
1.  Introduction
Intensive rainfall is considered to be one of the primary triggers for flooding alongside other factors, such as 
climate, topography, and soil type of different catchment patterns (Rogger et al., 2017; Westra et al., 2014). 
Evaluation of the flood risks caused by rainfall usually requires use of long-term observed data at one or 
more locations to derive flood-triggering rainfall amounts with preferred exceedance probabilities. This 
procedure is always associated with a region-of-interest (ROI). While the precipitation process is part of the 
global hydrological cycle and hence a (laterally) boundless phenomenon, its area-oriented variation is of the 
concern of the engineers and flood risk managers. The area-oriented rainfall variation and distribution are 
closely related to the climate at large scale (Millán et al., 2005); in the meantime, local features and process-
es, such as the topography, urbanization, as well as the orientation and the size of the area can also affect the 
rainfall amount (Buytaert et al., 2006). Many studies, for example, Buishand et al. (2008), Jung et al. (2017), 
Pedersen et al. (2010), and Zheng et al. (2016), have attempted to understand the spatial variation of rainfall 
extremes at different scales based on gauge records.

Moreover, spatially disaggregated, grid-based hydroclimatic datasets have become increasingly accessible, 
motivating the research community to process large-scale variation analysis of grid-by-grid extremes with 
these new datasets (Peleg et al., 2018), for example, analyzing the spatial variation of grid-based hydrocli-
matic observations (UKCIP, Banwell et al., 2018; E. J. Kendon, Fosser, et al., 2019; M. Kendon, McCarthy, 
et al., 2019; Lowe et al., 2018; Prein et al., 2017) and the temporal variation of hydroclimatic extremes, such 
as frequency analysis (Li et al., 2015; Overeem et al., 2010).

However, these efforts are often frustrated by the fact that the required data records with sufficient length 
are often scarce. It is unsurprising that very few studies have been produced so far. Furthermore, most 
aforementioned studies focus only on the spatio-temporal variation of averaged quantities of hydro-climatic 
variables instead of their extremes; for those indeed focusing on extremes, they tend to be limited by one or 
a few catchments or stations.

In this study, two century-long, grid-based rainfall datasets covering Great Britain (GB) and Australia (AU) 
with relatively high temporal and spatial resolutions (daily and 1–5 km, respectively) are analyzed. The 
overall aim is to gain insights into how area-orientated rainfall extremes vary with space with respect to the 
probability distribution parameters which are of concern of flood risk management (FRM) and civil engi-
neering design. Specifically, this study attempts to address the following questions:
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1.	 �How do areal rainfall extremes change over space?
2.	 �How may other factors, such as the size, shapes of the area in question affect such spatial dependencies?
3.	 �How are the spatial patterns and variations linked to the large-scale climatology of rainfall?
4.	 �What is the implication of the spatial variation of the parameters to the applications (e.g., FRM)?

Additionally, a toolbox known as the spatial random sampling for grid-based data analysis (SRS-GDA, Wang 
& Xuan, 2020), is employed to assist the required spatial sampling with predefined or randomized features, 
for example, size, location, and dominant orientation of ROIs, from the grid-based datasets. The sampled 
annual maximum daily rainfall (AMDR) of each ROI is fitted with the widely used and tested Generalized 
Extreme Value (GEV) distributions whose spatial variation is then analyzed. The associated intensive com-
putation demand is met by the high-performance computing (HPC) resources provided by Supercomputing 
Wales (https://www.supercomputing.wales).

The remainder of this paper is organized as follows: Section 2 describes the data and methods, then the sam-
pled ROI and the goodness-of-fit (GOF) results. Both the qualitative and quantitative results of the spatial 
variation of the distribution parameters and further application are discussed in Sections 3 and 4, as well 
as their linkage to the climatology of rainfall are discussed in Section 5. The conclusions and recommenda-
tions of further study are given in Section 6.

2.  Data and Methods
2.1.  Datasets

This study makes use of two century-long datasets which are the “gridded estimates of daily areal rainfall” 
(GEAR) and the “Australian Data Archive for Meteorology” (ADAM). The GEAR dataset is a grid-based 
(1 × 1 km2) rainfall estimation that covers the mainland of GB from 01/01/1898 to 31/12/2010. It is derived 
from the UK Met Office national database of observed precipitation from the UK rain gauge network, using 
the natural neighbor interpolation method. The coordinates are in the National Grid Reference (Ordnance 
Survey, 1946) which is a projected map coordinate system with the easting (x–) and northing (y–) expressed 
in linear kilometers (Tanguy et al., 2016). The ADAM data set is generated using a sophisticated analysis 
technique described in Jones et  al.  (2009), which is also grid-based (0.05  ×  0.05°, ∼5  ×  5  km2) rainfall 
from January 1, 1900 to December 31, 2018 over AU based on the Geocentric Datum of AU 1994 (GDA94; 
Collier, 2002) with the origin (44 S, 112 E), that is (0,0), and easting (x–) and northing (y–) transformed to 
kilometers. The recorded rainfall values are provided as daily rainfall, that is, the total rainfall amount over 
a predefined 24-h (9:00–9:00 a.m.) period which refers to the 24 h prior to the reporting time for the ADAM 
data set and the 24 h after for the GEAR data set.

2.2.  Methodology

The geographical areas of the two data domains, i.e., GB and AU, are sampled into a series of regions-of-in-
terest (ROIs) using the SRS-GDA toolbox. Three predefined spatial features (i.e., geographical locations, 
sizes, and shapes) are applied during the sampling process to reduce the overall computing time while 
maintaining the representativeness of the samples. The block maxima series, that is, the AMDR of each 
sampled ROI is then extracted and further fitted by a proper probability distribution. In this study, the 
three-parameter GEV distribution is chosen as the candidate distribution whose GOF is evaluated. The 
parameters ( and  ) of the fitted distributions are then analyzed with regards to their spatial distribution 
referring to the large-scale climatology of rainfall variations.

2.2.1.  ROI Generation and AMDR Extraction

The sampling starts with an initial set of uniformly distributed ROIs whose locations are represented by 
the coordinates of their geometric centroids. At each location, there are seven ROI shapes produced, indi-
cated by their distinctive spatial indexes (Wang & Xuan, 2020) and reciprocally grouped as 0.2/5.0, 0.5/2.0, 
0.8/1.25, and 1.0, respectively. The size of these ROIs is then gradually increased by 10 steps with 20% 
increment each, while maintaining the same shape and location. In the end, the largest sizes the ROIs are 
1,050 km2 for GB and 9,900 km2 for AU, respectively.
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The SRS-GDA toolbox used to generate the ROIs is set up in a way that only one spatial feature is allowed 
to vary at a time. For instance, to obtain ROI samples of G2 and A2 in Table 1, the centroid locations and 
shape are kept unchanged while generating 10 ROIs in different sizes. Table 1 summarizes all types of ROIs 
and their properties.
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Sampling areas Changing with location
Changing with size (each group 

includes 10 ROIs)
Changing with shape (each group 

includes 7 ROIs)

GB Indicators G1 G2 G3

ROI(s) of 1 × 1 km2 grid

Size (km2) 500 10, 43, 87, 164, 257, 366, 504, 660, 
827, 1025

500 each ROI

Total ROI number 88  81 10 810  74 7 518

Total meridional group number 10 10 10

Geographical location (marked as “”)

AU Indicators A1 A2 A3

ROI(s) of 5 × 5 km2 grid

Size (km2) 500 125, 400, 900, 1,550, 2,450, 3,550, 
4,875, 6,350, 8,025, and 9,900

5,000 each ROI

Total ROI number 679  627 10 6270  378 7 2646

Total meridional group number 40 38 30

Geographical location (marked as “”)

Abbreviations: AU, Australia; GB, Great Britain; ROI, region-of-interest.

Table 1 
ROIs for Analyzing the Spatial Variations in GB and AU
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For each ROI, its daily areal rainfall is calculated by taking arithmetic average over the covered grids (e.g., 
spatial average); then the block annual maxima are picked up to generate a time series of AMDR. This work 
was carried out by the HPC, processing around 642.3 GB data with 11,011 areal AMDR series produced.

2.2.2.  Fitting the Extracted AMDRs Using GEV Distribution

The GEV distribution is one of the most well-founded distributions for describing normalized maxima from 
a sequence of independent, identically distributed random variables, for example, the block maxima of 
annual rainfall series. It has been applied to characterize both gauged (Feng et al., 2007; Westra et al., 2013) 
and grid rainfall datasets (Overeem et  al.,  2010). A GEV distribution is controlled by three parameters, 
namely, the location , the scale  , and the shape   which defines the three limiting types: the Gumbel 
(  0), the Frechét (  0), and the reversed Weibull (  0). AMDR (denoted as x) of each ROI is fitted by 
a GEV distribution whose cumulative probability distribution function is as follows:
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, ,  and    . A maximum likelihood esti-

mator (Hosking, 1985) is employed to estimate the parameters of GEV.

However, the GEV distribution has been chiefly used to fit point rainfall extremes as reported in many stud-
ies (Schaefer, 1990; Yoon et al., 2013), very few studies have been done on the suitability of fitting the areal 
grid-based rainfall extremes with GEV. Thus, in this study, the GOF is tested using a bootstrapped version of 
Kolmogorov–Smirnov (KS) and Anderson-Darling (AD) tests, and the L-moment ratio diagrams (Text S1). 
Out of the AMDRs from all ROIs (1,416 ROIs of GB and 9,595 of AU) tested, the results show that the GEV 
distribution fits well the AMDR series with a 100% pass of the KS test and more than 97% of the AD test. 
This is also supported by the L-moment ratio diagrams (Figure S1c) which demonstrates the fitted GEV 
distributions compared with the statistical characteristics of the AMDR itself.

2.2.3.  Analyzing the Spatial Distribution of the Location-Scale Parameters

The spatial variation of the location and scale parameters of the fitted GEV distributions are analyzed both 
qualitatively and quantitatively. Instead of using full spatial coordinates to represent the geographical lo-
cations, a univariate spatial-location representation is adopted in this study. This procedure is briefly de-
scribed below:

1.	 �The chosen GEV parameter is aggregated meridionally, for example, over all ROIs that have the same 
x-direction (easting or longitude) coordinate.

2.	 �The aggregated GEV parameter values are indexed by their x-direction only coordinates which are then 
used as an input variable to represent the geographical locations.

3.	 �The same procedure is also applied zonally, that is, over the same y-direction coordinate.

With this arrangement, the meridional or zonal average of the GEV parameter in question is taken as the 
response variable. In AU, a concentric pattern is found where both the meridional and zonal average show 
similar results (Figure S6); For the GB case, only a strong west-east pattern exists. Therefore, for the con-
venience of comparison, the meridional average is chosen for both cases. The spatial variation of  is less 
significant over space thus is not considered (Figure 1 and S7).

Finally, a generalized linear model (GLM) is fitted to quantify the relationship between the GEV parameters 
and the associated spatial features of the ROIs, that is, to explicitly model the spatial variation of the GEV 
parameters with respect to the locations, sizes, and shapes of the underlying ROIs. A k-fold-cross-validation 
(Efron & Tibshirani, 1997) and variogram (Cressie & Hawkins, 1980) are employed to evaluate the perfor-
mance of GLMs.
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Figure 1.  Histograms and spatial variations of the three GEV parameters in GB (a) and AU (b); the changes of meridional average  and   with the change of 
ROIs’ size in GB (c) and AU (d) where the color scale indicates that majority of ROIs in both cases are decreased with the increase of ROI sizes; and the changes 
of meridional average  and   with the change of ROIs’ shapes sp in GB (e) and AU (f) where a symmetric pattern in both cases is observed but the changes 
with respect to ROI shape is not significant. AU, Australia; GB, Great Britain; GEV, generalized extreme value; ROI, region-of-interest.
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3.  Results and Discussion
3.1.  GEV Parameter Variation Over Geographical Locations

Figure 1a and 1b present the histograms and spatial variations of the three GEV parameters of all ROIs in 
both GB and AU where the following patterns can be clearly identified:

•	 �Most ROIs are in favor of the Frechét type of distribution (  0).
•	 �Both   and  present a similar spatial pattern where a higher  is usually accompanied by a higher  .

In GB, the values of  and   in the western region, especially those in the coastal area, are much larger than 
those in the east. Such west–east gradient is also strong in the west, indicated by much denser contours. 
However, there is no remarkable variation from south to north, even though both  and   in Scotland are 
higher. As such, the meridional average is thought to better reveal such eastward pattern which can be de-
scribed as “west high, east low” with an apparently nonlinear variation.

Both  and   in AU have a clear increasing trend from the south-middle zone to the coastal regions. This 
spatial pattern can be seen as a series of concentric circles. It is also noted that the rapid variations are close 
to the north-eastern coastal regions.

3.2.  Variation of GEV Parameters With Regards to the Area Size

Figure 1c and 1d show the changes of  and   of all meridional groups in GB and AU, parameterized by 
the size of the ROI (s, km2). Generally, regardless of their locations, the parameter values are inversely pro-
portional to the ROI sizes.

The decreases in both  and   with increased ROI sizes have an important implication: the most frequent 
AMDR (relating to ) becomes smaller for larger ROI alongside an overall decreased extremity (relating 
to both parameters). Another interesting measure is the rate of such reduction (RR) as the size of ROI in-
creases, which has also shown a clear spatial dependency. In AU, the RR remains low in the central desert 
zone (e.g., from Easting 300 to 360 km), and increases near the coastal areas where large parameter values 
are also found. This feature can be explained by the fact that regions receiving more extreme rainfall (e.g., 
the coastal regions in AU) are not only manifested by the higher  and  ; but also have more heterogenous 
rainfall than regions with less extreme rainfall (lower  and  ). Therefore, the changes of  and   are 
more sensitive to geographic locations, as revealed by the RR. GB also shows a similar pattern albeit not as 
remarkable.

3.3.  Variation of GEV Parameters Due to the Area Shape

Figure 1e and 1f present the changes of  and   of all meridional groups in GB and AU, parameterized by 
the ROI shape (sp). The variation of the shape starts from west–east orientated (  0.2sp ), gradually growing 
into more rounded (  1.0sp ) , then to north–south orientated (  5.0sp ) ones. Two shapes with reciprocal 
sp values will have their major dimension swapped, that is, east–west versus south–north and vice versa. 
The result is inspected and summarized as follows:

•	 �For the majority of the meridional groups, there is little difference between the location-scale parameters 
of ROIs with reciprocal shapes, for example, two shapes with sp values of 0.2 and 5.0. This is regarded as 
a symmetric pattern around  1.0.sp

•	 �Generally,  and   of ROIs in an elongated shape are smaller than those of the ROIs in more rounded 
shapes. This indicates that the rounded-shape ROIs have a better chance to capture more rainfall ex-
tremes than the elongated ones. It also leads to that for the same area size, regions with more regular 
shape tend to have more extreme areal rainfall.

•	 �Overall, the effects of ROI shape are insignificant.
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4.  Quantification of Spatial Variation
Generalized Linear Models (GLMs) are based on an extension to the classical linear regression model, 
having been widely applied in hydrometeorology (Coe & Stern,  1982; Stern & Coe,  1984) and shown 
to be effective in terms of incorporating complex structures (Segond et al.,  2006). Since Chandler and 
Wheater (2002) proposed a GLM-based framework for interpreting historical daily rainfall records and 
revealing the changes on rainfall occurrence and amount in western Ireland, many more applications 
have followed, for example, Yan et al. (2002), Yang et al. (2005), and Rashid et al. (2013) with good per-
formance reported.

As the two meridionally averaged parameters   and   which reflect the property of rainfall extremes 
are shown to follow similar right-skewed gamma distributions (Figure S2a), we broadly followed Chan-
dler and Wheater  (2002) and proposed a GLM with a log-link to quantify the spatial variation. The 
fitting starts from a simplest prediction form, and then adds other predictors or their combinations 
successively, for example, x s, s sp, or x sp (James, 2002). To determine whether to keep the newly 
added predictor/combination, the significance of the new term is evaluated by calculating the log-like-
lihood at the significant level of 0.05 (detailed in Text  S2). Finally, an optimal form of the GLMs is 
obtained by considering both the log-likelihood and the discrepancy (e.g., root-mean-squared-error) 
and identified as:

     2 3
GBFor : 1 x s x x μGBβ� (2a)

     2 3
GBFor : 1 x s x x σGBβ� (2b)

      2 2
AUFor : 1 x s sp x s μAUβ� (3a)

        2 2
AUFor : 1 x s sp x s x s σAUβ� (3b)

where the subscripts of β refer to the study case in question. A maximum likelihood estimator (McCul-
lagh, 2018) was employed to obtain β (see the estimations in Table S1). These fitted GLMs are visualized in 
Figure 2a and 2b which show the following intriguing spatial features:

1.	 �In GB, both the meridionally averaged  and   have a nonlinearly eastward-decreasing pattern. The RR 
is stronger in the west (   GBΔ 0.22 / km;   GBΔ 7.50 / 100km) and gradually reduces to the east 
(   GBΔ 0.02 / km;   GBΔ 0.30 / 100km). An almost-linearly decreasing pattern with increase of 
ROI size (    2

GBΔ 0.02 / 100km  and    2
GBΔ 0.08 / 100km ) is shown and such RRs are not affected 

by the geographic locations. However, they do not appear to be dependent on the ROI shape (sp)
2.	 �In AU, the spatial changes of the meridionally averaged  and   are nonlinear with respect to both 

the ROI location and size. The parameter  diminishes slowly from west coasts to south-middle zone 
(   Δ 0.05 / 500kmAU ) then increases faster and faster to the east coasts (largest   AUΔ 6.70 / 500km); 
The parameter   shows a “center low, outer (coastal regions) high” pattern where the changing rate near 
the center (  AUΔ 0.05 / 500km) is lower than the coastal regions (  AUΔ 1.40 / 500km). Unlike 
in GB, sp plays a more significant role and diminishes both parameters (     AU AUΔ 0.9,Δ 0.5) 
when the ROI shape changes from the west–east-orientated (  0.2,0.5sp ) to north–south-orientated 
(  5.0,2.0sp ). It means that the north–south variation in AU is in general smaller than that of the east–
west direction. Besides, the combined term ( x s) is significant, which means that the RR of   with 
respect to ROI size varies at different geographic locations. It is manifested by the uneven vertical gaps 
between contours in the right panel of Figure 2b

The performance of the GLMs is evaluated by comparing the parameter values modeled by the GLMs and 
those from the originally fitted GEVs (Figure 2c), where in the GB case there are slight underestimates for 
some large values that appear in the western coastal region; and in the AU case, some overestimates happen 
for the small values which are located in the middle-south dry zone. The GLM model probability structure is 
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Figure 2.  Visualization of the GLMs fitted to the meridional average GEV  and   parameters as a color-scale plot for GB (a) and a contour plot for AU (b) 
whose contours are picked up at the same stops of the values and their changes with respect to the geographic location and size; and a scatter plot (c) and a 
normal quantile plot (d) for revealing the difference between the actual GEV parameters and the modeled GEV parameters. AU, Australia; GB, Great Britain; 
GEV, generalized extreme value; GLM, generalized linear model.
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checked by a residual analysis (McCullagh, 2018; Pierce & Schafer, 1986; 
Wang, 1987) whose results are shown in Figure 2d with a theoretical nor-
mal distribution shown on the x-axis and the residual quantiles on the y
-axis. If the probability assumption (i.e., gamma assumption) is correct, 
all residuals would have the same distribution which is an approximate 
normal distribution. The distribution of the residuals of the four GLMs is 
symmetric with two flat sides. Generally, the approximation fits well ex-
cept for the upper side which represents only 0.9% of the total data points. 
In view of the research aims, this is considered to be acceptable. The loca-
tive continuity in the adjacent ROIs was compared using variograms (see 
Text S4) which show highly similar spatial correlations in the parameters 
modeled by the GLM and those from the originally fitted GEVs for both 
the GB and AU cases. The prediction skill of the fitted GLMs is tested 
using a k-fold-cross-validation (  10k ) method which produces average 
Nash-Sutcliffe efficiency (NSE) coefficients across all random partitions 
of the four GLMs as 0.97, 0.89, 0.86, and 0.62 (see Text S3).

These quantitative findings regarding the spatial variation of the GEV pa-
rameters have two import implications to many downstream applications 
of the areal rainfall maxima, for example, FRM. For one aspect, the tradi-
tional approach in FRM makes use of point rainfall maxima to represent 
the areal one (catchment or a predefined area), where a scaling factor is 
involved. This simplistic treatment ignores the complexity in spatial dis-
tribution, nor can it account for the interplay of the size, location as well 
as shape of the area in question, as revealed above. For another, the over-
all quantification of the spatial variation of the GEV parameters (hence, 
the return values) makes it possible to study the FRM at country level as 
a single entity instead of looking at individual regions with isolations. It 
also helps to gain insights into how large scale hydroclimatic (rainfall) 
variation can affect the local FRM, which is very important for studying 
FRM under climate change impact.

5.  Link to the Large-Scale Climatology of Rainfall 
Variation
The GEV distribution parameters that can reveal the characteristics of 
extreme rainfall in terms of both its amount and occurrence probability, 
are shown to have a strong spatial dependency as discussed in the pre-
vious sections. To understand how such spatial variation of the extreme 
rainfall is related to the climatology of rainfall variation, areal annual 
rainfall (AAR) time series from each ROI were obtained. The mean and 
standard deviation (SD) of the AAR series were then compared with the 
GEV parameters   and   of the AMDR series extracted from the same 
ROIs. To visualize the link, the spatial continuity of the corresponding 
parameters from both AAR and AMDR were represented by their var-
iograms (see Figure  s5) which show very little difference on locative 
continuity. Figure 3 demonstrates a great deal of similarity existing in 

space between the daily maxima time series (i.e., the AMDR) and the cumulative annual rainfall (i.e., the 
ARR). For example, regions with higher mean of AAR are not only represented by a higher SD (e.g., the 
circles located in west Scotland and west Wales of GB and in north-eastern coastal regions of AU, appear-
ing more reddish and larger), they are also associated with higher GEV parameters of AMDR, and appear 
to be more heterogenous. This feature also exists in regions with low and more even annual rainfall distri-
bution, but works in an opposite way (e.g., circles located in middle and eastern England of GB and mid-
dle-north zone of AU are all more bluish and smaller). These findings are consistent with those published 
in the series of climate reports of GB (M. Kendon et al., 2015, 2018, E. J. Kendon, Fosser, et al., 2019, M. 
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Figure 3.  Comparison between the mean and standard deviation (SD) 
of areal annual rainfall (AAR) and GEV parameters  and   of annual 
maximum daily rainfall (AMDR) in GB (a) and AU (b) cases where the 
color denotes the values of mean of AAR or the GEV parameter  of 
AMDR, and the size of the circles denotes the value of standard deviation 
of AAR or the GEV parameter   of AMDR. AU, Australia; GB, Great 
Britain; GEV, generalized extreme value.



Geophysical Research Letters

Kendon, McCarthy, et al., 2019) and AU (CSIRO & Australian Bureau of Meteorology, 2018; Frederiksen 
et al., 2014) and further discussed in Text S5.

6.  Conclusions
This paper presents a study on the spatial variation of extreme rainfall using two-century long datasets cov-
ering GB and AU. The AMDR series extracted from regions-of-interest (ROI, 11,011 in total) with various 
spatial properties (location, size, and shape), are individually fitted with GEV distributions whose param-
eters are then analyzed over the space. Four GLMs are developed to quantify these variations by involving 
the effect from the geographical location, area size, and shapes. From the results discussed previously, the 
following conclusions can be drawn:

1.	 �The GEV distributions are shown to be able to model well the grid-based areal-AMDR for both GB and 
AU; more than 90% of the regions are better fitted with the Frechét distribution among the three GEV 
types.

2.	 �The GEV location () and scale ( ) parameters present similar spatial patterns where a higher  is usual-
ly accompanied by a higher   indicating those regions that have higher amount of most frequent rainfall 
often observe a higher occurrence probability of extremes.

3.	 �Geographic location is the most significant factor affecting the two GEV parameters. The spatial pattern 
in GB is an eastward-decreasing-banded pattern with no significant difference along north–south direc-
tion. In AU, a concentrically increasing pattern from middle-south zone to north–east coasts is found.

4.	 �Increasing the region size will decrease both parameters which means a decrease of the most frequent 
AMDR amount and the occurrence probability of extremes. However, in AU, the rate of such decrease 
varies with regions as the combined impact of ROI location and size is also detected to be significant.

5.	 �Compared with other spatial properties, the shape of ROI is detected as insignificant, even though, a 
symmetric pattern is found for regions with reciprocal spatial indexes. Also, regions of more elongated 
shapes tend to have small parameter values in contrast with those having regular/rounded shapes.

These findings offer a new quantitative insight in understanding the spatial variation of large-scale clima-
tology of rainfall. The quantification of the extreme rainfall and its spatial dependencies are of great prac-
tical value in engineering design, for example, designed rainfall/floods for constructions. The methods em-
ployed in this study are specifically designed for large grid-based datasets, and thus can be readily applied 
to climate projections for evaluating the spatial heterogeneity of climate change impact, such as flooding 
and droughts. It should be noted that the quality of the underlying datasets, which have undergone a series 
of quality control measures, may still bring in large amount of uncertainties and should be addressed in 
further work. Additionally, impact of the density of the underlying data observations, that is, rain-gauges, 
and its variation over long term also need to be further studied.

Data Availability Statement
The open-source toolbox of spatial random sampling for grid-based data analysis (SRS-GDA toolbox, 
https://doi.org/10.5281/zenodo.4044626) developed by the authors used in this study.
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