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1 Spatial characteristics

1.1 Stochastic dynamics

We consider dynamics of systems consisting of indistinguishable agents. Each agent
2t is fully characterized by its position € R%, d > 1, and its type i € I, where

IN:{Sl,...,SN}, NZl

Here sq,...,sy are some fixed labels. We will always assume that there are not
two or more agents at the same position.

We will consider discrete systems only, finite or locally finite. The latter means
that, if v, = {z*} is a system of agents at some moment of time ¢ > 0, then we
assume that, in each ball of R?, there are a finite number of agents from ~, only. In
particular, of course, a finite v; is also locally finite. We will call such 7; a (finite
or locally finite) configuration.

Each v; hence can be expressed as the following disjoint union:

V=7 U U = (YD, (1.1)

where all agents of 4} has the same type i € Iy.

Sometimes, we will omit the type of an agent, when it is clear from the context,
so that we will write z € 4} rather than 2* € 4}. In particular, it will be also in
the case where all agents of the system have the same type (i.e. when N =1).

The agents of a configuration are random, hence we will speak about random
configurations v; with respect to (w.r.t. henceforth) a probability distribution. Let
I' denote the space of configurations ~.

The dynamics of configurations in time t is defined through the dynamics of
their distributions. Heuristically, the scheme is as follows. We consider a (formal)
Markov generator on functions F': I' — R. We will consider the following class of
generators, called RCP-generators. Let R, C,P be nonnegative integers, and let

i ip jl jC 1q 1p
TR,C,P<CU1 yers LR Y1 5o 21 55 2P ) 20 (12)

be a function which is symmetric w.r.t. permutations within x-variables, within
y-variables, and within z-variables; here iy,...,ig, j1,..+,jc, 11...,1p € Iy.
We define, for a function F' on I, the following (formal) operator

(LcpF)(7) := Z Z

R LS R R 8 L AN AR~y

iy i ,,J1 je 11 1p
/ TR,c,P(xla---axRayla---,Z/Cazla--'azp) (1'3)
(R4)P

x (FO\ et o} Ul 7)) = F(3) ) dan.. dae.

Note that if either of R and C is equal to 0, we omit the corresponding sum in
(1.3), similarly if P = 0, we omit the integral in (1.3). We assume however that
R+ P > 0 otherwise Ly cpl’ = 0 for all F'.
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Finally, we consider a finite sum of RCP-operators:

L: Z LR,C,P- (14)

R,C,P>0
R+P>0

Operator (1.3), and hence (1.4), has two properties: 1) Ly cpl = 0 and 2) if, for
a given function F', a configuration . is such that F(vy,) > F(y) for all v € I" (i.e.
if 7, is a global maximum for F'), then (LgcpF)(7.) < 0. Hence, formally, Lgcp
and L are Markov generators.

Generator Lgcp describes the following random event. Let, at a moment of
time ¢t > 0 the system is given by a configuration ;. The event is that, within a
small time-interval [t,t + dt], a group of reactants {x7',..., x5*} disappears from
the configuration and a group of products {zi',..., 2"} will become a part of the
configuration, so that z; € Ay, ..., zp € Ap for some disjoint bounded subsets
Ai, ..., Ap of R% Thus,

Yevsr = Yo \ {2, . oYU {2

The probability of this event is then

ot - Z | Z /Al.../AP

LETRR i [T R 8 (SO AN Cr e o)
ig iR jl jC 19 1p
xr(xy, ooty ey 2, %) dzy . dzp + o(6),
o(dt)

where 6111110 =5~ = 0. The influence on catalysts ylt, ... yd° reflects the interaction
t—

between agents. The catalysts remain unchanged within the event, however, they
influence the probability of the event.

We include also the case when, for some m, n, a reactant zl™ and a product z}»
are such that z,, = z,, whereas i,, # 1,, i.e. when an agent keeps its position with
changing its type only. In this the corresponding integral w.r.t. dz, is omitted. We
can also formally treat this as like the function r includes the factor o(x,, — z,);
henceforth §(z) is the Dirac delta-function.

The dynamics of ~; if defined then through the differential equation:

d

ZE[F(v)| =E|(LF)()] (1.5)

which should be satisfied for a large class of functions F'.

1.2 Spatial correlation functions and cumulants

Definition 1.1. For each i € Iy, a function k}(z) > 0 is said to be the first order
spatial correlation function of type i (for the distribution of 7;), if for any function

g1 (l’) 2 07

E[Y ()] = /R o)k () (1.6)

me’yg



Henceforth, E[-] denotes the expected value of a random quantity (w.r.t. the dis-
tribution of ;).

The function &/ (z) is also called the density of agents of type i, since, taking
g1(x) = 15 (z) for some bounded subset A of R? where

1, ifzeAl,
Lp(z) := {

0, otherwise,

we get from (1.6) that

E[|7§mA|] :/Ak;;(g;) dz.

Henceforth, |n| denotes number of points in a finite subset 1 of R

Definition 1.2. For each i,j € Iy, a function ki (21, 25) = kI (22, 21) > 0 is
said to be the second-order spatial correlation function (between agents of the types
i and j), if, for any symmetric function gs(x1,z2) > 0,

E[ Z gg(:pl,xg)} = /Rd /Rd Go(x1, )k I (21, 2) dvydas. (1.7)

T1ENE, TaEN]
T17£T2

Remark 1.3. Recall, we assume that agents cannot occupy the same position, hence,
for i # j, 7} and 7j are disjoint, and thus the restriction z; # x5 in (1.7) is
redundant then.

Combining (1.7) with (1.6), we can also write, for all i,j € Iy,

E[ > 92(56’1@2)}

1€Y1, z2€vI

:/ / gg(xl,a:g)kti’j(xl,atg)da:ldxg+]lij/ gg(x,:p)k‘?(m)dx. (1.8)
Rd JRE Rd

Henceforth, 1;—; denotes the Kronecker delta (that is 1 if i = j and 0 otherwise).
Substituting to (1.8) the symmetric function

1

ga(r.e2) = 5 (L () D, () + Ly () 1)), (19)

where A;, Ay are bounded subsets of R?, we get

B[t naibdnal] = [ [ 63 a) doide
A1 J A2

L / )t (1.10)
A1NAg




One can also consider the centralized spatial moment that is the expectation of
the product of centralized random quantities |y} N Ay| —E[|v/ NA4|], 1 € In (called
so because the expectation of each such quantity is 0):

E[ (i 01 = E[lyf nl]) (1 0 Al = E[lof 01 Aal])|
= [l 0 Aal 1 0 Aal| — B[ i 0 Al E[]27 0 ol

/ / Wy, w9) — ki (1) k) (1:2)> drydry + 15— / k} (z) dz.
A1 JAg A1NAg

Definition 1.4. The function

{ U;J (551, 352) = ktlJ (331, 352) - ktl<x1) k‘g (372)7 (1-11)|

is called the second order spatial cumulant between types i and j.

We have hence

E[(h¢ 0 il = B[l 0 dl)) (d 0 Aal — E[d 01 Aaf))]

:/ / uz’j(xl,xg)dxldxg—l—]lizj/ k}(x) dx. (1.12)
A J Ao A1NAs

We going to define now a general spatial correlation function.

Definition 1.5. Consider n € N types iy,...,1, € Iy (some types may coincide).
We define n-th order spatial correlation function k" " (xy,...,x,) > 0 as such
that, for any symmetric function g,(x1,...,x,) > 0,
E Z gn(:cl,...,xn)]
a:le'ytil, ey :z:neyti”

x;#x; for j#l
/ /gn Ty, r) kT (@, ) day L dy,. (1.13)
R Rd

Remark 1.6. If 0 € S, is a permutation of (1,...,n) then

k:tll ..... ln(l‘ly azn) = kio(l) 77777 la(n)( o(1)s 7xa'(n))
Remark 1.7. If N =1, so that iy = ... = i, = s, then we will normally use the
notation:
M (@, ) o= K (2, ).

In particular, kt(l)(x) = k;*(x). We can also rewrite then (1.13) as follows,

E[ Z gn(:rl,...,a:n)]

{ml ----- $n}C’Yt
1 (n)
=— | .. gulz,...,zp)k (2, .. xy); doy .. dxy,.
n! Rd R4



and the spatial correlation function k,gn) is also called the n-th order spatial factorial
moment. Note that kf") is a symmetric function.

To define n-th order spatial cumulants, we note that [i,...,1i,] is called a
multiset, i.e. a collection of n (possibly repeating) elements from Iy.

Definition 1.8. We set uj(z) := kj(x), i € Iy, and define spatial cumulants
through the equality

= Z uiil) """ i (a:ﬁ”, . ,;1:7(111)) . uﬁm)ﬁﬁg (xﬁm), e ,xfﬁ)), (1.14)
where sum is taken over all multiset partitions
g, i) = G iU u T, )

sothat 1 <m <n,n+...4+n, =n and

(w1, xy = {0 ey u o™, ey

Y Nm

Remark 1.9. To see that (1.14) indeed defines spatial cumulant u; for given spatial
correlation functions ki, note that the right hand side (r.h.s. henceforth) of (1.14)

contains the term with m = 1 which is just u;**" (21, ..., z,) (since then n; = n),
i.e. the spatial cumulant of the same order as the spatial correlation function
kvt (xq, .., x,). For 2 <m < n, we have ny < n, ..., n, < n, hence all other

terms correspond to products of spatial cumulants of smaller orders. Hence, one
can get u," M (¢, . . ., x,) inductively, e.g., cf. (1.11), for any i, j,1 € Iy,

g (@1, x2) = k(w1 2) — g (20) W (),

up (@, @, w5) = Ky (w1, w2) — up Y (1, w0) ug ()

—up (w1, w) ud (22) — u) (o, 3) up (21).
Differential equations for spatial correlation functions can be obtained from (1.5)

by using the definition (1.13). Namely, we take as F' in (1.5) the integrand in the
left hand side (Lh.s. henceforth) of (1.13), i.e. F' = F,,, where

F(’yt):Fn(/Ytllaa’ytln): Z gn(l'lv"wxn)?

et . aneyin
xj#x; for j#l

where ¢, is a symmetric function such that, for some bounded subset A of R
gn(z1, ..., x,) =0 if only x,, ¢ A for some 1 <m <n.
Differentiating both part of (1.13), we will get then from (1.5) that

d i i
/ gn(x1, ... xy) d—kt () dey o dx, = E[(LFN)(%)} ,
(Rd)n t

where, recall, F' = F(g,).



The next step is to represent

:Z Z Gm(T1, .o Tm),

m a:le'ygl, ey TmEYI™
x;7#x; for i#l
where g, are also symmetric functions depending on g,,, and types ji,..., jm € In;

they all depend on the particular form of the operator L; in the case of an RCP-
generator, g,, and types depend on the rate (1.2). Note that then the summation
in m is finite.

We will get then, by (1.13),

d
/ Ggn(1,.. ., )d kvt (my, . w,) doy L dry,
(Rd t

= Z/ S T kgl""’jm(xl, ey T) dxy ATy,
]Rd

Since F, depends on g, linearly and LF' depends on F' linearly, we have that
Lm,ngn := gm depend on g, linearly as well. By considering a dual operator L m =

(Zmn) , we will get that

d
/ GulT1, .. my) ki (g, ) day L dy,
d\n dt
(R)
— / gn(21,.. ., Z Lﬁ’mkfl"“’jm)(xl,...,xn) dry...dx,.
(Rd)m m
Since ¢, was arbitrary, we get then
d o
R () = ;(Lﬁmkgl’""“)(xl, ). (1.15)

Considering an infinite vector k; of all functions k" indexed by n > 1 and
by different multisets [iy,...,1i,] of types, we can treat the r.h.s. of (1.15) as the
action of an infinite matrix L®, whose entries are operators Lﬁm

Stress that, typically, m can take values larger than n, so that the system of
linear differential equations (1.15) is not closed and cannot be solved analytically
nor numerically.

The explicit form for the action of L* in case of the RCP-generator L, given by
(1.3), can be found in [1, Supplementary Note 1].

The differential equations for spatial cumulants can be obtained by substituting
(1.14) into (1.15). The equations will have a similar form

Euil’“"i”(xl,...,:vn):Z( B ydtrdm "N (@1, T),

m

with, however, nonlinear operators Qﬁm. For their explicit form, in the case of L
given by (1.4), we also refer to [1, Supplementary Note 1].
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1.3 Beyond mean-field expansion for spatial dynamics

Equation (1.15) has initial conditions at, say, time t = 0: ky*"*"(z1,...,2,). The
important class of such initial conditions are product functions

k' (@) = 65 (21) - g (), (1.16)

where ¢!, ..., ¢o" are nonnegative functions on R?. Spatial correlation function
(1.16) corresponds to the Poisson distribution of configurations. The characteristic
feature of the Poisson distribution is that random numbers

|7(i)1 ﬂA1|,...,|73" NA,|

are independent for all disjoint bounded subsets Ay, ..., A, of R? in particular, all
corresponding spatial cumulants of an order more than 1 are equal to 0, cf. (1.12).
The Poisson distribution is also called chaotic because of the mentioned indepen-
dence.

In most cases, however, the solution to (1.15) with the initial condition (1.16)
does not have a product structure. The idea of the mean-field approximation (with
a small parameter £ > 0) is to find a modification L. of the Markov operator L in

(1.5), such that the solution k2}*"(z1,...,2,) to the corresponding equation, cf.
(1.15),

d o sioin i1,0dm

SR @, ) = > (L8, kI (@, ) (1.17)

would be approximately (up to certain order of €) equal to a product function.
Hence the distribution of 7., would be approximately chaotic, in a certain sense.
This is called the propagation of chaos in statistical physics.

The realization of the scaling procedure for the RCP-generator is as follows. We
assume that 7 in (1.2) is given through combinations of various kernels of the form

a(v, w") = agn(v — w), with agn(—v) = axa(v), (1.18)

where v,w € RY k,m € Iy, agn > 0is a function on .Rd. Here v*, w™ are some
agents among reactants xy', ..., zs", catalysts 43!, ..., % or products 21, ..., 2"
We consider L. given by (1.4) with rp¢p in (1.3) replaced by

jc

(Ed)RJ“CJFP_lrE,mC,p(a:?, e, TR, Yt yde et A, (1.19)

where 7.5 cp has the same structure as 7z ¢cp, however, the kernels a(v*, w™), given
previously by (1.18), are replaced now by

a:(V*, w") = eayq(ev — ew).

Note that

/5dak7m(53§) dx:/ Qg () dz,
Rd R4

i.e. the scaled kernels have the same full integral but a scaled (expanded) shape.
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Next, we consider the initial condition to the corresponding equation (1.17), as
follows o
k;,l(),.“’ln (131, s 7xn) = Q(l)1 (‘g‘rl) ce Q(l]n (6]}n) + 0<1>7 (120)
where lir% o(1) = 0 (in particular, one can consider the initial condition without
e—

that o(1) at all). The statement is that then the solution to (1.17) has the property

-

k;ltl"(xl, Cey Ty) = qtil(sxl) .. .qi" (ex,) + o(1), (1.21)

where ¢}, i € Iy, solve a system of (nonlinear) differential equations

-

%qé(z) = H; (7,) (), i€ Iy, (1.22)

where @, is the vector of all ¢;*,...,¢"; with certain (nonlinear) mappings H;",
..., H~. For the exact form of Hj, i € Iy, we refer to [1, Supplementary Note 1].

By (1.21), the cumulants of all orders bigger than 1 corresponding to the
function kX" (21,...,2,), n > 2, through expansion (1.14) are equal to o(1).
In particular, cf. (1.11),

uld (w1, ) = k27 (1, 2a) — k(1) k24 (22) = o(1). (1.23)

The term o(1) in (1.21) depends in a non-trivial way on both time ¢, variables
x1,...,T, and types iy,...,1,. To partially reveal this dependence, one needs the
next term of the expansion.

It was shown in [1, Supplementary Note 1], that

k2a(w) = ug,(2) = g; (ew) +epi(ex) + 0(e?),

i d 12
u} (21, x2) = %9y (ew1, €x2) + 0(€%),

where hH(l) %j) = 0. Here ¢} satisfies (1.22) and p?, g; satisfy certain linear diffe-
e—

rential equations

%gtiﬂj (x1,29) = Hgi’J' A (gt)(xl, T9), (1.25)
L) = Hi) (770 ). 129

where

« g, is a vector of all ¢}, i € Iy, that solve (1.22);
« P, is a vector of all p}, i € Iy; and g, is the vector of all gti’j7 i, j € In;

« H3[g)(-) and H}[g,](-) are multilinear mapping, i.e. both H3[q,](g,) and
H}[G,)(g;, ;) depend linearly on each g, py, 1,3,1 € In;

« mappings H,[q,] and H}J[g,] depends on ¢ in a nonlinear (in general) way.



One can also get then from (1.23) the following enhancement of (1.21) for n = 2:

k;tJ (1, T2) = q; (e21) G} (e22) + %9, (€21, £22)

+ ¢4 (qj(axl)pf (ex3) + piexy) ¢} <€$2)> + o(e%). (1.27)

Space-homogeneous case Consider the special case, where, initially, the density

does not depend on space and the pair-correlation is translation invariant, namely:
kio(w) = ko = a5 +epy + o(e?), (128
k2 (w1, m0) = k23 (01 — 2) = G5qg + %907 (w1 — x2) + 0().

Then if the operator L. has the form (1.4) with rgep in (1.3) replaced by r.rcp
which is a combination of pair-interaction kernels as above, then, for all ¢ > 0,
k% ,(x) does not depend on x and k.7 (1, 25) depends on 2 — x:

k;t(x) = k;,t = qti + 5dpi + 0(5d>>

k23 (1, 2) = KXY (21 — 22) = ¢i ) + %917 (21 — 2) + 0(e%),

where ¢}, i € Iy, satisfy the system (1.22) of ordinary differential equation, and
(see [1, Supplementary Note 1, formula (241)]) the equation (1.25) can be rewritten
in terms of the Fourier transform of functions ¢;” (), defined by

g () = / g (W) T dr, £ ERY, (1.29)
R

where x - § denotes the standard dot-product in R and i? = —1.
Namely, g, (£) satisfies the following differential equation, for each £ € RY,

d ~i,j

2197 (6) =% 9.(6) + 2@, )(€). (1.30)

Here, similarly to above,

« q, is the vector of all ¢/, i € Iy, , which solve (1.22)
« G is the vector of all gti’j(g), i,j €Iy

¢*3[g,)(-) is a multilinear mapping, so that ¥*3[g,](g;) depends linearly on
each g,”, i, j € In; the result is a function of ¢;

« 9%3[q,] is a function of &;
« €4[q,] and 2%3[q,] depend on all ¢}, i € I, in general, nonlinearly.

When i, j run over Iy, the system of equations (1.30) can be read as a linear
nonhomogeneous system of (ordinary) differential equation (considered indepen-
dently for each value of £). Since all ¢}, i € Iy, are known, one can solve (1.30)
explicitly.
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2 Spatiotemporal characteristics

2.1 Spatiotemporal correlations

By (1.13), spatial correlation function k;**"(xy,..., x,) characterizes the proba-
bility to find n agents of types ii,...,1, of the configuration 7, in vicinities of
positions z1,...,x, € RY respectively. It is naturally also important to charac-
terize the similar probability when agents appear in those vicinities at different
moments of time.

We restrict ourselves to two moments of time only: ¢ > 0 and ¢ 4 at for some
at > 0. Moreover, we consider the second order spatiotemporal correlations only.
Namely, we are interested to find, for each i,j € Iy, a function ktiit(xl, x9) > 0,
such that, for each symmetric gs(x1, z5) > 0,

E[ Z 92($1,I2)i| = gg<l’1,(l}2>k;’gt((l}1,$2) d.Tldl’Q. (2].)
Rd JR4

z1E7;

J
T2EYy At
1722

It it worth noting that, as we will see below,
kti;it(xl, T) # kg,it(w% T1). (2.2)

To obtain k:iit, we proceed as follows. Recall, we consider dynamics of v =

YU Ut >0, N € N. For each i € Iy, we consider auxiliary dynamics of

three configurations 719 42+ 417 which will be created at the moment ¢ and will

have ‘own local time’ at > 0. Namely
« v19 contains all agents of the considered system which

— were present in the system at time ¢ having type 1i;

— didn’t change their positions nor types within the time interval [t, ¢+ at],
and hence they are still present in the system at time t 4+ at having type
1]

1+ contains all agents of the considered system which

— appeared in the system within the time interval [t, ¢ + at] having type 1;
— didn’t change their positions nor types after that, and hence they are
still present at the system at time ¢ + at having type 1i;

« 7i7 contains all agents of the considered system which

— were present in the system at time ¢ having type 1i;

— do not present in the system at time t 4+ at: namely, each of such agent,
within the time interval [t,¢ + at], either disappeared from the system
or changed its position and/or type.

11



We have hence

% = AL =W
' . At=0 ' (2.3)
N =V =2 W =N =
At=0 At=0
and
T =7ag UTar:  Terar = Yae U7AT. (2.4)
Therefore, our full auxiliary dynamics is
_ 510 _s S1— snyO _s SN—
FyAt = (’YAlt 77Alt+7 ’yAlt g a’yA]X a’yA]t\H_a ’YAJX )7 (25)

i.e. it contains agents of 3N types (recall that a type is just a label). We set

1§ = {50, ...,5y0}, 15 = {s1+,...,s8y+},

) L i (2.6)
IN ::{51_7"'781\7_}7 IN :I%UIEUIN

Recall also that there are two notations to represent configurations, see (1.1),
hence, we can also write

Vat = (VStH/Zta 7&)’ (2.7)
where, for A € {O,+, -},
va = (A ) =t U

Next, by (2.4), we can rewrite the Lh.s. of (2.1) as follows

E[ Z 92(351,932)}:1}3[ Z 92(351,332)}

3616"}/,51 1 E'yiAOtu'yiA;
] ALY
T2€Y1 1 At IQG’YJAOtU'VJAt
x1F£T2 T1#£T2
= E[ E 92(5101,332)} +E[ E 92(951,5172)]
T1EVX] N
zaey)S zaent
T1#T2
—HE[ E 92(961,%)} -HE[ g 92($171’2)]
T1EY T1€7A
267K, 2€7X,

and using (1.7) and Remark 1.3 for (2.5), one can continue

= /d/dg2(~’131,3€2)[ki?’jo(ﬂflaf@) + /fiA?’H(SUla@)
R R

+ k;’jo(acl, To) + k;’”(xl, xQ)] dzidzs.

12




Therefore, by (2.1),

k?:,’gt(l‘la@) = k:iA?JO(xlaxQ) + kia(t)’ﬁ(xly@)

ka0 (1, 30) + ki (1, 22). (2.8)

Formula (2.8) expresses second order spatiotemporal correlation function k;{’jt
through second order spatial correlation functions k"% for A, B € {0,+,-}.

Remark 2.1. Note that, by Definition 1.2,
kiA?’jB(xb ‘r2) = kif’iA(‘er xl)a A7 B € {07 +7 _}7

however, by (2.8), in general, (2.2) holds.

Note that,

Z g2(r1,22) = Z 92(@1, 2) + Z 92(, ),
mle.’yti mle.’yti $67§072+Az

x2672+At w2EVg+At

1722
and
- 0 0 3+ Vags 1=
) ) o 10 ,
Y% N %J+At = (Var Urag) N ('YJAt Uit ) = .
, otherwise.

As a result, cf. (1.8),

]E[ > 92(061,@)] ZE[ > 92($1,$2)}+ﬂisz[Z 92(%95)}

T1€7; T1€7; ey
xQE'YtJ+At x2€72+At
T1#£T2

:/ / gg(I1,$2)k277it($1,$2)dl‘ldl'g+]].j_j/ gg(w,x)k:i?(x)da:, (2.9)
Re JR4 Rd

where k], satisfies (2.8).
Substituting g, of the form (1.9) into (2.9), we get, cf. (1.10),

E“’Y;ﬂ/\ﬂ |’th+Ath2|] :/ / kti,gt(xlny) drydzy
A1 JAs

+ 13— / k9 (z) de. (2.10)
A1NAg

By an analogy to (1.12), one can consider also the centralized spatiotemporal
second moment:

E[ (I 0 Al — B[ 0 A]) (Indese 0 el — E[dya 0 Aal])]

—E |13 0 Al s D el | — B[l O B[ n el (210)
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To calculate it, note that, for each g;(z) > 0, we have, by (2.4):

E[Z gl(x)] :E[ Z 91(510)] +E[ Z gl(x)],

z€} z€VN] TEVR,
B[ Y al@)] =E[Y a@]+E[ D ai)],
TV A 2€7L] TEVAT

and therefore,

ki(z) = k9 (2) + ki (2), (2.12)
ki ar(2) = kA2 () + kif (x)
Hence,
E |l n ] = / kO (x) dr + / ki (x) da,
. . t (2.13)
B[] = [ 2@ do + [ 1 @)
Substituting (2.10) and (2.13) into (2.11), we get
E[(1né 0 Axl = B[l 0 A1l]) (ea 0 Aal = Efl7drae 1 Aal] )]
= / / u;’gt(xl, Ta) dridre + 1 / kZ?(:c) dz, (2.14)
A J Ao A1NAs
where, by (2.8), (2.12)
up (1, 22) = ki (21, ) — ki (1) 0 (22) (2.15)
= k3 (w1, m2) — (B9 (1) + kg (1)) (27 (22) + K3 (2))
= kZ?JO(xl? x2) + k2?7J+<x17 5132) + kZ;’JO(xh 'TQ)
+ kT (@, ma) — KA (20) R3] (a2) — KA (a1) KT (2)
— KAy (20)k27 (22) — Ky (w0) R3] (). (2.16)
Combining (2.16) with (1.11), we get
widy (1, 22) = uiy 29 (21, 22) + ulh T (w1, 20) (2.17)

+ UiA?jO(xly T2) + UiA?jJr(iUla T3).

Similarly to the noted in Remark 2.1,

Ui,’it(l'h T9) # Ug,’it(%,xl).
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2.2 Dynamics of the auxiliary model

To study the dynamics of 7,,, we need to consider a modification of (1.5):

d

—E[F(7.)| =E[TF)F.)], (2.18)

with an appropriate modification L of L given by (1.4). Namely, we need that

. areactant 219 does not just disappear from 7¢,, but changes its type becoming

Tt € Yap

« a reactant x'T just disappears from 7/, (since then this agent did not exist
at time ¢ and will not exist at time ¢ + at);

» products may be of the type ‘+” only; a product z** just appears in 747

« the event should happen with the same rate as for L, but applied to the union
of O-catalysts and +-catalysts (as they all present at the system on the time
interval [¢,t + at]);

« agents of the type ‘=" do not perform own dynamics (hence they appear
because of the transformation from O-reactants only).

Let R,C,P be fixed and Lzcp be given by (1.3). It means that there are still
R reactants, some of them are O-reactants (denote their number by r, so that
0 < r <R), the rest are +-reactants, namely, there are R — r > 0 of +-reactants.
Next, there are P products, all are +-products by the above. Finally, C catalysts
should be chosen from 7, U~,; let, similarly to reactants, there be ¢ O-catalysts
(0 < ¢ <C) and hence C — ¢ > 0 +-catalysts.

As a result, we will get

( R,C,PF)(’YO/W,W*)
R ©

- 2. 2.

= = i10 irO i ip_ .+
r c O{x? o TiT }C’yo {$11+7---7IRirr }C’Y+

2. 2.

o o Lo o , - , -
ET AR T L Vet AN PRI S £V RNl Yar A W o i

(=]

X / r(x}lo,...,xiro,xilJr,...,:c;R_’rrJr,
(RE)P
YO L yieO it et ik ,zﬁ"*)
X (F(fyo \ {xilo, . ,:z;lifo},
SRR E e i SUR C oo S - 3
v~ U {xil_’ . ,xir‘}) — F(’y)) dzy ...dzp.
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Naturally, we also set

L= Tncse

R,C,P>0
R+P>0

Remark 2.2. It may be also convenient to use another style of writing. Namely, we
will interpret now 7,, as the union:

Vat = 721& Ude U Yar
rather than as the the tuple (2.7). Then, for
it,..., 48, 3155 Jes 11,5 1p € I,

we have

(ER,C,PF ) (7) = Z Z

RO e T 7 R ) T AR EOTr oy
— i iR jl jC 1 1p
/ T(I17”-7IR7y17"-7y07z17-‘-72P)
(R)P

< (P (b, afy U ) — F) ) dan . don
where

in ,J1 je 11 1p
B e - R | R

11
1>
c P
= | | ﬂimelgu:[; | | ﬂjmelgu:[; | | ]llmequgv

m=1 m=1
§(at — 2%)

i1 i J1 jo 11 1
SR (R o T L T A S N S

F(x'
R

sy

X 3
=

for each ieI% there is a unique 1€I

2.3 Beyond mean-field expansion for spatiotemporal dyna-
mics

Let L. be given by (1.4) with rg¢p in (1.3) replaced by (1.19) as it is described

in Subsection 1.3. Let, initially, 7. ¢ be distributed so that the corresponding cor-

relation functions has the form (1.20) for certain fixed collection of functions ¢,

i € Iy. Let 7., and 7. 444 be the corresponding random configurations at times ¢

and t + at, respectively.
We consider the corresponding auxiliary dynamics

— o O + —
fys,At - (’75,At7 75,At7 75,At)7

distributed according to the generator L. obtained from L. by an analogy to that
done in Subsection 2.2, in particular, by (2.3),

'720 = Vet 7:0 =%0=9. (2.19)
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Let K2y " (z1,...,%,), 11,..., 1, € Iy, be the corresponding system of correlation
functions.

By (2.19) and (1.21), we have:

 for each iq,...,1i, € Iy,
kaifoo """ 1"O(avl, Ty = k;lt """ in (z1,...,20) = ¢ (ex1) ... ¢ (ex1) + o(1);
«if 73,...,1, € Iy, cf. (2.6), are such that 1,, € I} U Iy for at least one

1 <m <n, then
k;}o’“"l” (x1,...,2,) =0.

Hence, one can define, for each i € Iy,

%7 () =g (), g3t (2) =g (z) =0, (2.20)

and then, for each 11,...,1, € Iy, we will get that
k;}d“"l”(:cl, e Ty) = qgl (exq) .. .qg" (ex1) + o(1),

that is an analogue to (1.20) to have the needed settings for the auxiliary dynamics.
Applying (1.24) for the auxiliary dynamics, we get:

k(@) = a3 (ea) + el (ea) +o(1), A€ {0+, —}. (2.21)

Taking at = 0 in (2.21) and using that, by (1.24),

() = g (ex) + £} (ex) + o(1),

k;g (x) = ksl t
kio(x) =0,

k2o (@)

we conclude, cf. (2.20),

pl(z) =pi(z),  pit(z) =pi (z)=0.

Rewriting (2.12), one gets then

k;t(x) = k;gt(x) + k;,_At(x)’

s X X (2.22)
ks,t+At($) = /fs,(it(w) + kszt('r)'

Then, applying expansions (1.24) and (2.21) to left and right sides of (2.22), re-
spectively, and equating the corresponding coefficients, one gets

g (x) = ¢ (z) + qx; (z), pi(z) =pid(z) + pas (z),  (2.23)
Gy ae(z) = 63 (z) + ¢iF (), Proa(z) =p0(2) + pii(z).  (2.24)
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Consider now functions k;g ats 1, J € Iy, defined by an analogy to (2.1), namely,
for all symmetric go(x1,29) > 0,

E[ Z gg(ﬂfl,ﬂfg)] = /d /d gg(l’l,x2>k;2At(1’1,x2) dIld.CCQ.
Re JR

1 G’Yei,t
J
T2EY: 11 At
T17£T2

We have then, by (2.8),

k:;:g,At(xh ’IQ} = k:;,OA%JO(xla $2) + k;’OA;SJ—i_(xl: l’g)
+ B30 (2, m0) + K223 (21, 7).

By (2.14) and (2.17), we have then

E tht NA | =E[}4E, N A1H) (|7§,t+m NAsl = E[[7d a0 AQHH

:/ / u;:tj,At('TlaxZ)dxlde_'_]li:j/ /{J;,Om(x)dx, (2.25)
Ay J Az A1NAs

where
uld (@1, ) = wt Q0 (w1, 22) + w03 (21, 22)
+uz o (e, @2) + Ul (@1, w2), (2.26)
;Lnd, cf. (1.11), for A, B € {O,+, —},
ulld P (e, wa) = K230 (w1, ) — KA (21) B3, (0). (2.27)

Applying (1.24) to the auxiliary dynamics, one gets, for each A, B € {O,+, —},
uts? (w1, w0) = &5t (e, ews) + o(1). (2.28)

Taking at = 0 in (2.28) we have, by (2.27), (1.24), (2.4),

ui%jo(im, 9) = uzf (w1, m5) = %9, (6w, £5) + 0(1),

ut T (w1, w0) = wZg T (w1, ) = wif (w0, 0) = 0.
Hence,

8090 a1,22) = g4 0r,),

9.0 (w1, 22) = g7 (w1, 22) = g5 (21, 30) = 0.

Combining (2.28) with (2.26), we get

ul? (T, 22) = e g3 (e, e2) + o(1), (2.29)

where
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10,50 0.
g;it<l‘1,x2> = Gas " (71, 22) + Jat J+(fl317$2)

i—,30 i- g+

(2.30)
+ gas ($17x2) + Gt ('rl’x?)'

Also, by an analogue of (2.15), we have
k2D i (wy, 2) = uld i (wy, w0) + K2y (m1)k 1y 0 (22).

Then, using expansions (2.29) and (2.22), we get the following analogue of (1.27):

k2 (@1, 22) = qf (em1) @y ar(em2) + %970 (21, €22)

+ &g} (e21) Phraelems) + pi(em1) dya(ews))
+o(c%),

5 ~ ~

where the right hand side can be expressed in terms of ¢%,, qzt, i, pzt, gai, 1,7 €
Iy, by using (2.23), (2.24), (2.30).
Recall that, cf. Remark 2.1, for i, j € Iy,

giA?,jB("L‘th) = gif,iA(I%xl)v Aa B e {Oa +, _}a

however, N B
Q;it(xla T9) # gg,it(w% 7).

Space-homogeneous case Consider again the special case where (1.28) holds.
By (2.3), the auxiliary (and scaled by ) dynamics will inherit that property as

well: for all 1,7 € Iy, kZ,, will not depend on a space coordinate, and k‘jzt(x)

(and hence ugzt(x), g3 (x)) will depend on one space coordinate only. Rewriting
the formulas above, one gets

ki = @i +air + (08 +pky) + o(e%);
ks = 67 + aaf +e (0 +piF) + o(e?);
uz] ar(x) = €993, (ex) + o(e?), (2.31)
where
Ge3(8) = Tag7(8) + Tag 7T (E) + Tar 0(€) + T 7 (8), (2.32)
;md
G =a¥ +ady;  pi=pY+0i;
(2.33)
Goar = CF + T Droar =P + AT,

where, initially,
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@’ =a; »° =0
it - i+ e . (2.34)
% =9 =py =py =0
~i0,j0 ~i,j
Go 77(6) = 3.7 (6), 535
~i0,j+ _ ~i0,j— it Y ( . )
90 (&) =90 (&) =3 (&) =0;

By using (1.30) with i, j € Iy replaced by 1,7 € Iy, we get differential equati-
ons for all 727 (€) = g7P(€), A, B € {O,+, -}, with coefficients dependent on ¢7.
Solving the obtained system of differential equations, one can find §t1 J(€) by (2.32).
However, we are interested to simplify the computations by finding a differential
equation on :(jtl J(6).

We are going to formulate now a conjecture which can be verified for various
models (in particular, for the considered below). We are going to prove it in a
forthcoming paper.

To formulate the conjecture, we consider auxiliary functions on R%:
h(€) =g, (€) + limyqf, 1,5 €Iy (2.36)

By (1.30) and (1.22), we get that the vector h; = (hy?); jer, satisfies a nonho-
mogeneous system of linear differential equations:

d

() = AN )(h)(€) + B3] (6), (2.37)

where, similarly to above, A™3[g,](-) is a multilinear mapping, calculated here at
the vector hy, and B*3[g,] is a function; both depend on ¢}, i € Iy, nonlinearly (in
general).

Conjecture. Consider another auxiliary functions on R¢:
(€)= g () + Liyaaf, 1.3 € Ins (2:38)

recall that ¢t¢ depends on ¢. Then the vector h;, = (hti”gt)mel v satisfies a homoge-
neous system of linear differential equations:

d i A _
Ehtit(g> = Anfad [Qt+At](ht,At)(§)- (2-39)

The system of linear equations (2.39), can be solved in matrix form (or, rather,
tensor form, as vector hy »¢ is two-dimensional). Note that the initial condition to
(2.39), when at = 0, can be obtained, by (2.38), (2.33), (2.35), (2.32), as follows:

hed (€) = G0 (€) + Limyas® = 37 (€) + Limyai = Iy (€)- (2.40)

Next, if i # j, one has to find 2?9 (that can be often done explicitly), and

get g;3,(§) from (2.38). Finally, one has to take the inverse Fourier transform, to

obtain gjjt(m), the latter, of course, can be done only numerically. As a result, one
gets an approximate value of u.7 \,(z) from (2.31).
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3 Case study 1: Spatial and stochastic logistic
model

3.1 Spatial characteristics

We consider agents of one type, i.e. N = 1. Let L be given through some of three
operators, cf. 1.4:
L - Ll —|— L2 —|— Lg,

where

Z/ (x—y (vU{y})—F(v)>dy;

xey

(LoF)() = m 3 (F(r\ {o}) = F(2) )

ey

=3 Y a @y (FO\ ) - F().

zey yey\{z}

Here m > 0 is a constant, and a®(z) > 0 are kernels such that

/Rd a®(z) dx + sup a* () —1—/Rd\5i(§)|d§ < 00. (3.1)

zcRd

We denote also
A* = / a*(z) dx. (3.2)
Rd

We will always assume that AT > 0, i.e. it is not the case that a*(x) = 0 for almost
all (a.a. henceforth) z € R%.

Operator L, describes that any catalyst at 2 € v may create a product at y € R?
(send an off-spring to y) according to the dispersion kernel a™; Ly describes that
any reactant at r € vy may disappear with an density independent mortality m;
L3 describes that any reactant at x € v may also disappear because of competition
with catalysts at y € v\ {z} given through the competition kernel a™.

Following the scheme above, we consider L. with a®(z — y) above replaced
by eta®(ex — ey); next, we consider the dynamics of 7., defined by (1.5) with L
replaced by L.. Let, cf. Remark 1.7, /{:St) (1) and kgt) (x1,x2) be the corresponding

first- and second-order correlation functions, and let uilt) (r1) = k‘gt) (1) and

2 1 1
ul (w1, x9) = k&) (21, 20) — KL (20) KL (22)

be the corresponding first- and second-order cumulants. Consider the space homo-
geneous case. Then, by e.g. [5],

ké,lt) = q +e'pr + o(9),

ul (@) = egi(ew) + o(e?),
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Function g, cf. (1.22), satisfies the mean-field equation

d _
%% = A+Qt —mg — A Qt27 (3-3)

which can be solved explicitly:

_ 440
qs = % + (q* . (]0)67<A+7m)t' (34)

If we assume, additionally, that

[ el de+ sup (o)l + [ )] de < . (35

zER?
we obtain, see [3], an equation for the Fourier transform of ¢;(x), namely

d

5191©) = 2(J(&) = A7 — m)Gi(€) + 20T, (), (3.6)

where J;(z) := a™(z) — ¢a”(z), € RY, so that

J(&) =at (&) —qa (§), EeR” (3.7)
Equation (3.3) has two stationary solutions ¢, = 0 and ¢; = ¢., where
At —m
q y= (3.8)
We will always assume that
AT >1m, (SLl)

i.e. that g. > 0; otherwise, by (3.4), tlim ¢; = 0, i.e. the population would extinct.
—00
Under (SL;), we have

lim ¢; = q.. (3.9)
t—o0
Note also that
0< g <. (3.10)
implies
0<q¢<gq, t>0. (3.11)

By (3.1), J, is integrable; as a result, (3.5) holds with gy replaced by g;. In par-
ticular, cf. (1.29),

9:(x) = /}Rd G:(&)e ™ dg, r € R
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According to (2.36), we define also

h(€) =08 +q,  Ee€R? (3.12)

By (3.6) and (3.3),

d -
—hy (&) = 2(Je(€) — A"qe —m)hy(€) + A g + mgy + A}

dt
= (Alg:]he)(€) + Bla:] (),
cf. (2.37), where A[g] is just a multiplication operator given by, cf. (3.7),

(Algr) £)(€) =2(a" () = m — qi(@(€) + A7) ) £(€) (3.13)

for a function f : R? — R.
We will consider below the stationary regime, when ¢ — co. We define, for a.a.
reRY J.(z) = tlim Ji(x). Then, by (3.9),
—00

Ji(r) =a"(zv) —ga”(2),  J(§)=a"(&) —qa (£ (3.14)
Note that
Jo(z) dx =m. (3.15)

Ra
We will assume, additionally to (SLy), that there exists a > 0, such that

{ At — J.(6) > o, £ e R (SLy)

Since, for an integrable function f > 0,

fiol< [ r@lde= [ s (3.16)

one has, by (3.15) and (SLy), the following sufficient condition for (SLx):

{ Jo(x) = at(x) — qua” (x) >0, r € RY (3.17)|

Indeed, then AT — J,(€) > AT —m =: a > 0, because of (SLy).
It was shown in [3], that if (SL;), (SL2), (3.10) and (3.5) hold, then there exists

~ s ¢ J+(§)
gx(&) == lim ¢4(§) = ———=—
(€ := lim Gu(¢) A+ — J,(6)
Surely g.(€) is just the stationary solution to (3.6), i.e. it satisfies (3.6) with the left
hand side replaced by 0. It was also shown in [3] that the inverse Fourier transform
gx(x) of g.(&) is just the pointwise (and even uniform) limit of ¢,(x) as t — cc.

,  feR4 (3.18)

Example 3.1. The condition (3.17) holds, in particular, for
a(z) = Ac(z) >0 with / (@) do = 1, (3.19)
R4
as then J,(z) = me(x) > 0.
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3.2 Spatiotemporal characteristics

We consider the auxiliary dynamics of 7, = (72,4;", 7, ) described by the generator
L =1L+ Ly+ L,

where Ly, Lo, Ly are defined according to the rules postulated in Subsection 2.2.
Namely, for ¥ = (v9,7",~v7), we have

LR = X [ ate=n(FO0aT Ulnha) - FE) )

xeyOuUyt

i.e. both O-reactants and +-reactants may produce —+-products. Next, in the
counterparts of Lo and L3, O-reactants become —-products, whereas +-reactants
just disappear. Therefore,

LF)@) =m > (F(O\{ahyt ™ Ula}) - F(9))

xEWo

+m > (F(2 7" \{zhv7) - F(3)),

zeyt
and since there are both O- and +-catalysts, we have

LR =Y > a@-p(FEO\{aehy'r ufa}) - F())

€79 ye(vO\{z}Hurt
+> Y a@-n(FEOa \ ehy ) - FA)).
z€yT yeyOu(yt\{z})

Following the general scheme, we consider L. with a®(z — y) above replaced
by ela*(ex — ey); next, we consider the dynamics of 7, , defined by (2.18) with L
replaced by L.. Let ¢4, gft’B, A,B € {O,+, -} be the corresponding functions
from the beyond mean-field expansion.

Consider, cf. (2.32),

Geat(€) = GO + 90 () + 2 (6) + 70T (€) (3.20)

and also, cf. (2.38),

ht,at(€) = Grar(€) + 4% (3.21)

Then, it can be shown that (see Subsection 3.3 below for details) that

d

@ = (@O —m— (@ +a) @ O+ A7) Jhsrl®). (322

Since, by (2.33), ;
Great =G0 + a5 (3.23)
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we get from (3.22) and (3.13), that

sl = (37—~ — st @ (O + A7) hual) (329)
= %(A[qt—&-At]ht,At)(g)a

where A is defined by (3.13). Therefore, the conjecture is satisfied.
One can now solve, for each ¢ € RY, a linear ordinary differential equation (3.24)
with the initial condition

s = ho),

dat o

where hi(§) is given by (3.12). Then, one can get g:.:(£§) from (3.21); to this
end, one needs ¢¢,. The latter function satisfies the following differential equation
(again, see Subsection 3.3 for details):

d _ -
quﬁ = _mqgt —4 (qgt)z -4 qthZt (3.25)
=—(m+ A_Qt—&-At)qgt»
where we used (3.23). As a result, we will get the following statement.

Theorem 3.2. Let (3.1), (SLy), (3.5) hold. Then, for any t,at >0, £ € R?,

a_ (H+A™

~ T (£)— q = - _
gt,At(f) = el+© A+)M<%> ! (Qt(f) + Qt) —€ A+At(]t+m; (3-26)
t

where q; and G a¢ can be obtained from (3.4). If, additionally, (3.10) and (SLs2)
hold, then gy x:(€) is an integrable function, and one can apply the inverse Fourier
transform to it, to get g, ai(x) for a.a. x. Then, for allt >0 and a.a. v € RY,

lim g¢ a(z) = 0. (3.27)

At—00

Moreover, for all at >0, £ € R?, there exists

P s A+q T + +
o IF — * (J«(&)—AT)at —ATat
Goo,at(€) := 1M i a1(€) 00 5)e G (3.28)

and Goo at(§) is an integrable function. Let goo at(x) be its inverse Fourier trans-
form. If, additionally, go(x) and go(§) are both integrable, then, for all at > 0, the
following limit holds uniformly in a.a. v € R%:

Goo,at(®) = M g1 a¢(). (3.29)
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3.3 Derivation of equations

In this Subsection, we are going to derive equations (3.22) and (3.25).

We will partially use the Model Constructor toolbox presented in [1]. Firstly,
we express L1, Lo, L3 given above as sums of model components in the terminology
of [1, Supplementary Note 2J:

Ly = Lyy + Lya, Ly = Loy + Lo, Ls = Lgy + Loy + L3z + Laa.
Here Ly, represents the Birth component:
(LuF)(7 Z/ (z—y ( T u{y}hy7) —F(7)>dy;
zeyt Rd
L5 represents the BirthToAnotherType component:
(Lo F) (7 Z /d (x—y (7077+U{y}ﬁ_) —F(7)>dy;
R
Loy represents the DensityIndependentDeath component:
(LaF)(7) =m Z ( ’Yoa’YJr \ {z},77) - F(7)>;
x67+
Loy represents the ChangeInType component:
(LaF)3) =m 3 (FOO\ e}t oo™ uda)) - F(7) )
z€©
L3y represents DeathByCompetition:
LaP)D =Y Y aw—)(FOOA" \{a)v) - F):
zeyt yeyt\{z}
L35 represents DeathByExternalFactor:
LaP)@ = 3 Y a @ —9) (F(OA4" \ fa)v) — F()):
eyt yey©

L33 and Lg4 require a new component called ChangeInTypeByFacilitation (which
is defined below):

L)@ =D > a@-y(FEO\{z}a" 7 Uie}) - F(7))
xey© yeyO\{z}
and
(L)) = 3 3 a e = ) (FOO\ (ohsr U a)) = (7).

The Model Constructor is written on Wolfram Language and requires Wolfram
Mathematica® v10 or later. The Model Constructor packages are available at [2]
and should be installed before running the following code.

26



Firstly, we load libraries and set-up internal variables:

In[1]:= Get["SSPPlibrary0fProcesses‘"] (xLoad libraries*)
Get ["SSPPanalyticalExpressions‘"]
gpgVariables={q,p,g}; (*¥Set-up variables*)
kVariable=¢;

Next, we define the ChangeInTypeByFacilitation model component needed
for L33 and Ly above. It describes the event when an agent at a position z; changes
own type from s, to s;. The event happened because of interaction of the agent
with each of other agents of a type s3 placed at a position x,. The interaction is
defined through a kernel a(x; — x2). In particular, s3 may be equal to s; as it is
needed for Lss.

Inj5]:= ChangeInTypeByFacilitation[sl_,s2_,s3_,a_,Af ,Coeffic_]:=
Module [{Products={{s1,x1}},

Reactants={{s2,x1}}, Catalysts={{s3,x2}},
1istA11,function,Interactions,name},
listAll={Products,Reactants,Catalysts};
function[x1_,x2_]:=a[x1-x2];
Interactions={{a,Af,x1,x2}};
name="ChangeInTypeByFacilitation";
{1istAll,function,Interactions,name,Coeffic}];

Note that —-agents do not have own dynamics, and appear only when O-agents
are transformed to them. We, however, require the characteristics of —-agents,
hence, we introduce a trivial model component where agents die with the rate 0,
i.e. effectively nothing happens:

Infe]:= (*For agents without own dynamicsx*)
Relax[type_] :=DensityIndependentDeath[type,1,0];

We define now the AuxiliaryProcess which includes all model components
corresponding to operators L;; above. Here the agent types 1,2,3 correspond to
O, +, —, respectively.

Inf7l:= (*Define auxiliary processx*)
AuxiliaryProcess={

Birth([2,a",a",1], (*L11%)
BirthToAnotherType[2,1,a",8%,1], (*L12%)
DensityIndependentDeath[2,m,1], (*L21%)
ChangeInType[3,1,m,1], (*L22%)
DeathByCompetition[2,a ,3 ,1], (*L31%)
DeathByExternalFactor[2,1,a™,a ,1], (*L32%)
ChangeInTypeByFacilitation[3,1,1,a ,& ,1], (*L33%)
ChangeInTypeByFacilitation[3,1,2,a ,& ,1], (*L34%)
Relax[3] (*No dynamics of -’ agents#*)

I¥
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We sum up now the right hand sides of the differential equations for the needed
TEB(€), A, B € {0,+, -}, and ¢2,, cf. (3.20), (3.21). In the notations of the Model

At
Constructor:

g5, = q[1], G000 = gl1,1,¢], G0 () = gl1,2,€],
9008 = g[3,1,€] = g[1,3,¢, G (€)= 9[3,2,¢] = g[3,3.¢].
We use the following code:

In[18]:=
hEgn=HGfALL [gpgVariables,AuxiliaryProcess,1,1,£]
+HGfALL [qpgVariables,AuxiliaryProcess,1,2,£]
+HGfALL [gpgVariables,AuxiliaryProcess,1,3,£]
+HGfALL [gpgVariables,AuxiliaryProcess,?2,3,£]
+HQfALL [qpgVariables,AuxiliaryProcess,1];

We are going to verify now (3.22); to this end, we define the expression for
h = hy at(§), cf. (3.20), (3.21):

In[19]:=
h=g[1,1,&1+g[1,2,]1+g[1,3,£]1+g[2,3,£1+q[1];

Finally, we equate C'h with the obtained sum of the right hand sides of the
equation, and find C, that is nothing but %A in (3.24):

In[20]:=
Reduce [C h==hEqn,C]

outo]= C==-m-q[1] & [0]-q[2] & [0]-q[1] & [{]1-q[2] & [£1+&"[£]
||g[l,1,§]==‘g[1,2,§]‘g[1,3,5]‘g[2’3:§]‘q[1]

Here ¢[2] = ¢, and also, by the very definition (1.29) of the Fourier transform:

@ (0) = /R o (z) dz = A

Therefore, the found expression for C' coincides with the factor before h; o:(§) in
the right hand side of (3.22). The second found alternative just means that h = 0,
i.e. that hy A4(§) = 0 also solves (3.22), that is trivial. Hence, (3.22) is fulfilled.

To get (3.25), we just consider the right hand side of the equation for ¢[1]:

In[21]:= HQfALL [qpgVariables,AuxiliaryProcess,1]

out1]= -m q[1]1-q[1]1% & [0]-q[1] q[2] & [0]
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3.4 Numerics for the stationary regime on plane

We consider the 2-dimensional case: d = 2, and radially symmetric kernels with
equal Gaussian shapes:

a*(z) = A*B(|z|), =z €R% B(r) = %e‘rj, r > 0. (3.30)

Note that, indeed, [;, 8(|z])dz = 1, and also, see Example 3.1, the assumption
(3.17) holds, hence (SLz) holds. We will need the following lemma.

Lemma 3.3. Denote c(z) = (|z]), € RY, where 3 is given by (3.30). Then
ae) = e P e R (3.31)

Moreover, if f is a function such that the function §(&) := f(c(£)), & € R? is inte-
grable, then the inverse Fourier transform g(z)of g(§) can be found by the formula

[

g(x) ! /000 fem)s3o(s|z]) ds, r € R? (3.32)

T o
where Jq is the Bessel function of the first kind.

The simulations described in the main text were done with

Then, by (3.8), ¢. = 1, and, by (3.28),

~ L~ ~ 2 e—2721e% _ _
Joo,at(§) == tlgg Gt,at(§) = Goo,at(§) = Py ( DAL _ gm2al,

Therefore, by (3.32),

" or

2—e 2

1 e 2 _s2
i) = 5 [ (—< e —thoi _ ) sJo(slel) ds = g(at,[a)
0

The latter integral can be calculated numerically. We use the following Wolfram
Mathematica code (where dt = At and r = |z|):

Inf22):= gldt_?NumericQ,r_7NumericQ]:=gldt,r]
2

2
—s?]EXp [(Exp [—%] -2)dt]

1
=—NIntegrate[(
2m

-Exp[-2dt]) s BesselJ[0,s r],{s,0,00},
Method —{LocalAdaptive,SymbolicProcessing—0},
PrecisionGoal—7];

The simulations were done with ¢ = % The covariance between numbers of

agents in two areas satisfies (2.25); note that we are actually interested in the
covariance between ‘small’ areas (a local characteristic), so we may assume that
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they are disjoint, hence, the second summand in the right hand side of (2.25) is
redundant. Next, the value of u.; A+(z) can be approximated by the formula (2.31),
with d =2 and € = %, in our case. Therefore, we are interested in

1 T

. . 1 T
tllglo Ue g () ~ €7 tliglo Grar(er) = Zgoo,At<§> = Zg(At, %)

1
We plot now graphs for 19 (At, g) with at € {0,1,2}, r € [0, 10]:

0.027
0.024
0.021
0.018
0.015
0.012
0.009
0.006

0.003

— iq(o. ’5) - iq(l%) — 3{1(2'5)

Figure 1: Graphs for AT =2, A" =m =1
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4 Case study 2: Host-parasite model

4.1 Spatial characteristics

We consider now agents of two types, called hosts and parasites:
N =2, I, ={H, P}.

Let L be given through some of three operators, cf. 1.4:
L=1Li+ Lo+ L3+ Ly.

Here L, describes an independent birth process of hosts: any H-catalyst sends an
off-spring which is an H-product, according to a dispersion kernel a™ > 0:

(L F)(y Z/}Rd (z =y (FOYT Uy ") = F(y",77)) dy;

next, hosts may die because of the competition with other hosts (for resources),
according to a competition kernel a= > 0:

(L)) =) D a (F"\{z},7") = F(P,A47));
zeyH yeyH\{z}
next, parasites may die with a constant mortality rate m > 0:
(LsF) (", 47y =m Y (F(y" A"\ z) = F(+",47));
zeyP

finally, any host may be transformed to a parasite (keeping the position) because
of interaction with the existing parasites, according to a kernel b > 0:

(LyF) (v Z be— F(yH\ z, 4" uz) — F(y7,47).
zeyH yenyP

We will assume that (3.1) holds for both a* and for b, we define A* through

(3.2), and set, similarly,
B = / b(x) du.
Rd

We consider L. by replacing a*(x — y) and b(z — y) by e%a®(ex — ey) and
elb(ex — ey), respectively. We consider the space homogeneous case. Then, by the
general scheme described in Section 1,

k=g + e'p + o(e%), kD, =af +e'p] +o(e?),
ul'(z) = g™ (cx) + o(e?), ul'l(z) = &g " (ex) + o(e9), (4.1)

ugy (z) = ugy (z) = eg"" (ew) + o(e”).

31



We define also, cf. (2.36),

R =g €) +a ) =€) T
hi'T(g) = hy (€)= (6).

Differential equations for ¢;* and h2B(&) = §BA(€), A, B € {H, P} are derived
in Subsection 4.3 below. We will show that

d
eqH =g (A" — A ¢/' — Bq)),
! (4.3)
%qtp =g (Bqf' —m).

(4.2)

Next, we define

a(&) = at(§) — (A~ +a (&) — By,

4.4
bt(é) = —qﬁ(f), Ci = Bq1€P7 dt(ﬁ) = erg(g) —m, ( )
and consider the matrix
at(é) btggg 0 O
N Ct dt g 0 0
A©=1 5 70" a© b 435)
0 0 Ct dt<5)

The second and third rows will correspond to h'F(¢) and hPH(€) which are equal.
Hence, we consider also the matrix with swapped second and third rows

a(§) (&) 0 0
A;(f) — 0 ((] at(€> bt(é) ) (4.6)

0 0 e d(§)
Finally, we define the vector-function
B, = (A*qff + A (q;‘f)2 ,0,0, mqf)T + quqf’<1, -1, -1, 1)T; (4.7)
henceforth, the superscript 1" denotes the transpose vector. Note that
Av=Alg ¢, A=Ale’ ¢l Be=Blg' 4] (4.8)

Then, we will show in Subsection 4.3 that, for the vector

(€)= (RE(€), BT E), R, W) (19
we have, cf. (2.37),
ZRle) = (Ae) + A(O)Rul®) + Bule), (1.10)
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We consider now the stationary regime when ¢t — co. The only pair of non-zero
stationary solutions of (4.3) is

BAT —mA~

@ = (4.11)

Therefore, the condition

At s Tg- HP
>B ( 1)

ensures that (¢, ¢?) is a the only pair of positive stationary solutions to (4.3).

Proposition 4.1. Let (HPy) hold. Then, for any ¢t >0, ¢ >0,

. H _ _H . P _ P
lim g" = ¢, lim g =q,. (4.12)
More precisely, if
m
—A < AT < A ——(A)?
+ 432< ) Y

then both convergences, q to ¢t and qf to q¥, are monotone, whereas if

A* > —A + %(A—)i’, (4.13)

then qff and qF oscillate around qf and qF, respectively, with a decreasing amplitude
(damping oscillation).

We define also the following analogue of (3.14): for z,& € RY, we set
JH@) = a'(x) —qfa (x),  JF(2)=a"(&) —qa (¢). (4.14)

We will assume that there exist a > 0, such that

At —JHE) > a, £eRY (HP,)
(At = JH©)(B-b() + Belb(§) >,  €€R™ (HP3)

The following proposition provides simple sufficient conditions for (HP;)-(HP3).
Proposition 4.2. Suppose that

JH(z) = a™(x) — ¢a" () >0, r € R% (4.15)

b(€) >0, ¢ € R% (4.16)

Then (HP,)-(HP3) hold.

Example 4.3. An example when (4.15) holds is the case (3.19) of an equal shape
c of kernels a™ = A*c and a= = A~ ¢, provided that (HP;) holds. Indeed, then

JH(z) = (AT - %A_)C(I) > 0.
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In the Appendix below, we consider also how the condition (4.16) can be relaxed
to still get (HP3).

We denote the limits as ¢ — oo of the functions a;(§), b:(§), ¢, d¢(§), defined
in (4.4), by a.(§), b.(§), cx, di(§), respectively. Then, by (4.12), (HP3), (3.16),

a.(€) = JH(¢) — At <0, b.(€) = —¢b(¢),

- (4.17)
c. = Bql, 4.(6) = ¢ (b(6) - B) <.

Theorem 4.4. Let (HP1)-(HP3) hold. Suppose that giB(x), g (&) are bounded
and integrable for A, B € {H, P}. Then g (&) converge (uniformly in €) ast — oo
to integrable functions gAB (&) given by

(#7(©.37©.37°©) = (c.©) (~27©). 4700, ~2475©)) |

L

where C,(€) is the following invertible matriz:

2a.(6)  2b.(€) 0
C) =1 o alf)+all) b(f) |- (4.18)
0 2c, 2d, (&)

Moreover, for A, B € {H, P}, gi'P(x) converges as t — oo to the inverse Fourier
transform gAB(x) of GAB () uniformly in a.a. x € RY,

We consider matrices A, () and A’ () such that their entries are just the limits
as t — oo of those in (4.5)—(4.6), respectively. We set also

B* = thm Bt = (2A+qf7 _me7 —me, quf)T (419)
We define HH ~HH H PP ~PP P
() =97 () +a),  h(§) =g, () +aq.,
hiP(€) = hlM (&) =gl (e) = g7 (),
and let

() = (RIF(©), R (€), WP (€), HEP()) (1.20)

Corollary 4.5. Let (HPy)-(HPg3) hold. Then h.(£) is the unique solution to the
following stationary counterpart of (4.10):

(A0 + AL ul©) + BL(&) =0 (421)

Moreover,

(@), W€, hE7(©)) = (€(©) (247 e maf, ~2ma)". (422)
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4.2 Spatiotemporal characteristics

Similarly to Subsection 3.2, we consider the auxiliary dynamics of
T =000
described by the generator
L=1Ly+ Lo+ Ls+ Ly,
where Ly, Lo, L3, Ly are defined according to Subsection 2.2. Namely, now
I,={HO,H+,H—, PO, P+, P—},

and, for

3= F77) = (YO, T AP0, 4P AT),

we have, similarly to the corresponding operators in spatial logistic model

TR = Y [ =i (FOmO" U3 - F)) ds

e

LRm =Y Y a@-y(F6"A"\ (=15 - F7))

zeyHt yeyHOU(yH+\{z})

+ > Y a@-p(FOO\{zhA T U el ) - F@));

zeyHO ye(yHO\{z})uyH+

(LsF)(T) =m > (FEA7O\ feh ™ 0" Ufa}) - F(9))

IE’YPO

tm Y (FE"APOA\ (1)) - F)).

x€7p+

The situation with L, is more complicated: when HO-reactant of the spatial
dynamics becomes P+-product (keeping the position), it should be also transformed
to H—-product, according to the general scheme.

Hence, formally, one could write:

L@ => > ba-y

x (F(HON {2}, 9™, 47 U {2}, 20,97 U e, y™) - F(9))

+ Y > bz—y)

zeyHt yeyPOuy Pt
x (P09 {2},9717,970, /P U {a}AP) = F(7)).

However, the first summand in the latter expression does not satisfy the basic
requirement that different agents should have different positions: there are agents
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2~ and 2"+ simultaneously.! To overcome this, we consider a formal modification

the host 7€ transforms to the parasite 2+ distributed in space according to the
kernel given by the Dirac d-function §(x — z).
Therefore, we define

(LyF)(7)

=Y Y bz-y

< [ da =2 (PO (A" U™ U b ) = P d
+ > bz—y)

zeyHt yeyPOUYPH
x (PO, \ {2},47,970, 47+ Uz}, 477) = F7).

Considering the first summand of the operator Ly as such with a regular (in-
tegrable) kernel d(x — z) one apply the technique described above and derive the
corresponding differential equations for correlation functions, cumulants, and for
the beyond mean-field expansion. We should then ‘replace’ the regular kernel by
the real o-function. This latter includes two steps. Firstly, in differential equations
in terms of the Fourier transform, we replace §(§) by 1.

Secondly, one has to distinguish the terms which, in real coordinates (before
passing to the Fourier transform), contained the d-function, i.e.

§(zHO — ) = §(z — 2).

If such term contained also the point 7~ then, after the integration w.r.t. 2+ = z,

the corresponding integral would disappear, and z will be replaced by x. The latter
is however the position of the H—-agent. We will get as a result the J-function
between the positions of H— and P+ agents. This can be written heuristically as
follows: for a (regular) function f,

Fa)o(@? = 27%) = fa"7)o(2"™ — 2.

It means that the pair correlation between H— and P+ will include now a ¢-
function. By (2.17) (considered in the case i,j = I, = {H, P}), pair cumulant
uly 7 = w7 in the r.h.s. appears for {’f, in the Lh.s. only.

Hence, in the space homogeneous case, u;'\;(z) is (the only) non-integrable pair

cumulant. This is the effect of using L, instead of f;. Since the dynamics we
consider is linear, one has

iy (2) = Uy () + uplll ingd(@), (4.23)

so, to get the answer, that is the corresponding cumulant ufﬁzl (x) for the model

1Stress that this is different from the situation with the term Ly itself: in Ly, we describe zf
—
occupied the position at x before the event, whereas in L, both 2~ and 2+ share the same
position after the event.
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generated by f;, one has to get rid of the singular term. We will do this in the
beyond mean-field approach below.?

Following the general scheme, we consider L. with a®(z —v) and b(x — y) above
replaced by e?a®(sx — ey) and eb(ex — ey), respectively; next, we consider the
dynamics of 7, , defined by (2.18) with L replaced by L.. Let ¢X, o XY e
{HO, H+, H—, PO, P+, P—} be the corresponding functions from the beyond
mean-field expansion. We consider, cf. (2.32), for all A, B € {H, P},

(O (3 R O (3 B S (9 SR () (4.24)
and, cf. (2.38),
h' 5 (&) = gl (&) + ¢2°; h5(€) = gi(8); (4.25)
hy 58 = 9L3(9); hy (&) = GL5(8) + ¢ ’

Recall that, g/'f; # g% and hence h/'¥; # h{'7.

By (4.23), g//{/(x) is (the only) non-regular function which should include the
Dirac d function, as a result g/7; will be non-integrable at infinity. By (4.23), if we
subtract from g/'{; its limit at infinity, the result will be nothing but the Fourier

transform of g{If (z), so that, cf. (2.31),

utrar(w) = elgin(ex) + oe?),

(4.26)
AB € {HH,HP', PH, PP}.

We will get hence the values of the spatiotemporal cumulants for the initial model.
In Subsection 4.3 below, we will show that

¢ (O Wi (6)
(hfft(s)) = Prasld) (hfft(s)) 420

dni
@ (WPROY WPIL(E)
() o (HO)

t,at

where Dy 5¢(€) is the following matrix:
aH(E) = (A" +a (9) (@M + ) - B(akP +akt)  —b(E) (a0 +ak) ]
B(qx +axi") () (g + q8") —m

By (2.33),
O O
70 + it =qf . P+ =l

2Tt is worth noting that it can be done also in more mathematically rigorous way by considering
a d-sequence of functions which converge to the Dirac d-function in the sense of distributions; then,
in particular, their Fourier transforms converge pointwise to 1, see e.g. [4, Chapter 2].
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and hence, cf. (4.4),

Duarle) = (28 Bt e te) (4:29)

Ct+at diyar (f )

Therefore, by (4.5), we can represent A, ,:(£) as a block matrix, namely,

At+At(€) = (&—k%t(f) gt+::(§)’) (4.30)

where 0 denotes 2 x 2 matrix of zeros, and hence, denoting, cf. (4.9),
_ T
hus€) 1= ({E(E), RLE), BEE(E) HEEAE) )

we get, by (4.27), (4.28),

d —

Eht,at(@ = At+At(§)Et,At(§)7 (4'31)

cf. also (4.10). Note that, by (4.29), cf. (4.8),

Apiat (5) = A[qtl—{i-At? qt}im] (5) .

Comparing this with (4.10), we see that the conjecture holds.

One can now solve, for each ¢ € RY, a linear ordinary differential equation (4.31)
with the initial condition

ht at(§) = h.(8),
At=0

where h,(£) is given by (4.20), (4.22). From solution h; ,:(€) to (4.31), one can get
9i5,(€), A, B € {H, P} from (4.25), to this end, one needs ¢ and ¢£°. The latter
functions satisfy the following differential equations (see Subsection 4.3):

d —
T = —(Blaa +ax") + A7(a27 + aa") e
= —(Bafia+ A7q[L0) a2, (4.32)
d
s = —masy

The explicit form of functions g{*5(¢), A, B € {H, P}, can be found in the
Appendix, in the proof of the next Proposition.

Proposition 4.6. Let (HPy) (HP3) hold. Then functions gi'{{(&), g{x(€), and
ﬁfft({) converge to 0 as || — oo, whereas

Moreover, all functions E{{ﬂ(ﬁ), §f£(£), 555(6), and
Giar (&) 7= Giae(€) — Gias(00)
are integrable.
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An explicit formula for g/7/(c0) is provided in the Appendix below, see (A.33).

As a result, for each AB € {HH,HP',PH, PP}, one can apply the inverse
Fourier transform to an integrable function ’g;‘f;(g), to get, for a.a. & € RY, the
needed for (4.26) function g;*%(z).

Theorem 4.7. Let (HP,)-(HP3) hold.

1. (Convergence as at — o0o) Let AB € {HH,HP',PH, PP}. Then, for all
t>0 and £ € R,

lim g% (&) = 0. (4.33)

At—00

2. (Convergence as t — 00)

(a) Let AB € {HH,HP',PH,PP}. Then g5 (§) converges pointwise as
t — oo to an integrable function ﬁfoit(f) described below. Moreover,
gfﬁ(x) converge uniformly in a.a. € R ast — oo to the corresponding

inverse Fourier transform gi5,,(x).
(b) For all at >0 and £ € RY,

~ A+
ggo,lit(g) = hi{o{it(f) - QE 4 At,
~PP PP P _—mat
0o 5 hoo 5 —q,€ )
NP;{M( ) P;t( ) (434)
goo,At(g) = hoo,At(f)?
giit(f) = hgoit(f) - hgloit(oo)7
where
mqf (e—A+At _ e—mAt) Zf At 7& m:
WP (00) = ¢ m—AY (4.35)
mqPat e A7t if AT =m.

(c) In the above, hAB (&), A, B € {H,P} are the following limits which

00,At

exist for all at > 0 and € € R%:

RHH(€) C(MEON  ee ()
(hfofzt@) T (hﬁ,ﬁ(o):e - <hf“°<€>) 430
RGO (RO | e (BT
<h§of’)At<£>> = tli}r& <h5§t £)> =€ (hfp(€)> ) (4.37)

where, cf. (4.17), the matriz

39



£.(6) = lim £,(¢) = ("“*(@ b*(@) (4.38)

t—o00

has negative real parts of both eigenvalues, for each & € R?; and functions
hidB(€), A, B € {H, P}, are given by (4.22).

As a result, we obtained the desired leading terms gC>O B .(z) in the beyond mean-
field expansion (4.26), for each AB € {HH,HP', PH, PP} of the spatiotemporal
cumulant of the considered model in the stationary regime, i.e. when ¢ in (4.26) is
replaced by oc.

4.3 Derivation of equations

In this Subsection, we are going to derive, in particular, equations (4.3), (4.10),
and (4.31). Similarly to Subsection 4.3, we will partially use the Model Constructor
toolbox from [1]. Firstly, we note that the operators Ly, Lo, Ls, Ly defined above re-
present Birth, DeathByCompetition, DensityIndependentDeath and Infection
components, respectively.

Next, we express L1, Lo, L3, Ly given above as sums of model components in the
terminology of [1, Supplementary Note 2]. Namely

Ly =L+ Lo, Ly = Loy + Ly + Loz + Loy,
L3 = L3y + Lsa, Ly = Ly + Lyg + Lyz + Ly

Here L, represents the Birth component:

uP® = Y [ at @) (FO U )" 3" - ) dy
zeyH+ Re

L5 represents the BirthToAnotherType component:

eP)m = X [ ot — (PG U ) A7) - F)) dy
zeyHO Re

Ly represents the DeathByCompetition component:

LaP)T) = > 3 a@—p(FGA "\ {a},1"5") - F(9))
eyt ye(yH+\{z})

Ly represents the DeathByExternalFactor component:

LnF)W) = 3 3 (@—y)(FOHO A"\ {2} 77) - F(3)) )

zeyH+ yeyHO
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Los and Loy both represent the ChangeInTypeByFacilitation component intro-
duced in Subsection 4.3:

LuP)m =Y 3 a—<x—y>(F<vHO\{x},vaH—u{xwp>—F(v));

zeyHO ye(vHO\{z})

LaF)H) = > 3 a (@ — ) (FOT\ fah 4™ 4" U e}, 77) - F());

2erHO yeryH+
L3, represents the DensityIndependentDeath component:
(LaF)T) =m 3 (P20 A7\ {ehy™) = F(D):
zeyP+
L35 represents the ChangeInType component:
LaF)3) =m 32 (PG \ fzha ™2™ U a)) - P) )
zeyP
L4y also represents the ChangeInTypeByFacilitation component:
(LanF)(7 Z Z bz —y ( (VIO AN {x} AT AP0 A U ) A )_FW));
zeyH+ yey PO

Ly represents the Infection component (which is, actually, a partial case of the
ChangeInTypeByFacilitation component):

L)@ = > D bz —y)(FO A5\ {z},977,970, 47 U {a},4") = F()).

zeyHt yey Pt

Finally, L43 and L4 both represent the ChangeInTypeAndBirthByFacilitation
component defined below:

[qgﬁw j{: 2{: b x-—

zeyHO yeyP

x / (- 2)(F(y HO\{fE}mH*,vH‘U{x}mPOmP*U{Z}mP‘)—F(7)> d
_L44l7 2{: 2{: b Tr —

x / =) (FOPON fah 41 U ek PO ULl ) - F) ) d

We are going to describe the Wolfram Mathematica code we used. First six lines
(In[1]-In[6]) are the same as in Subsection 3.3: we load libraries, set-up internal
variables, define the ChangeInTypeByFacilitation and Relax components.

Next, we define the ChangeInTypeAndBirthByFacilitation model component
needed for Ly3 and L4y above. It describes the event when an agent at a position
2o changes own type from s3 to s, and, simultaneously, it sends an off-spring of a
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type sy to a position z1. The off-spring is sent through a kernel d(zy — x9) (which
is the Dirac d-function d(xq — 23) in operators Ly3 and Lyy). The event happened
because of interaction of the agent with each of other agents of a type s4 placed at
a position x3. The interaction is given through a kernel b(xs — x3). In particular,
s4 may be equal to s; as it is needed for Ly.

In[7)= ChangeInTypeAndBirthByFacilitation[sl_,s2_,s3_,s4_,b_,Bf_,
d_,Df_,Coeffic_]:=
Module [{Products={{s1,x1}, {s2,x2}},

Reactants={{s3,x2}},Catalysts={{s4,x3}},
1listAll,function,Interactions,name},
listAll={Products,Reactants,Catalysts};
function[x1_,x2_,x3_]:=b[x2-x3]d[x1-x2];
Interactions={{b,Bf,x2,x3},{d,Df,x1,x2}};
name="ChangeInTypeAndBirthByFacilitation";
{1istAll,function, Interactions,name,Coeffic}];

We define now the SpatialProcess which includes all model components corre-
sponding to operators Lq, Lo, L3, L4. Henceforth, for the spatial process, the agent
types 1,2 correspond to H, P, respectively.

In[g]:= SpatialProcess={Birth[1,a",5",1],
DeathByCompetition[l,a™,3 ,1],
DensityIndependentDeath[2,m,1],
Infection[2,1,b,b,1]};

Next, we define the AuxiliaryProcess which includes all model components
corresponding to operators L;; introduced above. Henceforth, for the auxiliary
process, the agent types 1,2,3,4,5,6 correspond to HO, H+, H—, PO, P+, P—,
respectively.

Info]:= AuxiliaryProcess={
Birth[2,a",58",1],
BirthToAnotherType[2,1,a",58",1],
DeathByCompetition[2,a™,a",1],
DeathByExternalFactor[2,1,a ,d ,1],
ChangeInTypeByFacilitation[3,1,1,a",
ChangeInTypeByFacilitation[3,1,2,a",
DensityIndependentDeath[5,m,1],
ChangeInType[6,4,m,1],
ChangeInTypeByFacilitation[5,2,4,b,b,1],
Infection[5,2,b,b,1],
ChangeInTypeAndBirthByFacilitation[5,3,1,4,b,b,d,d,1],
ChangeInTypeAndBirthByFacilitation[5,3,1,5,b,b,d,d,1],
Relax[3], Relax[6] +s

a,1],
5_:1],

(Note that the J-function here is denoted by d.)
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To simplify the representation of the calculations below, we introduce a re-
placement rule to replace values of the Fourier transform at the origin by the
corresponding integral, i.e.

we include here also the replacement S=1:
In[10j= integrals={&"[0]—A",& [0]—A",b[0]—B,d[0]—1,d[(]—1};

In the Model Constructor toolbox, HQfALL and also HGfALL are the functions
providing the r.h.s. of the differential equations for functions ¢ and g, respectively.

We define now a function which represents the r.h.s. of the corresponding
mean-field equation on function ¢, cf. (1.25), for an agent of a type i under the
replacement rule above:

In[11]:= qEqn[process_,i_] :=HQfALL [gpgVariables,process,i]/.integrals;

We define also a function which represents the sum of the r.h.s. of equations for
functions g, cf. (1.30), between pairs of types from a list:

In[12]:= gEqns[process_,list_]:=Total [Apply[HGfALL [gpgVariables,
process,#1,#2,kVariable]&,#]&/@list]/.integrals;

We obtain the r.h.s. of the differential equation for functions h*?, A, B € {H, P}
defined by (4.2).

in[13]:= qgEqnSpatial={qEqn[#,1]+gEqns[#,{{1,1}}],
gEqns [#,{{1,2}}],gEqns [#, {{2,1}}1,
qEqn[#,2] +gEqns [#,{{2,2}}]
t&[SpatialProcess];

We obtain the r.h.s. of the differential equation for functions h;'%,, A, B € {H, P}
defined by (4.25):

In[14= qgEqnAuxiliary={qEqn[#,1]+gEqns[#,{{1,1},{1,2},{1,3},{2,3}}]1,
gEqns [#,{{1,4},{1,5},{3,4},{3,5}}1,
gEqns [#,{{1,4},{1,6},{2,4},{2,6}}],
qEqn [#,4]+gEqns [#,{{4,4},{4,5},{4,6},{5,6}}]
}&[AuxiliaryProcess];

Since are interested in the equations for h, we create a replacement rule to rewrite
g through h, cf. (4.2):

In[15]:= hReplaceSpatial={g[1,1,£] —h"™-q[1],g[1,2,£1—0",
gl2,2,6]—h"-q[2]};
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We do the same for the auxiliary process, however now the replacement rule contains
sum of different g, cf. (4.24) and (4.25):

In[16]= hReplaceAuxiliary={gl[1,1,£]+g[1,2,£1+g[1,3,£]+gl2,3,81—h"-q[1],
gl1,4,61+g[1,5,61+g[3,4,£1+g[3,5,6]1 —h™,
gl1,4,81+gl1,6,81+gl2,4,£1+g[2,6,81—h™,
gl4,4,1+g[4,5,61+g[4,6,61+g[5,6,61—»h"" -q[4] };

We obtain now the mean-field equations (4.3):

in[17:= {qEqn[SpatialProcess,1],qEqn[SpatialProcess,2]}//Factor
outir]=  {-q[1] (B ql[21+q[1] A™-A"),-(m-B q[1]) q[2]}
We find now all stationary solutions to the system (4.3):

In[18]:= qgStationary={q[1],q[2]}/.Solve[{qEqn[SpatialProcess,1]==0,
qEqn[SpatialProcess,2]==0},{q[1],q[2]}]

m m A -B A* A*
Out[18]: {{_,_—2}9{030}:{__30}}
B B A

We save values of the only pair (4.11) of positive stationary solutions to (4.3):
inf19]:= {qH,qP}=First[qStationary];
We find the r.h.s. of the differential equations (4.32):

inf20:)= {qEqn[AuxiliaryProcess,1],qEqn[AuxiliaryProcess,4]}//Factor
outo)= {-q[1] (B q[41+B ql[51+ql[1] A™+q[2] A7),-m q[4]}

We are going to derive/verify now equation (4.10). We create a vector of the
notations for functions h*P, A, B € {H, P}. Note that the second and the third
component are denoted identically as the corresponding functions are equal:

Inj21:= hbarSpatial={h™ h™ h"™ h*"};

AB
ht

We replace now the terms with functions g in the equations for obtained in

In[13] by the corresponding notations:
In[22:= hEqnSpatial=Expand[qgEqnSpatial/.hReplaceSpatiall;
We define the coefficients (4.4) of matrix (4.5).

in3):= at=a"[£]- (A™+& [£])ql[1]-B ql2];
bt=-q[1] B[£]; ct=B ql2]; dt=q[1] b[&]-m;
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We define matrices (4.5) and (4.6):

In27):= matrA={{at,bt,0,0},{ct,dt,0,0},{0,0,at,bt},{0,0,ct,dt}};
matrAprime={{at,bt,0,0},{0,0,at,bt},{ct,dt,0,0},{0,0,ct,dt}};

We define vector (4.7):
Inj2o].= vecB={A*q[1] +A™ q[1]*® ,0,0,m q[2]}+B q[1] q[21{1,-1,-1,1};
We verify now equation (4.10):

In[30]:= (matrA+matrAprime) .hbarSpatial+vecB==hEqnSpatial//FullSimplify
out[30)= True

We are going to verify now equations (4.27), (4.28), (4.31). Similarly to above, we
define a vector of notations for the functions h{!8 A B € {H, P}. Note that the

t,At)
second and the third component are different now:

In31:= hbarAuxiliary={h™, h" h™ h%};

The r.h.s. of the equations for h;'Y, obtained in In[14] are linear combinations
of various g[i, k,£|. One needs some preparation to rearrange the terms there to
separate the sums of g corresponding to h.

Firstly, we create a collection rule:

In[32:= collectRule={B,-B ,b[&] ,-b[¢],a"[&],a [£],-4 [£],
A",-A",m,-m,-q[1] ,-q[2],-q[4],-q[5],
q[11,q[2],q[3],q[4],q[51};

Next, we collect the terms in the r.h.s. of the equations obtained in In[14] according
to the rule above; and then one can replace the sums of g by the corresponding nota-
tions for h;:‘ft. Then we expand, and thereafter we collect again, now to distinguish

the coefficients before functions h:

In[33):= hEgnAuxiliary=Collect [Expand[Collect[qgEqnAuxiliary,
collectRule]/.hReplaceAuxiliary],
Join[hbarAuxiliary,collectRule]];

We verify now equations (4.27) and (4.28) by funding the matrix Dy A
In[34]:= hEqgnAuxiliary[[1;;2]]
oupal=  {-h™ (q[11+q[2]) BI£]
+h™ (-B (q[41+q[5])-(q[11+q[2]) A™-(q[11+q[2]) & [£1+4"[£]),
Bh™ (q[4]1+q[5])+h™ (-m+(q[11+q[2]) B[£1)}

and also
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In[35]:= hEqnAuxiliary[[3;;4]]

out3s)=  {-h” (q[11+q[2]) B[]
+h™ (-B (q[4]+q[51)-(q[11+q[2]) A -(q[1]+q[2]) & [£]1+&"[£1),
B h™ (q[4]1+q[51)+h™ (-m+(q[1]1+q[2]) B[}

We verify now equation (4.31):

in36l:= (hEqnAuxiliary/.{ql[1]+q[2]—q[1],q[4]1+q[5]1—ql[2]})
==matrA.hbarAuxiliary//FullSimplify

out[36]= True

We are going now to define the functions in the stationary regime, using the
replacement according to (4.12). Firstly, we consider the stationary version (the
limit as ¢ — 00) of the matrix (4.5):

In[37):= matrAst=matrA/.{ql[1]—qH,q[2]—qP}//FullSimplify;
Then we define vector (4.19):
Inp3el:= vecBst=vecB/.{q[1]1—qH,q[2] —qgP}//FullSimplify;
We define also the coefficients (4.17) of matrix A,, i.e. just the limits of (4.4):

In[39:= ast=matrAst[[1,1]]; bst=matrAst[[1,2]];
cst=matrAst[[2,1]]; dst=matrAst[[2,2]];

Then we define matrix C,, cf. (4.18):
Inf43:= matrC={{2ast,2bst,0},{cst,ast+dst,bst},{0,2cst,2dst}};
Therefore, one can obtain hTH (&), RIIP(€), hIP(€) from (4.22):

inf44]:= {hHHst ,hHPst ,hPPst}=Inverse[matrC] . (Delete[-vecBst,3])//FullSimplify;

We use now matrix A, to get matrix &,, cf. (4.30) and also (A.25) below:

In[45]:== matrE=matrAst[[1;;2,1;;2]];

We can obtain now functions hy5,,(¢), A, B € {H, P} from equations (4.36) and
(4.37):

inf46]:= {hHH,hHP}=MatrixExp[t matrE].{hHHst,hHPst};
{hPH,hPP}=MatrixExp[t matrE].{hHPst,hPPst};

Finally, we are going to verify the corrections obtained in (4.34)—(4.35) to get
integrable functions. We were actually interested at the values of the obtained
solutions hiP,,(€) as || — oo. By the Riemann-Lebesgue lemma, the Fourier

transforms of a*, b converge to zero at infinity.

46



We create the corresponding replacement rule:
Inj4g:= atInfinity={b[£]—0,a [£]—0,8"[(]—0};

We get now the limits of 4B, ,(€) at infinity:

00,At

inf49]:= hInfinity={hHH,hHP,hPH,hPP}/.atInfinity//FullSimplify

et A m 2 et ™) psinh[l t (m-A*)] (-m A™+B A*)

B ’ B? (m-A*)

e™t (-m A+B A*)
B2

b

outiso]= {

0,

}

Finally, we verify the correction in the limiting case A™ = m:
inj50):)= hInfinityBalance=Limit[hInfinity,m—A"]

et A At oA ¢ (B-AT) (AY)? et A (B-AT) AY
B ’ B2 0 B2

3 3

}

outso]=  {

4.4 Analysis and numerics for the stationary regime

By Theorem 4.7, the eigenvalues of the matrix &,(£) have negative real parts for
each £ € R%. Then, by (4.36)-(4.37), functions hi?5 ,,(¢€), A, B € {H, P} converge
(for each &) to 0 as at — oo. Similarly to Proposition 4.1, this convergence to 0
can be monotone or oscillating with damping, depending on whether the eigen-
values of &,(§) are real negative or complex with negative real parts, respectively.
By (4.34) and (4.35), functions g2, (¢), AB € {HH, HP', PH, PP} have the same
properties.

By the proof of Theorem 4.7, for a fixed ¢ € R?, the eigenvalues of &,(¢) are
real negative iff

2(6) = (AT = JH(€) — ¢ (B = b(€)))” — 4mgb(¢) (4.39)

is non-negative; otherwise, they are complex with negative real parts.

The character of convergence hence depends on an interplay between behavior
of the Fourier transforms a*(£), a= (&) and b(€) in different zones of ¢ € R?, and
is especially non-trivial if the Fourier transforms take negative values, that may be
the case e.g. for the Gaussian-like kernels considered in (A.18) in the Appendix.

One can make, however, several general observations about the mentioned con-
vergence.

1. Since
2

2(0) = %(A—ﬁ - 4m<A+ - %(A‘)),

we conclude that the convergence is oscillating for £ = 0 if and only if (4.13)
holds. By continuity and the strict inequality in (4.13), the oscillations will
take place for ¢ at a neighbourhood of the origin.
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2. Directly from (4.39), one gets that the convergence is monotone for all £ € R?
such that () < 0. We assume now that this is not the case and

b(&) >0, £ € R% (4.40)

3. To have oscillating convergence for all large enough |£|, one needs with neces-
sity, by the Riemann-Lebesgue lemma, that

0> lim z(¢) = (A" —m)?

|§|—00

1.e.

AT =m. (4.41)

As a result, to have oscillating in neighbourhoods of the origin and infinity, we
require, with necessity that both (4.40), (4.41), and (4.13) hold. Note also that
(4.13) under assumption (4.41) can be easily rewritten as follow:

1++2
9

B>

A~ (4.42)

We assume now that both (4.40)—(4.42) hold; moreover, we also consider the
case of equal shapes for all kernels:

a*(z) = A*c(z) >0, b(z) = Be(z) > 0,

/ c(x)dx =1, &) >0, €eR% (4.43)

Then, since, by (3.16), ¢(¢) < 1, one can easily rewrite (4.39) as follows:

2.(€) = (¢) ((m§_5<§>)2 —dm (m - %»
() o))

because of (4.42). Therefore, (4.40)-(4.42) imply that that all functions g22,,(€),
AB € {HH,HP', PH, PP}, converge to 0 as at — oo with damping oscillations
for all £ € R%.

Note that the opposite to (4.42) inequality does not imply that the convergence
is monotone for all ¢ € RY. Moreover, one can not show analytically that the
oscillations will be preserved for the inverse Fourier transforms g, (z), AB €
{HH,HP',PH, PP}.

Instead, we are going to show this numerically, for the 2-dimensional case: d = 2,
and for radially symmetric kernels with equal Gaussian shapes: (4.43) holds with

1 o|?
c(z) = %ef%, z € R (4.44)
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We proceed as follows:
« by (4.38), (4.17), we find e2"%<() (see also below for details);
4.22), we find h2B(¢), A, B € {H, P};

)
(4.22)
. by (4.36)-(4.37), we find h2B,,(€), A, B € {H, P};
)f

00,Al

« by (4.34)—(4.35), we find g225,,(¢), AB € {HH,HP', PH, PP};

« we find numerically g2 ,(z), AB € {HH,HP', PH, PP}.

00,At

Firstly, we define a replacement rule to replace both a*(¢) and 5(6 ) by AFe 3zl
and Be_%‘§|2, respectively. Note that we use here e3¢ instead of the corresponding
Fourier transform e=27" K of the function (4.44), as we are going to use formula
(3.32) for the inverse Fourier transform latter on.

2 2
nj43):=  equalGaussian={&" [{]—A"Exp [-%J ,8" [£]—A"Exp ['%J ,
2
b[£]1—B Exp [—%]};

Next, recall that matrix &,(§) has either negative real eigenvalues or complex
eigenvalues with negative real parts, depending on the value of £ € R2. Depending
on this, one gets different expressions for the matrix exponential e2*+(€). More
precisely, it is straightforward to check (e.g. with Wolfram Mathematica), that for

M:(a b), a,b,c,d € R,
c d

its matrix exponential e!™ (we use often henceforth ¢ instead of At, to simplify
notations) can be found by the following formula:

e = exp() ) ) ,
2 2¢sinh (%) - <t\/2) ) y sinh (%)
V7 2 vz

where sinh, cosh denote the hyperbolic sinus and cosine, respectively, and

r:=tr(M)=a+d, y:=a—d, z = 2% — 4det(M),

where det(M) = ad — be.
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In our case, M = &,(€), and z = z,(§) € R, given by (4.39), determines whether
the eigenvalues are real or complex. The matrix exponential will have, however,
real entries only, as if z < 0, then one has

o () o (5) -on(5).
() () () ()

= == (4.46)

From this, we have also that

1
lim — sinh ME = E, (4.47)
=0 /2 2 2

regardless of the sign of z € R. Despite Wolfram Mathematica can handle complex
numbers, it may accumulate errors in the imaginary parts in course of the further
numerical integration (of the inverse Fourier transform). To avoid this, we introduce
auxiliary functions to calculate e2*¢+(€) depending on the sign of z = z,(£).

We start as follows, because of (4.45)—(4.47):
L S22,
Vz 2
-1, ! Sin[t\/;] ,O,E] ;

V-z 2 2

vz t vz

t .
cosF[t_,z_]:=Switch[Sign[z], 1,Cosh[Tz] ,—1,Cos [TZ] ,0,17;

Inf44]:= sinF[t_,z_]:=Switch[Sign[z],1,

Now, we define the matrix exponential:

Inj46]:= expF[t_,x_,y_,z_,b_,c_] :=et§{{cosF[t,z] +y sinF[t,z],
2b sinF[t,z]}, {2 ¢ sinF[t,z], cosF[t,z]-y sinF[t,z]}};

Finally, one can define the function to calculate the inverse Fourier transform for
the functions 45, ,(¢) defined through (4.34)—(4.35). In the code below:

00,At

« func calculates the vector of these functions, at the order: HH, HP’, PH, PP;

« hHHstG, hHPstG, hPPstG are values of previously found hHHst, hHPst, hPPst,

which are functions hH (), hEP (), hEF (), cf. (4.22), in the case of equal
Gaussian kernels;

« mat is the previously found matrix matrE (which is &,(§)) in the case of equal
Gaussian kernels;

« hy,hy denote pairs of functions (RZH, (&), hfE,,(€)) and (REE,,(€), K1, (8)),

00,At » "Yo0,At 00,At ) 'Y00,At

respectively, found by using (4.36) and (4.37);

+ hAtInf is the vector of the previously found constants (4.34)—(4.35).
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In[47):= gReal [valAp_?NumericQ,valAm_7NumericQ,
valB_7NumericQ,valm_7NumericQ,valt_7?NumericQ,
valx_7?NumericQ] :=

gReal [valAp,valAm,valB,valm,valt,valx]=Module[{func},
func[valxi_]=Module[{coeffRule,hHHstG,hHPstG,hPPstG,
X,¥,Z,b,c,h1,h2, hAtInf ,mat,expf},
coeffRule={A+—+valAp,A‘—%valAm,B—%valB,
m—valm,{—valxi};
{hHHstG,hHPstG,hPPstG}={hHHst ,hHPst ,hPPst}
/.equalGaussian/.coeffRule;
mat=matrE/.equalGaussian/.coeffRule;
x=Tr [mat] ;
y=mat[[1,1]]-mat[[2,2]];
z=x2-4Det [mat] ;
b=mat[[1,2]];
c=mat[[2,1]];
expf=expF[valt,x,y,z,b,c];
hi=expf.{hHHstG,hHPstG};
h2=expf . {hHPstG,hPPstG};
hAtInf=If [valAp==valm,hInfinityBalance,hInfinity]
/.coeffRule/.t—valt;
Flatten[{h1,h2}]1-hAtInf];
(*End of definition of ‘func’*)

1
2—NIntegrate [func[k]k BesselJ[0,k valx],{k,0,3},
T

Method —{LocalAdaptive,SymbolicProcessing—0},
PrecisionGoal—5]];

Remark 4.8. In the last line of the code above, we use formula (3.32) for the
inverse Fourier transform. Note that we integrate here in k (that is s in (3.32))
from k = 0 till k = 3 instead of co. The reason is that the whole integrand
there becomes extremely small for k around and above 3 for all considered values
of the parameters A, B and for all considered times At (that can be checked by
looking at the intermediate computations), and hence the numerical integration
may accumulate too many errors.

The result of function gReal is the vector of
920 (x),  ABe{HH, HP PH, PP}

here valt = at and valx = |z|. The result will be used to find the corresponding
cumulants by (4.26): the simulations were done for £ = 1, hence, the cumulants
measured in simulations should be approximated as follows:

1
ui? (@)~ 1085(5),  ABe{HH HP PH.PP}.
29 )
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The parameters in simulations were chosen as follows:
AT =1, A" =0.1, B=1, m=1, (4.48)

that satisfies (4.41) and (4.42).
We are going to discuss now the results of the numerical calculations of the
inverse Fourier transforms.

1. For a fixed space variable, e.g. for x = 0, the graphs of the g-functions as
functions of At € [0,20] are shown on Figure 2a. They demonstrate the
damping oscillations. As we can see, values of gZ'}\,(0) and gZf,,(0) are
pretty close, as well as values of gZ’y, ... (0) and —gZ"4,(0). We observe also
the initial negative correlation between finding a host at the current position
of a parasite for some positive time interval.

2. Next, in the considered case of monotone kernels, cumulants converge to 0 in
|z| monotonically, see Figure 2b for a fixed at = 7. In other words, for each
|z| > 7o (perhaps, staring with some rq > 0), we will see a picture similar
to that on Figure 2a, however, the corresponding cumulants have smaller
amplitudes.

3. We consider now the dependence of solutions on AT when At # m. We
keep other parameters in (4.48) and compare the graphs of Figure 2a with
those for AT = 2 > m and A" = % < m. We present the comparison on
Figure 3, for e.g. |z| = 5. We can observe that, with the growth of A™,
the oscillation became more frequent (the period becomes smaller) and the

amplitude becomes higher.

4. Finally, recall that the parameters in (4.48) satisfy (4.42), that is, for AT = m,
nothing but (4.13). We consider the case when (4.42) fails. If we keep AT =
B =m =1, then (4.42) fails iff A= > 2(v/2 —1) ~ 0.83. We take A~ = 0.85,
and then, see Figure 4, the convergence of g-functions in at to 0 becomes
monotone, without wvisible damping oscillations. Note that, however, we can
not prove this analytically, so the fluctuation may still happen for large values
of at and/or |z|.
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Appendix: Mathematical proofs and discussions

Proof of Theorem 3.2

Step 1. By (2.40),
heo(§) = 6:(&) + qr-
Then, the solution to (3.24) has the form

tear(®) = esp [ (0 = m— e 376+ 47) )ar ()
- exp((a+(g) —m)ac— @@+ A7) [

0

At

qm) G +a). (A1)

By the flow property of solutions to (3.3), ¢;+r = qr, where

d . . R e
- 4r = A+QT —mqr — A QE
dr
with the initial condition
Z]\T = (-
7=0
We have then p v
—1lo AT = T_AT = A" —m— A_Aﬂ'a
dr 8¢ qr qu 4

and integrating from 7 = 0 to 7 = at, we get

At d At
log gar — log gy = / T log grdr = (AY —m)At — A~ / g-dr.
0 T 0

Replacing back ¢ by ¢4, we obtain

/Atq dr = q At—ilog Sitas (A.2)
0 o " A~ @ '

Substituting into (A.1) and using that m + ¢, A~ = AT, one gets

heat(€) = exp ((L(g) — AT)At + @ Qﬁ A log Qt;t“) (G:(6) + ). (A3)

Then, one can rewrite:
B (A
. q =
ha(©) = O (852 ) @) )
t

To find g, o¢(€) from (3.21), one has to solve (3.25). By (2.35), ¢%, = ¢;. There-
fore, by (A.2),

At
qS, = exp (—mAt — A" / Qttr d7'> qs
0

= exp (—A+At + log(qt+At ) ) qy = €_A+Atqt+At. (A4)

qt
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As a result, (3.21) implies (3.26).
Step 2. Let now (3.10) and (SL2) hold. Note that, by (3.3), (3.11).

d
—q = Aqlq. —q) >0,
T qt(q« —q1) > 0
hence ¢; is increasing in ¢ > 0, and, therefore,
frat 1, At>0, t>0. (A.5)
a
Note also that, by (3.16),
A (O <A™,  €eR] (A.6)
By (A.3), (A.4), (3.21), we have
‘gt,At(g)’ < El (ta At? é)lgt(f)} + ‘E2<t7 At? £)|qt7 (A7)
where
N A (O+A~
By (1, At €) = 0O (Tirat) AT
az
E2<t7 At? 5) = El (ta Ata 5) - €7A+At M
qt

By (3.11), (SLs), (A.5), (A.6),

2
Byt AL€) < et (L)
do
To estimate Es(t, at,£), we can use an elementary inequality which holds for any
constants a, b, p,q > 0:

lpe™* —qe™"| < e lp—q| + qmax{e ", e "}|a — b];

note that here we take a = A* — J,(£) > a > 0, because of (SLa). One gets then

(qt+At) A _ Gtiat

4t 4t

4 Lrat max{e(j*(g)_ﬁ)“, e‘A+At}
q

‘EQ(t,At,é)‘ S e(j*(f)*A+)At

T.(€)At|

S %efaAt

qt

Gear) T ¢ n{A%.odar| 7
() 7 - 1' + = Atem Mt ATl T (6)).
e qt

Next, for any @ > 1 and |z| < b, we have

o

1
la® — 1] = |e"" — 1] < 2_1 m\x!"(lna)"
=1 1 b
< o Y~ (Ina)” < Zlefe!™ = %m. (A.8)

n=1
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Therefore, by (A.6), (3.11),

a(©

Qi+t = qx ]ﬁ_ (5)‘
-1 - ) A9
‘< qt ) ‘ = @ A ( )

Substituting the obtained estimates into (A.7), we get

|§t,m(§ } > aAt( ) }~ |

LG @ emmintATabat| 7 g (A.10)
do A~

Therefore, for each ¢ € R and ¢ > 0,

hm Gr.at(&) = 0.

At—

Next, (A.10) implies that g; +(§) is integrable, and hence one can apply the inverse
Fourier transform which will be then equal to g, o;(z) for a.a. @ € R% Moreover,
for each t > 0 and for a.a. z € R?, we get, by (3.16), (A.10),

) < [ G g0, Ao
R

Step 3. By (3.9), for any ¢t > 0
. (Qt—i-At) R (CJ*) =
lim
At=oo X Gt 4t
and hence, by (SL2), we get that (3.26) implies (3.27).
Therefore, by (3.26), for any at >0

=)
— qO Y

_ o . o
Goe.a0(€) = Jim Giau(€) = e F O (G(6) +q.) — e,

where we used (3.18). From this, by (3.18), one gets (3.28). Note also that, by

(3.12), (3.8),
AT

d
hO) = fim h(©) = 7= €eRY
Next, by (SLz) and (A.6),
‘—A—’—qj e(i(g)_A+)At _ e—A+At < q A+~ ej*(f)At _ 1
A+ — T (6) AT = J(§)
AT = j* N
G| ———— — 1' +q. ee()at _ 1‘ < q*| (&)] _i_q*‘eJ*(ﬁ)At _ 1|,
At = J(€) .

and hence, by (A.8), goo at(£) is integrable.
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Step 4. We have

}gt,At(f) - ’goo,At(g)‘
N a(O)+A”
< -4 (22 ) T G 0 g )

- qt
a(e)+A”

<Qt+At> A=
qt

4 oT(O—AT)at 1

(8]

4 e_A+At (ei(E)AtCJHM A* )(]t+At . eJ*(g)Atq + q*‘
2 a (§)+A
<o () — g +ee () —lfae)]
do
tq o AT At T (€)at <Qt+At) 7= B 1’
4t
~ a9
4o ATa eJ*(é)At<Qt+At> C | (P
qt
= 11(57 t? At) + IQ<£7 t7 At) + 13(57 t? At) + I4<£7 ta At)
By [3, Theorem 3.2, Remark 3.3,
lim L(&t, At) dE = 0. (A.11)

t—o0 Rd
By (3.9), we have, for all £ € R?, at > 0,

thl’ﬂ ]2(5,1:7 At) = thm ]3<€,t, At) = thm ]4(5, t, At) =

Next, we have

L€, 8, Al) < e“mt(<%>2 n 1)

and by (A.9), (A.5),

3:.(&)] e L'RY),  t>0;

Ig(f,t,At) S q*efaAt . %|6L (£)| c Ll(Rd)
Qo A

Finally, rewriting back
a©

ple@at (Qetat A (J Ar 48 a (§) In QtJrAt)
< " ) p| /(&) e "

and using that

< (At —a)At+n L,

Tt + Oy Gevat
qo

A~ qt
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we obtain from (A.8), that

F (AT —a ~_
I4(€, 1, At) < 2q,e” 472 e - (Il(S)IAH @ (5)@) e L'(RY).
- (AT —a)at +In L A= qo

Hence, by the dominated convergence theorem, (A.11) holds with I; replaced by
each of Iy, I3, I4.

Therefore, §; o; converges t0 goo ar in L'(R?) as t — 00. Since giar — gooat 1S
the inverse Fourier transform of g a¢ — Goo,at, We obtain from an analogue of (3.16)
that g; s converges to goo a¢ in L(R?). O

Proof of Lemma 3.3

Firstly, for the Fourier transform defined as in (1.29), formula (3.31) follows from
e.g. [4, Example 2.2.9, Proposition 2.2.11]. Next, we note that the Fourier transform
of a (radially) symmetric function is also (radially) symmetric, and it coincides with
the inverse Fourier transform of that function. Therefore, by e.g. [4, Back Matters
B.5],

g(x) = 27r/ f(e’QﬂQTQ)TJO (27rr]x|) dr, r € R%
0

Making the substitution s = 277, one gets the desired formula (3.32). [

Proof of Proposition 4.1

We set f(z,y) = x(AT — A~z — By), g(x,y) = y(Bx —m). Consider the Jacobian
. fi(z,y) fo(x,y) At —24-x - By Bz
e = (e g = (7778 )

Then, it is straightforward to check that

_Am
J:=j(q!"q") = B
gqr_Amo
B
Since
A~m
tr(J) = - ——
r(J) 57 <0
det(J) :m(A+ - ATm) > 0,

under (HP;), we conclude that both eigenvalues of j(¢f, ¢¥’) have negative real
parts, hence (4.12) holds.

The monotone convergence in (4.12) takes place when the eigenvalues of J are
real (and hence negative), otherwise there will be damping oscillations. The eigen-

values of J are real iff
(tr(3))* > 4det(J),
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that is equivalent to
m _ m(A7)?
AT < —A —_—
- B * 4B2 7’
and hence the statement is proved.

Proof of Proposition 4.2

We have, by (4.14)

JH(z)de = AT — 24~
R4 B

and hence (4.15) implies (HP1). Next, by (3.16), one has
JIE) < AT - %A* <A*,  £eR’
b(¢) < B, ¢ e R

Therefore,
+_ JHeY > +_( M M-
At~ JH(E) > A — (A BA) TAT,
hence (HP3) holds. Then,

r(€) = (AT — JH(€)) (B - b(¢)) + Ba'b(€)

> %A‘ (B =€) + BgFb(¢) = mA~ + <A+ - Q%A—)E(g).

If At > 22 A", then, by (4.16), r(§) > mA~. If, cf. (HP,),
m m
—AT <At <2—-A"
B < < B ,

then by (4.16) and (A.13), we have

r(€) > mA™ — (Q%A— — A+)Z(§) > mA~ — (2%/1— — A+)B

= ATB—mA” >0,

by (HP;). As a result,

(At — JH(€) (B —b(€)) + Ba b(€) > max{mA~, ATB —mA~}

for all £ € R%.
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Possible relaxation of assumption (4.16)

Let (4.15) hold. One can weaken the assumption (4.16) as follows.
Let € € R? be such that b(£) < 0 (provided that such & exists). If, additionally,
j*H(f) < %A*, then, cf. (A.14),

r(€) = (A7 = ZA7) (B-25() > 0,

as b(&) < 0.
Let now £ € R? be such that E(S) < 0 and jf({') > %A‘. By (A.12), we have

that then, with necessity, A* > Z%A_. Then, by (A.12) and (A.13), one has:

m

(€2 (A (5 -H@) + (47 - Fa)ite))
(mA— + (A+ - 2%/1—)5@)) >0

if only
m

<A+ - 2%A‘> b(e)| < (A+ - QEA‘>B < mA~,

e if At < 3%,4—.
Therefore, assuming (4.15), one can replace (4.16) by the following assumption:

 let either

A™m
AT —_—
<3 5
s or
A™m
AT >3—— Al
>3 (A.16)
7 d. TH A~
DE) >0, EcAi= {5eR ! <5>2T}' (A.17)
. TH Aim Aim .
Note that since J(0) = AT — 5 > under (A.16), the set A is not empty,
it contains a neighborhood of the origin. O

Remark A.1. A natural example when (A.17) may fail is

b(z) = C(A+ |zf)e’  s>0, C>0, zeR (A.18)|

with small enough s > 0. Indeed, it is straightforward to check that E(ﬁ) < 0 for
|€| > d(s) for certain continuous d(s) with d(0) = 0. Therefore, taking s > 0 small
enough we ensure that 5(5) < 0 for some £ € A given by (A.17). Note also that
a small s here corresponds to a large length scale of the kernel b(z) describing the
influence of parasites on hosts.
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Proof of Theorem 4.4
Denoting, cf. (4.9),

5.6 = (0.3 (©. 3.5

we get
B0 = SRE) — (el 0,047
= (A©) + A0 ) u(©) + Bu(&) - §t<qt 0,0,47)"
= (A©) + A4(9))3(6) + 1(©)
where
/ H P d
fi(§) : =B(&) + <At(§) + At(’f)) (¢,0,0,q, ) dt(% 0,0, ¢ )

B
= B(&) + (A + 4()) (@, 0,0.4))"
— (q/"(A* — A=q/" — Bq["),0,0,q] (Bg}" —m))".
Recall that g'*(¢) = gHP(€). We can hence rewrite this in terms of the vector
g.(&) = (g,"1(€), 97 (), 3" ()"

It is easy to see that, if the remove the third component (equal to the second one)
of the vector (At(ﬁ) + A, (5)) (&), we will get the vector C(€)g,(§), where

22(§)  2by(§) 0

Ci(§) = ( et a(§) +di(§) (&) )
0 2¢ 2d;(€).

We consider also

T

B(&) := (A+ + A~ (q ) qut) + Bql ¢ (1, 1,1)

Then
S0 = CLOR(O) + 100,
() = BE) + CuE) ", 0,0l )T — L (al'.0.00)"

:Bt(f) +Ct(€)(qf[>oaqg3) - ( 4y (A+ _A_Qt _Bth)’O’th(quI _m))T'

It is straightforward to check that we can apply now [3, Lemma 3.1] in both
Banach spaces X = (Ll(Rd))®3 or X = (LOO(]Rd))®3, provided that there exist
limits £, := tlim f; € X and C, := tlim C: € L(X) (the space of bounded linear

—00 —00
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operators on X) and also provided that the operator (matrix) C, is invertible. We
have that C,(§) is given by (4.18) and

£.(6) 1 = (Atq + 4™ (g ),O,Wm*) 4—Bq*q*(1,-L1)T
+C(6)(g,0,¢0)" +(0,0,0)"
= (qf(fl+ +A ¢! + Bql), —Bql'ql  q7 (m + BQf)>T +C()(g,0,¢0)"
2a,(§)  2b.(¢) 0

= (2A+q*, —Bg] q*,2mqf>T+ co &) +du(&) bu(&) | (¢ 0,¢0)"
0 2¢, 2d,(¢)

= (20777(€). "4 B(E). 2070706 )

Th show that C, is invertible in X it is evidently enough to show that the
function det(C.(€)) is separated from 0. We have

det(C*(ﬁ)) = 4a*(§)d*(§) (a*(f) + d*(g)) - 4a*(§)b*(§)c* - 4b*<€)c*d*(§)
= 4(a,(&) + d.(€)) (a:(£)du (&) — ba(&)cs).

By (HP2) and (A.13),

2. () + . = IO — AT+ ¢ (b(¢) - B) < —a < 0. (A.19)
By (A.15),
2.(6)d,(€) —b.(€)c, = ¢ (fH — A*) (b(€) = B)) + Balq!"b(¢)
=g/ (4 ) (B~ b)) + Bab(5))
Em X{mA A*B—mA~} > 0. (A.20)
Therefore,
det(C.(§)) < 4—A max{mA~,ATB—-mA~} <0, (A.21)

the proves the needed.
As a result, by [3, Lemma 3.1],

T -1
(377(©),577(©). 57 ©) = —-(c.9) £
=g () (-2, alBle), ~2aTH() )
and moreover g% — g48 in both L'(R?) and L>(X) as t — oo, A, B € {H, P}.

The convergence in L' implies, by (SLz), the convergence in L>(R?) for the inverse
Fourier transforms, that fulfills the proof. O
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Proof of Corollary 4.5
Since hfIP (&) = hPH(€), (4.21) is equivalent to

C.(§) (th(SL hP (), hfp(§)>T = (—24%¢" ;mg”, —2mqg")7,

where C, () is given by (4.18). By (A.21), we have then (4.22).
On the other hand,

 (210) — ), el (B e, 2 0E) - ) )
= () (2%l mal”, ~2mal)" = (W), BT, W)
that fulfills the statement. O

Proof of Proposition 4.6
Step 1. We have, by (2.40),

hid(€) =htP(), A Be{HP},

where, recall, h!? satisfy (4.9), (4.10). Then, by (4.31), (4.30), we obtain
hi'xt (€) at RIH (¢)
(hfft(f)> =ew( [ &nrar) (ur(s)

and

where

/0 () dr = . (A.22)
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Similarly to the proof of Theorem 3.2, we note that qu and qiﬂ solves the
system

g = q(At - A BYY),
dAP_AP ~H
dT _qT (B )

(A.23)

with the initial conditions @&’ = ¢/7, @&’ = qf’. Next, we rewrite (A.23) as follows

d
—log @l = A* — A7¢ — B,
dr
d
d—logfl\f = Bgl' -
-

Integrating over 7 € [0, at], we get
a\H At
log 2L — ATAL — / g dr — / q~ dr,
0

1qA—ft B/ g dr — mAt.

dp
Therefore,
At Z]\P
| #tar=atars plog Lt
0 0
At ~H - ~p
1 q A q
~P P At At
q,. dr = q, At — = log =27 — — log ==,
/0 B g B o
hence

/Atq dr = ¢ At + = 1 logqﬁ'm
0 t+7 * B qf Y

(A.24)

At P
P P QtJrAt A iy at
Q. dT = q, At——l — —log )

/o " B " ¢ B2T ¢f

Remark A.2. It should be mentioned that the trajectories of the system (4.3) cannot

intersect, therefore, ¢ > 0 and ¢ > 0 for all ¢+ > 0, provided that it holds for
t=20.

By (A.24) and (4.4), we have

/mt asr(§) dr =T (At — (A” +a™(€)) (qu + 2 log %At)
0

Qt

1 H A~ P
_ B(qut — Zlog Qivat = log CIt+PAt)

B at’ a;
_ H ~_ P
_ (Jf(&“) _ A+)At + log qt—f}{At _a () log qt—l—PAt’
4 B 4
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At 7 H 1 Qﬁ-at
btJrT(é) dr = —b(f) 4y At + — 10g P )
0 B q

t

At H — P
1 Qi at A i+ at
CoyrdT = B ¢ At — —log 2H2L — —_Jog 2L )
]ﬁ a ( B " ¢ BT ¢

at 7 o 1 Qtlj-At
dor(€)dr = 5(E) (At + = 1og %520 ) A
0 B 4y

Therefore, by (A.22),

/0 Eror(€) dr = At - E.(6) + Frnl€),

where &,(€) is given by (4.38), i.e., cf. (4.17),

TH _ AT _H
A= (J* (©) a:'b(¢) ) (A.25)

Bqf b(&)g! —m

and
Frat(€) = log qg?t (_11 8> _ %log% (5;1(_5) _%2)) , (A.26)
Note that (4.38) holds.
As a result,
hﬁﬁ(g) . ‘ h{{H(f)
(hg£(§)> = exXp (At 5*(5) + E,At(g)) (hfﬂj(f)> y (A.27)
(hi?:;(s)) — (80 £+ Fnl®) (Jorll)) . (429)

Step 2. Find limits of g;'5(¢) as || — oo, A,B € {H,P}. Let at > 0
(otherwise, there is nothing to prove). By (4.25),

Gimi (&) = h{Li(€) —ak?, L) = b5 — &kt
and by (4.32), for each t > 0, £ € R?,

At
¢t = exp (—/ (Bqt]iT + A‘qﬁT) d7'> qéfo
0

and using (A.24), one can continue

H
= exp (—(qu + A~ g™ At + log q’;;t)qf

t
—ATst gl (A.29)
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and also by (4.32),

g0 = emmatglO — gmmat P (A.30)

Denoting henceforth f(oo) = |£l‘im f(&) for a function (or a matrix-valued
—00

function) f and using the Riemann-Lebesgue lemma, we obtain
a*(oo) - _A+’ b*(OO) = 07 Cx = Bgfa d*<OO) = _qu = —m,
and hence

At - E,(00) 4+ Fiat(00)

= At- —AT 0 +log—qg” 10 —llog—qgjr“ 00
Bgl —m g' \=1.0) B ¢ \A" 0

*

H
—Atat +log ”;—HN 0
— t
- P qﬁm 1 [N
Bq; at —log 4t — 5 log =458t —mat
qt ai

Next, any matrix

M:<a 0), a,c,d e R,
c d

has eigenvalues a and d and the corresponding eigenvectors (“%d, 1)T and (0,1)7.

Therefore,

v (= 0) fer 0) (=t 0\ /=t 0\ (et 0\ (5 O
7l )l\o )1 1) T 1) o )\ -5 1

_ e? 0
= ﬁ(ea_ed) el |

Therefore,

—mAt
Ut At €

qtﬁ;ﬂ efA“'At 0
exp(AtE*(£)+.7:t7At(£)) = th
where

H
Q4 At 1

P 1o a1 ,
Bq, at —log a 5108 af <Q£At e~ Atat _ emAt>

i H
— (AT —m)at + log qtq*% qt
t

Vg at =

Next, by Theorem 4.4, Corollary 4.5,

hi'(c0) =q",  h'"(00) =" (00) =0, Iy (00) =g;
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Then, by (A.27), (A.28),

hixi(0)\ qi’?t o—Atat <q{1) B Q{If?t e~ AtatgH (A31)
Vg, at e mat, 0 Ut,AthI

hfﬁ(%))
hPH (o Aine —A+at
t,At( ) _ —th e 0 ((33) _ ( 7m(it P) . (A.32)
hfg(oo) Vg, At e mAt 4 € 4y
As a result,

Gi.a1(00) = hi5y(00) =0,

next, by (A.29), (A.30)

hfﬁ(oo) = qfto, and hence ﬁfg(oo) =0,
hfft(oo) = qfto, and hence §f£(oo) =0,
whereas
~HP HP H
gt’m(oo) = ht,m(oo) = Ut,atly
BqP at — log qﬁHAt — Llog —qipm
_ q: B o a4 <Qtl-{‘,-At €_A+At _ qi'-[ 6—mAt>’ (A33)
— (At —m)at + log ot
t

and hence, in general, EFA}Z (00) # 0.
Step 3. Prove the integrability of ’gvg"‘ﬁ(f), AB € {HH,HP',PH,PP}. We
denote

Mt,At(&) = At - 8*(5) + Ft,At(g)' (A.34)
By the above,

GO\ (MEE)N (Ao
gir©))  \nfhe) ) \wlh (o)
o Mad®) (hfm(f)) o Mear(0) <Qf{ )
hHP 0

0 (6)
S H
— Mt At(ﬁ) gt (6)) Mt At(g) Mt At(oo) <qt )

= et = + (e™® —ert . A.35
(gth(é) ( o (A.35)
The entries of matrix M; ,¢(§) are bounded in ¢ functions, and also functions
gHH (&), gHP(€) are integrable, by the proof of Theorem 4.4 above. Then the first
summand in (A.35) is integrable. The second summand in (A.35) is a vector which
has integrable in £ entries iff its (any) norm is integrable. The latter evidently holds
if [|eMearl®) — eMuar()|| s integrable.

For any (square) matrices A and B, one has, for n € N,

n—1
A"—B" =Y A(A-B)B",

=0
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hence
A" — B"|| < nmax{|[|A]|,||B||}""'||A - B].

Therefore,
C 1 n n . 1 n—
et — B < Z EHA - B"|| < Z mmaX{HAH, IBI}" A~ B
n=1 " n=1 ’
= emallLIBIY 4 — BJ|. (A.36)

Hence, since

(O O\ 1 i (a9 B
Mt,At(f) Mt,At( )_At ( 0 qu(f)> Blg Qf ( 0 _g(g) 7

one can conclude that [|eMna:() — eMua(>) || js integrable, so such are the entries
of the second summand in (A.35).

The proof of the integrability of gF#(¢) and gZ'¥(€) can be done in the same
way. ]

Proof of Theorem 4.7

Step 1: Eigenvalues of £,({) We prove firstly that the eigenvalues of &£,(&)
have indeed negative real parts (and even uniformly in ¢ € R?).
For each £ € R?, the eigenvalues \;(£), A\2(€) € C of £,.(€) are equal to

1
L (tr(e.©) £/ (n(£.€) — 4det(&n(e) ).
By (A.19), (A.20), there exist «, 3 > 0 such that, for all £ € R?

tr(E.(6)) = a.(&) + du(é) < —a,
det (£,(€)) = 2.(§)d.(€) —bu(§)e, > 8.

We denote

2.(6) == (tr(.(6)))” — 4det(£.(€)) = (a.() — du(€))” + 4b.(€)c..

Substituting the expressions from (4.17), one can easily rewrite

2(6) = (AT = JH(&) — ¢ (B - 1(¢)))” — 4mgTb(¢). |

Therefore, if 2,(£) < 0, then the eigenvalues are not real, and
Re M\ (€) = Re \o(€) < —% < 0;

otherwise, if z,(£) > 0 then the eigenvalues are real, and e.g.

M(©) < Xa(6) = 3 (tr(6.0) + y/ (1(E.(0)))° — 4det(£,(6))).

69



We have also, by (A.19), (3.16),
tr(€.(6) = JH(©) — AT + ¢l (W) — B) 2 —AT — ¢! A" — AT —2B¢ = —.

For a fixed d > 0, function f(z) := x + v/x? — 4d is negative and decreasing on
[—7, —a], therefore, f(z) < f(—v). As a result,

Mo(€) < %(—7 VA7 = 1det(E(0))) < %(—v + V2= 45) <0,

Hence, in both cases, there exists ¢ > 0, such that

Re A\ (€) < Re)g(€) < 94, ¢ € R

Step 2: Convergence as at — oo By (A.26), for t > 0 and £ € R?,

. gm0y 1, dP(a© b
Altgnooﬂ,m(f)—logf<_1 0)_§10gf<14 b)) (A.37)

there exists T" > 0 such that, for all at > T, the eigenvalues N = Xi(t,At,f),
1 = 1,2, of the matrix

1 1
gAt = A_tMt’At = 5*(5) + A_t‘/__;zAt(g) (A‘BS)

satisfy R R
ReX; < ReXy < =0 <0, At > T.
Let P,; be the matrix constructed by eigenvectors of £,;, so that
. N0
Ent = PAt'CAtPAt17 Lot = (01 X2> .
By (A.38) and (A.37),
lim Py =P(6),  lim Pyl =P,

At—00 Atoo A

where P(§) is the matrix constructed by eigenvectors of £,(€).
Let || - |2 denote the Euclidean (a.k.a. spectral) matrix norm. Using the repre-

sentation )
eMt’At(g) — eAtSAt — ePAt(At['At)PAt — PAteAtLAtpfl

At
AtX
At'LAt _ € ! O
e = ~
0 eAt~)\2 ’

we may estimate, for large enough at,

with

Jevesc@]], < NPl paae e
< (14 [ POILIIPE ™, )e ™ =0, At oc.

Therefore both summand in (A.35) converges to zero-vectors pointwise as at — oo.
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Step 3: Convergence ast — oo, item (a) By Proposition 4.1 and Remark A.2,
there exists ci,c; > 0, such that 0 < ¢; < ¢! < co, A € {H, P}, for all t > 0,
provided that ¢&f > 0, ¢’ > 0. Therefore, by (A.25), (A.26), (A.34), the entries
of matrix M; ,;(€) are uniformly bounded in both ¢ > 0 and ¢ € R? Next, by
Theorem 4.4, gAB (&) converges to gAP(¢), A, B € {H, P}, in L*(R%). Clearly, for
any function |us(€)| < C, t > 0, £ € R, which converges to some u,(£) pointwise
as t — oo, and for any w; — w,, t — oo, in L*(R?), we have

Hutwt — ’LL*’U)*HLl(Rd) S CHwt — w*HLl(Rd) + H(Ut — U*)w*HLl(Rd) — O,

by the assumption and the dominated convergence theorem. Therefore, the follo-
wing entry-wise limit, cf. (A.35), takes place in L'(R?):

M.t () (%?ig;) _y pAtE() (g’}iig;) , t — o0,

where we used that, by (A.26),

lim Fia(§) =0, At>0, (€ RY, (A.39)

where, recall, 0 denotes 2 x 2 matrix of zeros.
Next, by (A.36),

HeMt,At(ﬁ) eMt,at(o0) H < emaX{HMt at(©ILIMe, at(c0) I}

(o (P10 BN | s (10 H ),

and the latter can be majorized uniformly in ¢t by the norm of a matrix with
integrable in & entries. As a result, the second summand in (A.35) converges to its
limit in L*(R?) as well:

/NI NG QtH AL-E4(8) At-Ey (00) qH
(6 t.aels) _ o Meat )(O>_>(e *\s) _ e * )(O)’ t — o0.

As a result, the following convergence is in L'(X) (entrywise) as t — oo
~HH -
Gt,at (€) Ly pALE(9) (ng(§)> + (em.s*(g) _ 6At~€*(oo)) (CL{{) .
GHE (€) g (8) 0

As a result, the inverse Fourier transforms converges uniformly in space. For the
rest two functions, the proof is the same.

Step 4: Convergence as t — oo, items (b)—(c) The convergences in (4.36)—
(4.37) follows immediately from the expressions (A.27)—-(A.28) and the limit in
(A.39). This, together with Step 1 above finishes the proof of item (c).
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Next, by the above, for each AB € {HH,HP', PH, PP},
:(jfgt(f) = h?ft(f) hfoBt at(00).
By the proved in (4.36)—(4.37), one can pass here to the limit as ¢ — oco. Then,

by passing t to co in (A.31)—(A.32), we immediately get the first three equalities
n (4.34). Finally, by (A.33), for AT # m,

AB . Balat—log qHAt — 5 log qHAt H _—Atat _ _H —mat
hoot At(oo) = tlgglo N qt+m Qi+t € — Q€
_ Bqlql'a < —Atat 6—mAt> _ mqy (6—A+At _ e—mAt).
—(A+ — )At m— AT ’
and for AT = m, also from (A.33), we have:
P
BqP at — log qt*“ — £ log Litar
. * _A+
hfoBt At(oo) = tlgono qgm & (Qﬁm - q{{)e A
log af!
_ 1 qt+At
— lim Bq* at log (qgrm . 1) qf{ —Atat
t—o0 log % qt
and since, by L’Hopital’s rule, hm m = hrr{ + = 1, we conclude that
rz—1 z
Wi, ai(00) = Bal AtglTe™ """ = mql At e 4"
for AT = m, that finishes the proof of (4.35). O
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