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23 1. Abstract

24 Microbial communities occurring in reference materials for artificial barriers (e.g. 

25 bentonites) in future deep geological repositories of radioactive waste can influence the 

26 migration behavior of radionuclides such as curium (CmIII). This study investigates the 

27 molecular interactions between CmIII and its inactive analogue europium (EuIII) with the 

28 indigenous bentonite bacterium Stenotrophomonas bentonitica at environmentally 

29 relevant concentrations. Potentiometric studies showed a remarkable high concentration 

30 of phosphates at the bacterial cell wall compared to other bacteria, revealing the great 

31 potential of S. bentonitica for metal binding. Infrared spectroscopy (ATR-FTIR) and X-

32 ray photoelectron spectroscopy (XPS) confirmed the role of phosphates and carboxylate 

33 groups from the cell envelope in the bioassociation of EuIII. Additionally, time-resolved 

34 laser-induced fluorescence spectroscopy (TRLFS) identified phosphoryl and carboxyl 

35 groups from bacterial envelopes, among other released complexing agents, to be 

36 involved in the EuIII and CmIII coordination. The ability of this bacterium to form a 

37 biofilm at the surface of bentonites allow them to immobilize trivalent lanthanide and 

38 actinides in the environment.

39

40
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48 2. Introduction

49 The safe disposal of radioactive waste is crucial to ensure the safety of future 

50 generations, as well as for the biosphere. The implementation of deep geological 

51 repositories (DGRs) is planned in the near future for the disposal of high level (HLW) 

52 and long-lived radioactive wastes, which are the most hazardous since they contain 

53 larger radionuclide concentrations and longer lived radionuclides.1 DGR is a multi-

54 barrier system to deposit radioactive waste, mainly generated by nuclear industry. A 

55 DGR option is to encapsulate the nuclear waste in metal containers (steel, iron, copper, 

56 etc.) surrounded by compacted bentonites, considered as geotechnical barriers, and 

57 emplace them in a stable geological formation at about 500-1000 m depth.2 A high 

58 microbial diversity in bentonite clay formations from Almeria (Spain), considered as 

59 reference material of engineered barriers for repositories, has been previously 

60 reported.3,4 Several studies have evidenced the impact of microbial processes on the 

61 corrosion of metal containers (steel, iron, copper, etc.), which could lead to the release 

62 of radionuclides to the surrounding environment.5 Microbial processes also seem to play 

63 a crucial role controlling the speciation and mobility of radionuclides present in 

64 radioactive wastes, such as uranium (U) and curium (Cm).3,4,6 Therefore, understanding 

65 the migration behavior and the environmental fate of radionuclides influenced by 

66 microorganisms will be essential for the risk assessment of repositories. Cm is a highly 

67 toxic radionuclide as indicated by the high α activity of some isotopes, such as 247Cm 

68 (half-life: 1.6 x 107 years) and 248Cm (half-life: 3.5 x 106 years) present in nuclear spent 

69 fuel.7,8 Cm is a representative of trivalent actinides (AnIII), which exhibits excellent 

70 luminescence properties that make it suitable for direct speciation studies at 

71 environmentally relevant metal concentration.9 Similarly, europium (Eu) has been 

Page 3 of 34

ACS Paragon Plus Environment

Environmental Science & Technology



4

72 studied as an inactive analogue of AnIII, also providing excellent luminescence 

73 properties.10

74 Among other mechanisms, microbes can interact with actinides and lanthanides through 

75 the biosorption at cell surfaces.11 A number of functional groups (e.g. carboxyl, 

76 phosphoryl) on microbial surfaces have been described to be effective for actinide 

77 complexation.12,13 CmIII and EuIII form strong complexes with phosphoryl and carboxyl 

78 sites of the bacterial cell wall of Sporomusa sp. MT-2.99 and Pseudomonas 

79 fluorescens.12,14 Recently, Yeasts and Archaea have also been investigated for their 

80 ability to complex AnIII (e.g. Cm) and trivalent lanthanides (LnIII) (e.g. Eu) through 

81 carboxyl and phosphate groups.15,16 In addition, biofilm formation by microorganisms 

82 has to be considered, as it could lead to the immobilization of bioabsorbed radionuclides 

83 within the DGR system and consequently, could affect their integrity.

84 Since cell surfaces play a major role in the complexation of CmIII and EuIII, different 

85 spectroscopic and microscopic techniques can be used to investigate the contribution of 

86 functional groups and the corresponding mechanisms involved in the biosorption of 

87 these elements. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) 

88 spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-resolved laser-induced 

89 fluorescence spectroscopy (TRLFS) are useful spectroscopic tools to determine the 

90 chemical speciation of these elements at environmentally relevant conditions. 

91 Potentiometric titrations have been used to determine types and abundance of active 

92 metal binding sites at the cell surface.17,18 While a multidisciplinary approach 

93 combining different microscopic, spectroscopic, and potentiometric titration based 

94 methods is usually applied to investigate the interactions of U, as hexavalent actinide, 

95 with microbes,13,19 the microbial interactions with Cm and Eu have only covered the use 

96 of TRLFS and potentiometric techniques.12,14
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97 Spanish bentonite clays (Almeria, Spain) have shown to be excellent and suitable 

98 reference material of engineered barriers for DGRs due to their physico-chemical 

99 properties (low permeability, plasticity, high swelling pressure, thermal conductivity, 

100 etc.).4 From these clays, Stenotrophomonas bentonitica has been isolated and well 

101 characterised,20 and shown to influence the chemical speciation and mobility of other 

102 elements present in radioactive waste such as selenite (SeIV) and UVI.4,21 However, the 

103 interactions between EuIII/CmIII and S. bentonitica have never been described before. 

104 For all mentioned above, the use of this strain as a model bentonite bacterial strain to 

105 investigate the impact of bentonite microbial population in the speciation of 

106 radionuclides within the concept of DGR is novel and could provide interesting results 

107 with regard to the biological, chemical and physical analysis that are currently 

108 undergoing to evaluate the DGR safety.

109 The present work studies the effect of S. bentonitica on the environmental fate of EuIII 

110 and CmIII under aerobic and anaerobic conditions, analogous to those expected in the 

111 geodisposal of radioactive waste. For this purpose, a combination of spectroscopic 

112 (ATR-FTIR, XPS, TRLFS) and microscopic (STEM-HAADF: Scanning Transmission 

113 Electron Microscopy-High Angle Annular Dark Field) techniques have been employed.

114 This study will provide new insights on the influence of bentonite bacterial isolates in 

115 the immobilization of AnIII within the concept of radioactive waste disposal, and will be 

116 useful to compare with other studies using elements such as Se and U. The safety of the 

117 DGR system have been well studied from a geological, chemical, and physical point of 

118 view, but not many studies have been conducted on the influence of microbiology. 

119 Therefore, this work is crucial to better understand how microbes can affect the safety 

120 of the disposal of such residues, which is a major environmental problem nowadays. 

121
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122 3. Materials and Methods

123 Experimental procedures related to preparation of EuIII and CmIII stock solutions, 

124 potentiometric titration of cell surfaces of S. bentonitica treated with EuIII, EuIII 

125 biosorption experiments, TRLFS experimental setup, and STEM-HAADF analysis are 

126 provided in the Supporting Information. Due to the hazardous nature and difficult 

127 handling of CmIII, proper safety precautions and methodologies were employed in this 

128 study.

129

130 3.1. Bacterial strain and growth conditions

131 The bacterial strain used was isolated from bentonite clay formations recovered from 

132 Almeria (Spain),4 and was recently described as a novel species named 

133 Stenotrophomonas bentonitica BII-R7T.22 The cells were grown aerobically in Luria-

134 Bertani (LB) broth medium (tryptone 10 g/L, yeast extract 5 g/L and NaCl 10 g/L, pH 

135 7.0 ± 0.2) at 28 ºC under agitation (180 rpm).

136

137 3.2. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy

138 S. bentonitica cells were suspended in a 30 µM EuIII chloride solution (EuCl3∙6H2O) 

139 under aerobic conditions at pH 6. After 48 hours, the samples were collected by 

140 centrifugation (2700 x g; 10 min) and washed with 0.1 M NaClO4. Finally the samples 

141 were lyophilized according to standard protocols.17,23 Bacterial cells without addition of 

142 EuIII were employed as controls.

143 ATR-FTIR measurements were performed on a Perkin Elmer Spectrum Two 

144 spectrometer, equipped with an ATR accessory, consisting of a diamond crystal at a 

145 fixed angle of 45º. 32 scans with spectral resolution 4 cm-1 and wavenumber range from 
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146 4000 to 400 cm-1 were collected for each sample. All measurements were performed in 

147 triplicate.

148

149 3.3. X-ray photoelectron spectroscopy (XPS)

150 EuIII-treated cells of S. bentonitica were prepared as described in the section 1.3 of the 

151 Supporting Information. The obtained powder was mounted on standard sample studs 

152 using double-sided adhesive tape. Non-treated cells were prepared and used as controls. 

153 XPS measurements were made on a KRATOS SUPRA Photoelectron Spectrometer at 

154 10 KV and 20 mA using a monochromatic Al Kα X-ray source (1486.6 eV). The take-

155 off angle was fixed at 90º. On each sample the data were collected from three randomly 

156 selected locations, and the area corresponding to each acquisition was 400 µm in 

157 diameter. Each analysis consisted of a wide survey scan (pass energy 160 eV, 1.0 eV 

158 step size) and high-resolution scan (pass energy 20 eV, 0.1 eV step size) for component 

159 speciation. All experiments were conducted in triplicate. The binding energies of the 

160 peaks were determined using the C1s peak at 284.5 eV. The software CasaXPS 2.3.17 

161 was used to fit the XPS spectra peaks.24

162

163 3.4. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) analyses

164 TRLFS measurements were performed in order to determine EuIII/CmIII species 

165 involved in interactions with the bacterial cells. Cells of S. bentonitica were brought 

166 into contact with 30 µM EuIII both aerobically and anaerobically and with 0.3 µM CmIII 

167 anaerobically, and collected as indicated in section 1.3 of the Supporting Information. 

168 The inactivity and hence easy handling of EuIII allowed the TRLFS studies under both 

169 respiring conditions. The CmIII experiments were performed anaerobically in a glove 

170 box in order to exclude carbonate complexation of CmIII and for radiation protection 
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171 issues. The obtained pellets were washed and subsequently re-suspended in 5 mL of 0.1 

172 M NaClO4 for analysis by TRLFS. For EuIII, the pH was kept constant at 6, while 

173 varying the incubation time (1, 24 and 48 h). For CmIII, a pH dependent spectroscopic 

174 titration (pH 2.33 to 8.04) was carried out. 

175

176 4. Results and discussion

177 4.1. Potentiometric titration studies

178 The potentiometric titrations curves of S. bentonitica BII-R7 before and after EuIII 

179 exposure are presented in Figure S1. The concentration of deprotonated sites is 

180 standardized per mass of dry biomass (mol g-1), and calculated according to Fein et al.25 

181 To calculate the acidity constants and the total concentration of each binding site, data 

182 from the titrations curves were fitted using ProtoFit 2.1 rev1,26 using a Non-

183 Electrostatic Model (NEM). It has been demonstrated that electrostatic treatments, such 

184 as diffuse layer and triple layer electrostatic models to titration data, greatly over-predict 

185 the effect of ionic strength on bacterial surface protonation reactions, resulting in poorer 

186 fits and more variability in stability constants than non-electrostatic models.27,28

187

188 The titrated bacterial suspensions exhibited a protonation-deprotonation behaviour over 

189 the whole pH range studied (Figure S1). The shape of the titrations curves obtained 

190 suggested the presence of functional groups with close acid-base pKa values, showing 

191 that although some small variability could be perceived in each set of the same bacterial 

192 sample, essentially reproducible results were obtained (the variation between the 

193 titration curves was below 6% of [H+]exchanged between pH 3.5 and 10.0). Although a 

194 small hysteresis could be observed between acid and base titrations at the same ionic 
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195 strength, results from reverse titrations did not vary strongly and suggested a reversible 

196 proton adsorption/desorption reaction. 

197 Table S1 summarizes the pKa values for S. bentonitica before and after EuIII exposure. 

198 The calculated values were 4.97 ± 0.08 and 4.78 ± 0.06 for pK1, 6.88 ± 0.02 and 6.75 ± 

199 0.13 for pK2, and 9.43 ± 0.02 and 9.48 ± 0.11 for pK3. The obtained pKa values are 

200 representative of carboxylic groups for pK1, phosphate groups for pK2 and amine and 

201 hydroxyl groups for pK3.17,18,25,29–32

202 The existence of pH zero proton charge (pHzpc) indicated that S. bentonitica developed a 

203 positive net charge at low pH values, indicating the presence of at least one positively 

204 ionising, plausibly amino group. Models which only include negatively ionising groups 

205 such as carboxyl, phosphoryl and hydroxyl groups could not develop a net positive 

206 charge at low pH.33 The pHzpc around 5.7 also indicated that the cells were negatively 

207 charged at neutral pH = 7 and electrostatic attraction with positive-charged mineral 

208 surfaces or metals is favourable. 

209 The surface site densities obtained using ProtoFit are also presented in Table S1. The 

210 pKa values for bacterial samples with and without EuIII were comparable, indicating 

211 similar concentration of the active functional groups on the cell wall. One exception 

212 was found, the concentrations corresponding to phosphate groups (C2) was significantly 

213 lower for S. bentonitica cells exposed to EuIII. This could suggest a strong affinity of 

214 EuIII to phosphate sites, making them inaccessible to the protonation/deprotonation 

215 reaction. The considerable high concentration of phosphate groups at the surface of S. 

216 bentonitica (10.78 ± 0.31 x 10-4 mol/g) comparing with other bacterial species such as 

217 Sporomusa sp. MT-2.99 (5.30 ± 0.8 x 10-4 mol/g), Sphingomonas sp. S15-S1 (3.16 ± 

218 0.56 x 10-4 mol/g), or B. sphaericus JG-7B (2.19 ± 0.25 x 10-4 mol/g)12,34 (Table S1) 

219 pointed out the potentially high metal-binding ability of S. bentonitica.
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220 The results of potentiometric titration experiments indicated that the cell surface groups 

221 capable for metal binding sites could involve carboxyl groups (pK around 3-5), 

222 phosphate groups (pK around 6-7), and hydroxyl and amine groups (pK > 8). These 

223 findings are in agreement with previous studies on bacterial surfaces.17,35,36 Liu et al.36 

224 demonstrated the role of carboxyl, phosphoryl, and amino functional groups of 

225 Synechococcus sp. PCC 7002 cells as metal surface ligands by means of potentiometric 

226 titrations. In the case of EuIII and CmIII, their sorption on the cell envelope of 

227 Sporomusa sp. MT-2.99, B. subtilis and P. fluorescens can be due to their coordination 

228 with carboxyl and phosphate groups.12,14,37,38 Consequently, phosphate and carboxyl 

229 groups of S. bentonitica might be expected to be involved in the binding of EuIII. 

230 However, the potentiometric results only showed phosphate groups as the main 

231 potential binding sites in the pH range studied due to their high surface concentration. It 

232 is probable that the extent of the carboxyl group involvement in the EuIII binding is 

233 either too small to be detected by titration methods, or the sorption/desorption of EuIII 

234 by the carboxylic groups is reversible at low pH (possible exchange between Eu(III) and 

235 protons at low pH for the carboxylate groups). 

236

237 4.2. EuIII removal capacity of S. bentonitica over time

238 These studies were carried out to estimate the EuIII removal capacity of S. bentonitica 

239 with increasing time under aerobic and anaerobic conditions. The maximum amount of 

240 EuIII removal was 12.9 ± 0.11 mg of Eu/g of dry biomass after 96 h of aerobic 

241 incubation (Figure S2). This amount corresponds to a 54 ± 0.44 % of EuIII removed 

242 from the total amount of Eu in the solution. Higher values were obtained by Bader et al. 

243 (2019)16 in their bioassociation kinetics studies with the halophilic archaeon 

244 Halobacterium noricense DSM15987T by using the same EuIII initial concentration (30 
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245 µM). They found that around 73% of EuIII was removed after 1 week of incubation.  

246 Under anaerobic conditions, the maximum amount of EuIII removal was 6.06 ± 0.25 mg 

247 of Eu/g of dry biomass after 18 h incubation (Figure S2), which corresponds to a 31.2 ± 

248 1.3 % of EuIII removal. The EuIII removal improved by increasing contact time of 

249 incubation until equilibrium was attained under both conditions. However, these results 

250 clearly showed that S. bentonitica cells have a higher removal capacity under aerobic 

251 conditions. This could be a consequence of the more stressful anoxic conditions, 

252 probably affecting the bacterial interaction process. 

253 These results suggested that the interaction was mediated not only by biosorption, since 

254 this mechanism is generally defined as a quick process ocurring up to a few hours.39 

255 More specifically, the EuIII removal studies showed that time-dependent Eu interaction 

256 with the cells could be a biphasic process. First, a rapid phase where 12.5 ± 0.73 and 

257 13.9 ± 1 % of EuIII removal was achieved (aerobically and anaerobically, respectively) 

258 within the first 2 h (Figure S2). This fast phase is usually associated to metabolic 

259 independent biosorption mechanisms. Secondly, a slow phase seems to occur, where 

260 EuIII accumulation process seems to reach equilibrium after 24 h. This phase could be 

261 controled by metabolically dependent interaction mechanisms such as intracellular 

262 accumulation or bioprecipitation, among others. 

263

264 4.3. Characterization of EuIII-S. bentonitica interactions using ATR-FTIR

265 Figure 1 shows the ATR-FTIR spectra obtained from S. bentonitica after 48 h 

266 incubation with 30 µM EuIII solution. The observed infrared bands confirmed the 

267 presence of proteins, lipids, polysaccharides, and polyphosphate groups. The functional 

268 groups assigned to the infrared bands and the corresponding frequencies for the 

269 bacterial cells are summarised in Table S2.  
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270 The region between 3000 and 2800 cm-1 exhibited the typical C-H stretching vibrations 

271 (νC-H) corresponding to the CH3 and >CH2 functional groups present in the fatty acids 

272 and lipids, and the O-H stretching band (νO-H) corresponding to the presence of 

273 hydroxyl groups in bacterial cells. Complementary information could be found at the 

274 region between 1800 and 750 cm-1, where vibrations of C-H, >CH2 and -CH3 groups, 

275 amides, carbonyl groups and polysaccharides were observed. The peaks observed at 

276 1308 and 1455 cm-1 could be attributed to the bending of -CH3 and >CH2 of proteins 

277 (δCH2, δCH3), and the signals at 1635 and 1535 cm-1 corresponded to the amide I and II 

278 bands, respectively. The amide I band was due to the stretching C=O (νC=O) of amides 

279 associated with proteins and the amide II band was actually a combination of bending 

280 N-H (δN-H) of amides and contributions from stretching C-N (νC-N) groups. The peak at 

281 1455 cm-1 also concealed the amine III group. The peak around 1404 cm-1 was due to 

282 the symmetric stretching C-O of carboxylate groups (νsym COO
-), and the peak 

283 corresponding to the asymmetric stretching vibration (νasym COO
-) was concealed by the 

284 amide II band at 1535 cm-1. A small shoulder around 1745 cm-1 was a combination of 

285 two peaks: a signal corresponding to the vibrational C=O stretching (νC=O) of carboxylic 

286 acids at 1747 cm-1 and another peak corresponding to the stretching C=O of ester 

287 functional groups from membrane lipids and fatty acids at 1730 cm-1.17,30,31,40 The 

288 double bond stretching of >P=O of general phosphoryl groups and phosphodiester of 

289 nucleic acids could be observed at 1240 cm-1. The stretching of P=O groups of 

290 polyphosphate products, nucleic acid phosphodiester and phosphorylated proteins can 

291 be found around 1070 cm-1, and the peak at 933 cm-1 showed the asymmetric O-P-O 

292 stretching modes.30,31,40

Page 12 of 34

ACS Paragon Plus Environment

Environmental Science & Technology



13

293

1387 cm-1

Phosphate group
933 cm-1

Amide I
Band

1635 cm-1 Symmetrical
COO- stretch

1404 cm-1

Amide II and 
asymmetrical
COO- stretch 

Bands
1535 cm-1

Polysaccharide
(sugar/ sugar phosphate)

1070 cm-1

C=O stretch
of COOH
1745 cm-1

A
bs

or
ba

nc
e

Wavenumber (cm-1)

294 Figure 1. Comparison between the ATR-FTIR spectra for S. bentonitica cell 

295 suspensions in 0.1 M NaClO4 (electrolyte) solution only (top, in black color) and in 30 

296 µM EuIII solution + electrolyte (bottom, in blue color) after 48 hours.

297

298 The ATR-FTIR spectra showed a shift in the band attributed to symmetric stretching of 

299 carboxylate groups (around 1404 cm-1) to lower frequencies, when compared to the 

300 spectra of the cells in background electrolyte (Figure 1). Extensive studies made on 

301 metal complexes of carboxylic acids have established an empirical correlation between 

302 the position of the symmetric stretching (νsym COO
-) and asymmetric stretching (νasym COO) 

303 of carboxylate groups and the difference in frequency between them (Δν). The values of 

304 Δν descend in the follow order: Δνunidentate > Δνbrinding ~ Δνfree ionic > Δνchelate(bidentate).41–44 

305 Chu et al.41 and Deacon and Phillips,44 after careful examinations of IR spectra of many 

306 acetates with known X-ray crystal structures, arrived at the conclusion that: i) for 

307 unidentates complexes, Δν > 200 cm-1 and the position of νsym COO
- is generally shifted 

308 to lower frequencies; ii) for bidentate chelating complexes, Δν < 100 cm-1 and the 

309 position of νsym COO
- is shifted to higher frequencies, whereas νasym COO

- is shifted to 
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310 lower frequencies; and iii) for bidentate bridging complexes, Δν ~ 160 cm-1 and the 

311 position of νsym COO
- and νasym COO

- can shift in either direction.41 The symmetric 

312 stretching (νsym COO
-) band for S. bentonitica in contact with EuIII shifted to lower 

313 frequencies by ~15 cm-1, but, as can be observed in Figure 1 and Table S2, the 

314 asymmetric stretching (νasym COO-) of carboxylate groups was hidden by the amide II 

315 band, and therefore it is difficult to determine if there was a shift in this band to higher 

316 or lower frequencies. Based purely on the position of νsym COO
- shifting to lower 

317 frequencies, the carboxyl functional groups could form unidentate complexes with the 

318 EuIII metals. If the asymmetric stretching (νasym COO
-) of carboxylate groups (hidden by 

319 the amide II band) did not shift, then Δν would be around 150 cm-1, suggesting that the 

320 carboxyl functional groups arising from the macromolecules of the cell wall of the 

321 bacterial cells could form bidentate bridging complexes with the EuIII metals. However, 

322 further studies would be needed as there is no evidence of the frequency of the 

323 asymmetric v(COO-) mode. EXAFS analysis could provide more detailed information 

324 about the local coordination of Eu associated with these cells, but it falls beyond the 

325 main scope of this study. This would provide more unequivocal indications of the 

326 ability of bentonite-isolated bacteria to interact with Eu in a unidentate or bidentate 

327 bridging mode. Nevertheless, these results provide further verification that carboxyl 

328 functional groups from the macromolecues of the bacterial cells are responsible in 

329 forming organo-metallic complexes with the EuIII metals, as also reported by the 

330 potentiometric and luminiscence results.

331 In addition, the ATR-FTIR spectra indicated that phospholipids might also be involved 

332 in the cell-metal complexation. The lower intensity of the band found at 933 cm-1 of 

333 EuIII-treated cells compare with EuIII-untreated cells suggests phosphate groups as 

334 candidates for EuIII complexation.23 
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335 4.4. Characterization of EuIII-S. bentonitica interactions using XPS.

336 This method was applied to determine the local coordination of EuIII at the cell surface 

337 of S. bentonitica approximately up to 5 nm.45 The elemental composition of the S. 

338 bentonitica surface, resulting from integrating the C1s, O1s, N1s and P2p from the wide 

339 scan spectrum can be seen in Figure 2A-D. Sodium and chlorine were also detected as 

340 samples were washed with 0.1 M NaClO4. Eu was detected in the bacterial sample in 

341 contact with a 30 µM EuIII solution for 48 hours. Nitrogen appeared at a binding energy 

342 of 399.99 eV, attributable to amine or amide groups of proteins.23,46–49 Phosphorus was 

343 found at a binding energy of 133.99 eV, and can be attributed to phosphate groups.47–49 

344 The presence of amine groups from proteins and phosphate groups based on the binding 

345 energies of N1s and P2p are in agreement with the results from potentiometric titrations 

346 (pKa = 6.8 and pKa = 9.4) and the FTIR spectra (adsorption bands at 1635 cm-1, 1535 

347 cm-1, and 933 cm-1).

348 XPS peaks corresponding to Eu3d were also analysed at high resolution to assess the 

349 nature of the EuIII complex and shown in Figure 2D. The local coordination of Eu 

350 associated to the cells of the studied strain, observed at 1135 eV, is similar to that of Eu-

351 acetate as was described by Mercier et al.50 This suggests that carboxyl groups 

352 containing cell wall molecules like glutamic acid of peptidoglycan are involved in the 

353 Eu binding. Previous studies showed the role of carboxyl groups from glutamic and 

354 aspartic acid present in proteins of the S-layer of B. sphaericus in the complexation of 

355 uranium and palladium.51,52 Therefore, carboxyl groups of the glutamic acid of the 

356 peptidoglycan (PG) layer of S. bentonitica could be involved in the interaction of EuIII.
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358 Figure 2. XPS spectra of S. bentonitica  in absence (A, C) and presence of 30 µM EuIII 

359 (B, D). High-resolution spectra of the region belonging to Eu 3d (C and D).

360

361 4.5. TRLFS characterization of EuIII/CmIII interaction with S. bentonitica

362 Potentiometric titrations, ATR-FTIR, and XPS studies showed the involvement of 

363 phosphate and carboxyl groups in the coordination of EuIII by the S. bentonitica cells. In 

364 addition, EuIII and CmIII were used as luminescence probes to investigate CmIII/EuIII 

365 binding on S. bentonitica based on changes of the intrinsic luminescence properties due 

366 to microbial interaction. The studies with CmIII, radioactive analogue of EuIII, were 

367 carried out at much lower concentrations relevant to environmental conditions (0.3 

368 µM).

369
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370 4.5.1. Europium

371 The luminescence spectra depicted in Figure 3 showed the interaction of EuIII with S. 

372 bentonitica through typical changes as result of cell addition after 1, 24 and 48 h of 

373 anaerobic incubation at pH 6 in both, supernatants and re-suspended cells. This 

374 suggested the complexation of EuIII with extracellular released complexing agents and 

375 bacterial surface functional groups, respectively. In the supernatant and the re-

376 suspended cells the 7F0 transition appeared at 579 nm with a slightly higher intensity 

377 than in the blank sample. This pointed to a different symmetry around the EuIII center 

378 compared to the blank spectrum and is a further argument for interaction process of 

379 EuIII with the cells. The luminescence spectrum of EuIII aqua ion (blank) is 

380 characterized by emission bands at 585-600 nm (magnetic dipole transition 5D0  7F1) 

381 and 610-630 nm (hypersensitive transition 5D0  7F2). An increased intensity of the 

382 hypersensitive 7F2 transition at 617 nm moving from blank via supernatant to the re-

383 suspended cells was discovered. 

384 In the supernatants, there was a systematic increase in the 7F2 transition as a function of 

385 the incubation time (Figure 3A). This could indicate an increase in the release of 

386 complexing agents from the cells at a longer incubation time. Total organic carbon 

387 (TOC) content of the supernatant samples increased after 24 h of incubation (Figure 

388 S3), suggesting the release of complexing substances from the cells. These results are in 

389 agreement with the EuIII removal studies (section 4.2), in which the amount of Eu 

390 adsorbed increased with the incubation time. In the re-suspended cells, there was a fast 

391 rise in the intensity of the 7F2 transition after an incubation time of 1 h. Then, no 

392 systematic changes in the spectra, as a function of the incubation time, were observed 

393 (Figure 3B). 

394
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395

396 Figure 3. Luminescence emission spectra of 30 µM EuIII measured for the supernatants 

397 after separating the S. bentonitica cells (0.2 g/L) (A) and the re-suspended cells (B) 

398 under anaerobic conditions at pH 6 and different incubation times (1, 24 and 48 hours) 

399 in 1 M NaClO4.

400

401 In supernatants and re-suspended cells, EuIII appeared in two different coordination 

402 environments. The short-lived component in supernatants was measured at 117, 129 and 

403 133 µs after 1, 24, and 48 h, respectively (Table 1). These lifetimes indicated a similar 
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404 coordination environment after 24 and 48 h. Those EuIII-species containing 

405 approximately eight water molecules and one binding site will be filled by 

406 functionalities of the released substances. The luminescence lifetime of 114 ± 5 µs 

407 corresponding to 8.8 ± 0.5 coordinated water molecules found in the blank was 

408 characteristic to the Eu3+ ion. The short lifetime of 117 µs found in the supernatant after 

409 1 h of incubation indicated the presence of the EuIII ion. The longer lifetimes, 387 to 

410 500 µs, could indicate an interaction of EuIII with released substances from the cells 

411 independently from the incubation time. In this second type of EuIII complex only up to 

412 1 to 2 water molecules remained. In the case of re-suspended cells, a bi-exponential 

413 luminescence decay was measured indicating two coordination environments of EuIII. 

414 The short-lived component showed luminescence lifetimes between 144 and 225 µs (7 

415 and 4 coordinated water molecules, respectively), whereas the long-lived component 

416 varied between 477 and 609 µs (2 and 1 coordinated water molecules, respectively). In 

417 a first approximation, similar EuIII species were formed for the short-lived component of 

418 the supernatant and re-suspended cells. In the same way, the long-lived component of 

419 both supernatant and re-suspended cells suggested a similar coordination environment 

420 but different from the one found for the short-lived component. 

421 By comparing our lifetime results with literature data, phosphoryl and carboxyl groups 

422 present on bacterial cell envelopes and bacterial released substances seem to play an 

423 important role in the EuIII coordination sites characterized by, for instance, their 

424 individual luminescence lifetimes, probably in form of R-O-PO3-Eu2+ (R-O-PO3H-Eu2+ 

425 under acidic pH conditions) and R-COO-Eu2+ as revealed by previous studies (Table 

426 1).12,53 Specifically, the EuIII-S. bentonitica complexes seem to have similar properties 

427 as the surface species R-O-PO3H-Eu2+observed on cell envelopes of Sporomusa sp. 

428 MT-2.99 as revealed by the long lifetimes.12 The coordination site characterized by 
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429 short lifetimes seem to interact with EuIII with similar properties as the surface species 

430 R-COO-Eu2+ observed on cell envelopes of Sporomusa sp. MT-2.99 and P. 

431 fluorescence.12 It is important to note that the results presented here were very similar to 

432 those obtained aerobically and have comparable significance (Figure S4).

433

434 Table 1. Spectroscopic properties obtained from the EuIII-S. bentonitica system at pH 6 

435 using different incubation times and other relevant model systems.

Sample RE/M Lifetime 

(µs)

Proposed species Reference

EuIII control 0.50 ± 

0.05

114 ± 5 Eu3+ This work

Supernatants

EuIII-S. bentonitica

This work

1 h incubation 0.9 117; 387 Eu3+; phosphoryl 

sites

24 h incubation 1.2 129; 490 Carboxyl; 

phosphoryl

48 h incubation 1.3 133; 500 Carboxyl; 

phosphoryl

Cells

EuIII-S. bentonitica

This work
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1 h incubation 2.3 144; 477 Carboxyl; 

phosphoryl sites

24 h incubation 2.1 174; 561 Carboxyl; 

phosphoryl

48 h incubation 2.1 225; 609 Carboxyl; 

phosphoryl

EuIII-Sporomusa sp. 

MT-2.99

3.3 170 R-COO-Eu2+ Moll et al.12 

1.8 515 R-O-PO3H-Eu2+

EuIII-Bacillus subtilis 230 Carboxyl sites Markai et 

al.54 

730 Phosphoryl sites 

EuIII-Pseudomonas 

aeruginosa

98-254 Carboxyl sites Texier et 

al.53 

534-677 Phosphoryl sites

436

437 4.5.2. Curium

438 The chemical speciation of CmIII with S. bentonitica cells was studied at trace (0.3 μM) 

439 CmIII concentrations by TRLFS. These measurements were conducted assuming that the 

440 influence of the luminescence properties of the microbial CmIII-species dominates over 

441 the influence of soluble CmIII-species with, for instance, released complexing agents. 
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442 The pH-dependent spectroscopic CmIII speciation in the cell suspensions is shown in 

443 Figure 4. 

444

445 Figure 4. Luminescence emission spectra of 0.3 µM CmIII in 0.1M NaClO4 measured as 

446 a function of pH at a fixed biomass concentration of 0.2 gdry weight/L.

447

448 From the dependencies found in the TRLFS spectra, it can be concluded that there are 

449 two coordination environments of CmIII due to interactions with functional groups of 

450 the cell surface and possibly with released complexing agents. Thus, the Hypspec 

451 analysis of the pH dependent emission spectra measurements revealed two CmIII 

452 bacterial species (Figure 4). CmIII-S. bentonitica species 1 was characterized by an 

453 emission maximum at 599.6 nm while CmIII-S. bentonitica species 2 showed a more red 

454 shifted emission maximum at 601.1 nm. The extracted single component spectra of both 

455 species are shown in Figure 4. TRLFS of the supernatants and the CmIII loaded biomass 

456 after washing with 0.1M NaClO4 showed that 73% of the detected CmIII luminescence 

457 intensity remained in solution at pH 8.04, while, only 23% was associated to the 

458 biomass. This evidence indicated that a complexation of CmIII by substances released 
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459 from the cells was occurring. In all samples containing cells, a bi-exponential 

460 luminescence decay was detected (Table S3). At pH 3.2 the short lifetime of 71 µs 

461 points to uncomplexed Cm3+. Between pH 4 and 8 both lifetimes amounted to 120 ± 8 

462 and 290 ± 23 µs corresponding to 5 and 2 coordinated water molecules, respectively. By 

463 comparing our results with the ones reported in literature, a close agreement was found 

464 to the study of Lopez-Fernandez et al.15 The long lifetime and the corresponding 

465 emission maximum matches with CmIII interactions with microbial phosphoryl sites, 

466 whereas the short lifetime can be attributed to carboxyl interactions of CmIII. 

467

468 4.6. Cellular localization of EuIII by STEM-HAADF (Scanning Transmission Electron 

469 Microscopy-High Angle Annular Dark Field).

470 STEM-HAADF micrographs of thin sections of S. bentonitica cells exposed to EuIII 

471 revealed the presence of electron-dense accumulations, mainly at the cell surface 

472 (Figure 5A-D) under both aerobic and anaerobic conditions. In addition, very few 

473 extracellular (Figure 5A-D) and intracellular (Figure 5D) accumulations were observed. 

474 EDX analysis (Figure 5E-F) and element-distribution mapping (Figure 6) of these 

475 accumulations indicated a main composition of Eu and P. The detection of P in the 

476 EDX analysis of the EuIII precipitates also confirmed the key role of functional groups 

477 containing phosphorus in their interaction with EuIII. These results showed biosorption 

478 of EuIII as the main interaction mechanism with the cells of S. bentonitica. However, the 

479 presence of few extracellular and intracellular EuIII precipitates indicated that the 

480 interaction is not only mediated by biosorption, thus other processes, such as 

481 bioaccumulation and bioprecipitation, could also occur. This matches very well with the 

482 EuIII removal studies (section 4.2.) suggesting the implication of other interaction 

483 mechanisms.
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484

485
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486 Figure 5. STEM-HAADF micrographs showing electron-dense accumulations at the 

487 cell surface, extracellular, and intracellularly under aerobic (A-B) and anaerobic 

488 conditions (C-D). EDX analysis (E-F) confirming the Eu and P composition of the 

489 accumulations. The formation of vesicles by S. bentonitica cells is indicated by arrows 

490 (C-D). Scale bars: 200 nm (A), 1µm (B), 100 nm (C), 50 nm (D).

491
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492 The formation of outer membrane vesicles (OMVs) by S. bentonitica cells exposed to 

493 EuIII was observed in the STEM-HAADF micrographs (Figure 5C-D). The production 

494 of OMVs by Gram-negative bacteria plays a prominent role in cell protection against 

495 hostile environments.55,56 Morever, it represents a mechanism to alleviate stress through 

496 the packaging and release of stress-products.57 Therefore, the vesicle formation 

497 mechanism of S. bentonitica cells could be involved in their EuIII tolerance. In addition, 

498 the detection of extracellular precipitates could be a consequence of the release of 

499 intracellular accumulates through the formation of vesicles. However, further 

500 investigations are needed to confirm this hypothesis. On the other side, intracellullar 

501 accumulation could be a consequence of a passive process  associated to damage of the 

502 cell membrane permeability, since Eu do not play any biological function and the cells 

503 do not have a specific transport system for the uptake of this element. The explanation 

504 of how and why elements such as Eu are accumulated in the cytoplasm of some 

505 microorganisms remains unknown.
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506

507 Figure 6. STEM-HAADF micrographs of thin sections showing the adsorption of EuIII 

508 on a S. bentonitica cell after 48 h in contact with 30 µM EuIII solution. Scale bars: 500 

509 nm.

510

511 4.7. Environmental implications.

512 The safety of the DGR system have been well studied from a geological, chemical, and 

513 physical point of view but, very few works have investigated the impact of microbial 

514 processes in the safety of this disposal option. It is well known that microbe occurring 

515 in different DGR barriers, including bentonites, could affect the safety of a DGR 

516 through: 1) corrosion of metal containers, 2) transformation and alteration of bentonite 

517 minerals, 3) gas production, and 4) mobilization of radionuclides present in the system, 

518 such as curium, selenium, or uranium. Here we reported a clear effect of the activity of 

519 the bentonite bacterial isolate S. bentonitica, on the speciation and mobility of trivalent 

520 actinides such as CmIII and its inactive analogue EuIII. 
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521 A multidisciplinary approach combining microscopy, spectroscopy, and potentiometric 

522 titration based methods allowed us to provide new insights on the speciation of Cm and 

523 Eu asociated with bacterial strains (isolated from one of the most important arificial 

524 barriers, bentonites, of future DGR). The results obtained revealed that carboxyl and 

525 phosporyl groups from bacterial envelopes and other extracellularly released 

526 complexing agents seem to be involved in the interaction with Eu and Cm. Specifically, 

527 XPS analysis suggested that these carboxyl groups could arise from macromolecules 

528 located at the cell surface such as glutamic acids of the peptidoglycan layer, which 

529 could be involved in the complexation of EuIII. In addition, ATR-FTIR suggested that 

530 the coordination of EuIII with carboxyl groups from the bacterial cell wall could occur in 

531 a bidendate bridging mode. Finally, TEM analysis, in combination with the rest of the 

532 techniques, suggested that the Eu/Cm-bacteria interaction most probably occur through 

533 several microbial processes such as biosorption, intracellular accumulation, and 

534 biomineralization. The results here reported clearly suggested that S. bentonitica could 

535 influence the speciation and hence mobility of Eu and Cm,  afeccting the safety of the 

536 DGR system.

537

538 Biosorption and bioaccumulation may enable the metal removal from contaminated 

539 aqueous solutions through the immobilization of bacterial biomass to inert supports,58 

540 which are nowadays receiving attention for bioremediation purposes. The 

541 immobilization of microorganisms in minerals from bentonites and other materials 

542 through the formation of biofilms could lead to the immobilization of bioadsorbed or 

543 bioaccumulated radionuclides. Indeed, genes coding for the formation of biofilms such 

544 as those involved in the formation of surface structures (flhA, flhB, fliR, fliQ, fliP, fliN, 

545 fliM) 59 or those encoding outer-membrane lipoproteins (slp) 60 have been reported to be 
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546 present in the genome of S. bentonitica 61 (GenBank accession number 

547 MKCZ00000000). In addition, the production of flagella-like proteins by this bacterium 

548 could be involved in the formation of biofilms. Clark et al.62 demonstrated the role of 

549 flagella-like filaments produced by Desulfovibrio vulgaris in the establishment and 

550 maintenance of biofilms between cells and silica oxide surfaces. Therefore, S. 

551 bentonitica could positively influence the safety of repositories by inducing the 

552 immobilization of radionuclides through the biofilm formation. 

553 In addition to biosorption and bioaccumulation, a long-term bioprecipitation process 

554 could be involved as suggested by the extracellular Eu precipitates observed by STEM-

555 HAADF. Bioprecipitation basically leads to the inmobilization of radionuclides since it 

556 is based on the conversion from soluble to insoluble forms through their precipitation 

557 with released cell ligands (carbonates, phosphates, etc.).11,63 From all mentioned above, 

558 the present study could be really helpful to better understand how microbes affect the 

559 safety of the disposal of radioactive residues, which is a global environmental concern 

560 nowadays.
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