆φ dV ; D2Π̃[δφ; ∆ϕ] =

∫
B0

(
∇0δφ : PT

)
·∇0∆ϕdV ;

D2Π̃[δϕ; ∆φ] =

∫
B0

∇0δϕ · (P : ∇0∆φ) dV ; D2Π̃[δϕ; ∆ϕ] = −
∫
B0

∇0δϕ · (ε∇0∆ϕ) dV,

(95)
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with the homogenised tensors {C,P , ε} related to their homogenised internal energy-based coun-
terparts {Ce,Q,θ} in (86) through the relationship in equation (32). Equation (94) permits the
update of the solution fields φ ∈ Vφ and ϕ ∈ Vϕ at a given Newton-Raphson iteration k + 1 as

φk+1 = φk + ∆φ; ϕk+1 = ϕk + ∆ϕ. (96)

As standard in finite elements, the domain B0 described in Section 2.1, representing the EAP,
is sub-divided into a finite set of non-overlapping elements e ∈ E as follows

B0 ≈ Bh0 =
⋃
e∈E

Be0. (97)

The unknown fields {φ, ϕ}, and the test functions {δφ, δϕ} featuring in DΠ̃[δφ], DΠ̃[δϕ] in

(93), are discretised using the functional spaces Vφh × Vϕh
and Vφ

h

0 × Vϕh

0 , respectively, defined
as

Vφh

=

φ ∈ Vφ; φh
∣∣
Be0

=

nφnode∑
a=1

Nφ
a φa

 ; Vϕh

=

ϕ ∈ Vϕ; ϕh
∣∣
Be0

=

nϕ
node∑
a=1

Nϕ
a ϕa

 ;

Vφ
h

0 =
{
∀φ ∈ Vφh

; φ = 0 on ∂φB0

}
; Vϕh

0 =
{
∀ϕ ∈ Vϕh

; ϕ = 0 on ∂ϕB0

}
,

(98)

where, for any field Y ∈ {φ, ϕ}, nYnode denotes the number of nodes per element of the dis-
cretisation associated with the field Y ; and NYa : Be0 → R, the ath shape function used for the
interpolation of Y . In addition, Ya represents the value of the field Y at the ath node of a given
finite element. Consideration of the functional spaces in (98) enables the weak forms DΠ̃[δφ],

DΠ̃[δϕ] in (93) to be written in terms of their associated elemental residual contributions, namely

DΠ̃[δφ] =
N∑
e=1

δφa ·Rφ
a,e; DΠ̃[δϕ] =

N∑
e=1

δϕaR
ϕ
a,e, (99)

where N denotes the number of elements for the underlying discretisation, and where each of the
residual contributions Rφ

a,e and Rϕ
a,e can be expressed as9

Rφ
a,e =

∫
Be0
P∇0N

φ
a dV +

∫
Be0
Nφ
a f 0 dV ; Rϕ

a,e =

∫
Be0
D0 ·∇0N

ϕ
a dV +

∫
Be0
Nϕ
a ρ

e dV. (100)

Discretisation of the test functions and incremental fields permits equation (95) to be written
in terms of their associated elemental stiffness contributions, namely

D2Π̃[δφ,∆φ] =
N∑
e=1

δφa ·K
φφ
ab,e∆φb; D2Π̃[δφ,∆ϕ] =

N∑
e=1

δφa ·K
φϕ
ab,e∆ϕb;

D2Π̃[δϕ,∆φ] =
N∑
e=1

δϕa ·Kϕφ
ab,e∆φb; D2Π̃[δϕ,∆ϕ] =

N∑
e=1

δϕaK
ϕϕ
ab,e∆ϕb,

(101)

where each of the stiffness contributions is expressed as(
Kφφ

ab,e

)
ij

=

∫
Be0

(
∇0N

φ
a

)
I

(
∇0N

φ
b

)
J
CiIjJ dV ;

(
Kφϕ

ab,e

)
i

=

∫
Be0

(
∇0N

φ
a

)
I

(∇0N
ϕ
b )J (P)TiIJ dV ;

Kϕφ
ab,e =

(
Kϕφ

ab,e

)T
; Kϕϕ

ab,e = −
∫
Be0

∇0N
ϕ
a · ε∇0N

ϕ
b dV.

(102)

9For simplicity, the external contributions on the boundary of the continuum associated with t0 and ωe0 have
not been included in (100).
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6. Numerical examples

In this Section, three numerical examples will be presented in order to assess the capability
and robustness of the proposed computational framework. The first numerical example, restricted
to the case of homogeneous deformation, circumvents the need to use a Finite Element discreti-
sation and studies the behaviour, at a local level, of the homogenised constitutive model. A
comprehensive study will be conducted, where the influence that laminate orientation, contrast
of material properties, microscopic material properties and operational range (i.e., deformation
and electric field) has on the response of the composite will be presented. The second example
abandons the assumption of uniform deformation and explores the use of Finite Elements in the
context of a rectangular flexible DE composite film displaying complex actuation patterns through
application of electrical stimuli. In addition, a thorough study will be conducted, where different
microscopic arrangements will be shown to lead to potentially very different actuating configura-
tions (namely bending, torsion, stretching). Finally, the third numerical example explores recent
findings reported in [32] about the onset of buckling-type instabilities in DE composites, and
this will be studied for a square membrane configuration. The various numerical examples will
help to emphasise the importance of in silico simulations to better engineer the design of com-
plex multi-layered laminated composites. Moreover, the optimum composite combination will be
shown to be strongly dependent upon the operational range, both in terms of deformation and
electric field.

6.1. Numerical example 1: homogeneous electro-deformation of a multi-layered DE composite

Through this example we aim to:

• Capture the differences in performance, both at pre- and post-instability regions, for a
rank-one DE laminated composite when considering two distinctly different microstructure
arrangements.

• Appreciate the importance of using arc-length techniques in order to bypass instability
regions and harness actuator performance beyond the moderate regime.

• Monitor the effect that microstructure has in the propagation of shear wave speeds for two
rank-one laminated compositions, especially when considering high contrast nearly incom-
pressible constituents.

• Study the evolution of the acoustic tensor as a function of deformation and electric field in
order to assess the possible loss of macroscopic stability.

Figure 4: Numerical example 1. Experimental set-up. The application of a uniform electric field along the OX3

direction causes a stretch of the DE laminated composite along OX1 direction.
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We consider a prototypical set-up very similar to that already explored by several authors
in the past, both numerically [27, 77] and experimentally [79]. This consists of a rank-one DE
laminated film, such as the one depicted in Figure 4, which is subjected to a homogeneous state
of deformation and electric field. Two electrodes are placed at opposite faces of the film and an
externally controlled Lagrangian electric field E0 is applied across and orientated along the OX3

axis, whilst maintaining stress free conditions, in turn generating a state of uniform deformation
and electric displacement across the film. This uniform state of deformation and electric field is
exploited in order to study the response of the DE rank-one laminate from a local point of view,
without the need to resort to a finite element discretisation. As a result, in the absence of any
further loads and electric charges, the homogeneous solution to this problem corresponds to the
stationary points {F ∗,D∗0} of the Helmholtz’s free energy functional defined as

Π(F ∗,D∗0,E0) = inf
F

inf
D0

{e(F ,D0)−E0 ·D0} , (103)

where E0 is the externally controlled electric field. Thus, the stationary conditions of above
functional arise as

RF (F ,D0) = ∂F e = 0; RD0(F ,D0) = ∂D0e−E0 = 0. (104)

The above nonlinear stationary conditions (104) are solved in terms of unknowns F ∗ and D∗0
dependent upon the externally controlled electric field E0. Similar set-up has been previously
used in many references [26, 28], albeit restricted to the condition of plane strain and strict
incompressibility. Here, these kinematic assumptions are relaxed and the deformation gradient
tensor is left to adopt a more complex expression. Specifically, F and E0 are formulated as

F =

F11 0 F13

0 F22 F23

0 0 F33

 ; E0 =

 0
0
E0

 , (105)

where F11 and F22 represent in-plane stretching; F13 and F23, possible shearing effects; and F33,
the out-of-plane stretching. Typically, shearing components are disregarded and F33 is constrained
through the condition of strict incompressibility, as this permits to obtain closed-form solutions
to the problem. Notice that these simplifying assumptions do not apply to this study, where
the nonlinear stationary conditions (104) are solved by an iterative Newton-Raphson method.
In addition, in order to track the entire equilibrium path beyond the onset of limit points (i.e.,
snap-through, snap-back), an arc-length technique is employed.

Two very distinct rank-one DE laminated composite materials are explored, whose properties
are displayed in Table 1 and 2, respectively. For each of these materials, the contrast (i.e., ratio
between inclusion and matrix) of material constituents is defined by parameters fm = µb1/µ

a
1

and fe = εb/εa. Material 1 has mechanical contrast fm = 3.9 and electrical contrast fe = 1,
whereas material 2 contrast values are fm = 66 and fe = 31, 250. The microscale constituents
of composite material 1 have properties resembling those of the well-known VHB-4910, whilst
material 2 microscale constituents’ properties match those of polyurethane and polyaniline for
the soft and stiff phases, respectively (as used in [18]). Both composite materials are modelled as
nearly incompressible.

First, the equilibrium paths are tracked for both materials 1 and 2 when varying the orientation
of the laminate {ᾱ, β̄} as follows: ᾱ = 0o is kept fixed and β̄ is left to vary. The equilibrium paths
are displayed in Figures 5 and 6, where the Lagrangian electric field component E0 is represented
against the components F11 and F13 of the deformation gradient tensor (top row) and the norm of
the deformation gradient and electric displacement amplitude vectors ||α|| and ||β||, respectively
(bottom row). Note that, for visualisation purposes, the electric field is normalised by

√
µ̄/ε̄,
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Properties Phase a Phase b Units

Mechanical parameters µa1 1.0× 105 µb1 3.9× 105 Pa

µa2 0 µb2 0 Pa

λa 1.0× 108 λb 3.9× 108 Pa

Electrical parameters εar 4 εbr 4 -

Concentration ca 0.5 cb 0.5 -

Table 1: Numerical example 1. Material 1. Parameters of the model for each phase (see (27), (18)).

Properties Phase a Phase b Units

Mechanical parameters µa1 1.0× 107 µb1 6.6× 108 Pa

µa2 0 µb2 0 Pa

λa 1.0× 1010 λb 6.6× 1011 Pa

Electrical parameters εar 8 εbr 2.5× 105 -

Concentration ca 0.5 cb 0.5 -

Table 2: Numerical example 1. Material 2. Parameters of the model for each phase (see (27), (18)).

with µ̄ and ε̄ defined as the weighted arithmetic average of the individual microscale components,
that is,

µ̄ = caµa1 + cbµb1; ε̄ = ε0(caεar + cbεbr). (106)

In general, all equilibrium paths are very nonlinear, exhibiting very distinct limit points,
where the need for an arc-length technique is clearly justified. As it can be seen, for both
material combinations, the component of orientation β̄ has an important effect on both the shape
of the equilibrium path and the development of the microscale amplitude vectors. In addition, by
comparing Figure 5 (material 1) against Figure 6 (material 2), it is also clear that the properties
of the microscale constituents have a drastic effect on the overall performance, for the same
orientation of the laminate. It is also interesting to remark that, due to the inter-crossing of
curves for different laminate orientations, it is not possible to naively predict what laminate
orientation gives a better electro-mechanical performance, since this is strongly linked to the
level of electric field applied. Thus, the optimum composite combination is dependent upon the
operational range, both in terms of deformations and electric field.

Regarding material 1, and referring to Figure 5 top left, all laminate orientations undergo a
buckling instability around F11 ≈ [1.2 − 1.4]; however, the post-instability simulation enables to
reach considerably higher values of around F11 ≈ 3.9 (≈ 200% higher). This shows that limiting
the design of these components to the pre-buckling regime would imply a much lower electro-
mechanical performance, hence the importance of harnessing the post-instability regime. In any
case, positive values of F11 (i.e., extension) are always observed. Referring to Figure 5 top right,
the differences between the various laminate orientations are particularly evident. As an example,
for the case β̄ = 89◦, the equilibrium path displays a snap-back behaviour, where the shearing
component F13 changes from negative to positive values in a loop-like manner.

Regarding material 2, Figure 6 top left shows an important difference with respect to that of
material 1, namely F11 takes negative values in the pre-instability region. A snap-back behaviour
can be observed for orientations defined by β̄ = 24◦ and β̄ = 32◦. Similarly, Figure 6 top right
depicts a very different response to that of material 1, with a well-defined and smooth nonlinear
equilibrium path given by values of F13 always in the positive range.

Next, our attention shifts to the study of the effect that the microstructure has on the propa-
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Figure 5: Numerical example 1. Material 1. Equilibrium path curves for the case ᾱ = 0◦. For each material
there are 4 graphs, which represent, for various values of angle β̄, the electric field (normalised with µ̄, ε̄ defined
in (109)) against: (top-left) the component F11 of the deformation gradient tensor F , (top-right) the component
F13, (bottom-left) the magnitude ‖α‖ of the mechanical amplitude vector α, (bottom-right) the magnitude ‖β‖
of the electrical amplitude vector β.
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Figure 6: Numerical example 1. Material 2. Equilibrium path curves for the case ᾱ = 0◦. For each material
there are 4 graphs, which represent, for various values of angle β̄, the electric field (normalised with µ̄, ε̄ defined
in (106)) against: (top-left) the component F11 of the deformation gradient tensor F , (top-right) the component
F13, (bottom-left) the magnitude ‖α‖ of the mechanical amplitude vector α, (bottom-right) the magnitude ‖β‖
of the electrical amplitude vector β.

25



gation of shear wave speeds within the composite. Notice that volumetric wave speeds are not of
interest in this case due to the nearly incompressible nature of the constituents. A similar study
was carried out in [25, 26, 66], albeit restricted to the case of isotropic in-plane stretching and
strict incompressibility, where only component F11 was regarded as unknown. In this work, we are
not restricted by this kinematic assumption. In general, for the case of a plane wave propagating
within a continuum in a direction defined by the unit vector ν, the electro-mechanical acoustic
tensor Q can be found as [52]

Q = Cνν −Qν
Tθ−1

(
I −

(
ν ⊗ θ−1ν

)
ν · θ−1ν

)
Qν , (107)

where
(Cνν)ij = CiIjJνIνJ , (Qν)Ij = QIjJνJ . (108)

The squared root of the eigenvalues of the acoustic tensor provides the values of the volumetric
and shear wave speeds. We first restrict ourselves to the case of plane waves propagating along
directions defined by a unit vector ν contained within the plane OX1X2 (i.e., ν · [0, 0, 1]T = 0),
and compute the inverse of the Euclidean norm of the shear wave speeds (i.e., slowness). A polar
representation of the slowness is shown in Figures 7 and 8 for materials 1 and 2, respectively. In
both Figures 7 and 8, each of the nine sub-Figures included depicts slowness curves for a given
orientation of the laminate. Specifically, the angle ᾱ = 0◦ is kept fixed, and the angle β̄ takes
the values indicated in the legend below the figures. Within each subfigure, six different slowness
curves are displayed for increasing values of the norm of the electric displacement vector ||D0||,
which is in turn normalised by

√
µ̃ε̃, with µ̃ and ε̃ defined as the weighted harmonic average of

the individual microscale components, that is,

µ̃ =

(
ca

µa1
+
cb

µb1

)−1

; ε̃ = ε0

(
ca

εar
+
cb

εbr

)−1

. (109)

It is clear that laminate orientation, electric displacement operational range and microscale
materials composition have a dramatic impact upon the shape of the slowness curves. It is ob-
served that, as the operational range increases, the slowness curves lose their initial circular shape
to adopt a more anisotropic pattern. This evolution develops smoothly in material 1 (see Figure
7) and is more pronounced for material 2 (see Figure 8). Moreover, patterns are not necessarily
concentric between different operational ranges, which highlights the strong nonlinearity of the
electro-mechanical coupling effect and its impact upon the propagation of shear waves.

Next, in Figure 8 the slowness curves for material 2 on the same plane OX1X2 are illustrated.
In this case, it is observed that the electric displacement field has a big impact on the wave prop-
agation curves, for all values of angle β̄. For small values of the angle β̄, there is a big anisotropy
for large values of electric displacement field, whilst the behaviour remains more isotropic for
small values of it. For intermediate values of β̄, some curves widen along the X1 direction, whilst
for larger values of β̄, they tend to adopt a more isotropic behaviour. As a conclusion, both the
electric displacement field and the microscale do affect the wave propagation speed, and it is more
noticeable on material 2, since the contrast between mechanical and electrical properties is larger.

Finally, we generalise the study previously presented, analysing the evolution of the acoustic
tensor Q (107) for any three dimensional arbitrary orientation ν as a function of the deformation
process for the case of a specific laminate configuration. To aid the visualisation of this tensor,
we restrict ourselves to the monitoring of the smallest of its minors, and we display it in spherical
coordinates, that is, we plot vector q, defined as

q = q ν; q = min

(
Q11

µ̄
,
Q11Q22 −Q12Q21

µ̄2
,
detQ

µ̄3

)
, (110)
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Figure 7: Numerical example 1. Material 1. Slowness curves ( csµ̃ )−1 for ᾱ = 0◦ and, from left to right and from top

to bottom, β̄ = {0◦, 9◦, 18◦, 30◦, 42◦, 54◦, 66◦, 78◦, 89◦}, for the various values of normalised electric displacement
field D̃0 = || D0√

µ̃ε̃
|| indicated in the legend below the Figures. For visualisation purposes, a dotted circular grid is

added in each picture.
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Figure 8: Numerical example 1. Material 2. Slowness curves ( csµ̃ )−1 for ᾱ = 0◦ and, from left to right and from

top to bottom, β̄ = {10◦, 17.5◦, 24◦, 32◦, 40◦, 46.5◦, 54◦, 68◦, 83◦}, for the various values of normalised Lagrangian
electric displacement field D̃0 = || D0√

µ̃ε̃
|| indicated in the legend below the Figures. For visualisation purposes, a

dotted circular grid is added in each picture.
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where µ̄ is given by (106)a.
In Figure 9, vector q (110) for every orientation ν is represented at three specific deformation

states along the curve of normalised electric field against the deformation component F11, for
material 2 with laminate orientation defined by ᾱ = 0◦ and β̄ = 82◦. It can be inferred that the
acoustic tensor is strongly dependent on the deformation and electric field, being its orientation
and shape different in the three states represented. In addition, its highly anisotropy is remarked,
since its shape differs significantly from that corresponding to an isotropic state (i.e., a sphere).
The values adopted in the colour bars are a clear indication that the minors of Q remain non-
negative for the entire deformation process, ensuring macroscopic stability, that is, ellipticity of
the homogenised tangent operator.

Figure 9: Numerical example 1. Material 2. Evolution of spherical parametrisation of the least of the minors of
the electro-mechanical acoustic tensor at three particular states of the curve of normalised electric field against
deformation gradient tensor component F11. The orientation of the laminate is given by ᾱ = 0◦ and β̄ = 82◦.

6.2. Numerical example 2: effect of concentration and non-CMV energy contributions

Through this example we aim to:

• Study the effect that the composite concentration has in the macroscopic ellipticity of the
laminate when considering high electrical and mechanical contrasts.

• Compare the response of two laminated composite models, one made of pure CMV phases
and one where the CMV phases are slightly perturbed through the addition of a non-CMV
energy contribution.

The set-up (i.e. geometry and boundary conditions) of the numerical example is the same as
that used in the previous example, depicted in Figure 4. The material properties for the composite
phases are displayed in Table 3, and have been chosen identical to those used for material 2 in
the previous example, yielding contrasts fm = 66 and fe = 31, 250.
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Properties Phase a Phase b Units

Mechanical parameters µa1 1.0× 107 µb1 6.6× 108 Pa

µa2 0 µb2 0 Pa

λa 1.0× 1010 λb 6.6× 1011 Pa

Electrical parameters εar 8 εbr 2.5× 105 -

Concentration ca [0.5, 0.99] cb [0.5, 0.01] -

Table 3: Numerical example 2. Parameters of the model for each phase (see (27), (18))

With regards to the first objective of the example, a first study is focused on the effect that
the concentration of the composite constituents may have upon the loss of macroscopic ellipticity,
since it has been reported in the literature [30] that for materials with high contrast fm, loss
of macroscopic ellipticity may occur when the concentration of the stiff phase is relatively high.
Only one particular orientation (corresponding to ᾱ = 0o, β̄ = 82o) is presented in the results,
although similar conclusions have been obtained for other configurations.

Two concentrations are considered: cb = 0.5 (high concentration of the stiff phase) and
cb = 0.01 (low concentration of the stiff phase). Due to the high contrast between the phases,
the averaged properties of the composite material approach (in order of magnitude) those of the
stiff phase, namely µ̄ = caµa + cbµb ≈ cbµb, ε̄ = caεa + cbεb ≈ cbεb. In Figures 10(a),(b), the
Lagrangian electric field component E0 (normalised by

√
µ̄/ε̄ as defined in (106)) is represented

against the component F11 of the deformation gradient tensor. The continuous blue line represents
the equilibrium path (satisfaction of (104)), whilst the red regions indicate the possible areas of
loss of macroscopic ellipticity. A similar study can be found in [58]. In Figures 10(a),(b), the
equilibrium path lies away from the regions of loss of macroscopic ellipticity, but the effect of the
concentration can be clearly observed. Indeed, Figure 10(a) shows that when the concentration
of the stiff phase is high cb = 0.5, the material can potentially show loss of macroscopic stability
in two scenarios; first, for a small decrease of the electric field (for the entire range of deformation
F11 shown in the figure) and second, for a very large increase of the electric field (for values of
F11 in the range from 1.6 to 1.8). On the contrary, when the concentration of the stiff phase is
small (cb = 0.01), then the loss of macroscopic stability can only be observed for large decreases
in the electric field.

Regarding the second objective of this example, let us consider the following electromechanical
internal energy contribution for each of the laminate phases i = a, b,

W i
em (F , J,D0,d) =

IId
2εirε0J︸ ︷︷ ︸

CMV contr.

+γi

 IId
2εirε0J︸ ︷︷ ︸

CMV contr.

− IID0IIF
6εirε0︸ ︷︷ ︸

Non-CMV contr.

 ; i = {a, b} , (111)

where a CMV energy contribution is perturbed via the addition of a non-CMV energy contribu-
tion, with γi a positive dimensionless parameter close to zero. In what follows, γa = γb will be
considered. As can be expected, the γi-term induces a perturbation of the pure CMV energy,
albeit carefully designed to yield a similar electromechanical response (in terms of the dielectric
tensor near the origin) to the pure CMV model. Indeed,

θi
∣∣
F=I,D0=0

= ∂2
D0D0

W i
em

∣∣
F=I,D0=0

=
1

εirε0
I + γi

(
1

εirε0
I − 1

εirε0
I

)
=

1

εirε0
I. (112)

Figure 11 displays similar results to those in previous Figure 10, namely, equilibrium path in
blue and regions of loss of macroscopic stability in red, for different values of the coefficient γa = γb.
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Figure 10: Numerical example 2: Study of loss of macroscopic ellipticity for two concentrations of the composite
material: (a) cb = 0.5, (b) cb = 0.01. The normalised electric field is represented against the component F11 of
the deformation gradient tensor F . The equilibrium path curve for the case ᾱ = 0o, β̄ = 82o is represented with
a continuous blue line, whilst the shadow red regions represent the areas involving loss of macroscopic ellipticity.

As can be observed, even small values of the parameter γi, whilst respecting very faithfully the
equilibrium path of the pure CMV based model, can induce larger regions of possible loss of
macroscopic stability. The higher the value of γi is, the larger the area of loss of macroscopic
ellipticity is. Crucially, the value of γi has been kept small to ensure similar equilibrium paths
between the pure CMV model and the model including non-CMV contributions, permitting a fair
comparison. When γi is increased drastically, our studies show that the equilibrium path changes
drastically (it is not comparable any more) and, moreover, solution to the microscopic problem
recast in (69) cannot always be obtained due to lack of convergence.

6.3. Numerical example 3: complex deformation of a rectangular multi-layered DE film

In this example we aim to:

• Capture the various deformation modes that a rank-one DE laminated composite, in the
form of a rectangular film, can undergo in response to electric stimuli.

• Compare the response of the composite for different orientations of the laminate and provide
some simple strain metrics to distinguish actuation deformation modes.

• Analyse the possible local loss of macroscopic ellipticity in order to ensure that spurious
mesh dependent effects are not developed in the Finite Element analysis.

We consider a rectangular DE rank-one laminate film of dimensions 0.1 m×0.03 m×0.001 m,
fully clamped at face X1 = 0 and free everywhere else, as depicted in Figure 12. Two electrodes
are placed at the bottom and mid surfaces of the specimen and a voltage difference of ∆V = 2×104

V is applied across. The geometrical and simulation parameters for this example are collected in
Table 4. The domain is discretised using a 80×20×2 hexahedral structured mesh, with Q2 Finite
Elements used to interpolate both displacement and electric potential, being 132, 020 the total
number of degrees of freedom of the problem. The solver coupling strategy is monolithic, with a
tolerance for the Newton-Raphson method of 10−6 in Euclidean norm. The voltage gradient is
applied in 400 increments, being Λ ∈ [0, 1] the so-called load factor.

The constitutive models used to describe the rank-one laminate phases a and b are those of
an ideal dielectric Mooney-Rivlin type of elastomer (refer to (27) and (18)), and the material
properties used are displayed in Table 5. Notice that the Mooney-Rivlin parameters µa,b1 and
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Figure 11: Numerical example 2: Study of loss of macroscopic ellipticity for: (a) model with CMV phases (γa =
γb = 0 in (111)), models with non-CMV phases: (b) γa = γb = 0.001, (c) γa = γb = 0.01. The normalised electric
field is represented against the component F11 of the deformation gradient tensor F . The equilibrium path curve
for each case is represented with a continuous blue line, whilst the red shadow areas indicate loss of macroscopic
ellipticity. The orientation of the laminate considered is ᾱ = 0o, β̄ = 82o.

Figure 12: Numerical example 3. Geometry and boundary conditions.

µa,b2 can be used to define a unique shear moduli, in this case of values µa = 10 MPa (typical of
the polyurethane (PU)) and µb = 660 MPa (typical of the polyaniline (PANI)) [18, 38]. With
these material properties, the mechanical and electrical contrasts of the composite are given by
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Geometrical parameters a 0.1 m Simulation parameters Nx 80
b 0.03 m Ny 20
c 0.001 m Nz 2

Voltage applied ∆V 20 kV Newton tolerance 10−6

Table 4: Numerical example 3. Geometrical and simulation parameters.

fm = µa/µb = 66 and fe = εar/ε
b
r = 31, 250, respectively. These are the same contrast values used

for material 2 in the previous example section.

Properties Phase a Phase b Units

Mechanical parameters µa1 8.5× 106 µb1 5.6× 108 Pa

µa2 1.5× 106 µb2 1.0× 108 Pa

λa 4.3× 107 λb 2.8× 108 Pa

Electrical parameters εar 8 εbr 2.5× 105 -

Concentration ca 0.95 cb 0.05 -

Table 5: Numerical example 3. Material parameters of the model for each phase (see (27), (18)).

Figure 13 displays the evolution of the deformation for increasing values of the load factor
Λ and for various laminate orientations defined by angles {ᾱ, β̄}. To emphasise the influence of
the composite arrangement with respect to that of a single-phase material, Figure 13 (a) displays
the response when the volume fraction is ca = 1, whereas Figures 13 (b)-(f) are for a constant
volume fraction ca = 0.95 and multiple {ᾱ, β̄} laminate combinations, namely {0◦, 30◦}, {0◦, 60◦},
{0◦, 90◦}, {15◦, 90◦} and {75◦, 90◦}. It is evident that the consideration of a rank-one laminate
immediately introduces a considerably more sophisticated actuation mode, where the pure mono-
axial bending response displayed in Figure 13 (a) is transformed into bi-axial bending with possible
torsion development. This Figure clearly highlights the appeal for the use of rank-one laminates
in order to access advanced actuation modes in soft robotics. Figures 13 (b)-(d) show an increase
in bending about OX2 axis with respect to that displayed by the single-phase material, with
development of bending about the perpendicular OX1 axis. Interestingly, for non-zero values of
ᾱ, the composite manifests high levels of torsion about OX3 axis.

In order to provide a simple metric for comparison, we compute the normalised integral value
of the Green-Lagrange strain tensor ε, defined as

ε =
1

|V |

∫
V

EdV ; E =
1

2

(
F TF − I

)
. (113)

Figures 14 and 15 display the evolution of some of the components of ε for increasing values
of the load factor Λ and for various laminate orientations defined by angles {ᾱ, β̄}. Figure 14
displays components ε11 and ε22 when ᾱ = 0◦ and β̄ is left to vary. The curves are smooth with
increasing values of ε11 and ε22 as a function of the load factor. As it can be observed, curves
show a symmetry for laminate orientations with β̄ above and below 90◦. Figure 14 bottom clearly
shows that higher values of ε22 are related to the development of bi-axial bending, whereas lower
values are more prone to display mono-axial bending. As for Figure 14 top, it is interesting to
observe the change in sign of the component ε11 for lamination angle at around β̄ ≈ 55◦ (and its
supplementary), emphasising the difficulty to predict a priori the response of the material without
resorting to in silico simulation.

In Figure 15, similar curves are displayed for ε11 and ε23 for laminate orientations defined
by β̄ = 10◦ (top and middle diagrams), β̄ = 90◦ (bottom diagram) and ᾱ left to vary. Similar
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Figure 13: Numerical example 3. Deformation evolution in the cases (a) single-phase, (b) ᾱ = 0◦, β̄ = 30◦, (c)
ᾱ = 0◦, β̄ = 60◦, (d) ᾱ = 0◦, β̄ = 90◦, (e) ᾱ = 15◦, β̄ = 90◦, (f) ᾱ = 75◦, β̄ = 90◦.

conclusions to those of the previous figure can be inferred here. Precisely, smooth curves are
displayed with a symmetric (or skew-symmetric) pattern for angles ᾱ above and below 90◦.
Interestingly, Figure 15 bottom displays an anti-symmetric pattern explained by the sign of the
rotation (positive or negative) depending upon ᾱ been above or below 90◦. Once again, it is clear
the design opportunities in terms of optimisation that the current computational framework can
offer, where specific strain metrics (for instance) can be used in order to optimise the shape of
the elastomer, its microstructure composition or the distribution of electrodes.

A study of the possible loss of macroscale ellipticity and convexity is conducted. For the sake
of simplicity, we present the results for a specific orientation of the laminate and two states of
deformation. To study loss of ellipticity, we compute the field distribution of the smallest of the
minors (110) of the acoustic tensor for any possible orientation ν, namely

Iellip = min
ν

q, (114)
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Figure 14: Numerical example 3. Components ε11 and ε22 of the normalised integral value of the Green-Lagrange
strain tensor ε (113), with variation of angle β̄, keeping ᾱ = 0◦ fixed.

which is plotted in Figure 16. It is observed that no areas of macroscale loss of ellipticity arise,
indicating that no spurious mesh dependency effects arise. Similar conclusions were observed for
the rest of the simulations presented in this section and thus are not included. In addition, a
metric is defined in order to measure the potential loss of convexity of the homogenised model,
defined as the smallest eigenvalue of the Hessian operator of the homogenised internal energy,
namely

Iconv =
1

µ̄
min eig([He]), (115)

with µ̄ given by (106)a. This quantity is represented in Figure 17. In this case, some negative
values are observed, indicating that local loss of convexity is potentially observed, yet with no
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Figure 15: Numerical example 3. Components ε11 and ε23 of the normalised integral value of the Green-Lagrange
strain tensor ε (113), for values of angle ᾱ . The top and middle pictures correspond to β̄ = 10◦, while the bottom
one is the case β̄ = 90◦.
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impact in the loss of ellipticity.
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Figure 16: Numerical example 3. Contour plot of Iellip (114) for two load factors: (a) Λ = 0.1, (b) Λ = 0.2. The
orientation of the laminate is given by ᾱ = 15◦ and β̄ = 90◦.
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Figure 17: Numerical example 3. Contour plot of Iconv (115) for two load factors: (a) Λ = 0.1, (b) Λ = 0.2. The
orientation of the laminate is given by ᾱ = 15◦ and β̄ = 90◦.

6.4. Numerical example 4: buckling on a multi-layered DE square membrane

The objectives of this example are to:

• Detect the onset of instabilities on a rank-one DE laminated composite square membrane.

• Observe the different patterns of buckling in terms of the microscale configuration.

• Analyse possible local loss of ellipticity and convexity.

The geometry for this numerical example is given by a square membrane of side l = 0.06 m
and thickness h = 0.001 m, clamped along all its side faces, as represented in Figure 18. The
membrane is subjected to a prescribed electric surface charge on its base, while it is grounded
to zero potential on its topside. Geometrical and Finite Element simulation parameters are
presented in Table 6. Q3 Finite Elements are used to interpolate both displacement and electric
potential, being 104, 188 the total number of degrees of freedom, and the surface charge is applied
incrementally, being Λ ∈ [0, 1] the load factor.
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Figure 18: Numerical example 4. Geometry and boundary conditions.

Geometrical parameters l 0.06 m Simulation parameters Nx 60
h 0.001 m Ny 60

Nz 2
Electric charge ω0 0.02 C/m2 Newton tolerance 10−6

Table 6: Numerical example 4. Geometrical and simulation parameters.

The constituents of the laminated composite material follow a Mooney-Rivlin model for the
mechanical contribution, and an ideal dielectric for the electromechanical contribution. The
parameters of the model for each phase are included in Table 7. The contrast between mechanical
properties is fm = 4.06 and that between electrical properties is fe = 4.7. Note that the materials
of the phases correspond to VHB-4910 and Elastosil RT-625 [26] for the soft matrix and the stiff
reinforcement, respectively.

Properties Phase a Phase b Units

Mechanical parameters µa1 1.0× 105 µb1 4.1× 105 Pa

µa2 0 µb2 0 Pa

λa 3.0× 105 λb 1.2× 106 Pa

Electrical parameters εar 4.8 εbr 22.6 -

Concentration ca 0.5 cb 0.5 -

Table 7: Numerical example 4. Material parameters of the model for each phase (see (27), (18)).

A similar study was conducted in [32], where a circular membrane, made of a single-phase DE,
was subjected to electrical stimuli in order to observe the development of instabilities as it deforms.
In this work, we explore a different square geometry and study the influence of introducing a more
complex rank-one laminate arrangement. As the square membrane is subjected to an increasing
electric potential, it starts to slowly bend upwards until it reaches a point where it develops some
initial buckling, marking a drastic change in stiffness. In Figure 19, the equilibrium paths are
displayed for different orientations of the laminate, keeping the angle ᾱ = 0◦ fixed and varying
the angle β̄ from 0◦ to 90◦. The vertical displacement along the X3 axis (u3) is plotted for two
sample points on the membrane: test point 1, which corresponds to the centre of the square, and
test point 2, which is close to the boundary.

In Figure 19(a), the onset of a first order buckling is captured at approximately Λ = 0.01,
being the behaviour of deformation quite similar for all laminate orientations of the composite.
In Figure 19(b), a second-order buckling starting around Λ = 0.15 is observed. In this case, it is
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demonstrated that the orientation of the laminate does affect significantly the buckling pattern,
being the deformation for angles 0◦ < β̄ < 45◦ larger than for higher values of the angle β̄.
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Figure 19: Numerical example 4. Vertical displacement along the X3 axis of two test points: (a) the centre of the
square; (b) a point near the border.

In Figure 20, some snapshots of the deformation evolution of the membrane are represented,
for the composite with laminate orientation given by ᾱ = 0◦, β̄ = 75◦. It is observed how the
membrane buckles initially around its centre, and then the density of small instabilities quickly
increases with the loading factor.

In Figure 21, the final aspect of the square membrane after deformation is shown for different
laminate orientations of the composite. The first two rows analyse the effect of the change in
orientation angle β̄ whilst keeping ᾱ = 0◦, whereas the last two rows focus on the variation of
ᾱ whilst keeping β̄ = 75◦. On the one hand, from the study of the different β̄ cases, it can be
inferred that the larger the angle β̄ is, the more complex the deformation pattern seems to be,
showing a greater amount of wrinkles within the membrane. On the other hand, the membrane
seems to have a smoother deformation for intermediate values of ᾱ, whereas values of ᾱ near the
extremes of the interval [0◦, 90◦] cause a larger amount of instabilities.

Next, in Figures 22 and 23, the norm of the microstructure amplitude vectors ||α|| and ||β||
is represented for various laminate orientation angles β̄, whilst keeping ᾱ = 0◦ fixed. Specifically,
||α|| is represented in Figure 22, where it is observed how its magnitude globally increases with
the orientation angle β̄, specially in the areas near the instabilities. In Figure 23, ||β|| is plotted,
observing that it also increases with the angle β̄.

Finally, a study of the possible loss of ellipticity and convexity is conducted. Figure 24
illustrates the spatial distribution of the smallest of the minors of the acoustic tensor for any unit
normal orientation, namely Iellip (114), for two deformation states, (Λ = 0.25) and (Λ = 0.3). It
is ascertained that no areas of loss of ellipticity are observed, indicating that no anomalous mesh
dependency effects can take place. Moreover, Figure 25 shows a contour plot of the minimum
eigenvalue of the homogenised Hessian operator of the internal energy density, Iconv (115), for the
same two deformation states. In this case, some negative values are observed, indicating that loss
of convexity is potentially developed, yet with no impact in the loss of ellipticity.
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Figure 20: Numerical example 4. Evolution of deformation with the load factor for the case ᾱ = 0◦, β̄ = 75◦.
From left to right and from top to bottom, the snapshots correspond to the following load factors: (a) Λ = 0.05,
(b) Λ = 0.1, (c) Λ = 0.15, (d) Λ = 0.2, (e) Λ = 0.25, (f) Λ = 0.3.

7. Conclusions

In this paper, a new Finite Element based computational framework for the numerical simula-
tion of rank-one multi-layered electro-active polymers undergoing large deformations and electric
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Figure 21: Numerical example 4. Different patterns of buckling for (a) various values of β̄ =
[0◦, 30◦, 45◦, 60◦, 75◦, 90◦] and ᾱ = 0◦, and (b) various values of ᾱ = [0◦, 30◦, 45◦, 60◦, 75◦, 90◦] and β̄ = 0◦.
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Figure 22: Magnitude of the microstructure α vector, for different values of β̄ angle, keeping α = 0◦ fixed.

Figure 23: Magnitude of the microstructure β vector, for different values of β̄ angle, keeping ᾱ = 0◦ fixed.

fields has been introduced. Following the well-established homogenisation strategy for rank-n
laminates [17, 18], the paper exploits the use of Convex Multi-Variable (CMV) energy density
functionals [31] for each of the individual material phase components in order to ensure the ex-
istence of solutions of the microstructure problem, defined in terms of the so-called deformation
gradient and electric displacement amplitude vectors {α,β}.
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Figure 24: Numerical example 4. Contour plot of Iellip (114) for (a) Λ = 0.25 and (b) Λ = 0.3. The orientation of
the laminate is given by ᾱ = 0◦ and β̄ = 75◦.
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Figure 25: Numerical example 4. Contour plot of Iconv (115) for (a) Λ = 0.25 and (b) Λ = 0.3. The orientation of
the laminate is given by ᾱ = 0◦ and β̄ = 75◦.

Undesired mesh dependency, introduced by the possible loss of ellipticity of the homogenised
constitutive model, is strictly monitored via the evolution of the minors of the acoustic ten-
sor throughout the entire deformation process. The high nonlinearity of the coupled electro-
mechanical problem is resolved through a monolithic multi-scale (micro and macro) Newton-
Raphson algorithm enhanced via a tailor-made arc-length technique, critical in order to bypass
the geometrical instabilities and thus harness the potential of these materials in the very large
strain regime. Very importantly, the complexity of the algebra is dramatically simplified via the
use of both a tensor cross product operation between vectors and tensors and an unconventional
additive decomposition of the homogenised deformation gradient.

The computational strategy presented enables the exploration of very complex deformation
patterns (e.g., combined bending/torsion/stretching), way beyond the onset of geometrical insta-
bilities and without the need to assume any simplifications in the kinematics, such as plane strain
or exact incompressibility. The paper includes a series of challenging numerical examples seeking
to explore the performance of these composite materials at both micro and macro scales. The
effect that the micro-structure composition (i.e., orientation and contrast) can potentially have
in the response of the composite at different levels of deformation (or electric field) is studied. In
this sense, the manuscript paves the way for the prospective study of realistic miniaturised soft
robotics through the consideration of rank-n multi-layered electro-active polymers. With this in
mind, our future lines of work will include the extension of this computational framework to lam-
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inated composites of higher order as well as the consideration of possible thermal and viscoelastic
effects upon the response of the material.
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[69] M. Šilhavý. A variational approach to nonlinear electro-magneto-elasticity: Convexity con-
ditions and existence theorems. Mathematics and Mechanics of Solids, 23(6):907–928, 2017.

[70] H. Stoyanov, M. Kollosche, S. Risse, D. N. McCarthy, and G. Kofod. Elastic block copoly-
mer nanocomposites with controlled interfacial interactions for artificial muscles with direct
voltage control. Soft Matter, 7(1):194–202, 2011.

[71] Z. Suo, X. Zhao, and W. Greene. A nonlinear field theory of deformable dielectrics. J Mech
Phys Solids, 56(2):467–486, 2008.

[72] L. Tian, L. Tevet-Deree, G. deBotton, and K. Bhattacharya. Dielectric elastomer composites.
J Mech Phys Solids, 60(1):181–198, 2012.

[73] R. A. Toupin. Stress tensors in elastic dielectrics. Arch Ration Mech Anal, 5(1):440–452,
1960.

[74] R. Toupin. The elastic dielectric. Indiana Univ. Math. J., 5:849–915, 1956. ISSN 0022-2518.

[75] D. K. Vu, P. Steinmann, and G. Possart. Numerical modelling of non-linear electroelasticity.
Int J Numer Methods Eng, 70(6):685–704, 2007.

[76] D. Vu and P. Steinmann. On 3-d coupled BEM–FEM simulation of nonlinear electro-
elastostatics. Comput Methods Appl Mech Eng, 201-204:82–90, 2012.

48



[77] B. Wu, W. Zhou, R. Bao, and W. Chen. Tuning elastic waves in soft phononic crystal cylin-
ders via large deformation and electromechanical coupling. Journal of Applied Mechanics,
85(3), 2018.

[78] Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang. An all-organic
composite actuator material with a high dielectric constant. Nature, 419(6904):284–287,
2002.

[79] X. Zhao and Q. Wang. Harnessing large deformation and instabilities of soft dielectrics:
Theory, experiment, and application. Applied Physics Reviews, 1(2):021304, 2014.

49


	1 Introduction
	2 Nonlinear continuum electro-mechanics
	2.1 Kinematics: motion and deformation
	2.2 Governing equations in nonlinear electromechanics

	3 Constitutive equations in nonlinear electro-elasticity: phenomenological macroscopic models
	3.1 Multi-variable convexity
	3.2 Simple examples of convex multi-variable electro-mechanical constitutive models
	3.3 The Helmholtz energy function

	4 Constitutive equations in nonlinear electro-elasticity: Application to Rank-One layered EAPs
	4.1 Effective or macroscopic internal energy functional
	4.2 Solution of the amplitude vectors bold0mu mumu  and bold0mu mumu 
	4.3 Effective stress and electric field
	4.4 Sensitivity of the microscale amplitude vectors with respect to macroscale fields
	4.5 Effective constitutive tensors

	5 Variational principles and Finite Element implementation
	6 Numerical examples
	6.1 Numerical example 1: homogeneous electro-deformation of a multi-layered DE composite
	6.2 Numerical example 2: effect of concentration and non-CMV energy contributions 
	6.3 Numerical example 3: complex deformation of a rectangular multi-layered DE film
	6.4 Numerical example 4: buckling on a multi-layered DE square membrane

	7 Conclusions
	8 Acknowledgements

