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Abstract—:   1 

Optimisation of Wave Energy Converters (WECs) is a very important topic to obtain competitive devices in the energy market. Wave 2 

energy is a renewable resource that could contribute significantly to a future sustainable world. Research is on-going to reduce costs and 3 

increase the amount of energy captured. This work aims to optimise a WaveSub device made up of multiple floats in a line by 4 

investigating the influence of 6 different design parameters such as the number of floats. Here we show that a multi-float configuration 5 

of 6 floats is more competitive in terms of Levelised Cost Of Energy (LCOE) compared to a single float configuration with a LCOE 6 

reduction of around 21%. We demonstrate that multi-float configurations of this device reduce the LCOE especially because of the 7 

reduction of grid connection, installation, control and mooring costs. From the power capture perspective, optimised multi-float 8 

configurations still have similar capacity factors to the single float configuration. This research gives important indications for further 9 

development of the WECs from an optimisation perspective. These promising results show that more complex, optimized, multi-float 10 

configurations could be investigated in future. 11 

Keywords—Renewable energy; wave energy; optimisation; LCOE 12 

 13 

1. Introduction 14 

Research in wave energy has been growing during this century due to the increased need of renewable resources (Neill and 15 

Hashemi, 2018). Different types of Wave Energy Converters (WECs) have been developed based on their working principle and 16 

on the location (Falcão, 2014; Aqua-RET, 2019). The Marine Power Systems Ltd. (MPS) WaveSub device (Chapman et al., 2017) 17 

under consideration in this paper is an off-shore point absorber characterized by a reactor and a floater which are completely 18 

submerged. Its working principle can be found in (Faraggiana et al., 2019) while a multi-float WaveSub is described in (Faraggiana 19 

et al., 2020). Float orbital motion is converted into electricity thanks to the PTO lines that are connected to an hydraulic PTO on 20 

the reactor (See Figure 1). A taut mooring described by the mooring lines gives, the required reactor stability to have a reliable and 21 
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 2 

steady base. The multifloat device can be considered to be an array-on-device and several multifloat devices can be organised into 22 

an array, saving costs through economies of scale. The optimisation of WEC arrays will play an important role for the development 23 

of the wave energy sector. The cost of energy of this technology is currently too high compared to other ways of grid connected 24 

energy production and there is the need to find a credible cost reduction pathway. 25 

 26 

 27 

Figure 1: A digital 3 multi-float WaveSub device during operating conditions.  (Single column image) 28 

A numerical model was used to assess the energy capture performance of the wave device. In this section we review previous work 29 

on array performance modelling, many of which use the Boundary Element Method (BEM) to enable calculation of the 30 

hydrodynamic forces acting on a WEC with arbitrary shape, configuration and layout. The focus of this review is work that has 31 

attempted to optimise array design either by parametric study or optimisation algorithms. A small array of four point absorbers 32 

connected to a moored disk has been optimized as a function of incident wave direction, separating distance between the absorbers 33 

and the PTO damping using a BEM approach (Zhang et al., 2016). All these factors have a great influence in the power absorption 34 

and have influence between each other. Looking in more detail at the power absorption as a function of the PTO damping, the 35 

power absorption first increases and then it starts to decrease slowly. It shows that there is an optimal PTO damping coefficient for 36 

each wave frequency. Different array layout were analysed in the work of Zhang. In particular, they found that when a square 37 

configuration was compared with rhombus and triangular configurations it gave better results in terms of power production and 38 

less sensitivity to the incident wave direction.  39 

A BEM approach has been used also in the work of (Borgarino, Babarit and Ferrant, 2012) in which a parametric analysis of a 40 

wave farm has been carried out, observing the influence of some parameters on the power production. In particular, the influence 41 
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of the device separation on the mean absorbed power is reduced if the PTO damping is optimized and if the WEC has a large power 42 

capture bandwidth. In this research a WEC farm between 9 and 25 devices has been considered thanks to the use of an accelerated 43 

hydrodynamic computation option available within Aquaplus (Delhommeau, 1993). However, generally the computational time 44 

required to simulate large WEC arrays is impractical using a BEM approach. When large WEC arrays are considered, simplifying 45 

assumptions are necessary such as small and vertical axisymmetric bodies oscillating in one single or double modes of motion 46 

(Mavrakos and Koumoutsakos, 1987; Mavrakos, 1991; Mavrakos and McIver, 1997).  47 

Most of the research currently available is related to point absorbers and Oscillating Wave Surge Converters (Child, 2011; Sarkar, 48 

Renzi and Dias, 2014; Zhang et al., 2016). Oscillating Wave Surge Converters are a shallow water flap type device that operate as 49 

a terminator for the waves and consequently devices positioned towards the front of the WEC farm generally have a better 50 

performance than the ones at the back (Sarkar, Renzi and Dias, 2014). Further work showed that a WEC farm staggered 51 

configuration in a 'bowl' or 'chevron' configuration is shown to be more efficient than a linear configuration (Noad and Porter, 52 

2015). In (McGuinness and Thomas, 2016) the optimisation of a linear array configuration was related to the angle of the direction 53 

of the wave train and the position of the wave devices. The spacing between the WECs in a linear array has been also analysed and 54 

it has been found that the best configuration is not when the devices are equally spaced. In-fact an asymmetric solution can optimize 55 

the energy production. An optimized solution shows the devices closer together in the front of the array due to the positive effect 56 

of the radiated field. It is demonstrated that a single row of point absorbers perpendicular to the incident wave can produce 50% 57 

of the incident power if the bodies are operated in one mode (heave) while it could produce all the energy that comes from the 58 

waves if operated in two modes (Budal, 1977). Moreover, when the distance between the WECs is the wavelength and the number 59 

of devices tends to infinity the power absorption may increase to a maximum factor of π when compared to a configuration with 60 

isolated WECs. This work is limited because it used harmonic analysis and in practice ocean waves will produce a significant 61 

averaging effect and a slow fluctuation of the interaction factor. 62 

In the PhD thesis of Child (Child, 2011) an optimisation of an array configuration of point absorbers is considered using the direct 63 

matrix method. Two optimisation methods have been used to find the best array configurations: a heuristic approach called the 64 

Parabolic Intersection (PI) method and the Genetic Algorithm (GA). In particular, each method was used to maximize the power 65 

produced with a given wave regular frequency and direction. This method enables only simplified calculation but with the 66 

advantage of being very fast. It is based on the fact that the constructive and destructive interference is given where the interactive 67 

wave field (scattered and radiated) are in or out of phase with the incident wave field (Child and Venugopal, 2009). In particular, 68 

the strongest interference will be the closest in phase position to the device. The in-phase curves are approximated with parabolas. 69 

These parabolas shapes are constant because the relative phase keeps constant over time. 70 
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A farm of several hundreds of point absorbers can be optimized very efficiently using a multi-scattering method as described in 71 

(Göteman et al., 2015). This method has been then extended to allow for WECs with different dimensions (Göteman, 2017). A 72 

hybrid array is optimized in (Giassi et al., 2017). 73 

A coupling between BEM with other methods is also possible. For example semi-analytical array models can be coupled with 74 

BEM to save computational time (Chakrabarti, 2005; McNatt, Venugopal and Forehand, 2013). 75 

Chakrabarti proposed an hybrid method that combines the BEM and the multiple-scattering method (Chakrabarti, 2005). This 76 

hybrid method overcomes the limitation of the geometry of the multiple-scattering method and at the same time it has less 77 

computational time than the BEM. 78 

McNatt proposed in a similar way to Chakrabarti the coupling between the direct matrix method and the BEM (McNatt, Venugopal 79 

and Forehand, 2013). McNatt developed a MATLAB open-source tool named mwave (McNatt, 2019). (Sharp et al., 2017) applied 80 

mwave to an array optimisation of fixed oscillating water columns. 81 

Finally a coupled numerical model combining a wave propagation model (MILDwave) and a BEM (WAMIT) has been used by 82 

Stratigaky (Stratigaki, 2014). A large number of WEC point absorbers (25) has been considered in the optimisation comparing 83 

experimental and numerical results.  84 

1.1. Aims of this work 85 

This paper aims to optimise a WEC array of a linear multi-float configuration of the WaveSub device. The optimisation parameter 86 

is the Levelised Cost of Energy (LCOE) rather than simply total power output. Important optimized design parameters such as the 87 

number of floats will be obtained through this research that will help the device to be competitive in the economic market. Different 88 

optimisation techniques have been used for this purpose. Two Design of Experiment methods (Taguchi and the Latin hypercube) 89 

are used for sensitivity study of the design parameters. Then the genetic algorithm is used for the refinement of the optimum found. 90 

The genetic algorithm has been chosen because it is a global optimisation algorithm, it is a free gradient algorithm and it can be 91 

used in a parallel computation. In fact, the global optimum is of most interest than local optimum while the gradient of the objective 92 

function is not available easily. The parallel computation, instead, decreases the computation time and it is so very useful. This 93 

work is limited to a small number of floats as the computational time increases significantly with a larger number of hydrodynamic 94 

bodies of the BEM. More specifically, the optimisation carried on considers multi-float configurations of the WaveSub with a 95 

number of floats between 1 and 6. Post-processing of the results will show that an increase of number of floats between 1 and 3 96 

determines a decrease of the LCOE while after that a further larger number of floats contributes only a slight improvement. 97 
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2. Material and methods 98 

2.1. Methodology 99 

Hydrodynamic independence between the different devices is assumed for the optimisation study of the WaveSub farm. This is a 100 

reasonable assumption for small to medium sized arrays if the distance between WECs is large enough. In fact, float spacing 101 

between the WECs in the array is assumed to be large enough compared to the wavelength. However, hydrodynamic interactions 102 

between the components of the multi-float configuration of each device are taken in account because their distance is smaller. Float 103 

spacing between the WECs will be considered in future work where also the layout of the WEC array is considered. 104 

The numerical model of the device is based on Nemoh (Babarit, 2017) and WEC-Sim (Yu et al., 2020). A description of the theory 105 

related to these software is described in (Faraggiana et al., 2020). Nemoh is first used to calculate the hydrodynamic coefficients 106 

of the WEC that are afterwards used as an input for the time domain simulation in WEC-Sim.  107 

 108 

The design parameters considered in the optimisation are the float spacing and number of floats, the float-reactor separation, 109 

stiffness, damping and rated power of the PTOs. Some of them require a simulation in Nemoh for every variation (float spacing, 110 

float-reactor separation and number of floats) while for others, only a WEC-Sim simulation is necessary. During the optimisation 111 

the parameters are considered in the following range: 112 

• Float spacing (From center to center between the floats as a function of the radius of the float): [~6R-25R] m 113 

• Float number: [1-6] 114 

• Float-reactor separation (Between the centres of the float and of the reactor): [20-84.6] m 115 

• PTO stiffness (kPTO): [5-1000] kN/m 116 

• PTO damping (cPTO): [50-1000] kN/(sm) 117 

• Device rated power: [0-100] MW 118 

 119 

The float spacing is investigated from the minimum feasible distance to around four times this minimum. The minimum feasible 120 

distance is determined considering the distance between the attachment points of the PTO lines on the reactor. More specifically, 121 

these attachment points are described by the position of the pulleys of the PTO lines on the reactor. The float number has been 122 

limited to 6 due to the significant increase in the computational cost with increasing number of floats. The float-reactor separation 123 

is investigated in a reasonable range considering the sea depth, the size of both the float and the reactor and the design fixed depth 124 

of the float. The PTOs are described by a simple translational PTO but a more complex PTO model will be necessary in a future 125 

further analysis to follow more accurately the detailed design of a hydraulic PTO. Range of PTO damping and stiffness are set up 126 
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based on the experience of MPS. Finally, the rated power is also one of the parameters to be optimised. At each optimisation 127 

iteration, a power matrix is calculated, this gives details of the power produced by the device for each sea state. It is cost efficient 128 

to limit the power generated for any one sea state to the rated power.  A larger rated power will increase the power produced for 129 

the most energetic sea states but the cost of the PTO will be also higher. The specific value of the maximum cap on rated power 130 

produced by every sea state does not need to be calculated as part of the time domain WEC-Sim simulation and can be calculated 131 

in a post-processing step.  132 

A similar previous optimisation methodology has been explained in (Faraggiana, Masters and Chapman, 2018). The work 133 

presented here extends the methodology to account for the post-processing optimisation of the rated power and the LCOE for each 134 

time domain simulation. The optimisation scheme for a WaveSub array is shown in Figure 2. The range of the design parameters 135 

to investigate is the input of the optimisation while as a result the best combination of design parameters that minimises the LCOE 136 

is obtained. These design parameters are the float spacing and number, the float-reactor separation and the stiffness and damping 137 

of the PTO. The rated power is considered in a second optimisation (See OPT block of  Figure 3) that minimises the LCOE for 138 

each design parameters configuration defined by the main optimisation shown in Figure 2. This second optimisation again uses the 139 

genetic algorithm. The central block of Figure 2 shows the optimisation process based on a genetic algorithm and on a parallel 140 

computation. The genetic algorithm determines the update of the design parameters at each generation to values that minimize the 141 

LCOE. The energy calculation is given by the solver that involves the use both of Nemoh and WEC-Sim and the use of a scatter 142 

matrix.   143 

It should be noted that multiple simulations are required to compute the optimisation loop, and that this requires a complete time 144 

domain wave power calculation for each iteration. This is a significant computational overhead but this can be computed using 145 

HPC facilities and parallel computing thanks to the MATLAB function "parfor" (MATLAB, 2019b). This function enables to a 146 

model to execute in parallel for cycles in a parallel pool. It is possible to set-up the number of workers that the user wants to use 147 

within a multi-processor compute cluster. The optimisation process has been performed six independent times, each one for a 148 

different number of floats. This reduces the number of variables for each optimisation and helps to improve computational 149 

efficiency and throughput for the parallel computations, in this case, all six optimisations can be started in parallel, even though 150 

larger float numbers take a longer time. 151 

 152 
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 153 

Figure 2: The optimisation scheme for a WaveSub array. 154 

 155 

Figure 3: The post-processing OPT block in detail. 156 

Two different Design of Experiment (DOE) approaches have been used for a first stage exploration of the domain. The Taguchi 157 

design can be used to build orthogonal arrays that can help to understand the average response of each design variable on the 158 

response (Roy, 2010). It is a fractional factorial design and so the interaction effects between the parameters can't be understood 159 

completely. Especially a highly non-linear model is difficult to describe well using this kind of sampling. Ortoghonal arrays have 160 

been built based on a MATLAB file exchange (MATLAB, 2019a). The orthogonal array is built based on the paper by (Leung and 161 

Wang, 2001) that establishes a relationship between the number of factors (𝑁𝐹) and levels (𝑄𝑙). This relationship can be expressed 162 

as 163 

𝑁𝐹 =
𝑄𝑙

𝑗−1

𝑄𝑙 − 1
 

(1) 
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 164 

where j is an integer number. 165 

A Latin hypercube DOE has also been used for the better equidistribution of the sample points and to account for non-linearities 166 

of the response. A surrogate model can be created based on this DOE and it can be used to understand better the relationship 167 

between output and input design variables. The model behaviour can be analysed considering the influence on the output of 168 

different parameter values. The main goal of this approach is to find a meta-model that is similar to the computationally expensive 169 

Nemoh WEC-Sim model. 170 

The Kriging emulator, that is suitable for highly nonlinear responses, has been chosen as surrogate model. In particular, this 171 

emulator belongs to the family of linear least squares algorithms. The open-source Oodace toolbox has been used for this purpose 172 

(Couckuyt, Dhaene and Demeester, 2014). The estimation of the response variable of a point x is based on a linear combination of 173 

the results of the simulations and it is expressed as 174 

𝑓(𝑥) = ∑𝜆𝑖(x)f(xi)

𝑁

𝑖=1

 
(2) 

where 𝜆𝑖 are the weights obtained through a regression analysis. Then a Gaussian process is built through the residuals. 175 

The Normalised Root Mean Square Error (NRMSE) and the maximum error (MAX) are used to estimate the efficiency of the 176 

emulator. They are evaluated for a certain number of testing points (𝑛𝑝)and are expressed as  177 

𝑁𝑅𝑀𝑆𝐸 =

√
1
𝑛𝑝

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛𝑝

𝑖=1
 

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

 

(3) 

 178 

𝑀𝐴𝑋 = max (|𝑦𝑖 − 𝑦𝑖̂|) (4) 

 179 

where 𝑦𝑖 and 𝑦𝑖̂ are the real and predicted value of the response. 180 

Once the overall search space has been described, a genetic algorithm has been used as a final stage of the optimisation. The choice 181 

of this algorithm was influenced by the fact that information to be able to find the gradient of the objective function is not easily 182 

available. It uses different operators such as selection, crossover and mutation that will improve the global fitness at each 183 

generation. A more detailed description of the different phases is given here: 184 

• The selection operator is used considering a Stochastic Universal Sampling (SUS). 185 

• A uniform cross-over operator is used. The new population is generated by linear recombination of the previous 186 

generation. 187 

• The mutation operator considers a real coded mutation. 188 
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An open-source code implemented in MATLAB has been used for the optimisation (Blasco, 2019). This code has been extended 189 

to take in account the memory of the previous generations and to account the capability of the surrogate model. In particular the 190 

code has been combined with a Kriging surrogate model and its performance has been checked with a very non-linear test function 191 

as described in Section 3.2. 192 

2.2. Computational model set-up 193 

The device considered in the optimisation is the same also used in (Faraggiana et al., 2020).  194 

A linear multi-float design is characterized by a long reactor and a series of floats aligned along the wave direction. Figure 4 shows 195 

the scheme of the design. The floats are described by a capsule shape with a central cylinder and 2 hemispheres in the sides. The 196 

reactor is simplified to a cuboid shape. The mooring connects the reactor and the seabed. The attachment points on the reactor are 197 

placed on the corner while the attachment points on the seabed describe the x and y spacing as  198 

𝑋𝑀𝑆𝑝𝑎𝑐 =
4

3
𝑅𝐿 (5) 

 199 

𝑌𝑀𝑆𝑝𝑎𝑐 =
7

4
𝑅𝑊 (6) 

 200 

where RL and RW are the length and width dimensions of the reactor. 201 
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 202 

Figure 4: Schematic of the linear float configuration for a float spacing of 50 m. Six designs for six different float numbers are shown. 203 

The length of the reactor is related to the float spacing as 204 

 205 

𝑅𝐿 = 𝑅𝐿𝑏 + 𝐹𝑆 ⋅ (𝑛𝑓𝑙𝑜𝑎𝑡𝑠 − 1) (7) 

 206 

where RL is the reactor length, 𝑅𝐿𝑏  is the baseline reactor length, FS is the float spacing and nfloats is the number of floats. 207 

Existing engineering drawings were used to establish a baseline system to give reference values of the system net buoyancy, reactor 208 

displaced mass and reactor length. The system net buoyancy has been designed dependent on the number of floats while the 209 

designed displaced mass of the reactor has been obtained using a linear relationship with reactor length. Th system net buoyancy 210 

is calculated as 211 

𝑆𝑁𝐵𝑏 ⋅ 𝑛𝑓𝑙𝑜𝑎𝑡𝑠

𝑔
= (𝑀𝐹 − 𝑀𝐹𝑑) ⋅ 𝑛𝑓𝑙𝑜𝑎𝑡𝑠 + 𝑀𝑅 − 𝑀𝑅𝑑𝑏 ⋅

𝑅𝐿

𝑅𝐿𝑏

 (8) 

where 𝑀𝑅 is the reactor mass, 𝑆𝑁𝐵𝑏 is the baseline system net buoyancy, 𝑀𝑅𝑑𝑏  is the baseline displaced mass of the reactor, 𝑀𝐹𝑑 212 

is the displaced mass of the float and 𝑀𝐹 is the mass of the float.  213 

The mass of the reactor is the unknown variable of equation (8) and it is finally obtained as  214 
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𝑀𝑅 = (
𝑆𝑁𝐵𝑏

𝑔
+ 𝑀𝐹𝑑 − 𝑀𝐹) ⋅ 𝑛𝑓𝑙𝑜𝑎𝑡𝑠 + 𝑀𝑅𝑑𝑏 ⋅

𝑅𝐿

𝑅𝐿𝑏

 (9) 

 215 

A specific wave farm location has been identified for the optimisation. This was the Berth A wave buoy in Belmullet, the Atlantic 216 

Marine Energy Test Site (AMETS), Ireland (Ireland Ocean Energy Expertise, 2019). This area has a water depth of 100 m which 217 

matches the designed depth of the WaveSub device. A wave data analysis for the years from 2013 to 2017 has been used to obtain 218 

information about the scatter matrix and the raw spectra. The Incident Energy per metre of wavefront (IE) for each sea state 219 

(Holthuijsen, 2010) can be approximated for deep sea water as  220 

 221 

𝐼𝐸𝑖𝑗 = 𝑂𝑖𝑗 ⋅ 8760 ⋅ 0.49 ⋅ 𝐻𝑠𝑖
2 𝑇𝑒𝑗   (10) 

 222 

where 𝑂𝑖𝑗 is the occurrence for a particular sea state. 223 

The full scatter matrix is obtained for significant heights between 0.25m and 15.5m and for energy periods between 4s and 22s. 224 

The spacing considered in the significant height is 0.25m while the spacing considered in the energy period is 0.5s. To reduce 225 

computational effort, a reduced scatter matrix that considered three main ranges of energy periods has been used. There is a range 226 

of energy periods under 9s, between 9s and 11s and over 11s. The total sum of the occurrences of the scatter matrix is 1 and so the 227 

reduced scatter matrix approximates mostly in the lower and upper energy period range. In particular, a sea state in the reduced 228 

scatter matrix considers the sum of the occurrences of the various energy periods considered in the full scatter matrix.  Note that 229 

the optimisation is carried out on energy, not power. The energy matrix that corresponds to the sea states is obtained as a 230 

multiplication of the power and occurrences matrices together. It is a good indicator to show where the device should be tuned to 231 

obtain the maximum amount of power generated. An optimized device for the most energetic sea states will give the maximum 232 

total amount of energy generated during the year. An optimisation of the device for the most frequently occurring sea states will 233 

give a more constant power generated but it is likely that the total amount of energy will be less. Maximization of the total energy 234 

produced from the device has been preferred in this paper. 235 

The lower and upper range of the energy periods have been reduced to account for only the spectra of the most energetic sea states 236 

for this calculation (87% of the total energy of the full scatter matrix). So the device is optimised for the most energetic sea states. 237 

The spectra for each of the simulated sea states have been obtained as an average of the spectra in each energy period range (See 238 

Figure 5). Peak period and energy period properties for each sea state simulated are reported in Table 1. A comparison between 239 

the raw spectra and the theoretical spectra that minimizes the standard deviation between them is made. In particular, a narrower 240 

spectra for higher peak periods has been observed. Finally, the spectra used in the simulations has been normalized for a significant 241 

height of 1m. The simulated sea states are just dependent on the wave energy period but not on the significant height (See Table 242 
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1). Using the theory of (Cruz, 2007) for linear wave hydrodynamics in deep water, a first approximation of the power produced by 243 

the device can be estimated to be dependent on the square of the significant height. Apart from minor drag terms, all the forces 244 

considered in the numerical model of the dynamic system are linear. Subsequent to the analysis, the effect of wave height is 245 

recovered in a post processing stage. 246 

 247 

 248 

Table 1: The sea states used in the optimisation. 249 

Approximated 

theoretical 

spectra 

Bretschneider JONSWAP 

(Gamma=1.1) 

JONSWAP 

(Gamma=1.3) 

Approximated 

range of Te (s) 

7<=Te<=9 9<=Te<=11 11<=Te<=13 

Hs (m) 1 1 1 

Te (s) 8.32 10.03 11.83 

Tp (s) 10 11.76 14.29 

Tp/Te 1.20 1.17 1.21 

 250 

 251 

(a) 252 

 253 
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 254 

(b) 255 

 256 

(c) 257 

Figure 5: The average spectra between Te=7 and Te=9 (a), Te=9 and Te=11 (b), Te=11 and Te=13 (c) for the Belmullet wave site between 258 

2013-2017 259 

The calculation of the Levelized Cost Of Energy (LCOE) is one of the most critical issues of the optimisation process. A cost 260 

estimation is very difficult for Wave Energy Converters because there isn't enough experience in this sector to use known costs 261 

from existing farms. However, an existing cost calculation developed by MPS Ltd was used in this work. It was based on the 262 

experience of the company and on information given by different manufacturers and components suppliers. Details of the structure 263 

of the calculation can be found in (Faraggiana, Masters and Chapman, 2018). A brief description of the CAPEX and OPEX 264 

calculation is as follows. The CAPEX is obtained as the sum of various components and it can be described as 265 

𝐶𝐴𝑃𝐸𝑋 = (𝐶𝑜𝑠𝑡𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝐶𝑜𝑠𝑡𝑃𝑇𝑂 + 𝐶𝑜𝑠𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 + 𝐶𝑜𝑠𝑡𝑀𝑜𝑜𝑟𝑖𝑛𝑔 + 𝐶𝑜𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛

+ 𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑔𝑖𝑛) ⋅ 𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠 

(11) 
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Where 𝐶𝑜𝑠𝑡𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 is the material cost of the floats and the reactor, 𝐶𝑜𝑠𝑡𝑃𝑇𝑂 is the cost of the hydraulic PTO where the secondary 266 

system depends on the rated power, 𝐶𝑜𝑠𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙 is the control cost of the PTO, 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 is the grid connection cost, 𝐶𝑜𝑠𝑡𝑀𝑜𝑜𝑟𝑖𝑛𝑔 267 

is the mooring cost, 𝐶𝑜𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 is the installation cost, 𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑔𝑖𝑛  is the margin cost and 𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠 is the number of devices. 268 

When considering the cost of a single device, most of the costs have a fixed element, that is not dependent on the configuration, 269 

and a variable cost that changes with the optimisation. The optimisation considers a WEC farm of 400MW and so the number of 270 

devices changes, particularly with the number of floats. Consequently, the total wave farm costs of the control, grid, mooring, 271 

installation and margin are reduced for larger numbers of floats per device. 272 

The main simulation parameters for Nemoh and WEC-Sim are shown in Table 2. The ramp time is used for the calculation of the 273 

excitation force at the beginning of the numerical simulation to have a gradual increase of the flow until the full wave conditions 274 

are reached (Yu et al., 2020). From previous experience, the number of wave frequencies and the duration of the simulation time 275 

are assumed to give a reasonable accuracy on the results. Interpolation of the hydrodynamic coefficients from Nemoh is used to 276 

obtain their values for further frequencies. The time simulation is between 15-30 minutes, the typical record length suggested for 277 

irregular waves (Holthuijsen, 2010).  278 

 279 

 280 

Table 2:Main simulation parameters for Nemoh and WEC-Sim. 281 

Simulation parameters 

Water depth (m) 100 

Density sea water (kg/m3) 1026 

Minimum frequency (Hz) 0.05 

Maximum frequency (Hz) 5 

Number of frequencies (-) 51 

Simulation time (s) 1300 

Ramp time (s) 100 

Solver WEC-Sim Ode45 

Timestep (s) 0.02 

 282 

The total simulation time for the calculation of the energy production for a specific settings of the design parameters is determined 283 

mainly by the simulation time of Nemoh and WEC-Sim (around 1h for WEC-Sim while at least 3h for Nemoh for the largest 284 
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number of floats configuration and the fine mesh). More specifically, Nemoh simulation time depends on the float spacing because 285 

there will be a larger number of panels of the reactor for a larger float spacing. WEC-Sim simulation time cannot be reduced 286 

because of the needed time domain simulation. The mesh of the float and of the reactor, instead, has been obtained considering a 287 

balance between two main factors: the computational time and the accuracy of the results. The optimisation requires the minimum 288 

number as possible of panels of the mesh to have a larger number of simulations. By contrast accuracy requires a fine mesh. 289 

(Faraggiana et al., 2020) shows the mesh independence from a coarser mesh to a finer mesh. The hydrodynamic coefficients in the 290 

main degrees of freedom (surge, heave and pitch) are almost identical between the different meshes. So a coarse mesh could be 291 

used for the optimisation to obtain a reasonable accuracy with a simulation reduction time at least 4 times less compared to the 292 

fine mesh case. Specifically, a quadrangular mesh has been used for the float and the reactor. The mesh of the float used a similar 293 

amount of nodes as the tank testing case (80). The mesh considers quadrangular elements with 81 panels. The mesh of the reactor 294 

has been initially designed for a length equal to the tank testing size of 51.55m (98 panels). When the reactor changes size in the 295 

optimisation, the corresponding mesh has been obtained using a linear scaling of this mesh. In this way the number of panels of 296 

the reactor is significantly reduced with a computational time remarkably decreased especially for large float spacing and number 297 

of floats. The linear scaling of the mesh of the reactor probably will not create a good element aspect ratio. However, the main 298 

motion is expected to come from the floats and so the accuracy of the hydrodynamics of the reactor is of secondary importance. In 299 

fact, a steady reactor described by a high mooring stiffness is part of the design process of the device and so small motions of the 300 

reactor are expected and a higher error in this movement is acceptable. The optimisation will consider the power produced from 301 

the device that depends on the relative motion between the float and the reactor. The mesh convergence of the reactor for a 6 floats 302 

device and a float spacing of 50m is shown in Figure 6. The coarse mesh (96 panels) is obtained applying the scaling for the reactor 303 

length while the moderate (165 panels) and the fine mesh (335 panels) are obtained directly from Salome (Codeaster, 2019) for 304 

the exact length of the reactor. The main motions of the reactor are in surge and heave and generally the coarse mesh approximates 305 

quite well compared to the fine mesh results. 306 

 307 
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Figure 6: Surge and heave added mass coefficients of the reactor (a,b), surge and heave radiation damping coefficients of the reactor (c,d), surge 308 

and heave excitation coefficients of the reactor (e,f). The simulation is made for a 6 float configuration and a float spacing of 50 m. 309 

The hydrodynamic coefficients don’t consider the drag generated by the floats and the reactor. For this reason a drag term has 310 

been added to the time domain simulation in WEC-Sim in a similar way as described in (Faraggiana et al., 2020). In this research 311 

experimental and numerical data for different regular waves of a 3 float multi-float configuration were analysed. The drag term is 312 

described as  313 

𝐷⃗⃗ =
1

2
𝐶𝑑𝜌𝐴𝑣 |𝑣 | (12) 

Where 𝐴 is the characteristic area of the body, 𝑣 is the body velocity, 𝐶𝑑 is the drag coefficient, 𝐷 is the drag force and 𝜌 is the 314 

density. Through a comparison of experimental and numerical data, the paper suggests a drag coefficient of 0.7 for the floats and 315 

that is used in this work. The reactor is simplified as a cuboid shape and it is very large compared to the wavelength and so a 316 

small drag coefficient is considered in a first approximation (0.5). 317 

3. Results  318 

3.1. Taguchi and Latin hypercube DOE 319 

The Taguchi optimisation is an efficient way to have a first estimate of the optimum with a lower number of simulation cases and 320 

can also be used for sensitivity analysis purposes. The Taguchi optimisation gives an estimation of the average influence of each 321 

parameter on the response but neglecting interaction effects between the variables. The Latin hypercube can be used for the same 322 
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purpose and it is designed to have an equidistribution of the sample points and can consider interaction effects. The Latin hypercube 323 

is also used for a sensitivity study generating a surrogate Kriging model of the sample points simulated. The number of simulations 324 

is limited to 100 for computational reasons. The Taguchi DOE is obtained for a Taguchi orthogonal array with 10 levels (Roy, 325 

2010). 326 

Figure 7 shows the results of the sensitivity analysis of the Taguchi DOE. The design parameters are investigated with 10 values 327 

within the range defined in the methodology section. More specifically, the 10 values are equidistributed between the minimum 328 

and maximum values of each range of the design parameters. The x axis shows the 10 values investigated for each design parameter 329 

while the y axis describes the normalized LCOE for that particular optimisation of number of floats. The LCOE described in this 330 

Figure for each design parameter has been also averaged by the influence of the other parameters. The optimal LCOE for each 331 

configuration is obtained by the combinations of design parameters that give the lowest LCOE. Figure 7 shows that the average 332 

LCOE for each design parameter is very similar between the multi-float configurations. Main difference between them is the 333 

absolute LCOE value as demonstrated also in Table 3 in which the optimal LCOE decreases with an increased number of floats. 334 

The float-reactor separation gives a minimum LCOE in the central range. Optimal float spacing is given by the lowest value of the 335 

range considered for all the optimisation cases. There is also a local optimum for a larger float spacing but this one is not worth 336 

investigating despite the larger energy produced because of the feasibility uncertainties of such long reactor. PTO stiffness and 337 

damping coefficients have a different influence on the minimum LCOE. The best PTO stiffness coefficient is in the lower area of 338 

the range considered while the best PTO damping coefficient is in the higher area. The value of each parameter that gives the 339 

minimum LCOE from the Taguchi analysis for each WaveSub configuration are shown in Table 3. The model has been re-run 340 

with the suggested optimal values of each design parameter and as expected the multi-float configurations have given a better 341 

optimum compared with the runs in the original Taguchi array. Similar optimal LCOE are obtained for the 5 and 6 float 342 

configurations. This suggests that if a large number of floats are included in one device, this will not improve the LCOE any 343 

further.  344 

Figure 8 shows the variation of total energy produced and the capacity factor with varying numbers of floats. The capacity factor 345 

is around 0.42 for all of the multi-float configurations and it increases slightly as the number of floats increases. The energy 346 

produced from the device shows a proportional increase with the number of floats. The LCOE is shown in Figure 9 and this 347 

decreases with number of floats, mainly because of the decrease of the largest cost, CAPEX. Looking more closely, increasing the 348 

number of floats per device decreases the total number of devices in the array and therefore reduces the control and instrumentation, 349 

installation, grid connection, mooring and margin costs (See Table 3). Structure and PTO costs show a similar total cost for each 350 

float configuration. Structural costs are similar between the configurations because this cost is related to size and the optimal float 351 
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spacing is similar for all configurations. The total farm rated power is constant and so the total PTO cost is similar. Small differences 352 

in the total PTO costs are due to the finite number of devices with a total rated power sum that is not exactly 400 MW. 353 

OPEX and decomissioning costs are decreasing with an increase of the number of floats per device due to a smaller number of 354 

devices. These costs are small compared to the CAPEX and so their influence on the LCOE is less significant.  355 

Optimal results of the Latin hypercube DOE are shown in Table 4. It is interesting to notice that the float spacing converges towards 356 

two different values, the lower one because of lower costs and the higher value such for the 3 float configuration because the device 357 

produces more energy when the float spacing is similar to the wavelength (Budal, 1977). However, irregular waves have an 358 

averaging effect of the constructive interactions between the floats and so other factors such as the interaction effects between the 359 

design parameters could have played an important role. The capacity factor increases for the multi-float configurations and 360 

becomes very similar between 4 and 6 multi-float configurations as shown in Figure 8. Figure 9 shows that the Latin hypercube 361 

optimisation has the same trends as the Taguchi with decreasing LCOE for the larger multi-float configurations mainly due to 362 

decreasing CAPEX. 363 

Figure 10 shows a 2D surface representation of the influence of the optimal stiffness and damping of the PTO on the LCOE for 364 

the Latin hypercube DOE and a 6 multi-float configuration. In-fact this configuration is considered one of the most promising 365 

between the ones analysed. PTO stiffness and damping are investigated while the other two are fixed to the optimal values found 366 

by the Latin hypercube. The darker blue of the plots shows where the optimal (lower) LCOE can be found. The conclusions of this 367 

graph (Figure 10) agree with the Taguchi method for the average response of the design parameters (Figure 7). Optimal values are 368 

within the lower range for PTO stiffness, and generally larger values for the PTO damping. It is observed that LCOE increases 369 

rapidly for lower values of the PTO damping. The Normalised Root Mean Square Error (NRMSE) and the maximum error (MAX) 370 

are used to estimate the efficiency of the surrogate model and they are calculated following (González-Gorbeña, Qassim and 371 

Rosman, 2018). The NRMSE and the maximum error are shown at the bottom of Table 4. The NRMSE is always under 0.1 and 372 

so as reported in (González-Gorbeña, Qassim and Rosman, 2018) the surrogate model has reasonable predictive capabilities.  373 
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Figure 7: The normalized LCOE sensitivity of the various design parameters from the Taguchi DOE for 1 float (a), 2 floats (b). 3 floats (c), 4 374 

floats (d), 5 floats (e) and for 6 floats (f) configurations. 375 

 376 
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 377 

Figure 8: The energy produced and the capacity factor for the optimal cases given Table 5by the Taguchi and Latin hypercube DOE. 378 

 379 

Figure 9: The normalized CAPEX and the LCOE for the optimal cases given by the Taguchi and Latin hypercube DOE. 380 

 381 

Figure 10: The surrogate model for the optimal case of the Latin hypercube DOE for a 6 float configuration. PTO stiffness and damping are 382 

investigated while the other 2 parameters are fixed to the optimal case. Darker blue shows where the optimal values of the LCOE are expected. 383 
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Table 3: The design parameters and main results for each multi-float WaveSub configuration derived for the optimum obtained from the 384 

Taguchi DOE. The LCOE and the CAPEX have been normalized to the maximum value obtained. 385 

Number of floats 1 2 3 4 5 6 

Float spacing (m) - 35 35 35 35 35 

Float-reactor Sep (m) 56 56 56 56 56 56 

kPTO (kN/m) 116 116 5 5 116 5 

cPTO (kNs/m) 1000 1000 1000 1000 1000 1000 

RatedP (MW) 0.8 1.6 2.3 3.1 3.6 4.4 

Energy device (GWh/y) 2.7 5.7 8.2 10.9 13.6 16.1 

Ndevices 485 257 176 131 111 91 

CF 0.38 0.42 0.41 0.41 0.43 0.42 

CAPEX (-) 1.000 0.873 0.831 0.798 0.810 0.790 

CAPEX-Structure (-) 0.455 0.452 0.454 0.446 0.469 0.459 

CAPEX-PTO (-) 0.278 0.277 0.278 0.278 0.278 0.279 

CAPEX-Control (-) 0.055 0.029 0.020 0.015 0.013 0.010 

CAPEX-Grid (-) 0.054 0.029 0.020 0.015 0.013 0.011 

CAPEX-Mooring (-) 0.037 0.020 0.013 0.010 0.008 0.007 

CAPEX-Installation (-) 0.012 0.007 0.005 0.004 0.004 0.004 

CAPEX-Margin (-) 0.110 0.058 0.040 0.030 0.025 0.021 

OPEX (y-1) 0.008 0.005 0.004 0.003 0.003 0.003 

Decommissioning (-) 0.005 0.003 0.002 0.001 0.001 0.001 

LCOE (-) 1.00 0.79 0.75 0.72 0.69 0.70 

 386 

Table 4: The design parameters and main results for each multi-float WaveSub configuration derived for the optimum obtained from the Latin 387 

hypercube DOE. The LCOE and the CAPEX have been normalized to the maximum value obtained. 388 

Number of floats 1 2 3 4 5 6 

Float spacing (m) - 40 101 40 40 40 

Float-reactor Sep (m) 42 35 21 35 35 35 

kPTO (kN/m) 110 25 11 25 25 25 

cPTO (kNs/m) 94 507 262 507 507 507 

RatedP (MW) 1.0 1.7 2.8 3.1 4.0 4.8 

Energy device (GWh/y) 3.6 6.3 11.4 12.3 15.6 18.8 

Ndevices 420 238 143 128 100 84 

CF 0.43 0.42 0.47 0.45 0.45 0.45 
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CAPEX (-) 1.000 0.925 0.917 0.882 0.850 0.844 

CAPEX-Structure (-) 0.436 0.471 0.520 0.494 0.480 0.482 

CAPEX-PTO (-) 0.307 0.307 0.307 0.308 0.307 0.309 

CAPEX-Control (-) 0.053 0.030 0.018 0.016 0.013 0.011 

CAPEX-Grid (-) 0.052 0.030 0.018 0.017 0.013 0.011 

CAPEX-Mooring (-) 0.035 0.020 0.012 0.011 0.008 0.007 

CAPEX-Installation (-) 0.011 0.007 0.005 0.005 0.004 0.004 

CAPEX-Margin (-) 0.106 0.060 0.036 0.032 0.025 0.021 

OPEX (y-1) 0.008 0.005 0.004 0.004 0.004 0.004 

Decommissioning (-) 0.005 0.003 0.002 0.002 0.001 0.001 

LCOE (-) 1.00 0.92 0.82 0.82 0.79 0.78 

NRMSE (-) 0.03 0.05 0.08 0.08 0.06 0.05 

MAX (-) 1.00 0.77 1.17 1.37 0.76 0.77 

 389 

3.2. The investigation of the genetic algorithm performance  390 

The performance of the genetic algorithm has been investigated applying various modifications. The memory of the previous 391 

evaluations is accounted for in the algorithm as well as the tuning of the mutation, cross-over coefficients and of the population 392 

and the capability of the surrogate model. The sample points already evaluated have been changed with new ones near the global 393 

optimum obtained. In particular, the new points have been randomized around the global optimum and their distance from it has 394 

been decreased using a cubic relationship by generation in generation. This can be expressed as 395 

𝑥𝑑𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 = 𝑥𝑑𝑚𝑖𝑛 +

𝑥𝑑𝑟𝑎𝑛𝑔𝑒

2
⋅ 𝑟𝑎𝑛𝑑

𝑔𝑒𝑛3
 

(13) 

where 𝑥𝑑𝑚𝑖𝑛 represents the combination of design parameters that minimize the objective function, 𝑥𝑑𝑟𝑎𝑛𝑔𝑒  is the search space of 396 

the design variables, 𝑟𝑎𝑛𝑑 is a random vector with the same dimension of the design variables and 𝑔𝑒𝑛 is the number of 397 

generations. Finally if the evaluation of this new point is worse than the old one, then the old one will be restored. No specific 398 

references were used for this change.  399 

The code has been improved and also considers the tuning of the mutation, cross-over probability and the population by generation 400 

in generation. This approach was inspired by the adaptive genetic algorithm (Mahmoodabadi and Nemati, 2016). The particle 401 

swarm approach has been considered for this purpose but applied to a single particle that means that the best and the global position 402 

of the particle are coincident. The particle is described by 3 elements: the mutation probability, the cross-over probability and the 403 

population. The particle swarm algorithm has been obtained from (Yarpiz, 2019). The method is expressed as following: 404 
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• If the optimum found or the maximum of the generation relative to the previous one is decreased then the particle swarm 405 

algorithm is used. 406 

• If the previous condition is not verified then the new particle is generated randomly. 407 

The population keeps the best individuals if the population is reduced while it considers new random individuals if the population 408 

is increased. 409 

The open-source genetic algorithm has been improved considering also the optimisation capability of the surrogate model. A 410 

Kriging surrogate model (Couckuyt, Dhaene and Demeester, 2014) has been adopted for its high efficiency for non-linear 411 

responses. This model is updated by generation in generation with the simulation carried out by the genetic algorithm. The surrogate 412 

model is introduced in the genetic algorithm through the use of an elitism of 10% the number of population. The surrogate model 413 

is evaluated for new random points with a number of points equal to the same number of evaluations computed until that moment 414 

by the genetic algorithm. It is therefore supposed that the efficiency of the surrogate model will increase with the number of 415 

evaluations of the genetic algorithm. Then the best individuals evaluated by the surrogate model are added in the next generation. 416 

The huge advantage of the surrogate model is that enables the user to estimate results at a very low computational time compared 417 

to the real simulation.  418 

These changes have brought an improvement in the test function of the Schwefel Function example case with 2 variables (See 419 

Figure 11). This function has many local minima and so the convergence to the global minimum is more difficult. In Figure 11b 420 

the objective function has been obtained as an average of 1000 different optimisations. The genetic algorithm without the tuning 421 

consider a cross-over coefficient of 0.9, mutation coefficient of 0.1 and a population of 100 individuals while the genetic algorithm 422 

with the tuning considers a range of variation between 0-1 of the cross-over coefficient, 0-0.3 of the mutation coefficient and 50-423 

150 of the number of individuals.  424 

The algorithm that considers all the improvements shows the highest efficiency. However these optimisations that were including 425 

the Kriging surrogate model were limited to 11 generations because the simulation time, required by the Kriging surrogate model 426 

to fit over around 1000 simulation data points, becomes too high.  427 
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(a) 

 

(b) 

Figure 11: The Schwefel Function (a) and the average convergence of the genetic algorithm of 1000 different optimisations (b). 428 

3.3. The genetic algorithm optimisation 429 

The optimisation of the multi-float configurations considers the genetic algorithm combined with all the improvements discussed 430 

in the previous section. The influence of the surrogate model on the genetic algorithm is determined by the use of an elitism 431 

coefficient of 20% of the population.  432 

The population number is fixed as 5 times the number of variables while the total number of generations is fixed to 5 due to 433 

computational time reasons. The total number of simulations is the same of the previous Taguchi and Latin hypercube DOE 434 

analysis.  435 

Table 5 shows the optimal results of the various configurations. Float spacing generally converges towards lower values but not 436 

for the 3 and 4 floats configurations. It is possible that for these 2 configurations the optimisation process has not quite reached the 437 

global optimum because of the small number of genetic algorithm generations. Float-reactor separation converge in the lower 438 

range as well as the PTO stiffness and damping. Finally the LCOE is decreased from a single float configuration to a 6 float 439 

configuration by 21%. Figure 12 shows the increase of the capacity factor with an increase of the number of floats per device. The 440 

decrease of the LCOE with an increase the number of floats per device is shown in Figure 13. An interesting results is that the 6 441 

floats configuration shows an increase of the CAPEX compared to the 5 floats configuration but there is also an increase of the 442 

capacity factor with the overall result of a lower LCOE. More specifically, the CAPEX of the 6 floats configuration is larger 443 

compared to the 5 floats one because its structure cost is higher due to the larger float spacing. Figure 13 shows also that the main 444 

CAPEX decrease is until a configuration of 3 floats. In fact, CAPEX costs apart structure and PTO are reduced with the number 445 

of devices and the relative decrease of these costs is larger for smaller multi-float configurations. Finally, the 6 floats configuration 446 

demonstrated the lowest LCOE, so configurations with a larger number of floats would be interesting to investigate. However, the 447 
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relative decrease of the LCOE is quite slight for the largest number of floats considered and so the benefit will be probably small. 448 

Moreover, 2 main limitations stopped the investigation of larger multi-float configurations. The first is related to the computational 449 

time required that becomes very high. The second is a practical limitation because the device becomes unmanageably long for 450 

multi-float configurations larger than 6. 451 

Figure 14 shows the sensitivity study of the LCOE for a 6 floats configuration in a similar way of Figure 10. The design parameters 452 

are the PTO stiffness and damping while the other 2 parameters are fixed to the optimal case of the genetic algorithm. Similar 453 

conclusions of the Latin hypercube DOE sensitivity study can be obtained. However the evaluation points are more concentrated 454 

in this case around the optimal value because they are selected through the use of the genetic algorithm. A complete convergence 455 

is not expected due to the limited number of evaluations but this method enables refinement of the optimum LCOE found compared 456 

to the Taguchi and Latin hypercube DOE. Table 5 shows the NRMSE and the MAX error of the surrogate model and they are 457 

calculated considering the predictability on the last generation of the genetic algorithm. The surrogate model is constructed for this 458 

calculation on the first 4 generations simulation cases.  459 

To draw these approaches together, a summary of the optimum LCOE obtained from the different methods is shown in Figure 15. 460 

The optimum found from the surrogate models described by all the simulation points of the Latin hypercube DOE and the genetic 461 

algorithm has been also added in the comparison but they don't obtain a better optimum because the surrogate model is not accurate 462 

enough. The optimum found by the genetic algorithm is demonstrated to be the most efficient to find the minimum LCOE from all 463 

the methods used. It is also clear that configurations with a number of floats larger than 3 will have only a slight reduction of the 464 

minimum LCOE. 465 

 466 

Table 5: The design parameters and main results for each multi-float WaveSub configuration derived for the optimum obtained from the GA 467 

optimisation. The LCOE and the CAPEX have been normalized to the maximum value obtained. 468 

Number of floats 1 2 3 4 5 6 

Float spacing (m) - 46 101 94 39 53 

Float-reactor Sep (m) 45 44 33 34 36 29 

kPTO (kN/m) 58 74 10 14 10 10 

cPTO (kNs/m) 203 370 177 251 337 206 

RatedP (MW) 1.02 1.72 3.19 4.10 4.10 4.91 

Energy device (GWh/y) 3.9 6.8 12.8 16.5 16.6 20.6 

Ndevices 393 232 126 98 98 82 

CF 0.44 0.45 0.46 0.46 0.46 0.48 

CAPEX (-) 1.000 0.960 0.885 0.882 0.877 0.903 
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CAPEX-Structure (-) 0.427 0.489 0.479 0.493 0.489 0.525 

CAPEX-PTO (-) 0.321 0.321 0.323 0.323 0.323 0.323 

CAPEX-Control (-) 0.052 0.031 0.017 0.013 0.013 0.011 

CAPEX-Grid (-) 0.051 0.031 0.017 0.013 0.013 0.012 

CAPEX-Mooring (-) 0.034 0.020 0.011 0.009 0.009 0.007 

CAPEX-Installation (-) 0.011 0.007 0.005 0.004 0.004 0.004 

CAPEX-Margin (-) 0.103 0.061 0.033 0.026 0.026 0.022 

OPEX (y-1) 0.008 0.006 0.004 0.004 0.004 0.004 

Decommissioning (-) 0.005 0.003 0.002 0.001 0.001 0.001 

LCOE (-) 1.00 0.92 0.82 0.81 0.80 0.79 

NRMSE (-) 0.15 0.03 0.04 0.10 0.02 0.11 

MAX (-) 1.00 3.04 1.71 3.52 0.98 6.68 

 469 

 470 

Figure 12: The energy produced and the capacity factor for the optimal cases given by the GA optimisation. 471 



 27 

 472 

Figure 13: The normalized CAPEX and the LCOE for the optimal cases given by the GA optimisation. 473 

 474 

Figure 14: The surrogate model for the optimal case of the GA optimisation for a 6 float configuration. PTO stiffness and damping are 475 

investigated while the other 2 parameters are fixed to the optimal case. Darker blue shows where the optimal values of the LCOE are expected. 476 

  477 

 478 
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 479 

Figure 15: The optimum LCOE summary for all of the methods considered. 480 

4. Discussion 481 

The results of the optimisation relies on the accuracy of the estimation of the drag coefficient. This estimation was based on 482 

(Faraggiana et al., 2020) but it was limited to regular waves and to a 3 multi-float configuration. A good benchmarking between 483 

experimental and numerical data was obtained for drag coefficients in a small data range and so a constant drag coefficient value 484 

is reasonably accurate. There is, however, the assumption that the variation of the drag coefficient dependent on the float spacing, 485 

the float reactor separation and the float number is reasonably low. This assumption enables to reduce significantly the simulation 486 

time because the theory can be simplified using a potential flow theory instead of using CFD. This reduction in the simulation time 487 

is also very essential for the application of the optimisation algorithm.  488 

PTO and mooring forces have been simplified with a spring-damper and a spring respectively to reduce the computational time 489 

and the complexity involved in the optimisation. However, a more realistic PTO should take in account the designed hydraulic 490 

PTO system of the WaveSub device (Hillis et al., 2020). The PTO force of an hydraulic system was obtained using a Coulomb 491 

damping model in (Babarit et al., 2012) to approximate the force given by the high and the low pressure accumulators. However, 492 

a linearised relationship between the PTO force and the line velocity could be obtained using a control system. The control system 493 

will give the required value of PTO force to obtain the optimal power produced from the device. As a result, the linearisation of 494 

the PTO will still give a good first approximation of the power produced. Large movements of the floats are expected and the PTO 495 

movement is designed to avoid any limitations of end stops in the system. The simulation of the mooring system is another 496 

important component of a WEC especially in terms of reliability of the device. However, it is not expected that this will have a 497 

large influence on the power produced from the WaveSub device. High tensile forces are designed for the reactor component and 498 

this will consequently create a very steady structure. A taut mooring is foreseen for the WaveSub device and it could be reasonably 499 
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linearised in the numerical model as demonstrated in (Faraggiana et al., 2020). More complexity would be involved if MPS had 500 

chosen a catenary mooring design. 501 

The sensitivity analysis has been obtained using a Taguchi and a Latin hypercube DOE. These methods are very powerful tools to 502 

understand the influence of the design parameters on the LCOE. The Taguchi DOE, however, doesn’t consider the interaction 503 

between the parameters on the response. The Latin hypercube DOE, instead, can account the interactions between the design 504 

variables but it is limited to the efficiency of the surrogate model in the prediction of the unknown response. Other techniques can 505 

be also used instead of a Latin hypercube DOE with a similar efficiency in terms of equidistribution of the simulation points, such 506 

as the Sobol sequence (Cavazzuti, 2012). 507 

The genetic algorithm has been used for the optimisation of the linear WaveSub configurations mainly because of its known 508 

capability and because the information of the derivate is now available. Improvements of this open-source algorithm applied in 509 

this research, can be understood more deeply, for example investigating more test functions. However this was not the main purpose 510 

of this research and so the time dedicated for this investigation has been limited to a reasonable satisfaction. 511 

The genetic algorithm has been limited to only 5 number of generations and this choice will have certainly some consequences in 512 

terms of convergence to the optimal solution. The main aim of the use of this algorithm was not to find the global optimum but to 513 

refine the optimal solution of the Latin and Taguchi design of experiments. In-fact these 2 methods already give a good estimate 514 

of LCOE between the multi-float configurations. 515 

5. Conclusions 516 

This paper is concerned with finding the lowest cost of energy from an array of multi-float wave energy devices. LCOE is the most 517 

appropriate metric to consider as it incorporates both power production and cost. A farm of 400MW of linear multi-float WECs 518 

has been modelled and optimised using three methods. A sensitivity study was first undertaken using a DOE approach and two 519 

techniques were compared, Taguchi and Latin hypercube. Subsequently a genetic algorithm optimisation has been applied to make 520 

a refinement of the optimal configuration. The results of these studies were used to create a surrogate model to understand the 521 

shape of the optimal LCOE surface. 522 

Sensitivity studies give similar conclusions regarding the optimal range of the design parameters. They agree in the convergence 523 

of the PTO stiffness towards lower values. Float spacing generally converges towards lower values while the float-reactor 524 

separation converges towards the low-medium range. In addition, the optimal PTO damping is generally in the medium range but 525 

it shows less convergence compared to the other ones. The Taguchi DOE shows that the average influence of each design parameter 526 

in the LCOE is very similar between the multi-float configurations. The Latin hypercube DOE is used mainly to build the Kriging 527 

surrogate model and to analyse the influence of design parameters combined together. Finally the genetic algorithm optimisation 528 
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show the optimal design parameters for each multi-float configuration. There is clearly a reduction in optimal LCOE with an 529 

increase of the float number per device which is driven by a reduction of the CAPEX and an increase of the capacity factor. The 530 

reduction of the CAPEX is mainly due to the reduction of the number of devices for larger multi-float configurations with the same 531 

total rated power of the wave farm. In fact, the control, grid, mooring, installation and margin costs are reduced if the number of 532 

devices is decreased. On the other side the increase of the capacity factor with larger multi-float configurations has determined a 533 

larger total amount of energy from the WEC farm with a consequent lower LCOE. However, the reduction of the LCOE is small 534 

for multi-float configurations larger than 3. The reduction of the LCOE from the single float configuration to the 6 float 535 

configuration is around 21%.  536 

Further work will include an extension of the optimisation for different arrangements of the floats in addition to the linear shape 537 

considered here. Additionally, a calculation of the energy production of the wave farm that takes in account the hydrodynamic 538 

interactions between the WECs could be also considered. Finally, a non-uniform spacing between the floats will be investigated 539 

because it could increase further the energy produced by each WEC. 540 
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