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Abstract

Digital twin technology has a huge potential for widespread applications in different in-

dustrial sectors such as infrastructure, aerospace, and automotive. However, practical

adoptions of this technology have been slower, mainly due to a lack of application-specific

details. Here we focus on a digital twin framework for linear single-degree-of-freedom

structural dynamic systems evolving in two different operational time scales in addition

to its intrinsic dynamic time-scale. Our approach strategically separates into two compo-

nents – (a) a physics-based nominal model for data processing and response predictions,

and (b) a data-driven machine learning model for the time-evolution of the system pa-

rameters. The physics-based nominal model is system-specific and selected based on the

problem under consideration. On the other hand, the data-driven machine learning model

is generic. For tracking the multi-scale evolution of the system parameters, we propose

to exploit a mixture of experts as the data-driven model. Within the mixture of experts

model, Gaussian Process (GP) is used as the expert model. The primary idea is to let each

expert track the evolution of the system parameters at a single time-scale. For learning the

hyperparameters of the ‘mixture of experts using GP’, an efficient framework the exploits

expectation-maximization and sequential Monte Carlo sampler is used. Performance of

the digital twin is illustrated on a multi-timescale dynamical system with stiffness and/or

mass variations. The digital twin is found to be robust and yields reasonably accurate

results. One exciting feature of the proposed digital twin is its capability to provide rea-

sonable predictions at future time-steps. Aspects related to the data quality and data

quantity are also investigated.
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1. Introduction

Design and analysis of complex engineering systems using high fidelity computa-

tional simulations are an integral part of modern engineering practice. In the context

of aerospace and mechanical engineering, computational simulations were historically em-

ployed to support conceptual design, prototyping, manufacturing, production, test-data

correlation and safety assessment. Over the last decade, there has been a shift in tak-

ing advantage of computational simulations in providing service throughout the whole

product life cycle [1, 2], going well beyond the production stage. In the context of civil

infrastructure, the idea of fusing digital information with real-life structures are also

evolving at a significant pace [3]. The methodologies, algorithms, techniques, software

and computer applications which mimic the evolution of a complex real system through

computational and digital means are broadly termed as ‘digital twins’. The global digital

twin technology market size was valued at $2.26 billion in 2017 and is expected to expand

at an exceptional compound annual growth rate (CAGR) of 38.2% from 2018 to 2025,

according to a recent report by Grand View Research Inc [4]. Therefore, the market

size is expected to reach a staggering $26.07 billion by 2025. The key technologies and

solutions that enabled the espousal of the technology include Artificial Intelligence (AI)/

Machine Learning (ML), and Internet-of-Things (IoT), among others. Factors, such as

growing usage of connected devices across various organizations, increasing adoption of

cloud platforms, and the emergence of high-speed networking technologies will fuel the

growth of the digital twin technology.

By its very definition, digital twins are extremely diverse and can mean very different

approaches to different applications. In this paper, we are interested in digital twins

of structural dynamic systems, as many physical engineering systems can be expressed

in this form. A digital twin is a virtualized proxy of a real physical dynamic system.
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While a numerical model of a physical system attempts to closely match the behaviour

of a dynamic system, the digital twin also tracks the temporal evolution of the dynamic

system. Once a digital twin has been trained and developed, it can be used to make

crucial decisions at a point in time which is significantly far in the future from the time of

manufacturing of an engineering dynamic system. A general mathematical framework for

digital twin has been suggested in [5]. More specific approaches to developing digital twins

include prognostics and health monitoring [6–10], manufacturing [11–15], automotive and

aerospace engineering [16–19], to mention a few. These references give an excellent idea

of what can be achieved currently using the digital twin approach.

Dynamic systems differ crucially from other systems due to the fact that their re-

sponse due to external excitations change with time. The rate of change depends on their

characteristics time period. This is a fundamental property of a dynamic system. Typ-

ically, smaller structures have faster time periods and larger structures, for example, a

large wind turbine, have slower time periods. However, irrespective of their characteristics

time periods, the time-scale of their operational life is large. An example, for a large wind

turbine, the time period is in the order of 10s of seconds [20], while its operation life is in

10s of years. To address this fundamental mismatch in the time-scales, the digital twin

proposed in [21] explicitly considered two different time scales. The intrinsic timescale

is a fast time scale, while the operational time scale is a slow time scale. Physics-based

methods, such as the finite element method, are used for dynamic evolution in the in-

trinsic timescale, while data-based methods (e.g., surrogate models) are used for dynamic

evolution in the operational timescale. The digital twin of a complex dynamic system

will arise from the fusion of physics and data-based approaches. The separation of com-

putational approaches based on the two different time scales was exploited in [22] where

Gaussian Process Emulators (GPE) was used in the slow time-scale.

One key aspect of the digital twin technology is to use the sensor data collected from

the physical system to update the digital twin and then use the same for predicting

the future states. In this regard, the role of machine learning (ML) algorithms become

enormous. One of the reasons behind the recent thrust in digital twin technology is

the development of advanced ML algorithms (e.g., deep neural network [23, 24], Gaussian



process [25–27]) that can be readily used to update the model and make future predictions.

For example, [6] used two deep learning algorithms within the digital twin framework for

prognosis and diagnosis of systems. Similarly, in [22], GPE was used for learning the

evolution of the system parameters. A detailed review of the impact of machine learning

algorithms on the digital twin technology can be found in [28].

Although the separation of two time-scales provides a logical framework for developing

computational and mathematical methods for the construction of digital twins, questions

remain on how to define and propose the slow time scale. The fast time-scale is a funda-

mental property of dynamical systems and therefore is unambiguous for a given system.

The same is not true for the slow operational time scale. In [21, 22] the idea of a single

time-scale for the evolution of the digital twin was used for its entire operational period.

However, there is no physical or mathematical reason as to why this must be restricted

to only one time-scale. It is perfectly possible that various factors in a complex digital

twin evolve at different time scales. For example, the mass of a system can change due to

corrosion, while the stiffness of a system can degrade due to fatigue. These two processes

will have a very different time scale of evolution. Therefore, in a more general setting, a

digital twin can evolve in different time scales in addition to its intrinsic time scale. The

key idea proposed and investigated in this paper is that the digital twin of a dynamic

system evolves in two different operational time-scales. In principle, there can be more

than two operational time-scales. Approaches proposed in the paper can form the basis

of considering such problems.

The rest of the paper is organised as follows. In Section 2, the problem undertaken

in this study is discussed. Details about the proposed digital twin framework for the

multiscale dynamical system is discussed in Section 3. The performance of the proposed

digital twin in capturing the (multiscale) temporal evolution of the system parameters is

presented in Section 4. Some key features of the proposed framework and key findings of

this study are discussed in Section 5. Finally, Section 6 presents the concluding remarks.



2. The problem statement

We consider a physical system that can be represented by a single degree of freedom

(SDOF) spring mass and damper system.

m0
d2u0 (t)

dt2
+ c0

du0 (t)

dt
+ k0u0 (t) = f0 (t) , (1)

where m0, c0 and k0 are, respectively the mass, damping and stiffness of the system. Here

t is the intrinsic time of the system. Equation (1) is often referred to as the ‘nominal

system’ and m0, c0 and k0 as the nominal mass, nominal damping and nominal stiffness,

respectively. f0 (t) and u0 (t) are respectively the forcing function and the dynamic re-

sponse of the nominal system. At this stage, it is worthwhile to mention that a more

realistic infinite-dimensional system expressed by using partial differential equations can

be discretized into finite-dimensional systems by using standard numerical techniques

such as the Galerkin method. These discretized systems are often represented by SDOF

systems (as in Eq. (1)) using orthogonal transformations.

The nominal system discussed in Eq. (1) has fixed system paramaters m0, c0 and k0.

For a digital twin, however, the system parameters, namely mass, damping and stiffness,

and the forcing function changes with the service time ts. A generalized equation of

motion of this system can be represented as

m(ts)
∂2u(t, ts)

∂t2
+ c(ts)

∂u(t, ts)

∂t
+ k(ts)u(t, ts) = f(t, ts). (2)

It is to be noted that the service time ts is much slower than the intrinsic time t. The

nominal system discussed in Eq. (1) can be viewed as the initial model at ts = 0. The

service time ts can represent the number of cycles in a aircraft. From Eq. (2), we note

that the mass m(ts), damping c(ts), stiffness k(ts) and f(t, ts) changes with the ‘service

time’ ts, for instance due to the degradation in the system during its service time. Eq. (2)

represents the the equation of motion of the digital twin. Note that when ts = 0, Eq. (2)

reduces to the nominal system represented in Eq. (1). It is evident that the digital twin

is completely described by the functions m(ts), c(ts) and k(ts). Therefore, for using the

digital twin in practice, one needs to estimate the functions m(ts), c(ts) and k(ts).

In recent studies, physics-based [21] and data-based approaches [22] for estimating

the functions m(ts), c(ts) and k(ts) have been developed. However, these studies have a



number of limitations.

• The physics-based digital twin proposed in [21] is not sufficiently accurate when the

sensor data is noisy.

• The data-based digital twin proposed in [22] only works for systems having a single

operational time-scale. The approach is not applicable for multi-timescale dynamical

systems [29, 30].

• One of the objectives of digital twin is to predict the future response, so as to

understand the behaviour of the physical twin in future. Unfortunately, neither

the physics-based [21] nor the data based [22] digital twins previously proposed is

capable of predicting the future responses.

The objective of this study is to develop an efficient framework for addressing some of

the above-mentioned limitations. More specifically, we are interested in developing digital

twins for multi-timescale dynamical systems. Unlike the digital twins developed in [21, 22],

the digital twin developed in this paper should also, be able to predict future responses.

For developing the digital twin, it is assumed that sensors are deployed on the physical

system. Recent developments in the field of Internet of Things (IoT) has provided us with

numerous new data collection technologies and this provides the necessary connectivity

between the physical and digital twins. Using the sensors, measurements are taken inter-

mittently at ts. It is assumed that the functions m(ts), c(ts) and k(ts) are so slow that

the dynamics of the system in Eq. (2) is decoupled. In other words, ms, cs and ks of

the system is constant as far as the instantaneous dynamics of the system is concerned.

Without loss of generality, we assume

ks(ts) = ks
(
t(s), t(f)

)
= k0

(
1 + ∆k

(
t(s), t(f)

))
(3)

where

∆k

(
t(s), t(f)

)
= ∆

(s)
k

(
t(s)
)

+ ∆
(f)
k

(
t(f)
)
− 1 (4)

Here t(s) and t(f) represent a slower and a faster time scale of evolution of the respective

processes. Without any loss of generality, we express these two different time scales as a



function of a single service time-scale ts with different coefficients. Using this approach

we have

∆k (ts) = ∆
(s)
k (ts) + ∆

(f
k ) (ts)− 1

= 0.5e−α
(s)
k ts

(1 + ε
(s)
k cos(β

(s)
k ts))

(1 + ε
(s)
k )︸ ︷︷ ︸

∆
(s)
k (t(s))

+ 0.5e−α
(f)
k ts

(1 + ε
(f)
k cos(β

(f)
k ts))

(1 + ε
(f)
k )︸ ︷︷ ︸

∆
(f)
k (t(f))

−1. (5)

In Eq. (5), we have assumed that the stiffness degradation results from two different

processes - one relatively slow and one relatively fast. Numerical values considered for

stiffness degradation are: α(s)
k = 0.4×10−3, ε(s)k = 0.005, β(s)

k = 7×10−2, α(f)
k = 0.8×10−3,

ε
(f)
k = 0.01 and β(f)

k = 2× 10−1. Similarly, we also assume

m (ts) = m0 (1 + ∆m (ts)) , (6)

where

∆m (ts) = ∆(s)
m (ts) + ∆(f)

m (ts) . (7)

Similar to the stiffness degradation case, the mass degradation is also a function of two

time-scales - the relatively slower time-scale ∆
(s)
m (ts) and the relatively faster time-scale

∆
(f)
m (ts). We have assumed,

∆(f)
m (ts) = εm SawTooth(βm(ts − π/βm)), (8)

where βm = 0.15 and εm = 0.25. The slower time-scale is represented as

∆(s)
m (ts) =



1 if t1 ≤ ts < t2

2 if t2 ≤ ts < t3

3 if t3 ≤ ts < t4

0 elsewhere

. (9)

From a physical point-of-view, Eq. (8) can be associated with fuel loading and unloading

of an aircraft. On the other hand, Eq. (9) can be associated with the case where the

aircraft drops a bomb during its flight. Schematically, the mass and stiffness degradation

are shown in Fig. 1. The damping is considered to be constant. The key consideration is

that a digital twin of the dynamical system should be able to track these kinds of changes

occurring at multiple-scales by exploiting sensor data measured on the system. Moreover,

a digital twin should also be able to predict future degradation.
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Fig. 1: Multi-scale mass and stiffness degradation functions. The multi-scale degradation functions are
obtained by combining the fast and the slow time-scales shown in each figure.

3. Digital twin for multi-timescale dynamical systems

In this section, we discuss the proposed digital twin framework for multi-timescale

dynamical systems. A schematic representation of the framework is shown in Fig. 2.

The framework proposed has two primary components - (a) data processing by using the

physics of the problem (physics-based nominal model) and (b) Learning the time-evolution

of system parameters by using machine learning (ML). Once the material degradation is



known, the future responses can be predicted by combining the ML predicted material

properties with the physics of the problem defined by the governing differential equation.

To track the multi-scale nature of the degradation functions, we propose to use the concept

of mixture of experts (MOE) where each expert is employed to track a single time-scale.

Based on the success of the Gaussian process (GP) in solving problems having single time-

scale [22], we propose to use GP as the experts within the MOE framework. The overall

framework is referred to as the mixture of experts using Gaussian process (ME-GP). We

first present the details on data processing and then proceed to discuss the concept of the

proposed ME-GP.

Fig. 2: Schematic representation of the digital twin. It has three primary building blocks, namely data
fusion and processing, determining time evolution of the system parameters and making predictions using
the digital twin. This digital twin can be used for several tasks including prognosis, health-monitoring,
maintenance and remaining useful life prediction.



3.1. Data collection and processing

One major player in the development of the digital twin technology is the IoT. Ad-

vances in IoT have provided us with several new data collection technologies that, in turn,

drives the development of the digital twin technology and enables connectivity between

and physical and the digital twins. The overall idea of the digital twin technology is based

on the idea of this connectivity. This connectivity is established by placing sensors on the

physical twin to collect data and communicate it to the digital counterpart by using cloud

technology. With advances in the sensor technologies, we now have different sensors for

collecting different type of responses. In this work, we work with the natural frequency

of the system. The advantage of using natural frequency resides in the fact that it is a

scalar quantity and hence, we can avoid working with a big data-set. We assume that the

frequency of the system can be measured in an online fashion. Available literature illus-

trates that this is feasible. In [31], a vision-based sensor capable of remotely measuring

the structural response was proposed. The effectiveness of the proposed sensor was illus-

trated by conducting field tests on railway bridges in both time and frequency domains.

A sensor that infers the natural frequency of a system from vibration induced strain was

proposed in [32]. Applicability of this sensor was illustrated by conducting experiments

on metal pipe under vibration and impact load. Electrical strain gauge, piezoelectric ac-

celerometer and fibre Bragg gratting sensors were used for obtaining the natural frequency

of the system. Both these studies show that measuring the natural frequency of a system

is feasible, a fact that we use in our study.

In this paper, three different cases have been considered. In the first case, it is assumed

that only the stiffness degrades. In the second case, we assume the stiffness to be constant;

the variability in the observations is due to the variation in the mass. Lastly, in the

third case, we assume that both mass and stiffness vary. The collected data needs to be

processed differently for each of these three cases. Details on how the data is processed

for each of these three cases are furnished below.

3.1.1. Stiffness degradation

We assume that the mass and damping of the nominal model in Eq. (2) are unchanged

and only the stiffness degrades. Accordingly, the equation of motion for this case is written



as

m0
d2u(t)

dt2
+ c0

du(t)

dt
+ k0 (1 + ∆k(ts))u(t) = f(t). (10)

where all the terms have similar notations as defined before. Note that Eq. (10) is a

special case of Eq. (2) where ts is fixed. Solving the characteristic equation, the damped

natural frequency of the system can be represented as

λs1,2(ts) = −ζ0ω0 ± iω0

√
1 + ∆k(ts) = ζ2

0 , (11)

where ω0 and ζ0 are respectively the natural frequency and damping ratio of the system

at ts = 0. Eq. (11) can be rearranged as

λs1,2 (ts) = − ζ0√
1 + ∆k̂ (ts)︸ ︷︷ ︸
ζs(ts)

ω0

√
1 + ∆k̂ (ts)︸ ︷︷ ︸
ωs(ts)

±iω0

√
1 + ∆k̂ (ts)

√√√√1−

(
ζ0√

1 + ∆k̂ (ts)

)2

︸ ︷︷ ︸
ωds (ts)

,

(12)

where ωs (ts) = ω0

√
1 + ∆k̂ (ts) i, ζ (ts) = ζ0/

√
1 + ∆k̂ (ts) and ωds (ts) = ωs (ts)

√
1− ζ2

s (ts)

represent the evolution of the natural frequency, damping ratio and damped natural fre-

quency with ts. As the natural frequency extraction techniques in literature generally

extract the damped natural frequency, we have considered it to be the data available

from the physical twin. It can be shown [21]

∆k̂ (ts) = −d̃1 (ts)

(
2
√

1− ζ2
0 − d̃1 (ts)

)
, (13)

where

d̃1 (ts) =
d1 (ωd0 , ωds (ts))

ω0

. (14)

The function d1 (ωd0 , ωds (ts)) in Eq. (14) is the distance between ωd0 and ωds (ts)

d1 (ωd0 , ωds (ts)) = ||ωd0 − ωds (ts)| |2. (15)

Now given the fact that the initial damped frequency of the system, ωd0 is known and

we have sensor measurements for ωds (ts), one can easily compute d̃1 (ts) and ∆k̂ (ts) at ts

by using Eq. (14) and substituting it into Eq. (13). Note that the sensor measurements

d̃1 (ts) are likely to be corrupted by noise and hence, the estimates for ∆k̂ are also noisy.

In this study, this noisy estimates, ∆k̂ at discrete time ts are used for developing the

digital twin for the multi-timescale dynamical system.



3.1.2. Mass evolution

In this case, we consider that the stiffness and damping of the nominal model in Eq. (2)

are constant, and the variation in the observed natural frequency is due to variation in the

mass during the service life. Accordingly, the equation of motion of the physical system

reduces to

m0 (1 + ∆m(ts))
d2u(t)

dt2
+ c0

du(t)

dt
+ k0u(t) = f(t). (16)

Again, Eq. (16) is a special case Eq. (2) where only m varies and the stiffness is constant.

Solving for the damped natural eigenfrequencies as before

λs1,2 (ts) = −ωs (ts) ζs (ts)± iωds (ts) , (17)

where

ωs (ts) =
ω0√

1 + ∆m̂ (ts)
, (18a)

ζs (ts) =
ζ0√

1 + ∆m̂ (ts)
and (18b)

ωds (ts) = ωs (ts)
√

1− ζ2
s (ts). (18c)

are the evolution of natural frequency, damping ratio and damped natural frequency of

the digital twin. Similar to the stiffness degradation case, we have

∆m̂ (ts) =
−2d̃2 (ts)

2 + 4d̃2 (ts)
√

1− ζ2
0 − 1 + 2ζ2

0

2
(
−d̃2 (ts) +

√
1− ζ2

0

)2

+

√
1− 4d̃2 (ts)

2 ζ2
0 + 8d̃2 (ts)

√
1− ζ2

0ζ
2
0 − 4ζ2

0 + 4ζ4
0

2
(
−d̃2 (ts) +

√
1− ζ2

0

)2

(19)

where d̃2 (ts) is the equivalent of d̃1 for the stiffness evolution case. Again we emphasize

that the sensor based estimates of the damped natural frequencies are noisy and hence,

the estimated ∆m̂ (ts) are also noisy. In this case, we utilize the noisy ∆m̂ (ts) at discrete

time ts for developing the digital twin for multi-scale systems.



3.1.3. Mass and stiffness evolution

In this case, we consider the evolution of mass and degradation of stiffness, simulta-

neously. The equation of motion in this case is represented as

m0 (1 + ∆m(ts))
d2u(t)

dt2
+ c0

du(t)

dt
+ k0 (1 + ∆k(ts))u(t) = f(t). (20)

All the notations in Eq. (20) have same meaning as before. The damped natural eigen-

frequencies of this system can are represented as

λs1,2 = −ωs (ts) ζs (ts)± iωds (ts) , (21)

where

ωs (ts) = ω0

√
1 + ∆k̂ (ts)√
1 + ∆m̂ (ts)

(22a)

ζs (ts) =
ζ0√

1 + ∆m̂ (ts)
√

1 + ∆k̂ (ts)
and (22b)

ωds (ts) = ωs (ts)
√

1− ζ2
s . (22c)

ωs, ζs and ωds , respectively represent the evolution of natural frequency, damping ratio

and damped natural frequency. Unlike the previous two cases, both ∆m(ts) and ∆k(ts)

are unknowns in this case and hence, we need two equations to solve these unknowns. To

that end, we consider the real and imaginary parts of Eq. (21) separately to derive the

two equations necessary for estimating ∆m(ts) and ∆k(ts). With this setup, we arrive at

the following expression [21]

∆m̂ (ts) = − d̃R (ts)

ζ0 + d̃R (ts)
, (23a)

∆k̂ (ts) =
ζod̃

2
R (ts)− (1− 2ζ2

0 ) d̃I (ts) + ζ2
0 d̃

2
I (ts)

ζ0 + d̃R (ts)
, (23b)

where d̃R (ts) and d̃I (ts), as before, are distance measures

d̃R (ts) =
dR (ts)

1 + ∆m̂ (ts)
, d̃I (ts) =

√
1− ζ2

0 −
√

(1 + ∆k̂ (ts)) (1 + ∆m̂ (ts))− ζ2
0

1 + ∆m̂ (ts)
. (24)

Note that ∆m̂ (ts) and ∆k̂ (ts) are estimated from noisy observations of λ and hence, are

noisy. In this case also, we will utilize ∆m̂ (ts) and ∆k̂ (ts) obtained at discrete time ts

within the digital twin framework for multi-timescale dynamical system.



3.2. Mixture of experts with Gaussian process

In the next part of the digital twin framework, we use the processed data to learn the

evolution of the system parameters. Note that the evolution of the system parameters are

of multi-scale nature and hence, is difficult to learn. In this paper, we propose the use of

mixture of experts (MoE) within the digital twin framework. MoE is used to learn the

evolution of the system parameters. We argue that each of the experts within MoE learns

the evolution at a single scale and hence, MoE can predict the multi-scale evolution of the

system parameters. As experts within the MoE framework, we propose the use of GP.

The effectiveness of GP in predicting parameter evolution at a single scale has already

been established in a previous study [22].

Suppose, we have a sequence of observations yts ∈ Rd at discrete time ts, s =

1, 2, . . . , τ . For the digital twin problem in this study, yts can either be ∆k(ts) and/or

∆m(ts) at discrete time ts. This observations are generated from some unknown pro-

cess having multiple time-scales. We assume that the observations are generated from M

hidden states x(m)
t , m = 1, 2, . . . ,M , also referred to as experts. This hidden states are

generally assumed to be independent and can evolve independent of each other. We here

assume that the independent hidden states evolves according to a GP

xm|t ∼ GP (µm(t;h), κm(t1, t2; l) , m = 1, 2, . . . ,M, (25)

where

µm(t) = hTφ(t), (26)

represents the mean of the GP. h in Eq. (25) represents the unknown coefficients and φ(t)

represents the basis function vector. κm in Eq. (25) represents the correlation function

with length-scale parameter l. h and l are referred to as the hyperparameters of the GP.

Eq. (25) can be viewed as the prior, parameterized by the hyperparameters h and l in

the space of the hidden state. These hidden states can be coupled in a generative manner

to obtain the underlying data

yts = y(t = ts) =
M∑
m=1

zm (t;θg)xm (t;θe) . (27)



zm (t) is the m–th gating function and defined as

zi(t) =
πiN

(
t|µi, λ−1

i

)∑M
j=1 πjN

(
t|µj, λ−1

j

) , M∑
j=1

πj = 1. (28)

θg = [µj, λj]
M
j=1 are the hyperparameters of the gating function. πj, j = 1, 2, . . . ,M

in Eq. (28) represents the mixing coefficient. xm in Eq. (27) is the m-th GP expert.

θe = [hm, lm]Mm=1 is the hyperparameter associated with the expert function.

For using the model defined in Eqs. (25)–(28), all the hyperparameters need to be esti-

mated based on the training data D = [yts , ts]. One way to achieve this is by maximizing

the data likelihood of the model.

p (yts |ts,θ,π) =
M∑
i=1

p (i|ts,θg,π) p (yts|ts,θe, ) (29)

p (i|ts,θg,π) in Eq. (29) is the posterior conditional probability, where ts is assigned to

the partition corresponding to the i–th expert, i.e.,

p (i|ts,θg,π) = zi(t). (30)

p (yts|ts,θe), on the other hand, is the probability distribution of the i–th expert and

hence is a GP

p (yts|ts,θe, ) = N (µi (ts;h) , κi (ts,1, ts,2; l)) . (31)

Substituting Eqs. (28) and (31) into Eq. (29), we obtain

p (yts|ts,θ,π) =
M∑
i=1

πiN
(
t|µi, λ−1

i

)∑M
j=1 πjN

(
t|µj, λ−1

j

)N (yts|µi (ts;h) , κi (ts,1, ts,2; l)). (32)

Note that Eq. (32) is analytically intractable. Using the training samples yts and ts,

s = 1, 2, . . . , τ , the likelihood can be represented as

p (yts |ts,θ,π) =
τ∏
s=1

M∑
i=1

πiN
(
ts|µi, λ−1

i

)∑M
j=1 πjN

(
ts|µj, λ−1

j

)N (yt,s|µi (ts;h) , κi (ts,1, ts,2; l)). (33)

One way to estimate the parameters in Eq. (33) is by using maximum likelihood estimator

where we maximize the likelihood in Eq. (33). However, such an approach often leads to

over-fitting. An alternative to the maximum likelihood estimator is to using an Bayesian

approach and compute the posterior distribution of the hyperparameters. However, as

the likelihood is intractable for the problem in hand, such an approach is computationally

expensive. In this paper, with adopt a hybrid approach where some of the parameters are



treated in a Bayesian way while for the other parameters, point estimates are computed.

More specifically, within the proposed framework, we compute point-estimates for the

mixing coefficients π. The hyperparameters corresponding to the gating distribution and

the experts are treated in a Bayesian way.

To estimate the hyperparameters using the proposed hybrid approach, we first use

Bayes rule to compute the posterior distribution of the hyperparameters θ and π

p (θ,π|ys, ts) =
p (π,θ) p (ys|ts,π,π)

p (ys|ts)
, (34)

where p (π,θ) represents prior distribution of the hyperparameters and p (ys|ts,π,π) is

obtained from Eq. (33). Recall that the goal is to compute point-estimates for the mixing

parameters π. This can be achieved by maximizing the log-posterior for the mixing

coefficients

L (π) = log p (π|yts , ts) = log

∫
p (π,θ|yts , ts) dθ. (35)

Unfortunately, this is not straightforward as Eq. (35) involves integration over the un-

known θ. In this work, we propose to use expectation maximization for computing the

mixing coefficients by maximizing the log-posterior in Eq. (35). In expectation maximiza-

tion, we iterate over a series of increasing lower-bound of L (π) by using the Jensen’s

inequality

L (π) =) = log p (π|yts , ts) = log

∫
p (π,θ|yts , ts) dθ

= log

∫
q (θ)

p (π,θ|yts , ts)
q (θ)

dθ

≥
∫
q (θ) log

p (π,θ|yts , ts)
q (θ)

dθ

= F (q,π) ,

(36)

where q (θ) is an auxiliary distribution. It is obvious that the equality in Eq. (36) holds

when q (θ) = p (θ|π,yts , ts). Using expectation maximization, π is estimated by iterating

over the E-step (expectation step) and the M-step (maximization step).

• E-step: Given an estimate of π = π(s) in step s, we compute the lower-bound

F
(
q(s),π

)
=

∫
q(s) (θ) log p (π.θ|yts , ts) dθ

−
∫
q(s) (θ) log

∫
q(s) (θ) dθ.

(37)



• M-step: Maximize F
(
q(s),π

)
to update π.

θ(s+1) = arg max
θ

F
(
q(s),π

)
= arg max

θ

[
Eq(s)(θ) (log p (π,θ|yts , ts))

]
.

(38)

The second equality in Eq. (38) holds because the second term of F
(
q(s),π

)
is independent

of π. It is important to note that the optimal distribution q(s) (θ) = p
(
θ|π(s),yts , ts

)
is

intractable. We propose to use sequential Monte Carlo (SMC) sampler [33] to generate

samples from p
(
θ|π(s),yts , ts

)
so that the expectation in the E-step can be represented

as

Eq(s)(θ) (log p (π,θ|yts , ts)) ≈
Ns∑
i=1

W (s,i) log p
(
π(s),θ(s,i)|yts , ts

)
, (39)

where θ(s,i) is the i–th sample generated from p
(
θ|π(s),yts , ts

)
, and W (s,i) is the corre-

sponding weight.

Often posterior distributions are multi-modal and conventional Markov Chain Monte

Carlo (MCMC) [34] may get trapped in a local mode. This results in long mixing time

making the process inefficient. One algorithm that addresses this issue is the SMC sampler

[33, 35]. SMC provides a parallelizable framework for efficiently drawing samples from

multi-modal posterior distributions. The idea of annealing is introduced to construct

auxiliary distributions. We traverse from the prior to the posterior through this auxiliary

distributions; this ensures a smooth transition from the tractable prior to the intractable

posterior. It can be shown that samples drawn using SMC converges asymptotically to

the target distribution [33].

For using SMC to approximate the E-step of the expectation maximization algorithm,

we first express p
(
θ|π(s),yts , ts

)
as

p
(
θ|π(s),yts , ts

)
∝ p (θ) p

(
yts|ts.π(s),θ

)
. (40)

where p (θ) is the prior and p
(
yts|ts.π(s),θ

)
is the likelihood of the model defined in

Eq. (33). In this work, we set the prior as a multivariate Gaussian distribution with zero

mean and identity covariance matrix. Therefore, the parameters θ are independent in the

prior. For ease of representation, we write the likelihood in a compress form as p (D|θ)



and the posterior of θ as pn(θ). With these notations, Eq. (40) is represented as

pn (θ) ∝ p (θ) p (D|θ) (41)

Based on Eq. (41), we formulate the following auxiliary distribution in SMC

pt (θ) ∝ p (θ) pγt (D|θ) , (42)

where t = 0, 1, . . . , n and 0 = γ0 < γ1 < · · · < γn = 1 are the annealing parameters. Using

the SMC sampler, samples are drawn from such a sequence of probability distribution

by utilizing importance sampling and re-sampling. At step t, the idea is to generate a

sufficient collection of
{
θ

(i)
r ,w

(i)
r

}
, i = 1, . . . , Ns such that the empirical distribution

converges asymptotically to the target distribution pr (θ). Sampling at t = 0 is trivial (as

we sample the prior). From t = 1 onward, we employ importance sampling sequentially

to the auxiliary distributions. A predefined Markov transition kernel is used to that end.

Assuming, at step t − 1, Ns samples
{
θ

(i)
t−1

}
, i = 1, . . . , Ns are generated according to

the proposal distribution ϕt−1, a kernel Kt with invariant distribution pt is proposed such

that the new samples are marginally distributed as [36]

ϕt =

∫
ϕt−1Kt (θ,θ′) dθ. (43)

Following [33], we have utilized the Metropolis-Hasting kernel with invariant distribution

pt to move the samples based on a random walk proposal

ϕt = N
(
θ

(i)
r−1,v

(i)
)
, (44)

where v(i) is the covariance matrix. To represent the discrepancy between the proposal

distribution ϕt and the target distribution pt at step t, 0 < t ≤ n, unnormalized impor-

tance weights w(i)
t are generated.

w
(i)
t = w

(i−1)
t

pt
(
θit−1

)
pt−1

(
θit−1

) (45)

The computed weights are normalized as

W
(i)
t =

w
(i)
t∑Ns

j=1w
(j)
t

(46)

As pointed out in [33, 37], the SMC sampler degenerates and the variance of the

importance weight increases. In this work, we measure the degeneracy based on the



effective sample size (ESS) [36]

ESSt =

(
Ns∑
t=1

(
W

(i)
t

)2
)−1

. (47)

We consider degeneracy to have occurred if

ESSt < ESSmin, (48)

where ESSmin represents the threshold. In this work, we have defined ESSmin = c ×

Ns (c < 1). In case, ESSt < ESSmin, resampling is carried out to relieve the degeneracy

of the sampler. Once samples corresponding to the target distribution are obtained, we

utilize them to compute the expectation in the E-step of the expectation maximization

algorithm. The steps involved in the SMC sampler are shown in Algorithm 1. The steps

Algorithm 1: Sequential Monte Carlo sampler
1 Input: Number of samples to generate Ns, the prior distribution p (θ), the

number of steps n and the threshold parameters c
2 Initialize Ns particles θ

(i)
0 , i = 1, . . . , Ns by directly sampling the prior

distribution p (θ) and set the corresponds weights to be one, w(i)
0 = 1.

3 for t = 1, . . . , n do
4 for i = 1, . . . , Ns do
5 Sample ui from uniform distribtuion U (0, I).

6 Sample θ̃ from the proposal distribution N
(
θ

(i)
t−1,vi

)
.

7 if ui < min

{
pt(θ̃)

pt
(
θ
(i)
t−1

)
}

then

8 θ
(i)
t ← θ̃

9 else
10 θ

(i)
t ← θ

(i)
t−1

11 end
12 end
13 Set weights of each particle according to Eqs. (45) and (46).
14 Compute ESSt using Eq. (47).
15 Resample if ESSt < ESSmin.
16 end
17 Use θ(i)

n and W (i)
n , i = 1, . . . , Ns to compute the expectation in the E-step of the

expectation maximization algorithm.

involved in training the proposed mixture of experts using GP algorithm are shown in

Algorithm 2

Once the hyperparameters of the proposed model are predicted by using the proposed



Algorithm 2: Mixture of experts using Gaussian process
1 Input: Number of experts M , the training data D = [yts , ts], s = 1, . . . , τ , initial

values of mixing coefficients π(i) and threshold ε.
2 π ← π(i).
3 λ = 10ε.
4 repeat
5 πs ← π.
6 Compute F

(
q(s),π

)
using SMC sampler (Algorithm 1).

7 Update π by solving the optimization problem in Eq. (38).
8 Compute error threshold

λ = ||π − πs| |2
9 until λ ≤ ε;

10 Outcome: Optimized π, Ns samples and corresponding weights from the
posterior of θ θ(i)

n , W (i)
n , i = 1, . . . , Ns.

approach, we proceed to make predictions using the proposed approach. Since we use

a partially Bayesian approach to obtain the hyperparameters θ, it is possible to utilize

the same to make probabilistic predictions. Suppose, we are interested in obtaining yt∗ at

time-step t∗. This can be obtained by computing the posterior predictive distribution.

p (yt∗|t∗,D, π∗) =

∫
θ

M∑
i=1

p (i|t∗, π∗i , θ
g
i )︸ ︷︷ ︸

gating

p (y∗|t∗, θei )︸ ︷︷ ︸
expert

p (θei , θ
g
i |D)︸ ︷︷ ︸

posterior

dθ. (49)

The integral above can be approximated by using Monte Carlo integration. In particular,

we use the samples drawn from the posterior along with the correspond weights and the

EM estimate of π∗ to draw samples from the posterior predictive distribution in Eq. (49).

3.3. Algorithm

We now proceed to discuss how the components discussed in Section 3.1 and Section 3.2

interacts with each other within the digital twin framework shown in Fig. 2, and how the

digital twin enhanced with ME-GP can be used for multi-timescale dynamical systems.

Given a physical system, the first step towards developing a digital twin is to develop a

physics-driven nominal model for the system. For the current work, the nominal model

is represented by Eq. (2). Next, the collected responses (damped natural frequencies of

the system) are processed by using the procedure discussed in Section 3.1. To be more

specific, we process the collected damped natural frequencies to obtain change in the mass,

(∆m(ts)) and stiffness (∆k(ts)) of the system. In the third step, the time-evolution of mass



and stiffness, η : t→ ∆k,∆m is learned by using ME-GP. Finally, Using the trained ME-

GP, we compute the future mass and stiffness, substitute them into the nominal model and

solve it to obtain the future responses of interest. These future responses of interest can

be used for health-monitoring, computing remaining useful life, devising a maintenance

strategy and identifying defects and/or cracks in the system. How the algorithm within

digital twin works is shown in Algorithm 3.

Algorithm 3: Proposed digital twin
1 Input: Nominal model and damped natural frequency of the physical system at

different time-instants, D = [λs, ts] , s = 1, . . . , τ .
2 Process the collected data to obtain ∆k(ts) and/or ∆m(ts) at ts (See Section 3.1).
3 Use ME-GP to learn the time-evolution of ∆m and/or ∆k (See Section 3.2).
4 Obtain ∆k(t

∗) and/or ∆m(t∗) at t∗, t∗ > τ (See Section 3.2).
5 Substitute k∗ = (1 + ∆k(t

∗)) and/or m∗ = (1 + ∆m(t∗)) into the nominal model
and solve it to obtain responses expected in the future.

6 Take engineering decision.
7 Repeat steps (2) – (6) as more data becomes available

The proposed digital twin framework has multiple advantages.

• The framework proposed utilizes both physics-driven model (ordinary and partial

differential equations) and data-driven models (ME-GP). The physics-driven model

ensures extrapolatibility of the proposed digital twin. On the other hand, the data-

driven model ensures that the proposed digital twin is not limited by the facts that

there may be missing physics.

• Including physics-based model also enables us to predict other responses of interest.

For example, although we only have sensor information about the damped natural

frequency of the system, the proposed digital twin can easily predict other responses

such as strains, displacements and velocity.

• The fact that we utilize ME-GP enables the digital twin to track even multi-timescale

dynamical systems such as the one considered in this paper.



4. Illustration of the proposed framework

In this section, we illustrate the performance, utility and applicability of the pro-

posed digital twin framework for multi-timescale dynamical systems. More specifically,

we present results for the problem defined in Section 2. Three cases as defined in Sec-

tion 3 are considered. As already stated, it is assumed that we have access to the damped

natural frequency of the system at different (slow) time-steps and the objective is to learn

the time-evolution of the mass and/or the stiffness. Once the time-evolution of the mass

and/or stiffness is known, the same can be used to determine the response of interest

at a given time-instant by solving the physics-driven nominal model. We illustrate how

the proposed digital twin can be used to learn the parameters (mass and stiffness) in

the past (interpolation) as well as in the future (extrapolation). Lastly, to illustrate the

difficulty posed by a multi-timescale dynamical system and to showcase the necessity of

the ME-GP, we compare the results obtained using the proposed digital twin with those

obtained using a GP based digital twin [22].

4.1. Digital twin via stiffness evolution

First, we consider the case where the variation in the collected natural frequency is

due to the degradation in the stiffness of the system. The time-evolution of stiffness

is assumed to be of multi-scale nature as shown in Figure 1 (b) (the multi-scale one).

However, neither the pattern of the time-evolution nor the number of scales present in

the data is known to us a-priori. Without loss of generality, the sensor data is assumed

to be transmitted intermittently at a certain regular time-interval. To simulate a realistic

scenario, the damped natural frequency data is contaminated with white Gaussian noise

having a standard deviation σ0. It is to be noted that the frequency of data availability

depends on a number of factors including the bandwidth of the transmission system and

cost of data collection. Therefore, we as engineers are not only interested in the behavior

of the system at a future time, but also in the behaviour at an intermediate time.

Consider that we have Ns observations of the damped natural frequency λs (ts) equally

spaced in time ts ∈ [0, τ ]. Within the proposed digital twin framework, λs (ts) is processed

in accordance to the procedure described in Section 3.1.1 to obtain the change in the stiff-

ness ∆k̃ (ts). After that, using ts as the input data and ∆k̃ (ts) as the output data, the



ME-GP model is trained by using SMC and expectation maximization by using Algo-

rithms 1 and 2. Since the number of scales present in the data is supposed to be unknown

for a real-life problem, we have used four experts (different from the two scales that

are actually present) within the ME-GP framework. Automatic relevance determination

based Matern covariance function and quadratic mean function is considered for all the

experts. The threshold parameter C is considered to be 0.85 [29, 30] and we generate 1000

samples by using the SMC sampler. The trained ME-GP model is used as a surrogate

to the unknown degradation process. The stiffness at a given time t∗ can be calculated

by using Eq. (3) where ∆k (ts) ≈ ∆k̃(t
∗) is obtained by using the trained ME-GP model.

By substituting the estimated stiffness into the nominal model in Eq. (1), it is possible to

predict any response of interest at t∗. Also as more data becomes available, the ME-GP

model gets updated.

Figure 3 shows the variation of ∆k with normalized time. we have 200 measurements

Fig. 3: Results obtained using GP based and ME-GP based digital twin for the case where only stiffness
changes. Ideal scenario is considered where clean data throughout the service life is available.

equally spaced throughout the service life of the system. The measured data is clean

(i.e., no noise). We see that for this case, the proposed digital twin and the GP based

digital twin yields identical results. In other words, in the presence of enough (clean)

data throughout the service life of the system, the proposed ME-GP based digital twin

reduces to a simple GP based digital twin. However, in a real-life setting, seldom do we



have access to life-time data. Also, the data obtained is almost always corrupted by some

form of noise.

Next, more realistic cases are considered. More specifically, we consider cases where we

only have measurements in a certain observation time-window, [0, τ ] and we are interested

in predicting the evolution of stiffness at a time t∗ where t∗ > τ . Moreover the data

collected from the physical system is considered to be noisy. Fig. 4 shows the performance

of digital twin for cases where τ = [150, 250, 550]. For τ = 150, we have 35 measurement

data whereas for the other two cases, we have 50 sensor measurements. For all the

three cases, the sensor measurements are contaminated by white Gaussian noise with

standard deviation σ0 = 0.005. The observed and unobserved regime are also marked in

the figure by using a vertical line. Similar to Fig. 3, results have been generated by using

the proposed digital twin and the GP based digital twin. For τ = 150 (Fig. 3(a)), the

proposed ME-GP based digital twin is found to yield excellent result up to ts/T0 ≈ 600,

which is almost four times the observation time window. Even beyond ts/T0 = 600, the

results obtained from the proposed digital twin is found to be satisfactory. The GP based

digital twin, on the other hand, is found to yield erroneous result almost immediately

after the observation time-window.

One of the necessary characteristic of digital twin is its capability to update itself

as more data becomes available. Figs. 3(b) and 3(c) show the results when more data

is available and the the digital twin has been updated accordingly. For Fig. 3(b), we

have considered that we have access to 50 data points equally spaced in the time-window

[0, 250]. Similarly, in Fig. 3(c), we have access to 50 data equally spaced in the time-

window [0, 550]. We see that with more data, the digital twin is able to capture the

evolution of stiffness up to ts/T0 = 1000 (which is assumed to be the service life of the

system). We also see that the predictive uncertainty for both these cases envelopes all the

observed data points. This indicates that the uncertainty in the system due to limited

and noisy measurements have been adequately captured. The GP-based digital twin has

also been updated for the two cases. Although the GP based digital twin yields erroneous

result for τ = 250, it is found to yield satisfactory results for τ = 550. However, the

ME-GP based digital twin predicted results are still superior.
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Fig. 4: Results obtained using GP and ME-GP based digital twin with observations up to τ =
[150, 250, 550] and noise variance σ0 = 0.005. For τ = 150, we have 35 sensor data whereas for
τ = [250, 550], we have 50 sensor data (shown using cross). The observed and unobserved regime are
differentiated by using a vertical line.

Lastly, we investigate the case when the noise variance is more. Fig. 5 shows the results

corresponding to σ0 = 0.015. Same three cases as Fig. 4 are considered. We observe that

for τ = 150, the prediction obtained using ME-GP based digital twin oscillates around

the actual solution (Fig. 5 (a)). This oscillatory behaviour is probably because ME-GP

overfits to the noise in the observations. The GP based digital twin is found to yield

erroneous results. The digital twin models are then updated by collecting data up to

τ = 250 and τ = 550. For both these cases, ME-GP based digital twin is found to yield

reasonably good predictions. However, because of the increase in the noise variance, the
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Fig. 5: Results obtained using GP and ME-GP based digital twin with observations up to τ =
[150, 250, 550] and noise variance σ0 = 0.015. For observation up to 150, we have 35 sensor data whereas
for observation up to 250 and 550, we have 50 sensor data (shown using cross). The observed and
unobserved regime are differentiated by using a vertical line.

predicted results are inferior to those shown in Fig. 4. This indicates the importance of

collecting clean data from the physical system. The GP based digital twin for all the three

cases in Fig. 5 are found to yield erroneous results beyond the observation window. This

indicates the superiority of the proposed ME-GP over GP, particularly when predicting

the future.

4.2. Digital twin via mass evolution

Next, we consider the case corresponding to Section 3.1.2 where the variation in the

damped natural frequency of the system is due to the variation in its mass. The time-

evolution of mass is considered to be of multi-scale nature as shown in Fig. 1(a). However,



similar to the stiffness degradation case, neither the pattern of time-evolution nor the

number of scales present in the data is known to us a-priori. We again assume the sensor

data to be transmitted intermittently at a fixed time interval. To emulate a realistic

scenario, the damped natural frequency data is contaminated with white Gaussian noise

having a standard deviation σ0. The objective is to use the proposed digital twin to

predict the multi-scale time evolution of mass.

Consider that we have Ns observations of the damped natural frequency λs(ts) equally

spaced in time ts ∈ [0, τ ]. Using the procedure described in Section 3.1.2, we first process

λs(ts) to obtain the change in the mass ∆m̃ (ts). Thereafter, using ts as the input and

∆m̃ (ts) as the output, we train an ME-GP model by using Algorithms 1 and 2. The

setup for the algorithms are kept similar to that described in Section 4.1 and the trained

ME-GP model is treated as a surrogate of the unknown ∆m. For obtaining the response

of the system at t∗, one can utilize the trained ME-GP model to obtain the updated m

at t∗ and then substitute it into the nominal model and solve it to obtain the responses

of interest. As more data becomes available, the digital twin is updated.

Figure 6 shows the variation of ∆m with normalized time ts/T0. These results corre-

Fig. 6: Results obtained using GP based and ME-GP based digital twin for the case where only mass
changes. Ideal scenario is considered where equally spaced clean data throughout the service life is
available.

spond to the perfect case where we have 300 measurements equally spaced throughout the

service life of the system. The data available are also free of any noise. We observe that

the proposed digital twin and the GP based digital twin yields identical results. In other



words, for this case, the proposed ME-GP based digital twin reduces to the GP based

digital twin proposed in [22]. However, one must note that this is an ideal scenario. In a

more realistic setting, the data collected will be noisy and, almost always, data over the

complete service-life will not be available.

Next we consider a more realistic setup where we have data over a certain time-

window [0, τ ] and the goal is to predict ∆m at a time t∗ where t∗ > τ . The data collected

is contaminated by white Gaussian noise. Fig. 7(a) shows the digital twin predicted

results corresponding to τ = 150. The data collected is contaminated by white noise with

σ0 = 0.005. The observed and unobserved regimes are marked by a vertical line. Results

using GP based digital twin have also been generated for the sake of comparison. For

τ = 150, the ME-GP model trained from only 75 data reasonable predicts the evolution

of mass over the the service life of the system. More specifically, the primary crest

of the response has been accurately captured throughout the service life. However, as

time increases, the digital twin over-predicts the trough. The proposed approach being

Bayesian in nature also provides the predictive uncertainty as indicated by the shaded

plot. Throughout the service life, the true solution is within the shaded plot, indicating

that the uncertainty due to limited and noisy data is properly captured. The GP based

digital twin, although provides excellent prediction in ts/T0 = [0, 150], yields erroneous

prediction almost immediately beyond the observation time-window.

Figure 7(b) shows the results obtained using the digital twins for τ = 550. 175

equally spaced observations over the time-window are collected. The data collected is

contaminated with white Gaussian noise having σ0 = 0.005. Again, the proposed ME-GP

based provides reasonable predictions. The GP based digital twin, on the other hand,

fails to capture the time evolution of ∆m beyond the training time window.

Lastly, we consider the case when the noise variance is more. Fig. 8 shows the results

corresponding to σ0 = 0.015. The predicted time-evolution of mass is found to be similar

to that predicted in Fig. 7. The predictive uncertainty is found to increase for this case.

This can be attributed to the increase in the noise in the data. GP based digital twin was

unable to properly predict the time-evolution beyond the observation window.



(a) τ = 150

(b) τ = 550

Fig. 7: Results obtained using GP and ME-GP based digital twin with observation window of [0, 150]
and [0, 550], and σ0= 0.005. For observation window of [0, 150], we have 75 sensor data whereas for
observation window of [0, 550], we have 175 sensor data (shown using cross). The observed and unobserved
regime are differentiated by using a vertical line

4.3. Digital twin via mass and stiffness evolution

Lastly, we illustrate the performance of the proposed digital twin when both mass and

stiffness evolves with time. Time evolution of both mass and stiffness are of multi-scale

nature as shown in Fig. 1. Similar to the previous cases, the sensor data is assumed to be

transmitted intermittently at a fixed time interval. Considering we have Ns observations

of the damped natural frequency, the digital twin first process this data to obtain ∆m and

∆k. Details on the data processing step are furnished in Section 3.1.3. Thereafter, ME-GP



(a) τ = 150

(b) τ = 550

Fig. 8: Results obtained using GP and ME-GP based digital twin with observation window of [0, 150]
and [0, 550], and σ0= 0.015. For observation window of [0, 150], we have 75 sensor data whereas for
observation window of [0, 550], we have 175 sensor data (shown using cross). The observed and unobserved
regime are differentiated by using a vertical line

is used to learn the time evolution of mass and stiffness. The parameters for the ME-GP

algorithm are kept identical as that discussed in Section 4.3. For obtaining response at a

given time-instant t∗, one first obtains the mass and stiffness by using the trained ME-GP

model as a surrogate. Thereafter, the responses of interest are obtained by substituting

the ME-GP predicted mass and stiffness into the nominal model and solving it. Similar

to the previous two cases, we only present the performance of the digital in predicting the

time evolution of mass and stiffness; the argument being, if the time evolution of mass



and stiffness are accurately captured, the responses predicted will also be accurate.

Given the fact that the proposed digital twin was found to yield almost exact result

for the ideal scenario for the previous two cases, we directly proceed to the realistic case-

studies. First, we consider the case where the observation window is [0, 150]. Within this

time-window, it is assumed that we have access to 75 equally spaced sensor measurements.

The data collected is contaminated by a white Gaussian noise with σ0 = 0.025. Fig. 9

shows the evolution of ∆m and ∆k predicted using the digital twin. For ∆m, it is observed

that the digital twin yields reasonable prediction throughout the service life of the system.

However, for ∆k, the results are found to deviate beyond ts/T0 = 350. Since the proposed

approach is Bayesian in nature, the predictive uncertainty has also been computed. For

∆m, the predictive uncertainty envelopes the true behaviour throughout the service life;

this indicates that the uncertainty due to noise and limited data has been appropriately

captured. However, for ∆k, the true solution is outside the envelope beyond ts/T0 = 600.

This indicates that the proposed digital twin is over-confident when ts/T0 > 600. The

GP based digital twin for both ∆m an ∆k yields erroneous results beyond ts/T0 = 200.

For improving the performance of the digital twin, we carried out investigation by

providing additional sensor data to the model. More specifically, we provided 120 and

150 equally spaced observations within the same observation window [0, 150]. The results

are shown in Fig. 10. As the predictions for ∆m was already reasonable in Fig. 11, only

the results corresponding to ∆k are presented. We observe that with an increase in the

number of observations, the digital twin predictions become more and more closer to the

actual solution. The predictive uncertainty is also found to improve as it envelopes the

true solution.

As the last case study, we carry out an investigation by increasing the observation

window to [0, 350]. However, the number of sensor observations is kept fixed at 75. The

result is shown in Fig. 11 With this setup, the digital almost perfectly predicts the time

evolution of the stiffness. This illustrates the importance of collecting data over a longer

time-span. For all the cases discussed, the GP based digital twin fails to provide accurate

prediction beyond the observation window.



(a) ∆m

(b) ∆k

Fig. 9: Digital twin predicted responses, ∆m and ∆k. The digital twin is trained using 75 equally spaced
sensor measurements in observation window [0, 150]. The sensor data are contaminated by white Gaussian
noise with σ0 = 0.025. The observed and unobserved regime are shown by a vertical line.

5. Discussion

The dynamical system observed in engineering and technology often exhibits multiple

time-scales. Tracking and solving such systems are challenging due to the need for very

fine temporal discretization. In this paper, we propose a digital twin framework for multi-

timescale dynamical systems. The key ideas proposed in this work include:



(a) Ns = 120

(b) Ns = 150

Fig. 10: Digital twin performance with increase in number of sensor measurements over the observation
window [0, 150]. The sensor data are contaminated with white Gaussian noise having σ0 = 0.025.

• For the first time, digital twin for multi-timescale dynamical systems have been

proposed. The framework proposed, from very few data, can track the multi-scale



Fig. 11: Performance of digital twin for observation time-window [0, 350]. 75 sensor data are available
within the specified time-window. The data are contaminated by white Gaussian noise with σ0 = 0.025.

evolution of the system parameters and use the same for predicting future responses.

• The digital twin proposed fuses a physics-driven nominal model with a data-driven

machine learning model. The physics-driven model ensures the generalization of the

proposed framework and enables the digital twin in predicting unobserved responses

of interest.

• The data-driven machine learning model compensates for the fact that the physics

of the problem is often not completely defined. In this paper, the machine learning-

based model is utilized for learning the time-evolution of the mass and/or stiffness

of the system.

• As the machine learning model, we propose to use a mixture of experts. We propose

to use GP as experts within the mixture of experts framework (see, algorithm 2).

The idea is to let each expert track the time-evolution at one scale. For learning

the parameters of the model, an algorithm based on expectation-maximization and

sequential Monte Carlo solver is proposed.

The proposed digital twin was illustrated by using a single-degree of freedom system

with mass evolution and stiffness evolution, both individually and jointly. Both mass and



stiffness evolution was considered to be of multi-scale nature. The key observations are

summarized below:

• When equally spaced sensor data (clean) over the service life of the physical system

is available, the proposed ME-GP based digital twin reduces to a simple GP based

digital twin. This indicates that a single GP expert is able to describe the time-

evolution of the system parameters.

• The importance of collecting data over a longer time-window is showcased in this pa-

per. As the observation time-window increases, the digital twin predictions become

more accurate.

• The importance of collecting more data is also illustrated in this paper. We showed

the digital twin predictions to improve as more sensor data was provided to the

framework.

• It is important to collect cleaner data from the physical system. This is because

as the noise in the data increases, the digital twin seems to deviate from the true

solution. Some denoising techniques can be useful in this regards.

• The proposed approach being (partially) Bayesian in nature provides predictive

uncertainty. For most of the results presented in this study, the true solution was

enveloped by the predictive uncertainty, indicating that the uncertainty due to noisy

and limited data is properly captured. However, there are a few results where the

predictive uncertainty was not properly captured. This can probably be avoided by

employing a completely Bayesian framework where all the parameters are treated

in a probabilistic sense.

6. Conclusions

Digital twins of dynamical systems encountered in engineering and technology can

benefit from the use of multiple time-scales. The solution of such systems is difficult

from a computational point-of-view as we need a time-step of the order of the fastest

scale. As a result, tasks such as health-monitoring, damage prognosis and remaining



useful-life prediction becomes excessively difficult. To address this issue, we present a

machine learning-based digital twin framework for multi-timescale dynamical systems.

The proposed digital twin has two major components: (a) a physics-driven nominal model

(generally represented by ordinary or partial differential equation(s)) and (b) a data-driven

machine learning model. We use the physics-driven nominal model for data processing and

predictions and the machine learning model for learning the time-evolution of the system

parameters. We propose to use a mixture of experts (MOE) as the machine learning model

of choice. As an expert within the MOE framework, we propose to use GP. The basic

idea is that each of the experts will track the temporal evolution of the system parameters

at a single scale. For learning the hyperparameters of the proposed model, an algorithm

based on expectation-maximization and sequential Monte Carlo sampler is proposed. The

proposed training algorithm is of hybrid nature where some of the parameters are treated

in a Bayesian sense while the point-estimates for others are provided.

The results obtained using the proposed approach show its ability in predicting the

time-evolution of the system parameters, even outside the observation time-window. How-

ever, extremely sparse and highly noisy data can affect the performance of the proposed

framework. Moreover, collecting data over a longer observation window can drastically

improve the performance of the proposed framework. The proposed framework being

partially Bayesian quantifies the uncertainty due to limited and noisy data. In most

of the cases, the predictive uncertainty is found to envelop the true solution, indicating

that the uncertainty is properly captured. However, for some cases, the true solution is

found to be outside the envelope. This is probably because of overfitting and employing

a fully-Bayesian framework can help us overcome this issue.

Despite the several interesting findings of the current work, there are two possible

extensions that need to be pursued in future. First, the illustration has been carried

out using a single degree of freedom system. While this helps us in understanding the

functionality of the proposed framework, further investigation on multi-degree-of-freedom

(MDOF) systems is necessary. For MDOF systems, one major challenge will be in the

data-processing step. This is because deriving closed-form relation between frequency

measurements and system parameters is difficult, if not impossible. Secondly, we have used



a damped natural frequency to be our observation. However, this is a derived quantity

based on strain measurements. It is necessary to extend the framework to directly learn

the evolution of mass and stiffness from time-history measurements.
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