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1 Spatial characteristics

1.1 Stochastic dynamics

We consider dynamics of systems consisting of indistinguishable agents. Each agent
xi is fully characterized by its position x ∈ Rd, d ≥ 1, and its type i ∈ IN , where

IN = {s1, . . . , sN}, N ≥ 1.

Here s1, . . . , sN are some fixed labels. We will always assume that there are not
two or more agents at the same position.

We will consider discrete systems only, finite or locally finite. The latter means
that, if γt = {xi} is a system of agents at some moment of time t ≥ 0, then we
assume that, in each ball of Rd, there are a finite number of agents from γt only. In
particular, of course, a finite γt is also locally finite. We will call such γt a (finite
or locally finite) configuration.

Each γt hence can be expressed as the following disjoint union:

γt = γs1t ∪ . . . ∪ γsNt =: (γs1t , . . . , γ
sN
t ), (1.1)

where all agents of γit has the same type i ∈ IN .
Sometimes, we will omit the type of an agent, when it is clear from the context,

so that we will write x ∈ γit rather than xi ∈ γit . In particular, it will be also in
the case where all agents of the system have the same type (i.e. when N = 1).

The agents of a configuration are random, hence we will speak about random
configurations γt with respect to (w.r.t. henceforth) a probability distribution. Let
Γ denote the space of configurations γ.

The dynamics of configurations in time t is defined through the dynamics of
their distributions. Heuristically, the scheme is as follows. We consider a (formal)
Markov generator on functions F : Γ→ R. We will consider the following class of
generators, called RCP-generators. Let R, C, P be nonnegative integers, and let

rR,C,P(x
i1
1 , . . . , x

iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P ) ≥ 0 (1.2)

be a function which is symmetric w.r.t. permutations within x-variables, within
y-variables, and within z-variables; here i1, . . . , iR, j1, . . . , jC, l1 . . . , lP ∈ IN .

We define, for a function F on Γ, the following (formal) operator

(LR,C,PF )(γ) :=
∑

{xi11 ,...,x
iR
R }⊂γ

∑
{yj11 ,...,y

jC
C }⊂γ\{x

i1
1 ,...,x

iR
R }∫

(Rd)P
rR,C,P(x

i1
1 , . . . , x

iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P ) (1.3)

×
(
F
(
γ \ {xi1

1 , . . . , x
iR
R } ∪ {z

l1
1 , . . . , z

lP
P }
)
− F

(
γ
))
dz1 . . . dzP.

Note that if either of R and C is equal to 0, we omit the corresponding sum in
(1.3), similarly if P = 0, we omit the integral in (1.3). We assume however that
R + P > 0 otherwise LR,C,PF = 0 for all F .
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Finally, we consider a finite sum of RCP-operators:

L =
∑

R,C,P≥0
R+P>0

LR,C,P. (1.4)

Operator (1.3), and hence (1.4), has two properties: 1) LR,C,P1 = 0 and 2) if, for
a given function F , a configuration γ∗ is such that F (γ∗) ≥ F (γ) for all γ ∈ Γ (i.e.
if γ∗ is a global maximum for F ), then (LR,C,PF )(γ∗) ≤ 0. Hence, formally, LR,C,P

and L are Markov generators.
Generator LR,C,P describes the following random event. Let, at a moment of

time t ≥ 0 the system is given by a configuration γt. The event is that, within a
small time-interval [t, t + δt], a group of reactants {xi1

1 , . . . , x
iR
R } disappears from

the configuration and a group of products {zl1
1 , . . . , z

lP
P } will become a part of the

configuration, so that z1 ∈ Λ1, . . . , zP ∈ ΛP for some disjoint bounded subsets
Λ1, . . . ,ΛP of Rd. Thus,

γt+δt = γt \ {xi1
1 , . . . , x

iR
R } ∪ {z

l1
1 , . . . , z

lP
P }.

The probability of this event is then

δt ·
∑

{xi11 ,...,x
iR
R }⊂γ

∑
{yj11 ,...,y

jC
C }⊂γ\{x

i1
1 ,...,x

iR
R }

∫
Λ1

. . .

∫
ΛP

× r(xi1
1 , . . . , x

iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P ) dz1 . . . dzP + o(δt),

where lim
δt→0

o(δt)
δt

= 0. The influence on catalysts yj1

1 , . . . , y
jC
C reflects the interaction

between agents. The catalysts remain unchanged within the event, however, they
influence the probability of the event.

We include also the case when, for some m, n, a reactant xm
im and a product zn

ln

are such that xm = zn, whereas im 6= ln, i.e. when an agent keeps its position with
changing its type only. In this the corresponding integral w.r.t. dzn is omitted. We
can also formally treat this as like the function r includes the factor δ(xm − zn);
henceforth δ(x) is the Dirac delta-function.

The dynamics of γt if defined then through the differential equation:

d

dt
E
[
F (γt)

]
= E

[
(LF )(γt)

]
(1.5)

which should be satisfied for a large class of functions F .

1.2 Spatial correlation functions and cumulants

Definition 1.1. For each i ∈ IN , a function kit (x) ≥ 0 is said to be the first order
spatial correlation function of type i (for the distribution of γt), if for any function
g1(x) ≥ 0,

E
[∑
x∈γit

g1(x)
]

=

∫
Rd
g1(x)kit (x) dx. (1.6)
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Henceforth, E[·] denotes the expected value of a random quantity (w.r.t. the dis-
tribution of γt).

The function kit (x) is also called the density of agents of type i, since, taking
g1(x) = 11Λ(x) for some bounded subset Λ of Rd, where

11Λ(x) :=

{
1, if x ∈ Λ,

0, otherwise,

we get from (1.6) that

E
[
|γit ∩ Λ|

]
=

∫
Λ

kit (x) dx.

Henceforth, |η| denotes number of points in a finite subset η of Rd.

Definition 1.2. For each i, j ∈ IN , a function ki,jt (x1, x2) = kj,it (x2, x1) ≥ 0 is
said to be the second-order spatial correlation function (between agents of the types
i and j), if, for any symmetric function g2(x1, x2) ≥ 0,

E
[ ∑
x1∈γit , x2∈γjt

x1 6=x2

g2(x1, x2)
]

=

∫
Rd

∫
Rd
g2(x1, x2)ki,jt (x1, x2) dx1dx2. (1.7)

Remark 1.3. Recall, we assume that agents cannot occupy the same position, hence,
for i 6= j, γit and γjt are disjoint, and thus the restriction x1 6= x2 in (1.7) is
redundant then.

Combining (1.7) with (1.6), we can also write, for all i, j ∈ IN ,

E
[ ∑
x1∈γi, x2∈γj

g2(x1, x2)
]

=

∫
Rd

∫
Rd
g2(x1, x2)ki,jt (x1, x2) dx1dx2 + 11i=j

∫
Rd
g2(x, x)kit (x) dx. (1.8)

Henceforth, 11i=j denotes the Kronecker delta (that is 1 if i = j and 0 otherwise).
Substituting to (1.8) the symmetric function

g2(x1, x2) =
1

2

(
11Λ1(x1)11Λ2(x2) + 11Λ1(x2)11Λ2(x1)

)
, (1.9)

where Λ1,Λ2 are bounded subsets of Rd, we get

E
[
|γit ∩ Λ1| |γjt ∩ Λ2|

]
=

∫
Λ1

∫
Λ2

ki,jt (x1, x2) dx1dx2

+ 11i=j

∫
Λ1∩Λ2

kit (x) dx. (1.10)
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One can also consider the centralized spatial moment that is the expectation of
the product of centralized random quantities |γit ∩Λ1|−E[|γit ∩Λ1|], i ∈ IN (called
so because the expectation of each such quantity is 0):

E
[(
|γit ∩ Λ1| − E

[
|γit ∩ Λ1|

]) (
|γjt ∩ Λ2| − E

[
|γjt ∩ Λ2|

])]
= E

[
|γit ∩ Λ1| |γjt ∩ Λ2|

]
− E

[
|γit ∩ Λ1|

]
E
[
|γjt ∩ Λ2|

]
=

∫
Λ1

∫
Λ2

(
ki,jt (x1, x2)− kit (x1) kjt (x2)

)
dx1dx2 + 11i=j

∫
Λ1∩Λ2

kit (x) dx.

Definition 1.4. The function

ui,jt (x1, x2) := ki,jt (x1, x2)− kit (x1) kjt (x2), (1.11)

is called the second order spatial cumulant between types i and j.

We have hence

E
[(
|γit ∩ Λ1| − E

[
|γit ∩ Λ1|

]) (
|γjt ∩ Λ2| − E

[
|γjt ∩ Λ2|

])]
=

∫
Λ1

∫
Λ2

ui,jt (x1, x2) dx1dx2 + 11i=j

∫
Λ1∩Λ2

kit (x) dx. (1.12)

We going to define now a general spatial correlation function.

Definition 1.5. Consider n ∈ N types i1, . . . , in ∈ IN (some types may coincide).
We define n-th order spatial correlation function ki1,...,in

t (x1, . . . , xn) ≥ 0 as such
that, for any symmetric function gn(x1, . . . , xn) ≥ 0,

E

[ ∑
x1∈γ

i1
t , ..., xn∈γint

xj 6=xl for j 6=l

gn(x1, . . . , xn)

]

=

∫
Rd
. . .

∫
Rd
gn(x1, . . . , xn)ki1,...,in

t (x1, . . . , xn) dx1 . . . dxn. (1.13)

Remark 1.6. If σ ∈ Sn is a permutation of (1, . . . , n) then

ki1,...,in
t (x1, . . . , xn) = k

iσ(1),...,iσ(n)

t (xσ(1), . . . , xσ(n)).

Remark 1.7. If N = 1, so that i1 = . . . = in = s1, then we will normally use the
notation:

k
(n)
t (x1, . . . , xn) := ks1,...,s1t (x1, . . . , xn).

In particular, k
(1)
t (x) := ks1t (x). We can also rewrite then (1.13) as follows,

E
[ ∑
{x1,...,xn}⊂γt

gn(x1, . . . , xn)
]

=
1

n!

∫
Rd
. . .

∫
Rd
gn(x1, . . . , xn)k

(n)
t (x1, . . . , xn); dx1 . . . dxn.
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and the spatial correlation function k
(n)
t is also called the n-th order spatial factorial

moment. Note that k
(n)
t is a symmetric function.

To define n-th order spatial cumulants, we note that [i1, . . . , in] is called a
multiset, i.e. a collection of n (possibly repeating) elements from IN .

Definition 1.8. We set uit (x) := kit (x), i ∈ IN , and define spatial cumulants
through the equality

ki1,...,in
t (x1, . . . , xn)

=
∑

u
j

(1)
1 ,...,j

(1)
n1

t (x
(1)
1 , . . . , x(1)

n1
) . . . u

j
(m)
1 ,...,j

(m)
nm

t (x
(m)
1 , . . . , x(m)

nm ), (1.14)

where sum is taken over all multiset partitions

[i1, . . . , in] = [j
(1)
1 , . . . , j(1)

n1
] ∪ . . . ∪ [j

(m)
1 , . . . , j(m)

nm ]

so that 1 ≤ m ≤ n, n1 + . . .+ nm = n and

{x1, . . . , xn} = {x(1)
1 , . . . , x(1)

n1
} ∪ . . . ∪ {x(m)

1 , . . . , x(m)
nm }.

Remark 1.9. To see that (1.14) indeed defines spatial cumulant ut for given spatial
correlation functions kt, note that the right hand side (r.h.s. henceforth) of (1.14)
contains the term with m = 1 which is just ui1,...,in

t (x1, . . . , xn) (since then n1 = n),
i.e. the spatial cumulant of the same order as the spatial correlation function
ki1,...,in
t (x1, . . . , xn). For 2 ≤ m ≤ n, we have n1 < n, . . . , nm < n, hence all other

terms correspond to products of spatial cumulants of smaller orders. Hence, one
can get ui1,...,in

t (x1, . . . , xn) inductively, e.g., cf. (1.11), for any i, j, l ∈ IN ,

ui,jt (x1, x2) = ki,jt (x1, x2)− uit (x1)ujt (x2),

ui,j,lt (x1, x2, x3) = ki,j,lt (x1, x2)− ui,jt (x1, x2)ult (x3)

− ui,lt (x1, x3)ujt (x2)− uj,lt (x2, x3)uit (x1).

Differential equations for spatial correlation functions can be obtained from (1.5)
by using the definition (1.13). Namely, we take as F in (1.5) the integrand in the
left hand side (l.h.s. henceforth) of (1.13), i.e. F = Fn, where

F (γt) = Fn(γi1
t , . . . , γ

in
t ) =

∑
x1∈γ

i1
t ... xn∈γint

xj 6=xl for j 6=l

gn(x1, . . . , xn),

where gn is a symmetric function such that, for some bounded subset Λ of Rd,
gn(x1, . . . , xn) = 0 if only xm /∈ Λ for some 1 ≤ m ≤ n.

Differentiating both part of (1.13), we will get then from (1.5) that∫
(Rd)n

gn(x1, . . . , xn)
d

dt
ki1,...,in
t (x1, . . . , xn) dx1 . . . dxn = E

[
(LFn)(γt)

]
,

where, recall, F = F (gn).
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The next step is to represent

(LF )(γt) =
∑
m

∑
x1∈γ

j1
t , ..., xm∈γjmt
xi 6=xl for i 6=l

ĝm(x1, . . . , xm),

where ĝm are also symmetric functions depending on gn, and types j1, . . . , jm ∈ IN ;
they all depend on the particular form of the operator L; in the case of an RCP-
generator, ĝm and types depend on the rate (1.2). Note that then the summation
in m is finite.

We will get then, by (1.13),∫
(Rd)n

gn(x1, . . . , xn)
d

dt
ki1,...,in
t (x1, . . . , xn) dx1 . . . dxn

=
∑
m

∫
(Rd)m

ĝm(x1, . . . , xm) kj1,...,jm
t (x1, . . . , xm) dx1 . . . dxm.

Since Fn depends on gn linearly and LF depends on F linearly, we have that
L̂m,ngn := ĝm depend on gn linearly as well. By considering a dual operator L4n,m :=

(L̂m,n)∗, we will get that∫
(Rd)n

gn(x1, . . . , xn)
d

dt
ki1,...,in
t (x1, . . . , xn) dx1 . . . dxn

=

∫
(Rd)n

gn(x1, . . . , xn)
∑
m

(
L4n,mk

j1,...,jm
t

)
(x1, . . . , xn) dx1 . . . dxn.

Since gn was arbitrary, we get then

d

dt
ki1,...,in
t (x1, . . . , xn) =

∑
m

(
L4n,mk

j1,...,jm
t

)
(x1, . . . , xn). (1.15)

Considering an infinite vector kt of all functions ki1,...,in
t indexed by n ≥ 1 and

by different multisets [i1, . . . , in] of types, we can treat the r.h.s. of (1.15) as the
action of an infinite matrix L4, whose entries are operators L4n,m.

Stress that, typically, m can take values larger than n, so that the system of
linear differential equations (1.15) is not closed and cannot be solved analytically
nor numerically.

The explicit form for the action of L4 in case of the RCP-generator L, given by
(1.3), can be found in [1, Supplementary Note 1].

The differential equations for spatial cumulants can be obtained by substituting
(1.14) into (1.15). The equations will have a similar form

d

dt
ui1,...,in
t (x1, . . . , xn) =

∑
m

(
Q4n,mu

j1,...,jm
t

)
(x1, . . . , xn),

with, however, nonlinear operators Q4n,m. For their explicit form, in the case of L
given by (1.4), we also refer to [1, Supplementary Note 1].
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1.3 Beyond mean-field expansion for spatial dynamics

Equation (1.15) has initial conditions at, say, time t = 0: ki1,...,in
0 (x1, . . . , xn). The

important class of such initial conditions are product functions

ki1,...,in
0 (x1, . . . , xn) = qi1

0 (x1) . . . qin0 (xn), (1.16)

where qi1
0 , . . . , qin0 are nonnegative functions on Rd. Spatial correlation function

(1.16) corresponds to the Poisson distribution of configurations. The characteristic
feature of the Poisson distribution is that random numbers

|γi1
0 ∩ Λ1|, . . . , |γin0 ∩ Λn|

are independent for all disjoint bounded subsets Λ1, . . . ,Λn of Rd; in particular, all
corresponding spatial cumulants of an order more than 1 are equal to 0, cf. (1.12).
The Poisson distribution is also called chaotic because of the mentioned indepen-
dence.

In most cases, however, the solution to (1.15) with the initial condition (1.16)
does not have a product structure. The idea of the mean-field approximation (with
a small parameter ε > 0) is to find a modification Lε of the Markov operator L in
(1.5), such that the solution ki1,...,in

ε,t (x1, . . . , xn) to the corresponding equation, cf.
(1.15),

d

dt
ki1,...,in
ε,t (x1, . . . , xn) =

∑
m

(
L4ε,n,mk

j1,...,jm
ε,t

)
(x1, . . . , xn) (1.17)

would be approximately (up to certain order of ε) equal to a product function.
Hence the distribution of γε,t would be approximately chaotic, in a certain sense.
This is called the propagation of chaos in statistical physics.

The realization of the scaling procedure for the RCP-generator is as follows. We
assume that r in (1.2) is given through combinations of various kernels of the form

a(vk, wm) = ak,m(v − w), with ak,m(−v) = ak,m(v), (1.18)

where v, w ∈ Rd, k, m ∈ IN , ak,m ≥ 0 is a function on Rd. Here vk, wm are some
agents among reactants xi1

1 , . . . , x
iR
R , catalysts yj1

1 , . . . , y
jC
C or products zl1

1 , . . . , z
lP
P .

We consider Lε given by (1.4) with rR,C,P in (1.3) replaced by

(εd)R+C+P−1rε,R,C,P(x
i1
1 , . . . , x

iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P ), (1.19)

where rε,R,C,P has the same structure as rR,C,P, however, the kernels a(vk, wm), given
previously by (1.18), are replaced now by

aε(v
k, wm) = εdak,m(εv − εw).

Note that ∫
Rd
εdak,m(εx) dx =

∫
Rd
ak,m(x) dx,

i.e. the scaled kernels have the same full integral but a scaled (expanded) shape.
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Next, we consider the initial condition to the corresponding equation (1.17), as
follows

ki1,...,in
ε,0 (x1, . . . , xn) = qi1

0 (εx1) . . . qin0 (εxn) + o(1), (1.20)

where lim
ε→0

o(1) = 0 (in particular, one can consider the initial condition without

that o(1) at all). The statement is that then the solution to (1.17) has the property

ki1,...,in
ε,t (x1, . . . , xn) = qi1

t (εx1) . . . qint (εxn) + o(1), (1.21)

where qit , i ∈ IN , solve a system of (nonlinear) differential equations

d

dt
qit (x) = Hi

q

(
qt
)
(x), i ∈ IN , (1.22)

where qt is the vector of all qs1t , . . . , q
sN
t ; with certain (nonlinear) mappings Hs1

q ,
. . . , HsN

q . For the exact form of Hi
q , i ∈ IN , we refer to [1, Supplementary Note 1].

By (1.21), the cumulants of all orders bigger than 1 corresponding to the
function ki1,...,in

ε,t (x1, . . . , xn), n ≥ 2, through expansion (1.14) are equal to o(1).
In particular, cf. (1.11),

ui,jε,t (x1, x2) = ki,jε,t (x1, x2)− kiε,t(x1) kjε,t(x2) = o(1). (1.23)

The term o(1) in (1.21) depends in a non-trivial way on both time t, variables
x1, . . . , xn and types i1, . . . , in. To partially reveal this dependence, one needs the
next term of the expansion.

It was shown in [1, Supplementary Note 1], that

kiε,t(x) = uiε,t(x) = qit (εx) + εdpit (εx) + o(εd),

ui,jε,t (x1, x2) = εdgi,jt (εx1, εx2) + o(εd),
(1.24)

where lim
ε→0

o(εd)
εd

= 0. Here qit satisfies (1.22) and pit , g
i,j
t satisfy certain linear diffe-

rential equations

d

dt
gi,jt (x1, x2) = Hi,j

g [qt]
(
gt
)
(x1, x2), (1.25)

d

dt
pit (x) = Hi

p [qt]
(
gt, pt

)
(x), (1.26)

where

• qt is a vector of all qit , i ∈ IN , that solve (1.22);

• pt is a vector of all pit , i ∈ IN ; and gt is the vector of all gi,jt , i, j ∈ IN ;

• Hi,j
g [qt](·) and Hi

p [qt](·) are multilinear mapping, i.e. both Hi,j
g [qt]

(
gt
)

and

Hi
p [qt](gt, pt) depend linearly on each gi,jt , plt , i, j, l ∈ IN ;

• mappings Hi
p [qt] and Hi,j

g [qt] depends on qit in a nonlinear (in general) way.
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One can also get then from (1.23) the following enhancement of (1.21) for n = 2:

ki,jε,t (x1, x2) = qit (εx1)qjt (εx2) + εdgi,jt (εx1, εx2)

+ εd
(
qit (εx1) pjt (εx2) + pit (εx1) qjt (εx2)

)
+ o(εd). (1.27)

Space-homogeneous case Consider the special case, where, initially, the density
does not depend on space and the pair-correlation is translation invariant, namely:

kiε,0(x) = kiε,0 = qi0 + εdpi0 + o(εd),

ki,jε,0(x1, x2) = ki,jε,0(x1 − x2) = qi0q
j
0 + εdgi,j0 (x1 − x2) + o(εd).

(1.28)

Then if the operator Lε has the form (1.4) with rR,C,P in (1.3) replaced by rε,R,C,P
which is a combination of pair-interaction kernels as above, then, for all t ≥ 0,
kiε,t(x) does not depend on x and ki,jε,t (x1, x2) depends on x1 − x2:

kiε,t(x) = kiε,t = qit + εdpit + o(εd),

ki,jε,t (x1, x2) = ki,jε,t (x1 − x2) = qit q
j
t + εdgi,jt (x1 − x2) + o(εd),

where qit , i ∈ IN , satisfy the system (1.22) of ordinary differential equation, and
(see [1, Supplementary Note 1, formula (241)]) the equation (1.25) can be rewritten
in terms of the Fourier transform of functions gi,jt (x), defined by

g̃i,jt (ξ) :=

∫
Rd
gi,jt (x)e−2 i π x·ξ dx, ξ ∈ Rd, (1.29)

where x · ξ denotes the standard dot-product in Rd and i2 = −1.
Namely, g̃i,jt (ξ) satisfies the following differential equation, for each ξ ∈ Rd,

d

dt
g̃i,jt (ξ) = C i,j[qt] g̃t(ξ) + Di,j[qt](ξ). (1.30)

Here, similarly to above,

• qt is the vector of all qit , i ∈ IN , , which solve (1.22)

• g̃t is the vector of all g̃i,jt (ξ), i, j ∈ IN ;

• C i,j[qt](·) is a multilinear mapping, so that C i,j[qt](g̃t) depends linearly on
each g̃i,jt , i, j ∈ IN ; the result is a function of ξ;

• Di,j[qt] is a function of ξ;

• C i,j[qt] and Di,j[qt] depend on all qit , i ∈ IN , in general, nonlinearly.

When i, j run over IN , the system of equations (1.30) can be read as a linear
nonhomogeneous system of (ordinary) differential equation (considered indepen-
dently for each value of ξ). Since all qit , i ∈ IN , are known, one can solve (1.30)
explicitly.
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2 Spatiotemporal characteristics

2.1 Spatiotemporal correlations

By (1.13), spatial correlation function ki1,...,in
t (x1, . . . , xn) characterizes the proba-

bility to find n agents of types i1, . . . , in of the configuration γt in vicinities of
positions x1, . . . , xn ∈ Rd, respectively. It is naturally also important to charac-
terize the similar probability when agents appear in those vicinities at different
moments of time.

We restrict ourselves to two moments of time only: t ≥ 0 and t+ ∆t for some
∆t ≥ 0. Moreover, we consider the second order spatiotemporal correlations only.
Namely, we are interested to find, for each i, j ∈ IN , a function ki,jt,∆t(x1, x2) ≥ 0,
such that, for each symmetric g2(x1, x2) ≥ 0,

E
[ ∑

x1∈γit
x2∈γjt+∆t
x1 6=x2

g2(x1, x2)
]

=

∫
Rd

∫
Rd
g2(x1, x2)ki,jt,∆t(x1, x2) dx1dx2. (2.1)

It it worth noting that, as we will see below,

ki,jt,∆t(x1, x2) 6= kj,it,∆t(x2, x1). (2.2)

To obtain ki,jt,∆t, we proceed as follows. Recall, we consider dynamics of γt =
γs1t ∪ . . . ∪ γsNt , t ≥ 0, N ∈ N. For each i ∈ IN , we consider auxiliary dynamics of
three configurations γiO∆t , γ

i+
∆t , γ

i−
∆t , which will be created at the moment t and will

have ‘own local time’ ∆t ≥ 0. Namely

• γiO∆t contains all agents of the considered system which

– were present in the system at time t having type i;

– didn’t change their positions nor types within the time interval [t, t+∆t],
and hence they are still present in the system at time t+ ∆t having type
i;

• γi+
∆t contains all agents of the considered system which

– appeared in the system within the time interval [t, t+ ∆t] having type i;

– didn’t change their positions nor types after that, and hence they are
still present at the system at time t+ ∆t having type i;

• γi−∆t contains all agents of the considered system which

– were present in the system at time t having type i;

– do not present in the system at time t+ ∆t: namely, each of such agent,
within the time interval [t, t+ ∆t], either disappeared from the system
or changed its position and/or type.

11



We have hence

γiO0 := γiO∆t

∣∣∣
∆t=0

= γt;

γi+
0 := γi+

∆t

∣∣∣
∆t=0

= ∅; γi−0 := γi−∆t

∣∣∣
∆t=0

= ∅;
(2.3)

and

γt = γiO∆t ∪ γi−∆t , γt+∆t = γiO∆t ∪ γi+
∆t . (2.4)

Therefore, our full auxiliary dynamics is

γ∆t =
(
γs1O∆t , γ

s1+
∆t , γ

s1−
∆t , . . . , γ

sNO
∆t , γsN+

∆t , γsN−∆t

)
, (2.5)

i.e. it contains agents of 3N types (recall that a type is just a label). We set

ION := {s1O, . . . , sNO}, I+
N := {s1+, . . . , sN+},

I−N := {s1−, . . . , sN−}, IN := ION ∪ I+
N ∪ I

−
N .

(2.6)

Recall also that there are two notations to represent configurations, see (1.1),
hence, we can also write

γ∆t = (γO∆t, γ
+
∆t, γ

−
∆t), (2.7)

where, for A ∈ {O,+,−},

γA∆t := (γs1A∆t , . . . , γ
sNA
∆t ) = γs1A∆t ∪ . . . ∪ γsNA∆t .

Next, by (2.4), we can rewrite the l.h.s. of (2.1) as follows

E
[ ∑

x1∈γit
x2∈γjt+∆t
x1 6=x2

g2(x1, x2)
]

= E
[ ∑
x1∈γiO∆t∪γ

i−
∆t

x2∈γjO∆t∪γ
j+
∆t

x1 6=x2

g2(x1, x2)
]

= E
[ ∑
x1∈γiO∆t
x2∈γjO∆t
x1 6=x2

g2(x1, x2)
]

+ E
[ ∑
x1∈γiO∆t
x2∈γj+∆t

g2(x1, x2)
]

+ E
[ ∑
x1∈γi−∆t
x2∈γjO∆t

g2(x1, x2)
]

+ E
[ ∑
x1∈γi−∆t
x2∈γj+∆t

g2(x1, x2)
]

and using (1.7) and Remark 1.3 for (2.5), one can continue

=

∫
Rd

∫
Rd
g2(x1, x2)

[
kiO,jO∆t (x1, x2) + kiO,j+

∆t (x1, x2)

+ ki−,jO∆t (x1, x2) + ki−,j+
∆t (x1, x2)

]
dx1dx2.
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Therefore, by (2.1),

ki,jt,∆t(x1, x2) = kiO,jO∆t (x1, x2) + kiO,j+
∆t (x1, x2)

+ ki−,jO∆t (x1, x2) + ki−,j+
∆t (x1, x2). (2.8)

Formula (2.8) expresses second order spatiotemporal correlation function ki,jt,∆t
through second order spatial correlation functions kiA,jB∆t for A,B ∈ {O,+,−}.
Remark 2.1. Note that, by Definition 1.2,

kiA,jB∆t (x1, x2) = kjB,iA∆t (x2, x1), A,B ∈ {O,+,−},

however, by (2.8), in general, (2.2) holds.

Note that, ∑
x1∈γit

x2∈γjt+∆t

g2(x1, x2) =
∑
x1∈γit

x2∈γjt+∆t
x1 6=x2

g2(x1, x2) +
∑

x∈γit∩γ
j
t+∆t

g2(x, x),

and

γit ∩ γ
j
t+∆t = (γiO∆t ∪ γi−∆t ) ∩ (γjO∆t ∪ γ

j+
∆t ) =

{
γiO∆t , i = j,

∅, otherwise.

As a result, cf. (1.8),

E
[ ∑

x1∈γit
x2∈γjt+∆t

g2(x1, x2)
]

= E
[ ∑

x1∈γit
x2∈γjt+∆t
x1 6=x2

g2(x1, x2)
]

+ 11i=j E
[ ∑
x∈γiO∆t

g2(x, x)
]

=

∫
Rd

∫
Rd
g2(x1, x2)ki,jt,∆t(x1, x2) dx1dx2 + 11i=j

∫
Rd
g2(x, x)kiO∆t (x) dx, (2.9)

where ki,jt,∆t satisfies (2.8).
Substituting g2 of the form (1.9) into (2.9), we get, cf. (1.10),

E
[
|γit ∩ Λ1| |γjt+∆t ∩ Λ2|

]
=

∫
Λ1

∫
Λ2

ki,jt,∆t(x1, x2) dx1dx2

+ 11i=j

∫
Λ1∩Λ2

kiO∆t (x) dx. (2.10)

By an analogy to (1.12), one can consider also the centralized spatiotemporal
second moment :

E
[(
|γit ∩ Λ1| − E

[
|γit ∩ Λ1|

]) (
|γjt+∆t ∩ Λ2| − E

[
|γjt+∆t ∩ Λ2|

])]
= E

[
|γit ∩ Λ1| |γjt+∆t ∩ Λ2|

]
− E

[
|γit ∩ Λ1|

]
E
[
|γjt+∆t ∩ Λ2|

]
. (2.11)
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To calculate it, note that, for each g1(x) ≥ 0, we have, by (2.4):

E
[∑
x∈γit

g1(x)
]

= E
[ ∑
x∈γiO∆t

g1(x)
]

+ E
[ ∑
x∈γi−∆t

g1(x)
]
,

E
[ ∑
x∈γit+∆t

g1(x)
]

= E
[ ∑
x∈γiO∆t

g1(x)
]

+ E
[ ∑
x∈γi+∆t

g1(x)
]
,

and therefore,

kit (x) = kiO∆t (x) + ki−∆t (x),

kit+∆t(x) = kiO∆t (x) + ki+
∆t (x).

(2.12)

Hence,

E
[
|γit ∩ Λ1|

]
=

∫
Λ

kiO∆t (x) dx+

∫
Λ

ki−∆t (x) dx,

E
[
|γjt+∆t ∩ Λ1|

]
=

∫
Λ

kjO∆t (x) dx+

∫
Λ

kj+
∆t (x) dx.

(2.13)

Substituting (2.10) and (2.13) into (2.11), we get

E
[(
|γit ∩ Λ1| − E

[
|γit ∩ Λ1|

]) (
|γjt+∆t ∩ Λ2| − E

[
|γjt+∆t ∩ Λ2|

])]
=

∫
Λ1

∫
Λ2

ui,jt,∆t(x1, x2) dx1dx2 + 11i=j

∫
Λ1∩Λ2

kiO∆t (x) dx, (2.14)

where, by (2.8), (2.12)

ui,jt,∆t(x1, x2) = ki,jt,∆t(x1, x2)− kit (x1)kjt+∆t(x2) (2.15)

= ki,jt,∆t(x1, x2)−
(
kiO∆t (x1) + ki−∆t (x1)

)(
kjO∆t (x2) + kj+

∆t (x2)
)

= kiO,jO∆t (x1, x2) + kiO,j+
∆t (x1, x2) + ki−,jO∆t (x1, x2)

+ ki−,j+
∆t (x1, x2)− kiO∆t (x1)kjO∆t (x2)− kiO∆t (x1)kj+

∆t (x2)

− ki−∆t (x1)kjO∆t (x2)− ki−∆t (x1)kj+
∆t (x2). (2.16)

Combining (2.16) with (1.11), we get

ui,jt,∆t(x1, x2) = uiO,jO∆t (x1, x2) + uiO,j+
∆t (x1, x2)

+ ui−,jO∆t (x1, x2) + ui−,j+
∆t (x1, x2).

(2.17)

Similarly to the noted in Remark 2.1,

ui,jt,∆t(x1, x2) 6= uj,it,∆t(x2, x1).
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2.2 Dynamics of the auxiliary model

To study the dynamics of γ∆t, we need to consider a modification of (1.5):

d

d∆t
E
[
F (γ∆t)

]
= E

[
(LF )(γ∆t)

]
, (2.18)

with an appropriate modification L of L given by (1.4). Namely, we need that

• a reactant xiO does not just disappear from γO∆t, but changes its type becoming
xi− ∈ γ−∆t;

• a reactant xi+ just disappears from γ+
∆t (since then this agent did not exist

at time t and will not exist at time t+ ∆t);

• products may be of the type ‘+’ only; a product zi+ just appears in γi+
∆t ;

• the event should happen with the same rate as for L, but applied to the union
of O-catalysts and +-catalysts (as they all present at the system on the time
interval [t, t+ ∆t]);

• agents of the type ‘−’ do not perform own dynamics (hence they appear
because of the transformation from O-reactants only).

Let R, C, P be fixed and LR,C,P be given by (1.3). It means that there are still
R reactants, some of them are O-reactants (denote their number by r, so that
0 ≤ r ≤ R), the rest are +-reactants, namely, there are R − r ≥ 0 of +-reactants.
Next, there are P products, all are +-products by the above. Finally, C catalysts
should be chosen from γO∆t ∪ γ+

∆t; let, similarly to reactants, there be c O-catalysts
(0 ≤ c ≤ C) and hence C− c ≥ 0 +-catalysts.

As a result, we will get

(LR,C,PF )(γO, γ+, γ−)

=
R∑

r=0

C∑
c=0

∑
{xi1O1 ,...,xirOr }⊂γO

∑
{xi1+

1 ,...,x
iR−r+

R−r }⊂γ+∑
{yj1O1 ,...,y

jcO
c }⊂γO\{xi1O1 ,...,xirOr }

∑
{yj1+

1 ,...,y
jC−c+

C−c }⊂γ+\{xi1+
1 ,...,x

iR−r+

R−r }

×
∫

(Rd)P
r
(
xi1O

1 , . . . , xirOr , xi1+
1 , . . . , x

iR−r+
R−r ,

yj1O
1 , . . . , yjcOc , yj1+

1 , . . . , y
jC−c+
C−c , zl1+

1 , . . . , zlP+P

)
×
(
F
(
γO \ {xi1O

1 , . . . , xirOr },

γ+ \ {xi1+
1 , . . . , x

iR−r+
R−r } ∪ {zl1+

1 , . . . , zlP+P },

γ− ∪ {xi1−
1 , . . . , xir−r }

)
− F

(
γ
))

dz1 . . . dzP.
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Naturally, we also set

L =
∑

R,C,P≥0
R+P>0

LR,C,P.

Remark 2.2. It may be also convenient to use another style of writing. Namely, we
will interpret now γ∆t as the union:

γ∆t = γO∆t ∪ γ+
∆t ∪ γ−∆t,

rather than as the the tuple (2.7). Then, for

i1, . . . , iR, j1, . . . , jC, l1, . . . , lP ∈ IN ,

we have

(LR,C,PF )(γ) =
∑

{xi11 ,...,x
iR
R }⊂γ

∑
{yj11 ,...,y

jC
C }⊂γ\{x

i1
1 ,...,x

iR
R }∫

(Rd)P
r(xi1

1 , . . . , x
iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P )

×
(
F
(
γ \ {xi1

1 , . . . , x
iR
R } ∪ {z

l1
1 , . . . , z

lP
P }
)
− F

(
γ
))
dz1 . . . dzP,

where

r(xi1
1 , . . . , x

iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P )

=
R∏

m=1

11im∈ION∪I
+
N

C∏
m=1

11jm∈ION∪I
+
N

P∏
m=1

11lm∈I+
N∪I

−
N

× 11for each i∈ION there is a unique l∈I−N
δ(xi − zl)

× r(xi1
1 , . . . , x

iR
R , y

j1

1 , . . . , y
jC
C , z

l1
1 , . . . , z

lP
P ).

2.3 Beyond mean-field expansion for spatiotemporal dyna-
mics

Let Lε be given by (1.4) with rR,C,P in (1.3) replaced by (1.19) as it is described
in Subsection 1.3. Let, initially, γε,0 be distributed so that the corresponding cor-
relation functions has the form (1.20) for certain fixed collection of functions qi0,
i ∈ IN . Let γε,t and γε,t+∆t be the corresponding random configurations at times t
and t+ ∆t, respectively.

We consider the corresponding auxiliary dynamics

γε,∆t = (γOε,∆t, γ
+
ε,∆t, γ

−
ε,∆t),

distributed according to the generator Lε obtained from Lε by an analogy to that
done in Subsection 2.2, in particular, by (2.3),

γOε,0 = γε,t, γ+
ε,0 = γ−ε,0 = ∅. (2.19)
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Let kı̂1,...,ı̂n
ε,t (x1, . . . , xn), ı̂1, . . . , ı̂n ∈ IN , be the corresponding system of correlation

functions.
By (2.19) and (1.21), we have:

• for each i1, . . . , in ∈ IN ,

ki1O,...,inO
ε,0 (x1, . . . , xn) = ki1,...,in

ε,t (x1, . . . , xn) = qi1
t (εx1) . . . qint (εx1) + o(1);

• if ı̂1, . . . , ı̂n ∈ IN , cf. (2.6), are such that ı̂m ∈ I+
N ∪ I−N for at least one

1 ≤ m ≤ n, then
kı̂1,...,ı̂n
ε,0 (x1, . . . , xn) = 0.

Hence, one can define, for each i ∈ IN ,

qiO0 (x) := qit (x), qi+
0 (x) := qi−0 (x) := 0, (2.20)

and then, for each ı̂1, . . . , ı̂n ∈ IN , we will get that

kı̂1,...,ı̂n
ε,0 (x1, . . . , xn) = qı̂1

0 (εx1) . . . qı̂n0 (εx1) + o(1),

that is an analogue to (1.20) to have the needed settings for the auxiliary dynamics.
Applying (1.24) for the auxiliary dynamics, we get:

kiAε,∆t(x) = qiA∆t (εx) + εdpiA∆t (εx) + o(1), A ∈ {O,+,−}. (2.21)

Taking ∆t = 0 in (2.21) and using that, by (1.24),

kiOε,0(x) = kiε,t(x) = qit (εx) + εdpit (εx) + o(1),

ki+
ε,0(x) = ki−ε,0(x) = 0,

we conclude, cf. (2.20),

piO0 (x) = pit (x), pi+
0 (x) = pi−0 (x) = 0.

Rewriting (2.12), one gets then

kiε,t(x) = kiOε,∆t(x) + ki−ε,∆t(x),

kiε,t+∆t(x) = kiOε,∆t(x) + ki+
ε,∆t(x).

(2.22)

Then, applying expansions (1.24) and (2.21) to left and right sides of (2.22), re-
spectively, and equating the corresponding coefficients, one gets

qit (x) = qiO∆t (x) + qi−∆t (x), pit (x) = piO∆t (x) + pi−∆t (x), (2.23)

qit+∆t(x) = qiO∆t (x) + qi+
∆t (x), pit+∆t(x) = piO∆t (x) + pi+

∆t (x). (2.24)

17



Consider now functions ki,jε,t,∆t, i, j ∈ IN , defined by an analogy to (2.1), namely,
for all symmetric g2(x1, x2) ≥ 0,

E
[ ∑

x1∈γiε,t
x2∈γjε,t+∆t

x1 6=x2

g2(x1, x2)
]

=

∫
Rd

∫
Rd
g2(x1, x2)ki,jε,t,∆t(x1, x2) dx1dx2.

We have then, by (2.8),

ki,jε,t,∆t(x1, x2) = kiO,jOε,∆t (x1, x2) + kiO,j+
ε,∆t (x1, x2)

+ ki−,jOε,∆t (x1, x2) + ki−,j+
ε,∆t (x1, x2).

By (2.14) and (2.17), we have then

E
[(
|γiε,t ∩ Λ1| − E

[
|γiε,t ∩ Λ1|

]) (
|γjε,t+∆t ∩ Λ2| − E

[
|γjε,t+∆t ∩ Λ2|

])]
=

∫
Λ1

∫
Λ2

ui,jε,t,∆t(x1, x2) dx1dx2 + 11i=j

∫
Λ1∩Λ2

kiOε,∆t(x) dx, (2.25)

where

ui,jε,t,∆t(x1, x2) = uiO,jOε,∆t (x1, x2) + uiO,j+
ε,∆t (x1, x2)

+ ui−,jOε,∆t (x1, x2) + ui−,j+
ε,∆t (x1, x2), (2.26)

and, cf. (1.11), for A,B ∈ {O,+,−},

uiA,jBε,∆t (x1, x2) = kiA,jBε,∆t (x1, x2)− kiAε,∆t(x1)kjBε,∆t(x2). (2.27)

Applying (1.24) to the auxiliary dynamics, one gets, for each A,B ∈ {O,+,−},

uiA,jBε,∆t (x1, x2) = εdgiA,jB∆t (εx1, εx2) + o(1). (2.28)

Taking ∆t = 0 in (2.28) we have, by (2.27), (1.24), (2.4),

uiO,jOε,0 (x1, x2) = ui,jε,t (x1, x2) = εdgi,jt (εx1, εx2) + o(1),

uiO,j+
ε,0 (x1, x2) = uiO,j−ε,0 (x1, x2) = ui+,j−

ε,0 (x1, x2) = 0.

Hence,

giO,jO0 (x1, x2) = gi,jt (x1, x2),

giO,j+
0 (x1, x2) = giO,j−0 (x1, x2) = gi+,j−

0 (x1, x2) = 0.

Combining (2.28) with (2.26), we get

ui,jε,t,∆t(x1, x2) = εd gi,jt,∆t(εx1, εx2) + o(1), (2.29)

where
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gi,jt,∆t(x1, x2) = giO,jO∆t (x1, x2) + giO,j+
∆t (x1, x2)

+ gi−,jO∆t (x1, x2) + gi−,j+
∆t (x1, x2).

(2.30)

Also, by an analogue of (2.15), we have

ki,jε,t,∆t(x1, x2) = ui,jε,t,∆t(x1, x2) + kiε,t(x1)kjε,t+∆t(x2).

Then, using expansions (2.29) and (2.22), we get the following analogue of (1.27):

ki,jε,t,∆t(x1, x2) = qit (εx1)qjt+∆t(εx2) + εdgi,jt,∆t(εx1, εx2)

+ εd
(
qit (εx1) pjt+∆t(εx2) + pit (εx1) qjt+∆t(εx2)

)
+ o(εd),

where the right hand side can be expressed in terms of qı̂∆t, q
̂
∆t, p

ı̂
∆t, p

̂
∆t, g

ı̂,̂
∆t , ı̂, ̂ ∈

IN , by using (2.23), (2.24), (2.30).
Recall that, cf. Remark 2.1, for i, j ∈ IN ,

giA,jB∆t (x1, x2) = gjB,iA∆t (x2, x1), A,B ∈ {O,+,−},

however,
gi,jt,∆t(x1, x2) 6= gj,it,∆t(x2, x1).

Space-homogeneous case Consider again the special case where (1.28) holds.
By (2.3), the auxiliary (and scaled by ε) dynamics will inherit that property as

well: for all ı̂, ̂ ∈ IN , kı̂ε,∆t will not depend on a space coordinate, and kı̂,̂ε,∆t(x)

(and hence uı̂,̂ε,∆t(x), gı̂,̂∆t (x)) will depend on one space coordinate only. Rewriting
the formulas above, one gets

kiε,t = qiO∆t + qi−∆t + εd
(
piO∆t + pi−∆t

)
+ o(εd);

kiε,t+∆t = qiO∆t + qi+
∆t + εd

(
piO∆t + pi+

∆t

)
+ o(εd);

ui,jε,t,∆t(x) = εdgi,jt,∆t(εx) + o(εd), (2.31)

where

g̃i,jt,∆t(ξ) = g̃iO,jO∆t (ξ) + g̃iO,j+
∆t (ξ) + g̃i−,jO∆t (ξ) + g̃i−,j+

∆t (ξ), (2.32)

and

qit = qiO∆t + qi−∆t ; pit = piO∆t + pi−∆t ;

qit+∆t = qiO∆t + qi+
∆t ; pit+∆t = piO∆t + pi+

∆t ,
(2.33)

where, initially,
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qiO0 = qit ; piO0 = pit ;

qi+
0 = qi−0 = pi+

0 = pi−0 = 0;
(2.34)

g̃iO,jO0 (ξ) = g̃i,jt (ξ),

g̃iO,j+
0 (ξ) = g̃iO,j−0 (ξ) = g̃i+,j−

0 (ξ) = 0;
(2.35)

By using (1.30) with i, j ∈ IN replaced by ı̂, ̂ ∈ IN , we get differential equati-

ons for all g̃ı̂,̂∆t (ξ) = g̃iA,jB∆t (ξ), A,B ∈ {O,+,−}, with coefficients dependent on qı̂t .
Solving the obtained system of differential equations, one can find g̃i,jt,∆t(ξ) by (2.32).
However, we are interested to simplify the computations by finding a differential
equation on g̃i,jt,∆t(ξ).

We are going to formulate now a conjecture which can be verified for various
models (in particular, for the considered below). We are going to prove it in a
forthcoming paper.

To formulate the conjecture, we consider auxiliary functions on Rd:

hi,jt (ξ) := g̃i,jt (ξ) + 11i=jq
i
t , i, j ∈ IN . (2.36)

By (1.30) and (1.22), we get that the vector ht = (hi,jt )i,j∈IN satisfies a nonho-
mogeneous system of linear differential equations:

d

dt
hi,jt (ξ) = Ai,j[qt](ht)(ξ) + Bi,j[qt](ξ), (2.37)

where, similarly to above, Ai,j[qt](·) is a multilinear mapping, calculated here at
the vector ht, and Bi,j[qt] is a function; both depend on qit , i ∈ IN , nonlinearly (in
general).

Conjecture. Consider another auxiliary functions on Rd:

hi,jt,∆t(ξ) := g̃i,jt,∆t(ξ) + 11i=jq
iO
∆t , i, j ∈ IN ; (2.38)

recall that qiO∆t depends on t. Then the vector ht = (hi,jt,∆t)i,j∈IN satisfies a homoge-
neous system of linear differential equations:

d

d∆t
hi,jt,∆t(ξ) = Ai,j

mod [qt+∆t](ht,∆t)(ξ). (2.39)

The system of linear equations (2.39), can be solved in matrix form (or, rather,
tensor form, as vector ht,∆t is two-dimensional). Note that the initial condition to
(2.39), when ∆t = 0, can be obtained, by (2.38), (2.33), (2.35), (2.32), as follows:

hi,jt,0 (ξ) = g̃i,jt,0 (ξ) + 11i=jq
iO
0 = g̃i,jt (ξ) + 11i=jq

i
t = hi,jt (ξ). (2.40)

Next, if i 6= j, one has to find qiO∆t (that can be often done explicitly), and
get g̃i,jt,∆t(ξ) from (2.38). Finally, one has to take the inverse Fourier transform, to

obtain gi,jt,∆t(x); the latter, of course, can be done only numerically. As a result, one

gets an approximate value of ui,jε,t,∆t(x) from (2.31).
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3 Case study 1: Spatial and stochastic logistic

model

3.1 Spatial characteristics

We consider agents of one type, i.e. N = 1. Let L be given through some of three
operators, cf. 1.4:

L = L1 + L2 + L3,

where

(L1F )(γ) =
∑
x∈γ

∫
Rd
a+(x− y)

(
F
(
γ ∪ {y}

)
− F

(
γ
))
dy;

(L2F )(γ) = m
∑
x∈γ

(
F
(
γ \ {x}

)
− F

(
γ
))

;

(L3F )(γ) =
∑
x∈γ

∑
y∈γ\{x}

a−(x− y)
(
F
(
γ \ {x}

)
− F

(
γ
))
.

Here m > 0 is a constant, and a±(x) ≥ 0 are kernels such that∫
Rd
a±(x) dx+ sup

x∈Rd
a±(x) +

∫
Rd
|ã±(ξ)| dξ <∞. (3.1)

We denote also

A± :=

∫
Rd
a±(x) dx. (3.2)

We will always assume that A± > 0, i.e. it is not the case that a±(x) = 0 for almost
all (a.a. henceforth) x ∈ Rd.

Operator L1 describes that any catalyst at x ∈ γ may create a product at y ∈ Rd

(send an off-spring to y) according to the dispersion kernel a+; L2 describes that
any reactant at x ∈ γ may disappear with an density independent mortality m;
L3 describes that any reactant at x ∈ γ may also disappear because of competition
with catalysts at y ∈ γ \ {x} given through the competition kernel a−.

Following the scheme above, we consider Lε with a±(x − y) above replaced
by εda±(εx − εy); next, we consider the dynamics of γε,t defined by (1.5) with L

replaced by Lε. Let, cf. Remark 1.7, k
(1)
ε,t (x1) and k

(2)
ε,t (x1, x2) be the corresponding

first- and second-order correlation functions, and let u
(1)
ε,t (x1) = k

(1)
ε,t (x1) and

u
(2)
ε,t (x1, x2) = k

(2)
ε,t (x1, x2)− k(1)

ε,t (x1)k
(1)
ε,t (x2)

be the corresponding first- and second-order cumulants. Consider the space homo-
geneous case. Then, by e.g. [5],

k
(1)
ε,t = qt + εdpt + o(εd),

u
(2)
ε,t (x) = εdgt(εx) + o(εd).
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Function qt, cf. (1.22), satisfies the mean-field equation

d

dt
qt = A+qt −mqt − A−q2

t , (3.3)

which can be solved explicitly:

qt =
q∗q0

q0 + (q∗ − q0)e−(A+−m)t
. (3.4)

If we assume, additionally, that∫
Rd
|g0(x)| dx+ sup

x∈Rd
|g0(x)|+

∫
Rd
|g̃0(ξ)| dx <∞, (3.5)

we obtain, see [3], an equation for the Fourier transform of gt(x), namely

d

dt
g̃t(ξ) = 2

(
J̃t(ξ)− A−qt −m

)
g̃t(ξ) + 2qtJ̃t(ξ), (3.6)

where Jt(x) := a+(x)− qta−(x), x ∈ Rd, so that

J̃t(ξ) = ã+(ξ)− qtã−(ξ), ξ ∈ Rd. (3.7)

Equation (3.3) has two stationary solutions qt ≡ 0 and qt ≡ q∗, where

q∗ :=
A+ −m
A−

. (3.8)

We will always assume that

A+ > m, (SL1)

i.e. that q∗ > 0; otherwise, by (3.4), lim
t→∞

qt = 0, i.e. the population would extinct.

Under (SL1), we have
lim
t→∞

qt = q∗. (3.9)

Note also that
0 ≤ q0 ≤ q∗ (3.10)

implies
0 ≤ qt ≤ q∗, t ≥ 0. (3.11)

By (3.1), J̃t is integrable; as a result, (3.5) holds with g̃0 replaced by g̃t. In par-
ticular, cf. (1.29),

gt(x) =

∫
Rd
g̃t(ξ)e

2iπx·ξ dξ, x ∈ Rd.

22



According to (2.36), we define also

ht(ξ) = g̃t(ξ) + qt, ξ ∈ Rd. (3.12)

By (3.6) and (3.3),

d

dt
ht(ξ) = 2

(
J̃t(ξ)− A−qt −m

)
ht(ξ) + A+qt +mqt + A−q2

t

= (A[qt]ht)(ξ) + B[qt](ξ),

cf. (2.37), where A[qt] is just a multiplication operator given by, cf. (3.7),

(A[qt]f)(ξ) = 2
(
ã+(ξ)−m− qt

(
ã−(ξ) + A−

))
f(ξ) (3.13)

for a function f : Rd → R.
We will consider below the stationary regime, when t→∞. We define, for a.a.

x ∈ Rd, J∗(x) := lim
t→∞

Jt(x). Then, by (3.9),

J∗(x) = a+(x)− q∗a−(x), J̃∗(ξ) = ã+(ξ)− q∗ã−(ξ). (3.14)

Note that ∫
Rd
J∗(x) dx = m. (3.15)

We will assume, additionally to (SL1), that there exists α > 0, such that

A+ − J̃∗(ξ) ≥ α, ξ ∈ Rd. (SL2)

Since, for an integrable function f ≥ 0,

|f̃(ξ)| ≤
∫
Rd
|f(x)| dx =

∫
Rd
f(x) dx, (3.16)

one has, by (3.15) and (SL1), the following sufficient condition for (SL2):

J∗(x) = a+(x)− q∗a−(x) ≥ 0, x ∈ Rd. (3.17)

Indeed, then A+ − J̃∗(ξ) ≥ A+ −m =: α > 0, because of (SL1).
It was shown in [3], that if (SL1), (SL2), (3.10) and (3.5) hold, then there exists

g̃∗(ξ) := lim
t→∞

g̃t(ξ) =
q∗J̃∗(ξ)

A+ − J̃∗(ξ)
, ξ ∈ Rd. (3.18)

Surely g̃∗(ξ) is just the stationary solution to (3.6), i.e. it satisfies (3.6) with the left
hand side replaced by 0. It was also shown in [3] that the inverse Fourier transform
g∗(x) of g∗(ξ) is just the pointwise (and even uniform) limit of gt(x) as t→∞.

Example 3.1. The condition (3.17) holds, in particular, for

a±(x) = A±c(x) ≥ 0 with

∫
Rd
c(x) dx = 1, (3.19)

as then J∗(x) = mc(x) ≥ 0.
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3.2 Spatiotemporal characteristics

We consider the auxiliary dynamics of γt = (γOt , γ
+
t , γ

−
t ) described by the generator

L = L1 + L2 + L3,

where L1, L2, L3 are defined according to the rules postulated in Subsection 2.2.
Namely, for γ = (γO, γ+, γ−), we have

(L1F )(γ) =
∑

x∈γO∪γ+

∫
Rd
a+(x− y)

(
F
(
γO, γ+ ∪ {y}, γ−

)
− F

(
γ
))
dy,

i.e. both O-reactants and +-reactants may produce +-products. Next, in the
counterparts of L2 and L3, O-reactants become −-products, whereas +-reactants
just disappear. Therefore,

(L2F )(γ) = m
∑
x∈γO

(
F
(
γO \ {x}, γ+, γ− ∪ {x}

)
− F

(
γ
))

+m
∑
x∈γ+

(
F
(
γO, γ+ \ {x}, γ−

)
− F

(
γ
))
,

and since there are both O- and +-catalysts, we have

(L3F )(γ) =
∑
x∈γO

∑
y∈(γO\{x})∪γ+

a−(x− y)
(
F
(
γO \ {x}, γ+, γ− ∪ {x}

)
− F

(
γ
))

+
∑
x∈γ+

∑
y∈γO∪(γ+\{x})

a−(x− y)
(
F
(
γO, γ+ \ {x}, γ−

)
− F

(
γ
))
.

Following the general scheme, we consider Lε with a±(x − y) above replaced
by εda±(εx − εy); next, we consider the dynamics of γε,t defined by (2.18) with L

replaced by Lε. Let qA∆t, g
A,B
∆t , A,B ∈ {O,+,−} be the corresponding functions

from the beyond mean-field expansion.
Consider, cf. (2.32),

g̃t,∆t(ξ) := g̃O,O∆t (ξ) + g̃O,+∆t (ξ) + g̃−,O∆t (ξ) + g̃−,+∆t (ξ) (3.20)

and also, cf. (2.38),

ht,∆t(ξ) := g̃t,∆t(ξ) + qO∆t. (3.21)

Then, it can be shown that (see Subsection 3.3 below for details) that

d

d∆t
ht,∆t(ξ) =

(
ã+(ξ)−m−

(
qOt + q+

t

)(
ã−(ξ) + A−

))
ht,∆t(ξ). (3.22)

Since, by (2.33),
qt+∆t = qOt + q+

t , (3.23)
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we get from (3.22) and (3.13), that

d

d∆t
ht,∆t(ξ) =

(
ã+(ξ)−m− qt+∆t

(
ã−(ξ) + A−

))
ht,∆t(ξ) (3.24)

=
1

2
(A[qt+∆t]ht,∆t)(ξ),

where A is defined by (3.13). Therefore, the conjecture is satisfied.
One can now solve, for each ξ ∈ Rd, a linear ordinary differential equation (3.24)

with the initial condition

d

d∆t
ht,∆t(ξ)

∣∣∣∣
∆t=0

= ht(ξ),

where ht(ξ) is given by (3.12). Then, one can get g̃t,∆t(ξ) from (3.21); to this
end, one needs qO∆t. The latter function satisfies the following differential equation
(again, see Subsection 3.3 for details):

d

d∆t
qO∆t = −mqO∆t − A−(qO∆t)

2 − A−qO∆tq+
∆t (3.25)

= −(m+ A−qt+∆t)q
O
∆t,

where we used (3.23). As a result, we will get the following statement.

Theorem 3.2. Let (3.1), (SL1), (3.5) hold. Then, for any t,∆t ≥ 0, ξ ∈ Rd,

g̃t,∆t(ξ) = e(J̃∗(ξ)−A+)∆t
(qt+∆t

qt

) ã−(ξ)+A−

A− (
g̃t(ξ) + qt

)
− e−A+∆tqt+∆t (3.26)

where qt and qt+∆t can be obtained from (3.4). If, additionally, (3.10) and (SL2)
hold, then g̃t,∆t(ξ) is an integrable function, and one can apply the inverse Fourier
transform to it, to get gt,∆t(x) for a.a. x. Then, for all t ≥ 0 and a.a. x ∈ Rd,

lim
∆t→∞

gt,∆t(x) = 0. (3.27)

Moreover, for all ∆t ≥ 0, ξ ∈ Rd, there exists

g̃∞,∆t(ξ) := lim
t→∞

g̃t,∆t(ξ) =
A+q∗

A+ − J̃∗(ξ)
e(J̃∗(ξ)−A+)∆t − q∗e−A

+∆t, (3.28)

and g̃∞,∆t(ξ) is an integrable function. Let g∞,∆t(x) be its inverse Fourier trans-
form. If, additionally, g0(x) and g̃0(ξ) are both integrable, then, for all ∆t ≥ 0, the
following limit holds uniformly in a.a. x ∈ Rd:

g∞,∆t(x) = lim
t→∞

gt,∆t(x). (3.29)
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3.3 Derivation of equations

In this Subsection, we are going to derive equations (3.22) and (3.25).
We will partially use the Model Constructor toolbox presented in [1]. Firstly,

we express L1, L2, L3 given above as sums of model components in the terminology
of [1, Supplementary Note 2]:

L1 = L11 + L12, L2 = L21 + L22, L3 = L31 + L22 + L33 + L34.

Here L11 represents the Birth component:

(L11F )(γ) =
∑
x∈γ+

∫
Rd
a+(x− y)

(
F
(
γO, γ+ ∪ {y}, γ−

)
− F

(
γ
))
dy;

L12 represents the BirthToAnotherType component:

(L12F )(γ) =
∑
x∈γO

∫
Rd
a+(x− y)

(
F
(
γO, γ+ ∪ {y}, γ−

)
− F

(
γ
))
dy;

L21 represents the DensityIndependentDeath component:

(L21F )(γ) = m
∑
x∈γ+

(
F
(
γO, γ+ \ {x}, γ−

)
− F

(
γ
))

;

L22 represents the ChangeInType component:

(L22F )(γ) = m
∑
x∈γO

(
F
(
γO \ {x}, γ+, γ− ∪ {x}

)
− F

(
γ
))

;

L31 represents DeathByCompetition:

(L31F )(γ) =
∑
x∈γ+

∑
y∈γ+\{x}

a−(x− y)
(
F
(
γO, γ+ \ {x}, γ−

)
− F

(
γ
))

;

L32 represents DeathByExternalFactor:

(L32F )(γ) =
∑
x∈γ+

∑
y∈γO

a−(x− y)
(
F
(
γO, γ+ \ {x}, γ−

)
− F

(
γ
))

;

L33 and L34 require a new component called ChangeInTypeByFacilitation (which
is defined below):

(L33F )(γ) =
∑
x∈γO

∑
y∈γO\{x}

a−(x− y)
(
F
(
γO \ {x}, γ+, γ− ∪ {x}

)
− F

(
γ
))

and

(L34F )(γ) =
∑
x∈γO

∑
y∈γ+

a−(x− y)
(
F
(
γO \ {x}, γ+, γ− ∪ {x}

)
− F

(
γ
))
.

The Model Constructor is written on Wolfram Language and requires Wolfram
Mathematica R© v10 or later. The Model Constructor packages are available at [2]
and should be installed before running the following code.
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Firstly, we load libraries and set-up internal variables:

In[1]:= Get["SSPPlibraryOfProcesses‘"] (*Load libraries*)

Get["SSPPanalyticalExpressions‘"]

qpgVariables={q,p,g}; (*Set-up variables*)

kVariable=ξ;

Next, we define the ChangeInTypeByFacilitation model component needed
for L33 and L34 above. It describes the event when an agent at a position x1 changes
own type from s2 to s1. The event happened because of interaction of the agent
with each of other agents of a type s3 placed at a position x2. The interaction is
defined through a kernel a(x1 − x2). In particular, s3 may be equal to s1 as it is
needed for L33.

In[5]:= ChangeInTypeByFacilitation[s1_,s2_,s3_,a_,Af_,Coeffic_]:=

Module[{Products={{s1,x1}},
Reactants={{s2,x1}}, Catalysts={{s3,x2}},
listAll,function,Interactions,name},
listAll={Products,Reactants,Catalysts};
function[x1_,x2_]:=a[x1-x2];

Interactions={{a,Af,x1,x2}};
name="ChangeInTypeByFacilitation";

{listAll,function,Interactions,name,Coeffic}];

Note that −-agents do not have own dynamics, and appear only when O-agents
are transformed to them. We, however, require the characteristics of −-agents,
hence, we introduce a trivial model component where agents die with the rate 0,
i.e. effectively nothing happens:

In[6]:= (*For agents without own dynamics*)

Relax[type_]:=DensityIndependentDeath[type,1,0];

We define now the AuxiliaryProcess which includes all model components
corresponding to operators Lij above. Here the agent types 1, 2, 3 correspond to
O,+,−, respectively.

In[7]:= (*Define auxiliary process*)

AuxiliaryProcess={
Birth[2,a+,~a+,1],(*L11*)

BirthToAnotherType[2,1,a+,~a+,1], (*L12*)

DensityIndependentDeath[2,m,1], (*L21*)

ChangeInType[3,1,m,1], (*L22*)

DeathByCompetition[2,a-,~a-,1], (*L31*)

DeathByExternalFactor[2,1,a-,~a-,1], (*L32*)

ChangeInTypeByFacilitation[3,1,1,a-,~a-,1], (*L33*)

ChangeInTypeByFacilitation[3,1,2,a-,~a-,1], (*L34*)

Relax[3] (*No dynamics of ’-’ agents*)

};
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We sum up now the right hand sides of the differential equations for the needed
g̃A,B∆t (ξ), A,B ∈ {O,+,−}, and qO∆t, cf. (3.20), (3.21). In the notations of the Model
Constructor:

qO∆t = q[1], g̃O,O∆t (ξ) = g[1, 1, ξ], g̃O,+∆t (ξ) = g[1, 2, ξ],

g̃−,O∆t (ξ) = g[3, 1, ξ] = g[1, 3, ξ], g̃−,+∆t (ξ) = g[3, 2, ξ] = g[3, 3, ξ].

We use the following code:

In[18]:= (*Get the whole equation for h*)

hEqn=HGfALL[qpgVariables,AuxiliaryProcess,1,1,ξ]
+HGfALL[qpgVariables,AuxiliaryProcess,1,2,ξ]
+HGfALL[qpgVariables,AuxiliaryProcess,1,3,ξ]
+HGfALL[qpgVariables,AuxiliaryProcess,2,3,ξ]
+HQfALL[qpgVariables,AuxiliaryProcess,1];

We are going to verify now (3.22); to this end, we define the expression for
h := ht,∆t(ξ), cf. (3.20), (3.21):

In[19]:= (*Define h*)

h=g[1,1,ξ]+g[1,2,ξ]+g[1,3,ξ]+g[2,3,ξ]+q[1];

Finally, we equate Ch with the obtained sum of the right hand sides of the
equation, and find C, that is nothing but 1

2
A in (3.24):

In[20]:= (*Find the coefficient*)

Reduce[C h==hEqn,C]

Out[20]= C==-m-q[1] ~a-[0]-q[2] ~a-[0]-q[1] ~a-[ξ]-q[2] ~a-[ξ]+~a+[ξ]
|| g[1,1,ξ]==-g[1,2,ξ]-g[1,3,ξ]-g[2,3,ξ]-q[1]

Here q[2] = q+
∆t and also, by the very definition (1.29) of the Fourier transform:

ã−(0) =

∫
Rd
a−(x) dx = A−.

Therefore, the found expression for C coincides with the factor before ht,∆t(ξ) in
the right hand side of (3.22). The second found alternative just means that h = 0,
i.e. that ht,∆t(ξ) ≡ 0 also solves (3.22), that is trivial. Hence, (3.22) is fulfilled.

To get (3.25), we just consider the right hand side of the equation for q[1]:

In[21]:= HQfALL[qpgVariables,AuxiliaryProcess,1]

Out[21]= -m q[1]-q[1]2 ~a-[0]-q[1] q[2] ~a-[0]
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3.4 Numerics for the stationary regime on plane

We consider the 2-dimensional case: d = 2, and radially symmetric kernels with
equal Gaussian shapes:

a±(x) = A±β(|x|), x ∈ R2; β(r) =
1

2π
e−

r2

2 , r ≥ 0. (3.30)

Note that, indeed,
∫
R2 β(|x|) dx = 1, and also, see Example 3.1, the assumption

(3.17) holds, hence (SL2) holds. We will need the following lemma.

Lemma 3.3. Denote c(x) = β(|x|), x ∈ Rd, where β is given by (3.30). Then

c̃(ξ) = e−2π2|ξ|2 , ξ ∈ R2. (3.31)

Moreover, if f is a function such that the function g̃(ξ) := f(c̃(ξ)), ξ ∈ R2 is inte-
grable, then the inverse Fourier transform g(x)of g̃(ξ) can be found by the formula

g(x) =
1

2π

∫ ∞
0

f
(
e−

s2

2

)
sJ0
(
s|x|
)
ds, x ∈ R2, (3.32)

where J0 is the Bessel function of the first kind.

The simulations described in the main text were done with

A+ = 2, A− = 1, m = 1.

Then, by (3.8), q∗ = 1, and, by (3.28),

g̃∞,∆t(ξ) := lim
t→∞

g̃t,∆t(ξ) = g̃∞,∆t(ξ) =
2

2− e−2π2|ξ|2 e
(e−2π2|ξ|2−2)∆t − e−2∆t.

Therefore, by (3.32),

g∞,∆t(x) =
1

2π

∫ ∞
0

(
2

2− e− s
2

2

e(e−
s2

2 −2)∆t − e−2∆t

)
sJ0

(
s|x|
)
ds =: g(∆t, |x|).

The latter integral can be calculated numerically. We use the following Wolfram
Mathematica code (where dt = ∆t and r = |x|):

In[22]:= g[dt_?NumericQ,r_?NumericQ]:=g[dt,r]

=
1

2π
NIntegrate[(

2

2-Exp[-s2

2
]
Exp[(Exp[-

s2

2
]-2)dt]

-Exp[-2dt]) s BesselJ[0,s r],{s,0,∞},
Method →{LocalAdaptive,SymbolicProcessing→0},
PrecisionGoal→7];

The simulations were done with ε = 1
2
. The covariance between numbers of

agents in two areas satisfies (2.25); note that we are actually interested in the
covariance between ‘small’ areas (a local characteristic), so we may assume that
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they are disjoint, hence, the second summand in the right hand side of (2.25) is
redundant. Next, the value of uε,t,∆t(x) can be approximated by the formula (2.31),
with d = 2 and ε = 1

2
, in our case. Therefore, we are interested in

lim
t→∞

uε,t,∆t(x) ≈ ε2 lim
t→∞

gt,∆t(εx) =
1

4
g∞,∆t

(x
2

)
=

1

4
g
(

∆t,
|x|
2

)
.

We plot now graphs for
1

4
g
(

∆t,
r

2

)
with ∆t ∈ {0, 1, 2}, r ∈ [0, 10]:

Figure 1: Graphs for A+ = 2, A− = m = 1
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4 Case study 2: Host-parasite model

4.1 Spatial characteristics

We consider now agents of two types, called hosts and parasites :

N = 2, I2 = {H,P}.

Let L be given through some of three operators, cf. 1.4:

L = L1 + L2 + L3 + L4.

Here L1 describes an independent birth process of hosts: any H-catalyst sends an
off-spring which is an H-product, according to a dispersion kernel a+ ≥ 0:

(L1F )(γH , γP ) =
∑
x∈γH

∫
Rd
a+(x− y)

(
F (γH ∪ y, γP )− F (γH , γP )

)
dy;

next, hosts may die because of the competition with other hosts (for resources),
according to a competition kernel a− ≥ 0:

(L2F )(γH , γP ) =
∑
x∈γH

∑
y∈γH\{x}

a−(x− y)
(
F (γH \ {x}, γP )− F (γH , γP )

)
;

next, parasites may die with a constant mortality rate m > 0:

(L3F )(γH , γP ) = m
∑
x∈γP

(
F (γH , γP \ x)− F (γH , γP )

)
;

finally, any host may be transformed to a parasite (keeping the position) because
of interaction with the existing parasites, according to a kernel b ≥ 0:

(L4F )(γH , γP ) =
∑
x∈γH

∑
y∈γP

b(x− y)
(
F (γH \ x, γP ∪ x)− F (γH , γP ).

We will assume that (3.1) holds for both a± and for b, we define A± through
(3.2), and set, similarly,

B =

∫
Rd
b(x) dx.

We consider Lε by replacing a±(x − y) and b(x − y) by εda±(εx − εy) and
εdb(εx− εy), respectively. We consider the space homogeneous case. Then, by the
general scheme described in Section 1,

kHε,t = qHt + εdpHt + o(εd), kPε,t = qPt + εdpPt + o(εd),

uHHε,t (x) = εdgHHt (εx) + o(εd), uPPε,t (x) = εdgPPt (εx) + o(εd),

uHPε,t (x) = uPHε,t (x) = εdgHPt (εx) + o(εd).

(4.1)
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We define also, cf. (2.36),

hHHt (ξ) := g̃HHt (ξ) + qHt , hPPt (ξ) := g̃PPt (ξ) + qPt ,

hHPt (ξ) = hPHt (ξ) := g̃HPt (ξ).
(4.2)

Differential equations for qAt and h̃ABt (ξ) = g̃BAt (ξ), A,B ∈ {H,P} are derived
in Subsection 4.3 below. We will show that

d

dt
qHt = qHt

(
A+ − A−qHt −BqPt

)
,

d

dt
qPt = qPt

(
BqHt −m).

(4.3)

Next, we define

at(ξ) := ã+(ξ)−
(
A− + ã−(ξ)

)
qHt −BqPt ,

bt(ξ) := −qHt b̃(ξ), ct := BqPt , dt(ξ) := qHt b̃(ξ)−m,
(4.4)

and consider the matrix

At(ξ) :=


at(ξ) bt(ξ) 0 0
ct dt(ξ) 0 0
0 0 at(ξ) bt(ξ)
0 0 ct dt(ξ)

 (4.5)

The second and third rows will correspond to hHPt (ξ) and hPHt (ξ) which are equal.
Hence, we consider also the matrix with swapped second and third rows

A′t(ξ) :=


at(ξ) bt(ξ) 0 0

0 0 at(ξ) bt(ξ)
ct dt(ξ) 0 0
0 0 ct dt(ξ)

 . (4.6)

Finally, we define the vector-function

Bt =
(
A+qHt + A−

(
qHt
)2
, 0, 0,mqPt

)T
+BqHt q

P
t

(
1,−1,−1, 1

)T
; (4.7)

henceforth, the superscript T denotes the transpose vector. Note that

At = A[qHt , q
P
t ], A′t = A′[qHt , qPt ], Bt = B[qHt , q

P
t ]. (4.8)

Then, we will show in Subsection 4.3 that, for the vector

ht(ξ) :=
(
hHHt (ξ), hHPt (ξ), hHPt (ξ), hPPt (ξ)

)T
, (4.9)

we have, cf. (2.37),

d

dt
ht(ξ) =

(
At(ξ) +A′t(ξ)

)
ht(ξ) + Bt(ξ). (4.10)
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We consider now the stationary regime when t→∞. The only pair of non-zero
stationary solutions of (4.3) is

qH∗ :=
m

B
, qP∗ :=

BA+ −mA−

B2
. (4.11)

Therefore, the condition

A+ >
m

B
A− (HP1)

ensures that (qH∗ , q
P
∗ ) is a the only pair of positive stationary solutions to (4.3).

Proposition 4.1. Let (HP1) hold. Then, for any qH0 > 0, qP0 > 0,

lim
t→∞

qHt = qH∗ , lim
t→∞

qPt = qP∗ . (4.12)

More precisely, if
m

B
A− < A+ ≤ m

B
A− +

m

4B2
(A−)2,

then both convergences, qHt to qH∗ and qPt to qP∗ , are monotone, whereas if

A+ >
m

B
A− +

m

4B2
(A−)2, (4.13)

then qHt and qPt oscillate around qH∗ and qP∗ , respectively, with a decreasing amplitude
(damping oscillation).

We define also the following analogue of (3.14): for x, ξ ∈ Rd, we set

JH∗ (x) := a+(x)− qH∗ a−(x), J̃H∗ (x) = ã+(ξ)− qH∗ ã−(ξ). (4.14)

We will assume that there exist α > 0, such that

A+ − J̃H∗ (ξ) ≥ α, ξ ∈ Rd, (HP2)(
A+ − J̃H∗ (ξ)

)(
B − b̃(ξ)

)
+BqP∗ b̃(ξ) ≥ α, ξ ∈ Rd. (HP3)

The following proposition provides simple sufficient conditions for (HP1)–(HP3).

Proposition 4.2. Suppose that

JH∗ (x) = a+(x)− qH∗ a−(x) ≥ 0, x ∈ Rd; (4.15)

b̃(ξ) ≥ 0, ξ ∈ Rd. (4.16)

Then (HP1)–(HP3) hold.

Example 4.3. An example when (4.15) holds is the case (3.19) of an equal shape
c of kernels a+ = A+c and a− = A−c, provided that (HP1) holds. Indeed, then

JH∗ (x) =
(
A+ − m

B
A−
)
c(x) ≥ 0.
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In the Appendix below, we consider also how the condition (4.16) can be relaxed
to still get (HP3).

We denote the limits as t → ∞ of the functions at(ξ), bt(ξ), ct, dt(ξ), defined
in (4.4), by a∗(ξ), b∗(ξ), c∗, d∗(ξ), respectively. Then, by (4.12), (HP2), (3.16),

a∗(ξ) = J̃H∗ (ξ)− A+ < 0, b∗(ξ) = −qH∗ b̃(ξ),

c∗ = BqP∗ , d∗(ξ) = qH∗
(̃
b(ξ)−B) ≤ 0.

(4.17)

Theorem 4.4. Let (HP1)–(HP3) hold. Suppose that gAB0 (x), g̃AB0 (ξ) are bounded
and integrable for A,B ∈ {H,P}. Then g̃ABt (ξ) converge (uniformly in ξ) as t→∞
to integrable functions g̃AB∗ (ξ) given by

(
g̃HH∗ (ξ), g̃HP∗ (ξ), g̃PP∗ (ξ)

)T
= qH∗

(
C∗(ξ)

)−1(
−2J̃H∗ (ξ), qP∗ b̃(ξ),−2qP∗ b̃(ξ)

)T
,

where C∗(ξ) is the following invertible matrix:

C∗(ξ) =

2a∗(ξ) 2b∗(ξ) 0

c∗ a∗(ξ) + d∗(ξ) b∗(ξ)

0 2c∗ 2d∗(ξ)

 . (4.18)

Moreover, for A,B ∈ {H,P}, gABt (x) converges as t → ∞ to the inverse Fourier
transform gAB∗ (x) of g̃AB∗ (ξ) uniformly in a.a. x ∈ Rd.

We consider matrices A∗(ξ) and A′∗(ξ) such that their entries are just the limits
as t→∞ of those in (4.5)–(4.6), respectively. We set also

B∗ := lim
t→∞
Bt =

(
2A+qH∗ ,−mqP∗ ,−mqP∗ , 2mqP∗ )T . (4.19)

We define
hHH∗ (ξ) := g̃HH∗ (ξ) + qH∗ , hPP∗ (ξ) := g̃PP∗ (ξ) + qP∗ ,

hHP∗ (ξ) := hPH∗ (ξ) := g̃HP∗ (ξ) = g̃PH∗ (ξ),

and let

h∗(ξ) =
(
hHH∗ (ξ), hHP∗ (ξ), hHP∗ (ξ), hPP∗ (ξ)

)T
. (4.20)

Corollary 4.5. Let (HP1)–(HP3) hold. Then h∗(ξ) is the unique solution to the
following stationary counterpart of (4.10):(

A∗(ξ) +A′∗(ξ)
)
h∗(ξ) + B∗(ξ) = 0, (4.21)

Moreover,

(
hHH∗ (ξ), hHP∗ (ξ), hPP∗ (ξ)

)T
=
(
C∗(ξ)

)−1(
−2A+qH∗ ,mq

P
∗ ,−2mqP∗

)T
. (4.22)
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4.2 Spatiotemporal characteristics

Similarly to Subsection 3.2, we consider the auxiliary dynamics of

γt = (γOt , γ
+
t , γ

−
t ),

described by the generator

L = L1 + L2 + L3 + L4,

where L1, L2, L3, L4 are defined according to Subsection 2.2. Namely, now

I2 = {HO,H+, H−, PO, P+, P−},

and, for
γ := (γH , γP ) := (γHO, γH+, γH−, γPO, γP+, γP−),

we have, similarly to the corresponding operators in spatial logistic model

(L1F )(γ) =
∑

x∈γHO∪γH+

∫
Rd
a+(x− y)

(
F (γHO, γH+ ∪ {y}, γH−, γP )− F (γ)

)
dy;

(L2F )(γ) =
∑
x∈γH+

∑
y∈γHO∪(γH+\{x})

a−(x− y)
(
F (γHO, γH+ \ {x}, γH−, γP )− F (γ)

))
+
∑
x∈γHO

∑
y∈(γHO\{x})∪γH+

a−(x− y)
(
F (γHO \ {x}, γH+, γH− ∪ {x}, γP )− F (γ)

)
;

(L3F )(γ) = m
∑
x∈γPO

(
F (γH , γPO \ {x}, γP+, γP− ∪ {x})− F (γ)

)
+m

∑
x∈γP+

(
F (γH , γPO, γP+ \ {x}, γP−)− F (γ)

)
.

The situation with L4 is more complicated: when HO-reactant of the spatial
dynamics becomes P+-product (keeping the position), it should be also transformed
to H−-product, according to the general scheme.

Hence, formally, one could write:

(L
′
4F )(γ) =

∑
x∈γHO

∑
y∈γPO∪γP+

b(x− y)

×
(
F (γHO \ {x}, γH+, γH− ∪ {x}, γPO, γP+ ∪ {x}, γP−)− F (γ)

)
+
∑
x∈γH+

∑
y∈γPO∪γP+

b(x− y)

×
(
F (γHO, γH+ \ {x}, γH−, γPO, γP+ ∪ {x}, γP−)− F (γ)

)
.

However, the first summand in the latter expression does not satisfy the basic
requirement that different agents should have different positions: there are agents
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xH− and xP+ simultaneously.1 To overcome this, we consider a formal modification
the host xHO transforms to the parasite zP+ distributed in space according to the
kernel given by the Dirac δ-function δ(x− z).

Therefore, we define

(L4F )(γ)

=
∑
x∈γHO

∑
y∈γPO∪γP+

b(x− y)

×
∫
Rd
δ(x− z)

(
F (γHO \ {x}, γH+, γH− ∪ {x}, γPO, γP+ ∪ {z}, γP−)− F (γ)

)
dz

+
∑
x∈γH+

∑
y∈γPO∪γP+

b(x− y)

×
(
F (γHO, γH+ \ {x}, γH−, γPO, γP+ ∪ {x}, γP−)− F (γ)

)
.

Considering the first summand of the operator L4 as such with a regular (in-
tegrable) kernel δ(x − z) one apply the technique described above and derive the
corresponding differential equations for correlation functions, cumulants, and for
the beyond mean-field expansion. We should then ‘replace’ the regular kernel by
the real δ-function. This latter includes two steps. Firstly, in differential equations
in terms of the Fourier transform, we replace δ̃(ξ) by 1.

Secondly, one has to distinguish the terms which, in real coordinates (before
passing to the Fourier transform), contained the δ-function, i.e.

δ(xHO − zP+) = δ(x− z).

If such term contained also the point xH−, then, after the integration w.r.t. zP+ = z,
the corresponding integral would disappear, and z will be replaced by x. The latter
is however the position of the H−-agent. We will get as a result the δ-function
between the positions of H− and P+ agents. This can be written heuristically as
follows: for a (regular) function f ,

f(xH−)δ(xHO − zP+) = f(xH−)δ(xH− − zP+).

It means that the pair correlation between H− and P+ will include now a δ-
function. By (2.17) (considered in the case i, j = I2 = {H,P}), pair cumulant
uH−,P+

∆t = uP+,P−
∆t in the r.h.s. appears for uHPt,∆t in the l.h.s. only.

Hence, in the space homogeneous case, uHPt,∆t(x) is (the only) non-integrable pair

cumulant. This is the effect of using L4 instead of L
′
4. Since the dynamics we

consider is linear, one has

uHPt,∆t(x) = uHP
′

t,∆t (x) + uHPt,∆t,singδ(x), (4.23)

so, to get the answer, that is the corresponding cumulant uHP
′

t,∆t (x) for the model

1Stress that this is different from the situation with the term L4 itself: in L4, we describe xH

occupied the position at x before the event, whereas in L
′
4 both xH− and xP+ share the same

position after the event.
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generated by L
′
4, one has to get rid of the singular term. We will do this in the

beyond mean-field approach below.2

Following the general scheme, we consider Lε with a±(x−y) and b(x−y) above
replaced by εda±(εx − εy) and εdb(εx − εy), respectively; next, we consider the
dynamics of γε,t defined by (2.18) with L replaced by Lε. Let qX∆t, g

X,Y
∆t , X, Y ∈

{HO, H+, H−, PO, P+, P−} be the corresponding functions from the beyond
mean-field expansion. We consider, cf. (2.32), for all A,B ∈ {H,P},

g̃ABt,∆t(ξ) := g̃AO,BO∆t (ξ) + g̃AO,B+
∆t (ξ) + g̃A−,BO∆t (ξ) + g̃A−,B+

∆t (ξ), (4.24)

and, cf. (2.38),

hHHt,∆t(ξ) = g̃HHt,∆t (ξ) + qHO∆t ; hHPt,∆t(ξ) = g̃HPt,∆t(ξ);

hPHt,∆t(ξ) = g̃PHt,∆t(ξ); hPPt,∆t(ξ) = g̃PPt,∆t(ξ) + qPO∆t .
(4.25)

Recall that, g̃HPt,∆t 6= g̃PHt,∆t and hence hHPt,∆t 6= hPHt,∆t.
By (4.23), gHPt,∆t(x) is (the only) non-regular function which should include the

Dirac δ function, as a result g̃HPt,∆t will be non-integrable at infinity. By (4.23), if we
subtract from g̃HPt,∆t its limit at infinity, the result will be nothing but the Fourier

transform of gHP
′

t,∆t (x), so that, cf. (2.31),

uABε,t,∆t(x) = εdgABt,∆t(εx) + o(εd),

AB ∈ {HH,HP ′, PH, PP}.
(4.26)

We will get hence the values of the spatiotemporal cumulants for the initial model.
In Subsection 4.3 below, we will show that

d

d∆t

(
hHHt,∆t(ξ)

hHPt,∆t(ξ)

)
= Dt,∆t(ξ)

(
hHHt,∆t(ξ)

hHPt,∆t(ξ)

)
(4.27)

d

d∆t

(
hPHt,∆t(ξ)

hPPt,∆t(ξ)

)
= Dt,∆t(ξ)

(
hPHt,∆t(ξ)

hPPt,∆t(ξ),

)
(4.28)

where Dt,∆t(ξ) is the following matrix:


ã+(ξ)−

(
A− + ã−(ξ)

)(
qHO∆t + qH+

∆t

)
−B

(
qPO∆t + qP+

∆t

)
−b̃(ξ)

(
qHO∆t + qH+

∆t

)
B
(
qPO∆t + qP+

∆t

)
b̃(ξ)

(
qHO∆t + qH+

∆t

)
−m



By (2.33),
qHO∆t + qH+

∆t = qHt+∆t, qPO∆t + qP+
∆t = qPt+∆t,

2It is worth noting that it can be done also in more mathematically rigorous way by considering
a δ-sequence of functions which converge to the Dirac δ-function in the sense of distributions; then,
in particular, their Fourier transforms converge pointwise to 1, see e.g. [4, Chapter 2].
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and hence, cf. (4.4),

Dt,∆t(ξ) =

(
at+∆t(ξ) bt+∆t(ξ)
ct+∆t dt+∆t(ξ)

)
=: Et+∆t(ξ). (4.29)

Therefore, by (4.5), we can represent At+∆t(ξ) as a block matrix, namely,

At+∆t(ξ) =

(
Et+∆t(ξ) 0

0 Et+∆t(ξ),

)
(4.30)

where 0 denotes 2× 2 matrix of zeros, and hence, denoting, cf. (4.9),

ht,∆t(ξ) :=
(
hHHt,∆t(ξ), h

HP
t,∆t(ξ), h

PH
t,∆t(ξ), h

PP
t,∆t(ξ)

)T
,

we get, by (4.27), (4.28),

d

d∆t
ht,∆t(ξ) = At+∆t(ξ)ht,∆t(ξ), (4.31)

cf. also (4.10). Note that, by (4.29), cf. (4.8),

At+∆t(ξ) = A[qHt+∆t, q
P
t+∆t](ξ).

Comparing this with (4.10), we see that the conjecture holds.
One can now solve, for each ξ ∈ Rd, a linear ordinary differential equation (4.31)

with the initial condition

ht,∆t(ξ)

∣∣∣∣
∆t=0

= h∗(ξ),

where h∗(ξ) is given by (4.20), (4.22). From solution ht,∆t(ξ) to (4.31), one can get
g̃ABt,∆t(ξ), A,B ∈ {H,P} from (4.25), to this end, one needs qHO∆t and qPO∆t . The latter
functions satisfy the following differential equations (see Subsection 4.3):

d

d∆t
qHO∆t = −

(
B(qPO∆t + qP+

∆t ) + A−(qHO∆t + qH+
∆t )

)
qHO∆t

= −
(
BqPt+∆t + A−qHt+∆t

)
qHO∆t ,

d

d∆t
qPO∆t = −mqPO∆t .

(4.32)

The explicit form of functions g̃ABt,∆t(ξ), A,B ∈ {H,P}, can be found in the
Appendix, in the proof of the next Proposition.

Proposition 4.6. Let (HP1)–(HP3) hold. Then functions g̃HHt,∆t (ξ), g̃PHt,∆t(ξ), and
g̃PPt,∆t(ξ) converge to 0 as |ξ| → ∞, whereas

g̃HPt,∆t(∞) := lim
|ξ|→∞

g̃HPt,∆t(ξ) 6= 0.

Moreover, all functions g̃HHt,∆t (ξ), g̃PHt,∆t(ξ), g̃PPt,∆t(ξ), and

g̃HP
′

t,∆t (ξ) := g̃HPt,∆t(ξ)− g̃HPt,∆t(∞)

are integrable.
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An explicit formula for g̃HPt,∆t(∞) is provided in the Appendix below, see (A.33).

As a result, for each AB ∈ {HH,HP ′, PH, PP}, one can apply the inverse
Fourier transform to an integrable function g̃ABt,∆t(ξ), to get, for a.a. x ∈ Rd, the
needed for (4.26) function gABt,∆t(x).

Theorem 4.7. Let (HP1)–(HP3) hold.

1. (Convergence as ∆t → ∞) Let AB ∈ {HH,HP ′, PH, PP}. Then, for all
t ≥ 0 and ξ ∈ Rd,

lim
∆t→∞

g̃ABt,∆t(ξ) = 0. (4.33)

2. (Convergence as t→∞)

(a) Let AB ∈ {HH,HP ′, PH, PP}. Then g̃ABt,∆t(ξ) converges pointwise as
t → ∞ to an integrable function g̃AB∞,∆t(ξ) described below. Moreover,
gABt,∆t(x) converge uniformly in a.a. x ∈ Rd as t→∞ to the corresponding
inverse Fourier transform gAB∞,∆t(x).

(b) For all ∆t ≥ 0 and ξ ∈ Rd,

g̃HH∞,∆t(ξ) = hHH∞,∆t(ξ)− qH∗ e−A
+∆t,

g̃PP∞,∆t(ξ) = hPP∞,∆t(ξ)− qP∗ e−m∆t,

g̃PH∞,∆t(ξ) = hPH∞,∆t(ξ),

g̃HP
′

∞,∆t(ξ) = hHP∞,∆t(ξ)− hHP∞,∆t(∞),

(4.34)

where

hHP∞,∆t(∞) =


mqP∗

m− A+

(
e−A

+∆t − e−m∆t
)
, if A+ 6= m;

mqP∗ ∆t e−A
+∆t, if A+ = m.

(4.35)

(c) In the above, hAB∞,∆t(ξ), A,B ∈ {H,P} are the following limits which
exist for all ∆t ≥ 0 and ξ ∈ Rd:(

hHH∞,∆t(ξ)

hHP∞,∆t(ξ)

)
: = lim

t→∞

(
hHHt,∆t(ξ)

hHPt,∆t(ξ)

)
= e∆t·E∗(ξ)

(
hHH∗ (ξ)
hHP∗ (ξ)

)
(4.36)

(
hPH∞,∆t(ξ)

hPP∞,∆t(ξ)

)
: = lim

t→∞

(
hPHt,∆t(ξ)

hPPt,∆t(ξ)

)
= e∆t·E∗(ξ)

(
hHP∗ (ξ)
hPP∗ (ξ)

)
, (4.37)

where, cf. (4.17), the matrix
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E∗(ξ) := lim
t→∞
Et(ξ) =

(
a∗(ξ) b∗(ξ)
c∗ d∗(ξ)

)
(4.38)

has negative real parts of both eigenvalues, for each ξ ∈ Rd; and functions
hAB∗ (ξ), A,B ∈ {H,P}, are given by (4.22).

As a result, we obtained the desired leading terms gAB∞,∆t(x) in the beyond mean-
field expansion (4.26), for each AB ∈ {HH,HP ′, PH, PP}, of the spatiotemporal
cumulant of the considered model in the stationary regime, i.e. when t in (4.26) is
replaced by ∞.

4.3 Derivation of equations

In this Subsection, we are going to derive, in particular, equations (4.3), (4.10),
and (4.31). Similarly to Subsection 4.3, we will partially use the Model Constructor
toolbox from [1]. Firstly, we note that the operators L1, L2, L3, L4 defined above re-
present Birth, DeathByCompetition, DensityIndependentDeath and Infection

components, respectively.
Next, we express L1, L2, L3, L4 given above as sums of model components in the

terminology of [1, Supplementary Note 2]. Namely

L1 = L11 + L12, L2 = L21 + L22 + L23 + L24,

L3 = L31 + L32, L4 = L41 + L42 + L43 + L44.

Here L11 represents the Birth component:

(L11F )(γ) =
∑
x∈γH+

∫
Rd
a+(x− y)

(
F (γHO, γH+ ∪ {y}, γH−, γP )− F (γ)

)
dy;

L12 represents the BirthToAnotherType component:

(L12F )(γ) =
∑
x∈γHO

∫
Rd
a+(x− y)

(
F (γHO, γH+ ∪ {y}, γH−, γP )− F (γ)

)
dy;

L21 represents the DeathByCompetition component:

(L21F )(γ) =
∑
x∈γH+

∑
y∈(γH+\{x})

a−(x− y)
(
F (γHO, γH+ \ {x}, γH−, γP )− F (γ)

))
L22 represents the DeathByExternalFactor component:

(L22F )(γ) =
∑
x∈γH+

∑
y∈γHO

a−(x− y)
(
F (γHO, γH+ \ {x}, γH−, γP )− F (γ)

))
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L23 and L24 both represent the ChangeInTypeByFacilitation component intro-
duced in Subsection 4.3:

(L23F )(γ) =
∑
x∈γHO

∑
y∈(γHO\{x})

a−(x− y)
(
F (γHO \ {x}, γH+, γH− ∪ {x}, γP )− F (γ)

)
;

(L24F )(γ) =
∑
x∈γHO

∑
y∈γH+

a−(x− y)
(
F (γHO \ {x}, γH+, γH− ∪ {x}, γP )− F (γ)

)
;

L31 represents the DensityIndependentDeath component:

(L31F )(γ) = m
∑
x∈γP+

(
F (γH , γPO, γP+ \ {x}, γP−)− F (γ)

)
;

L32 represents the ChangeInType component:

(L32F )(γ) = m
∑
x∈γPO

(
F (γH , γPO \ {x}, γP+, γP− ∪ {x})− F (γ)

)
;

L41 also represents the ChangeInTypeByFacilitation component:

(L41F )(γ) =
∑
x∈γH+

∑
y∈γPO

b(x− y)
(
F (γHO, γH+ \ {x}, γH−, γPO, γP+ ∪ {x}, γP−)− F (γ)

)
;

L42 represents the Infection component (which is, actually, a partial case of the
ChangeInTypeByFacilitation component):

(L42F )(γ) =
∑
x∈γH+

∑
y∈γP+

b(x− y)
(
F (γHO, γH+ \ {x}, γH−, γPO, γP+ ∪ {x}, γP−)− F (γ)

)
.

Finally, L43 and L44 both represent the ChangeInTypeAndBirthByFacilitation

component defined below:

(L43F )(γ) =
∑
x∈γHO

∑
y∈γPO

b(x− y)

×
∫
Rd
δ(x− z)

(
F (γHO \ {x}, γH+, γH− ∪ {x}, γPO, γP+ ∪ {z}, γP−)− F (γ)

)
dz;

(L44F )(γ) =
∑
x∈γHO

∑
y∈γP+

b(x− y)

×
∫
Rd
δ(x− z)

(
F (γHO \ {x}, γH+, γH− ∪ {x}, γPO, γP+ ∪ {z}, γP−)− F (γ)

)
dz.

We are going to describe the Wolfram Mathematica code we used. First six lines
(In[1]–In[6]) are the same as in Subsection 3.3: we load libraries, set-up internal
variables, define the ChangeInTypeByFacilitation and Relax components.

Next, we define the ChangeInTypeAndBirthByFacilitation model component
needed for L43 and L44 above. It describes the event when an agent at a position
x2 changes own type from s3 to s2 and, simultaneously, it sends an off-spring of a
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type s1 to a position x1. The off-spring is sent through a kernel d(x1 − x2) (which
is the Dirac δ-function δ(x1 − x2) in operators L43 and L44). The event happened
because of interaction of the agent with each of other agents of a type s4 placed at
a position x3. The interaction is given through a kernel b(x2 − x3). In particular,
s4 may be equal to s1 as it is needed for L44.

In[7]:= ChangeInTypeAndBirthByFacilitation[s1_,s2_,s3_,s4_,b_,Bf_,

d_,Df_,Coeffic_]:=

Module[{Products={{s1,x1}, {s2,x2}},
Reactants={{s3,x2}},Catalysts={{s4,x3}},
listAll,function,Interactions,name},
listAll={Products,Reactants,Catalysts};
function[x1_,x2_,x3_]:=b[x2-x3]d[x1-x2];

Interactions={{b,Bf,x2,x3},{d,Df,x1,x2}};
name="ChangeInTypeAndBirthByFacilitation";

{listAll,function,Interactions,name,Coeffic}];

We define now the SpatialProcess which includes all model components corre-
sponding to operators L1, L2, L3, L4. Henceforth, for the spatial process, the agent
types 1, 2 correspond to H,P , respectively.

In[8]:= SpatialProcess={Birth[1,a+,~a+,1],
DeathByCompetition[1,a-,~a-,1],

DensityIndependentDeath[2,m,1],

Infection[2,1,b,~b,1]};

Next, we define the AuxiliaryProcess which includes all model components
corresponding to operators Lij introduced above. Henceforth, for the auxiliary
process, the agent types 1, 2, 3, 4, 5, 6 correspond to HO,H+, H−, PO, P+, P−,
respectively.

In[9]:= AuxiliaryProcess={
Birth[2,a+,~a+,1],(*L11*)

BirthToAnotherType[2,1,a+,~a+,1],(*L12*)

DeathByCompetition[2,a-,~a-,1],(*L21*)

DeathByExternalFactor[2,1,a-,~a-,1],(*L22*)

ChangeInTypeByFacilitation[3,1,1,a-,~a-,1],(*L23*)

ChangeInTypeByFacilitation[3,1,2,a-,~a-,1],(*L24*)

DensityIndependentDeath[5,m,1],(*L31*)

ChangeInType[6,4,m,1],(*L32*)

ChangeInTypeByFacilitation[5,2,4,b,~b,1],(*L41*)

Infection[5,2,b,~b,1],(*L42*)

ChangeInTypeAndBirthByFacilitation[5,3,1,4,b,~b,d,~d,1],(*L43*)

ChangeInTypeAndBirthByFacilitation[5,3,1,5,b,~b,d,~d,1],(*L44*)

Relax[3], Relax[6] (*No dynamics of ’-’ agents*)};

(Note that the δ-function here is denoted by d.)
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To simplify the representation of the calculations below, we introduce a re-
placement rule to replace values of the Fourier transform at the origin by the
corresponding integral, i.e.

ã±(0) = A±, b̃(0) = B;

we include here also the replacement δ̃ ≡ 1:

In[10]:= integrals={~a+[0]→A+,~a-[0]→A-,~b[0]→B,~d[0]→1,~d[ξ]→1};

In the Model Constructor toolbox, HQfALL and also HGfALL are the functions
providing the r.h.s. of the differential equations for functions q and g, respectively.

We define now a function which represents the r.h.s. of the corresponding
mean-field equation on function q, cf. (1.25), for an agent of a type i under the
replacement rule above:

In[11]:= qEqn[process_,i_]:=HQfALL[qpgVariables,process,i]/.integrals;

We define also a function which represents the sum of the r.h.s. of equations for
functions g, cf. (1.30), between pairs of types from a list:

In[12]:= gEqns[process_,list_]:=Total[Apply[HGfALL[qpgVariables,

process,#1,#2,kVariable]&,#]&/@list]/.integrals;

We obtain the r.h.s. of the differential equation for functions hABt , A,B ∈ {H,P}
defined by (4.2).

In[13]:= qgEqnSpatial={qEqn[#,1]+gEqns[#,{{1,1}}],
gEqns[#,{{1,2}}],gEqns[#,{{2,1}}],
qEqn[#,2]+gEqns[#,{{2,2}}]
}&[SpatialProcess];

We obtain the r.h.s. of the differential equation for functions hABt,∆t, A,B ∈ {H,P}
defined by (4.25):

In[14]:= qgEqnAuxiliary={qEqn[#,1]+gEqns[#,{{1,1},{1,2},{1,3},{2,3}}],
gEqns[#,{{1,4},{1,5},{3,4},{3,5}}],
gEqns[#,{{1,4},{1,6},{2,4},{2,6}}],
qEqn[#,4]+gEqns[#,{{4,4},{4,5},{4,6},{5,6}}]

}&[AuxiliaryProcess];

Since are interested in the equations for h, we create a replacement rule to rewrite
g through h, cf. (4.2):

In[15]:= hReplaceSpatial={g[1,1,ξ]→hHH-q[1],g[1,2,ξ]→hHP,

g[2,2,ξ]→hPP-q[2]};
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We do the same for the auxiliary process, however now the replacement rule contains
sum of different g, cf. (4.24) and (4.25):

In[16]:= hReplaceAuxiliary={g[1,1,ξ]+g[1,2,ξ]+g[1,3,ξ]+g[2,3,ξ]→hHH-q[1],

g[1,4,ξ]+g[1,5,ξ]+g[3,4,ξ]+g[3,5,ξ]→hHP,

g[1,4,ξ]+g[1,6,ξ]+g[2,4,ξ]+g[2,6,ξ]→hPH,

g[4,4,ξ]+g[4,5,ξ]+g[4,6,ξ]+g[5,6,ξ]→hPP-q[4]};

We obtain now the mean-field equations (4.3):

In[17]:= {qEqn[SpatialProcess,1],qEqn[SpatialProcess,2]}//Factor

Out[17]= {-q[1] (B q[2]+q[1] A--A+),-(m-B q[1]) q[2]}

We find now all stationary solutions to the system (4.3):

In[18]:= qStationary={q[1],q[2]}/.Solve[{qEqn[SpatialProcess,1]==0,
qEqn[SpatialProcess,2]==0},{q[1],q[2]}]

Out[18]= {{m
B
,-

m A--B A+

B2
},{0,0},{A

+

A-
,0}}

We save values of the only pair (4.11) of positive stationary solutions to (4.3):

In[19]:= {qH,qP}=First[qStationary];

We find the r.h.s. of the differential equations (4.32):

In[20]:= {qEqn[AuxiliaryProcess,1],qEqn[AuxiliaryProcess,4]}//Factor

Out[20]= {-q[1] (B q[4]+B q[5]+q[1] A-+q[2] A-),-m q[4]}

We are going to derive/verify now equation (4.10). We create a vector of the
notations for functions hABt , A,B ∈ {H,P}. Note that the second and the third
component are denoted identically as the corresponding functions are equal:

In[21]:= hbarSpatial={hHH,hHP,hHP,hPP};

We replace now the terms with functions g in the equations for hABt obtained in
In[13] by the corresponding notations:

In[22]:= hEqnSpatial=Expand[qgEqnSpatial/.hReplaceSpatial];

We define the coefficients (4.4) of matrix (4.5).

In[23]:= at=~a+[ξ]- (A-+~a-[ξ])q[1]-B q[2];

bt=-q[1] ~b[ξ]; ct=B q[2]; dt=q[1] ~b[ξ]-m;
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We define matrices (4.5) and (4.6):

In[27]:= matrA={{at,bt,0,0},{ct,dt,0,0},{0,0,at,bt},{0,0,ct,dt}};
matrAprime={{at,bt,0,0},{0,0,at,bt},{ct,dt,0,0},{0,0,ct,dt}};

We define vector (4.7):

In[29]:= vecB={A+q[1] +A- q[1]2 ,0,0,m q[2]}+B q[1] q[2]{1,-1,-1,1};

We verify now equation (4.10):

In[30]:= (matrA+matrAprime).hbarSpatial+vecB==hEqnSpatial//FullSimplify

Out[30]= True

We are going to verify now equations (4.27), (4.28), (4.31). Similarly to above, we
define a vector of notations for the functions hABt,∆t, A,B ∈ {H,P}. Note that the
second and the third component are different now:

In[31]:= hbarAuxiliary={hHH,hHP,hPH,hPP};

The r.h.s. of the equations for hABt,∆t obtained in In[14] are linear combinations
of various g[i, k, ξ]. One needs some preparation to rearrange the terms there to
separate the sums of g corresponding to h.

Firstly, we create a collection rule:

In[32]:= collectRule={B,-B ,~b[ξ] ,-~b[ξ],~a+[ξ],~a-[ξ],-~a-[ξ],
A-,-A-,m,-m,-q[1] ,-q[2],-q[4],-q[5],

q[1],q[2],q[3],q[4],q[5]};

Next, we collect the terms in the r.h.s. of the equations obtained in In[14] according
to the rule above; and then one can replace the sums of g by the corresponding nota-
tions for hABt,∆t. Then we expand, and thereafter we collect again, now to distinguish
the coefficients before functions h:

In[33]:= hEqnAuxiliary=Collect[Expand[Collect[qgEqnAuxiliary,

collectRule]/.hReplaceAuxiliary],

Join[hbarAuxiliary,collectRule]];

We verify now equations (4.27) and (4.28) by funding the matrix Dt,∆t:

In[34]:= hEqnAuxiliary[[1;;2]]

Out[34]= {-hHP (q[1]+q[2]) ~b[ξ]
+hHH (-B (q[4]+q[5])-(q[1]+q[2]) A--(q[1]+q[2]) ~a-[ξ]+~a+[ξ]),
BhHH (q[4]+q[5])+hHP (-m+(q[1]+q[2]) ~b[ξ])}

and also
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In[35]:= hEqnAuxiliary[[3;;4]]

Out[35]= {-hPP (q[1]+q[2]) ~b[ξ]
+hPH (-B (q[4]+q[5])-(q[1]+q[2]) A--(q[1]+q[2]) ~a-[ξ]+~a+[ξ]),
B hPH (q[4]+q[5])+hPP (-m+(q[1]+q[2]) ~b[ξ])}

We verify now equation (4.31):

In[36]:= (hEqnAuxiliary/.{q[1]+q[2]→q[1],q[4]+q[5]→q[2]})
==matrA.hbarAuxiliary//FullSimplify

Out[36]= True

We are going now to define the functions in the stationary regime, using the
replacement according to (4.12). Firstly, we consider the stationary version (the
limit as t→∞) of the matrix (4.5):

In[37]:= matrAst=matrA/.{q[1]→qH,q[2]→qP}//FullSimplify;

Then we define vector (4.19):

In[38]:= vecBst=vecB/.{q[1]→qH,q[2]→qP}//FullSimplify;

We define also the coefficients (4.17) of matrix A∗, i.e. just the limits of (4.4):

In[39]:= ast=matrAst[[1,1]]; bst=matrAst[[1,2]];

cst=matrAst[[2,1]]; dst=matrAst[[2,2]];

Then we define matrix C∗, cf. (4.18):

In[43]:= matrC={{2ast,2bst,0},{cst,ast+dst,bst},{0,2cst,2dst}};

Therefore, one can obtain hHH∗ (ξ), hHP∗ (ξ), hPP∗ (ξ) from (4.22):

In[44]:= {hHHst,hHPst,hPPst}=Inverse[matrC].(Delete[-vecBst,3])//FullSimplify;

We use now matrix A∗ to get matrix E∗, cf. (4.30) and also (A.25) below:

In[45]:= matrE=matrAst[[1;;2,1;;2]];

We can obtain now functions hAB∞,∆t(ξ), A,B ∈ {H,P} from equations (4.36) and
(4.37):

In[46]:= {hHH,hHP}=MatrixExp[t matrE].{hHHst,hHPst};
{hPH,hPP}=MatrixExp[t matrE].{hHPst,hPPst};

Finally, we are going to verify the corrections obtained in (4.34)–(4.35) to get
integrable functions. We were actually interested at the values of the obtained
solutions hAB∞,∆t(ξ) as |ξ| → ∞. By the Riemann–Lebesgue lemma, the Fourier

transforms of ã±, b̃ converge to zero at infinity.
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We create the corresponding replacement rule:

In[48]:= atInfinity={~b[ξ]→0,~a-[ξ]→0,~a+[ξ]→0};

We get now the limits of hAB∞,∆t(ξ) at infinity:

In[49]:= hInfinity={hHH,hHP,hPH,hPP}/.atInfinity//FullSimplify

Out[49]= {e
-t A+ m

B
,
2 e-

1
2

t (m+A+) m Sinh[1
2
t (m-A+)] (-m A-+B A+)

B2 (m-A+)
,

0,
e-m t (-m A-+B A+)

B2
}

Finally, we verify the correction in the limiting case A+ = m:

In[50]:= hInfinityBalance=Limit[hInfinity,m→A+]

Out[50]= {e
-t A+ A+

B
,
e-t A+ t (B-A-) (A+)2

B2
,0,

e-t A+ (B-A-) A+

B2
}

4.4 Analysis and numerics for the stationary regime

By Theorem 4.7, the eigenvalues of the matrix E∗(ξ) have negative real parts for
each ξ ∈ Rd. Then, by (4.36)–(4.37), functions hAB∞,t,∆t(ξ), A,B ∈ {H,P} converge
(for each ξ) to 0 as ∆t → ∞. Similarly to Proposition 4.1, this convergence to 0
can be monotone or oscillating with damping, depending on whether the eigen-
values of E∗(ξ) are real negative or complex with negative real parts, respectively.
By (4.34) and (4.35), functions g̃AB∞,∆t(ξ), AB ∈ {HH,HP ′, PH, PP} have the same
properties.

By the proof of Theorem 4.7, for a fixed ξ ∈ Rd, the eigenvalues of E∗(ξ) are
real negative iff

z∗(ξ) =
(
A+ − J̃H∗ (ξ)− qH∗

(
B − b̃(ξ)

))2 − 4mqP∗ b̃(ξ) (4.39)

is non-negative; otherwise, they are complex with negative real parts.
The character of convergence hence depends on an interplay between behavior

of the Fourier transforms ã+(ξ), ã−(ξ) and b̃(ξ) in different zones of ξ ∈ Rd, and
is especially non-trivial if the Fourier transforms take negative values, that may be
the case e.g. for the Gaussian-like kernels considered in (A.18) in the Appendix.

One can make, however, several general observations about the mentioned con-
vergence.

1. Since

z∗(0) =
m2

B2
(A−)2 − 4m

(
A+ − m

B
(A−)

)
,

we conclude that the convergence is oscillating for ξ = 0 if and only if (4.13)
holds. By continuity and the strict inequality in (4.13), the oscillations will
take place for ξ at a neighbourhood of the origin.
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2. Directly from (4.39), one gets that the convergence is monotone for all ξ ∈ Rd

such that b̃(ξ) ≤ 0. We assume now that this is not the case and

b̃(ξ) > 0, ξ ∈ Rd. (4.40)

3. To have oscillating convergence for all large enough |ξ|, one needs with neces-
sity, by the Riemann–Lebesgue lemma, that

0 ≥ lim
|ξ|→∞

z∗(ξ) = (A+ −m)2,

i.e.
A+ = m. (4.41)

As a result, to have oscillating in neighbourhoods of the origin and infinity, we
require, with necessity that both (4.40), (4.41), and (4.13) hold. Note also that
(4.13) under assumption (4.41) can be easily rewritten as follow:

B >
1 +
√

2

2
A−. (4.42)

We assume now that both (4.40)–(4.42) hold; moreover, we also consider the
case of equal shapes for all kernels:

a±(x) = A±c(x) ≥ 0, b(x) = Bc(x) ≥ 0,∫
Rd
c(x) dx = 1, c̃(ξ) > 0, ξ ∈ Rd.

(4.43)

Then, since, by (3.16), c̃(ξ) ≤ 1, one can easily rewrite (4.39) as follows:

z∗(ξ) = c̃(ξ)

((
mA−

B
c̃(ξ)

)2

− 4m

(
m− mA−

B

))

≤ m2

((
A−

B

)2

− 4

(
1− A−

B

))
< 0,

because of (4.42). Therefore, (4.40)–(4.42) imply that that all functions g̃AB∞,∆t(ξ),
AB ∈ {HH,HP ′, PH, PP}, converge to 0 as ∆t → ∞ with damping oscillations
for all ξ ∈ Rd.

Note that the opposite to (4.42) inequality does not imply that the convergence
is monotone for all ξ ∈ Rd. Moreover, one can not show analytically that the
oscillations will be preserved for the inverse Fourier transforms gAB∞,∆t(x), AB ∈
{HH,HP ′, PH, PP}.

Instead, we are going to show this numerically, for the 2-dimensional case: d = 2,
and for radially symmetric kernels with equal Gaussian shapes: (4.43) holds with

c(x) =
1

2π
e−
|x|2

2 , x ∈ R2. (4.44)
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We proceed as follows:

• by (4.38), (4.17), we find e∆t·E∗(ξ) (see also below for details);

• by (4.22), we find hAB∗ (ξ), A,B ∈ {H,P};

• by (4.36)–(4.37), we find hAB∞,∆t(ξ), A,B ∈ {H,P};

• by (4.34)–(4.35), we find g̃AB∞,∆t(ξ), AB ∈ {HH,HP ′, PH, PP};

• we find numerically gAB∞,∆t(x), AB ∈ {HH,HP ′, PH, PP}.

Firstly, we define a replacement rule to replace both ã±(ξ) and b̃(ξ) by A±e−
1
2
|ξ|2

andBe−
1
2
|ξ|2 , respectively. Note that we use here e−

1
2
|ξ|2 instead of the corresponding

Fourier transform e−2π2|ξ|2 of the function (4.44), as we are going to use formula
(3.32) for the inverse Fourier transform latter on.

In[43]:= equalGaussian={~a+[ξ]→A+Exp[-
ξ2

2
],~a-[ξ]→A-Exp[-

ξ2

2
],

~b[ξ]→B Exp[-
ξ2

2
]};

Next, recall that matrix E∗(ξ) has either negative real eigenvalues or complex
eigenvalues with negative real parts, depending on the value of ξ ∈ R2. Depending
on this, one gets different expressions for the matrix exponential e∆t·E∗(ξ). More
precisely, it is straightforward to check (e.g. with Wolfram Mathematica), that for

M =

(
a b
c d

)
, a, b, c, d ∈ R,

its matrix exponential etM (we use often henceforth t instead of ∆t, to simplify
notations) can be found by the following formula:

etM = exp
(tx

2

)


cosh

(
t
√
z

2

)
+

y sinh

(
t
√
z

2

)
√
z

2b sinh

(
t
√
z

2

)
√
z

2c sinh

(
t
√
z

2

)
√
z

cosh

(
t
√
z

2

)
−
y sinh

(
t
√
z

2

)
√
z


,

where sinh, cosh denote the hyperbolic sinus and cosine, respectively, and

x := tr (M) = a+ d, y := a− d, z := x2 − 4 det(M),

where det(M) = ad− bc.
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In our case, M = E∗(ξ), and z = z∗(ξ) ∈ R, given by (4.39), determines whether
the eigenvalues are real or complex. The matrix exponential will have, however,
real entries only, as if z < 0, then one has

cosh

(
t
√
z

2

)
= cosh

(
i
t
√
−z
2

)
= cos

(
t
√
−z
2

)
, (4.45)

sinh

(
t
√
z

2

)
√
z

=

sinh

(
i
t
√
−z
2

)
i
√
−z

=

i sin

(
t
√
−z
2

)
i
√
−z

=

sin

(
t
√
−z
2

)
√
−z

. (4.46)

From this, we have also that

lim
z→0

1√
z

sinh

(
t
√
z

2

)
=
t

2
, (4.47)

regardless of the sign of z ∈ R. Despite Wolfram Mathematica can handle complex
numbers, it may accumulate errors in the imaginary parts in course of the further
numerical integration (of the inverse Fourier transform). To avoid this, we introduce
auxiliary functions to calculate e∆t·E∗(ξ) depending on the sign of z = z∗(ξ).

We start as follows, because of (4.45)–(4.47):

In[44]:= sinF[t_,z_]:=Switch[Sign[z],1,
1√
z
Sinh[

t
√
z

2
],

-1,
1√
-z

Sin[
t
√
-z

2
],0,

t

2
];

cosF[t_,z_]:=Switch[Sign[z],1,Cosh[
t
√
z

2
],-1,Cos[

t
√
-z

2
],0,1];

Now, we define the matrix exponential:

In[46]:= expF[t_,x_,y_,z_,b_,c_]:=et
x
2{{cosF[t,z]+y sinF[t,z],

2b sinF[t,z]}, {2 c sinF[t,z], cosF[t,z]-y sinF[t,z]}};

Finally, one can define the function to calculate the inverse Fourier transform for
the functions g̃AB∞,∆t(ξ) defined through (4.34)–(4.35). In the code below:

• func calculates the vector of these functions, at the order: HH, HP’, PH, PP;

• hHHstG, hHPstG, hPPstG are values of previously found hHHst, hHPst, hPPst,
which are functions hHH∗ (ξ), hHP∗ (ξ), hPP∗ (ξ), cf. (4.22), in the case of equal
Gaussian kernels;

• mat is the previously found matrix matrE (which is E∗(ξ)) in the case of equal
Gaussian kernels;

• h1, h2 denote pairs of functions
(
hHH∞,∆t(ξ), h

HP
∞,∆t(ξ)

)
and

(
hPH∞,∆t(ξ), h

PP
∞,∆t(ξ)

)
,

respectively, found by using (4.36) and (4.37);

• hAtInf is the vector of the previously found constants (4.34)–(4.35).
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In[47]:= gReal[valAp_?NumericQ,valAm_?NumericQ,

valB_?NumericQ,valm_?NumericQ,valt_?NumericQ,

valx_?NumericQ]:=

gReal[valAp,valAm,valB,valm,valt,valx]=Module[{func},
func[valxi_]=Module[{coeffRule,hHHstG,hHPstG,hPPstG,

x,y,z,b,c,h1,h2,hAtInf,mat,expf},
coeffRule={A+→valAp,A-→valAm,B→valB,

m→valm,ξ→valxi};
{hHHstG,hHPstG,hPPstG}={hHHst,hHPst,hPPst}

/.equalGaussian/.coeffRule;

mat=matrE/.equalGaussian/.coeffRule;

x=Tr[mat];

y=mat[[1,1]]-mat[[2,2]];

z=x2-4Det[mat];

b=mat[[1,2]];

c=mat[[2,1]];

expf=expF[valt,x,y,z,b,c];

h1=expf.{hHHstG,hHPstG};
h2=expf.{hHPstG,hPPstG};
hAtInf=If[valAp==valm,hInfinityBalance,hInfinity]

/.coeffRule/.t→valt;

Flatten[{h1,h2}]-hAtInf];
(*End of definition of ‘func’*)

1

2π
NIntegrate[func[k]k BesselJ[0,k valx],{k,0,3},

Method →{LocalAdaptive,SymbolicProcessing→0},
PrecisionGoal→5]];

Remark 4.8. In the last line of the code above, we use formula (3.32) for the
inverse Fourier transform. Note that we integrate here in k (that is s in (3.32))
from k = 0 till k = 3 instead of ∞. The reason is that the whole integrand
there becomes extremely small for k around and above 3 for all considered values
of the parameters A±, B and for all considered times ∆t (that can be checked by
looking at the intermediate computations), and hence the numerical integration
may accumulate too many errors.

The result of function gReal is the vector of

gAB∞,∆t(x), AB ∈ {HH,HP ′, PH, PP};

here valt = ∆t and valx = |x|. The result will be used to find the corresponding
cumulants by (4.26): the simulations were done for ε = 1

2
, hence, the cumulants

measured in simulations should be approximated as follows:

uAB1
2
,∞,∆t(x) ≈ 1

4
gAB∞,∆t

(x
2

)
, AB ∈ {HH,HP ′, PH, PP}.
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The parameters in simulations were chosen as follows:

A+ = 1, A− = 0.1, B = 1, m = 1, (4.48)

that satisfies (4.41) and (4.42).
We are going to discuss now the results of the numerical calculations of the

inverse Fourier transforms.

1. For a fixed space variable, e.g. for x = 0, the graphs of the g-functions as
functions of ∆t ∈ [0, 20] are shown on Figure 2a. They demonstrate the
damping oscillations. As we can see, values of gHH∞,∆t(0) and gPP∞,∆t(0) are
pretty close, as well as values of gHP∞,∆t,reg(0) and −gPH∞,∆t(0). We observe also
the initial negative correlation between finding a host at the current position
of a parasite for some positive time interval.

2. Next, in the considered case of monotone kernels, cumulants converge to 0 in
|x| monotonically, see Figure 2b for a fixed ∆t = 7. In other words, for each
|x| ≥ r0 (perhaps, staring with some r0 > 0), we will see a picture similar
to that on Figure 2a, however, the corresponding cumulants have smaller
amplitudes.

3. We consider now the dependence of solutions on A+ when A+ 6= m. We
keep other parameters in (4.48) and compare the graphs of Figure 2a with
those for A+ = 2 > m and A+ = 1

2
< m. We present the comparison on

Figure 3, for e.g. |x| = 5. We can observe that, with the growth of A+,
the oscillation became more frequent (the period becomes smaller) and the
amplitude becomes higher.

4. Finally, recall that the parameters in (4.48) satisfy (4.42), that is, for A+ = m,
nothing but (4.13). We consider the case when (4.42) fails. If we keep A+ =
B = m = 1, then (4.42) fails iff A− ≥ 2(

√
2− 1) ≈ 0.83. We take A− = 0.85,

and then, see Figure 4, the convergence of g-functions in ∆t to 0 becomes
monotone, without visible damping oscillations. Note that, however, we can
not prove this analytically, so the fluctuation may still happen for large values
of ∆t and/or |x|.
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(a) Convergence in ∆t to 0 with damping oscillation, for the fixed |x| = 0

(b) Monotone convergence in |x| to 0, for the fixed ∆t = 7

Figure 2: Behavior of g-functions for A+ = m = B = 1, A− = 0.1
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Figure 3: Comparison with different A+ for B = m = 1, A− = 0.1, and |x| = 5

Figure 4: Monotone convergence in ∆t to 0 when (4.42)/(4.13) fails:
A+ = B = m = 1, A− = 0.85, and |x| = 5
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Appendix: Mathematical proofs and discussions

Proof of Theorem 3.2

Step 1. By (2.40),
ht,0(ξ) = g̃t(ξ) + qt.

Then, the solution to (3.24) has the form

ht,∆t(ξ) = exp

(∫
∆t

0

(
ã+(ξ)−m− qt+τ

(
ã−(ξ) + A−

))
dτ

)
ht,0(ξ)

= exp

((
ã+(ξ)−m

)
∆t−

(
ã−(ξ) + A−

) ∫ ∆t

0

qt+τdτ

)(
g̃t(ξ) + qt

)
. (A.1)

By the flow property of solutions to (3.3), qt+τ = q̂τ , where

d

dτ
q̂τ = A+q̂τ −mq̂τ − A−q̂2

τ

with the initial condition
q̂τ

∣∣∣
τ=0

= qt.

We have then
d

dτ
log q̂τ =

1

q̂τ

d

dτ
q̂τ = A+ −m− A−q̂τ ,

and integrating from τ = 0 to τ = ∆t, we get

log q̂∆t − log q̂0 =

∫
∆t

0

d

dτ
log q̂τdτ = (A+ −m)∆t− A−

∫
∆t

0

q̂τdτ.

Replacing back q̂τ by qt+τ , we obtain∫
∆t

0

qt+τdτ = q∗∆t−
1

A−
log

qt+∆t

qt
. (A.2)

Substituting into (A.1) and using that m+ q∗A
− = A+, one gets

ht,∆t(ξ) = exp

((
J̃∗(ξ)− A+

)
∆t+

ã−(ξ) + A−

A−
log

qt+∆t

qt

)(
g̃t(ξ) + qt

)
. (A.3)

Then, one can rewrite:

ht,∆t(ξ) = e(J̃∗(ξ)−A+)∆t

(
qt+∆t

qt

) ã−(ξ)+A−

A− (
g̃t(ξ) + qt

)
.

To find g̃t,∆t(ξ) from (3.21), one has to solve (3.25). By (2.35), qO∆t = qt. There-
fore, by (A.2),

qO∆t = exp

(
−m∆t− A−

∫
∆t

0

qt+τ dτ

)
qO0

= exp

(
−A+∆t+ log

(qt+∆t

qt

))
qt = e−A

+∆tqt+∆t. (A.4)
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As a result, (3.21) implies (3.26).
Step 2. Let now (3.10) and (SL2) hold. Note that, by (3.3), (3.11).

d

dt
qt = A−qt(q∗ − qt) ≥ 0,

hence qt is increasing in t ≥ 0, and, therefore,

qt+∆t

qt
> 1, ∆t > 0, t ≥ 0. (A.5)

Note also that, by (3.16),

|ã−(ξ)| ≤ A−, ξ ∈ Rd, (A.6)

By (A.3), (A.4), (3.21), we have∣∣g̃t,∆t(ξ)∣∣ ≤ E1(t,∆t, ξ)
∣∣g̃t(ξ)∣∣+

∣∣E2(t,∆t, ξ)
∣∣qt, (A.7)

where

E1(t,∆t, ξ) = e(J̃∗(ξ)−A+)∆t
(qt+∆t

qt

) ã−(ξ)+A−

A−
,

E2(t,∆t, ξ) = E1(t,∆t, ξ)− e−A+∆t qt+∆t

qt
.

By (3.11), (SL2), (A.5), (A.6),

E1(t,∆t, ξ) ≤ e−α∆t
(q∗
q0

)2

.

To estimate E2(t,∆t, ξ), we can use an elementary inequality which holds for any
constants a, b, p, q ≥ 0:∣∣pe−a − qe−b∣∣ ≤ e−a|p− q|+ qmax

{
e−a, e−b

}
|a− b|;

note that here we take a = A+ − J̃∗(ξ) ≥ α > 0, because of (SL2). One gets then

∣∣E2(t,∆t, ξ)
∣∣ ≤ e(J̃∗(ξ)−A+)∆t

∣∣∣∣(qt+∆t

qt

) ã−(ξ)+A−

A− − qt+∆t

qt

∣∣∣∣
+
qt+∆t

qt
max

{
e(J̃∗(ξ)−A+)∆t, e−A

+∆t
}∣∣J̃∗(ξ)∆t∣∣

≤ q∗
qt
e−α∆t

∣∣∣∣(qt+∆t

qt

) ã−(ξ)

A− − 1

∣∣∣∣+
q∗
qt

∆t e−min{A+,α}∆t∣∣J̃∗(ξ)∣∣.
Next, for any a ≥ 1 and |x| ≤ b, we have

|ax − 1| = |ex ln a − 1| ≤
∞∑
n=1

1

n!
|x|n(ln a)n

≤ |x|
∞∑
n=1

1

n!
bn−1(ln a)n ≤ 1

b
|x|eb ln a =

ab

b
|x|. (A.8)
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Therefore, by (A.6), (3.11),∣∣∣∣(qt+∆t

qt

) ã−(ξ)

A− − 1

∣∣∣∣ ≤ q∗
qt

|ã−(ξ)|
A−

. (A.9)

Substituting the obtained estimates into (A.7), we get∣∣g̃t,∆t(ξ)∣∣ ≤ e−α∆t
(q∗
q0

)2∣∣g̃t(ξ)∣∣
+
q2
∗
q0

e−α∆t |ã−(ξ)|
A−

+ q∗∆t e
−min{A+,α}∆t∣∣J̃∗(ξ)∣∣. (A.10)

Therefore, for each ξ ∈ Rd and t ≥ 0,

lim
∆t→∞

g̃t,∆t(ξ) = 0.

Next, (A.10) implies that g̃t,∆t(ξ) is integrable, and hence one can apply the inverse
Fourier transform which will be then equal to gt,∆t(x) for a.a. x ∈ Rd. Moreover,
for each t ≥ 0 and for a.a. x ∈ Rd, we get, by (3.16), (A.10),

|gt,∆t(x)| ≤
∫
Rd
g̃t,∆t(ξ) dξ → 0, ∆t→∞.

Step 3. By (3.9), for any t ≥ 0

lim
∆t→∞

(qt+∆t

qt

) ã−(ξ)+A−

A−
=
(q∗
qt

) ã−(ξ)+A−

A− ≤
(q∗
q0

)2

;

and hence, by (SL2), we get that (3.26) implies (3.27).
Therefore, by (3.26), for any ∆t ≥ 0

g̃∞,∆t(ξ) = lim
t→∞

g̃t,∆t(ξ) = e(J̃∗(ξ)−A+)∆t
(
g̃∗(ξ) + q∗

)
− e−A+∆tq∗,

where we used (3.18). From this, by (3.18), one gets (3.28). Note also that, by
(3.12), (3.8),

h∗(ξ) = lim
t→∞

ht(ξ) =
q∗A

+

A+ − J̃∗(ξ)
, ξ ∈ Rd.

Next, by (SL2) and (A.6),∣∣∣∣ A+q∗

A+ − J̃∗(ξ)
e(J̃∗(ξ)−A+)∆t − q∗e−A

+∆t

∣∣∣∣ ≤ q∗

∣∣∣∣ A+

A+ − J̃∗(ξ)
eJ̃∗(ξ)∆t − 1

∣∣∣∣
≤ q∗

∣∣∣∣ A+

A+ − J̃∗(ξ)
− 1

∣∣∣∣+ q∗
∣∣eJ̃∗(ξ)∆t − 1

∣∣ ≤ q∗
|J̃∗(ξ)|
α

+ q∗
∣∣eJ̃∗(ξ)∆t − 1

∣∣,
and hence, by (A.8), g̃∞,∆t(ξ) is integrable.

57



Step 4. We have∣∣g̃t,∆t(ξ)− g̃∞,∆t(ξ)∣∣
≤ e(J̃∗(ξ)−A+)∆t

(qt+∆t

qt

) ã−(ξ)+A−

A−
∣∣∣g̃t(ξ)− g̃∗(ξ)∣∣∣

+ e(J̃∗(ξ)−A+)∆t

∣∣∣∣(qt+∆t

qt

) ã−(ξ)+A−

A− − 1

∣∣∣∣∣∣g̃∗(ξ)∣∣
+ e−A

+∆t

∣∣∣∣(eJ̃∗(ξ)∆t
(qt+∆t

qt

) ã−(ξ)

A− − 1

)
qt+∆t − eJ̃∗(ξ)∆tq∗ + q∗

∣∣∣∣
≤ e−α∆t

(q∗
q0

)2∣∣∣g̃t(ξ)− g̃∗(ξ)∣∣∣+ e−α∆t

∣∣∣∣(qt+∆t

qt

) ã−(ξ)+A−

A− − 1

∣∣∣∣∣∣g̃∗(ξ)∣∣
+ q∗e

−A+∆teJ̃∗(ξ)∆t

∣∣∣∣(qt+∆t

qt

) ã−(ξ)

A− − 1

∣∣∣∣
+ e−A

+∆t

∣∣∣∣eJ̃∗(ξ)∆t
(qt+∆t

qt

) ã−(ξ)

A− − 1

∣∣∣∣|qt+∆t − q∗|

=: I1(ξ, t,∆t) + I2(ξ, t,∆t) + I3(ξ, t,∆t) + I4(ξ, t,∆t).

By [3, Theorem 3.2, Remark 3.3],

lim
t→∞

∫
Rd
I1(ξ, t,∆t) dξ = 0. (A.11)

By (3.9), we have, for all ξ ∈ Rd, ∆t ≥ 0,

lim
t→∞

I2(ξ, t,∆t) = lim
t→∞

I3(ξ, t,∆t) = lim
t→∞

I4(ξ, t,∆t) = 0.

Next, we have

I2(ξ, t,∆t) ≤ e−α∆t

((q∗
q0

)2

+ 1

)∣∣g̃∗(ξ)∣∣ ∈ L1(Rd), t ≥ 0;

and by (A.9), (A.5),

I3(ξ, t,∆t) ≤ q∗e
−α∆t · q∗

q0

|ã−(ξ)|
A−

∈ L1(Rd).

Finally, rewriting back

eJ̃∗(ξ)∆t
(qt+∆t

qt

) ã−(ξ)

A−
= exp

(
J̃∗(ξ)∆t+

ã−(ξ)

A−
ln
qt+∆t

qt

)
and using that ∣∣∣∣J̃∗(ξ)∆t+

ã−(ξ)

A−
ln
qt+∆t

qt

∣∣∣∣ ≤ (A+ − α)∆t+ ln
q∗

q0

,
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we obtain from (A.8), that

I4(ξ, t,∆t) ≤ 2q∗e
−A+∆t

q∗

q0
e(A+−α)∆t

(A+ − α)∆t+ ln q∗

q0

(
|J̃∗(ξ)|∆t+

|ã−(ξ)|
A−

q∗
q0

)
∈ L1(Rd).

Hence, by the dominated convergence theorem, (A.11) holds with I1 replaced by
each of I2, I3, I4.

Therefore, g̃t,∆t converges to g̃∞,∆t in L1(Rd) as t → ∞. Since gt,∆t − g∞,∆t is
the inverse Fourier transform of g̃t,∆t− g̃∞,∆t, we obtain from an analogue of (3.16)
that gt,∆t converges to g∞,∆t in L∞(Rd).

Proof of Lemma 3.3

Firstly, for the Fourier transform defined as in (1.29), formula (3.31) follows from
e.g. [4, Example 2.2.9, Proposition 2.2.11]. Next, we note that the Fourier transform
of a (radially) symmetric function is also (radially) symmetric, and it coincides with
the inverse Fourier transform of that function. Therefore, by e.g. [4, Back Matters
B.5],

g(x) = 2π

∫ ∞
0

f
(
e−2π2r2)

rJ0
(
2πr|x|

)
dr, x ∈ R2.

Making the substitution s = 2πr, one gets the desired formula (3.32).

Proof of Proposition 4.1

We set f(x, y) = x(A+ −A−x−By), g(x, y) = y(Bx−m). Consider the Jacobian

j(x, y) =

(
f ′x(x, y) f ′y(x, y)
g′x(x, y) g′y(x, y)

)
=

(
A+ − 2A−x−By −Bx

By Bx−m

)
.

Then, it is straightforward to check that

J := j(qH∗ , q
P
∗ ) =

 −A
−m

B
−m

A+ − A−m

B
0

 .

Since

tr(J) = −A
−m

B
< 0,

det(J) = m

(
A+ − A−m

B

)
> 0,

under (HP1), we conclude that both eigenvalues of j(qH∗ , q
P
∗ ) have negative real

parts, hence (4.12) holds.
The monotone convergence in (4.12) takes place when the eigenvalues of J are

real (and hence negative), otherwise there will be damping oscillations. The eigen-
values of J are real iff (

tr(J)
)2 ≥ 4 det(J),
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that is equivalent to

A+ ≤ m

B
A− +

m(A−)2

4B2
,

and hence the statement is proved.

Proof of Proposition 4.2

We have, by (4.14) ∫
Rd
JH∗ (x) dx = A+ − m

B
A−,

and hence (4.15) implies (HP1). Next, by (3.16), one has

J̃H∗ (ξ) ≤ A+ − m

B
A− < A+, ξ ∈ Rd, (A.12)

b̃(ξ) ≤ B, ξ ∈ Rd. (A.13)

Therefore,

A+ − J̃H∗ (ξ) ≥ A+ −
(
A+ − m

B
A−
)

=
m

B
A−, ξ ∈ Rd,

hence (HP2) holds. Then,

r(ξ) : =
(
A+ − J̃H∗ (ξ)

)(
B − b̃(ξ)

)
+BqP∗ b̃(ξ) (A.14)

≥ m

B
A−
(
B − b̃(ξ)

)
+BqP∗ b̃(ξ) = mA− +

(
A+ − 2

m

B
A−
)
b̃(ξ).

If A+ ≥ 2m
B
A−, then, by (4.16), r(ξ) ≥ mA−. If, cf. (HP1),

m

B
A− < A+ < 2

m

B
A−,

then by (4.16) and (A.13), we have

r(ξ) ≥ mA− −
(

2
m

B
A− − A+

)
b̃(ξ) ≥ mA− −

(
2
m

B
A− − A+

)
B

= A+B −mA− > 0,

by (HP1). As a result,(
A+ − J̃H∗ (ξ)

)(
B − b̃(ξ)

)
+BqP∗ b̃(ξ) ≥ max

{
mA−, A+B −mA−

}
(A.15)

for all ξ ∈ Rd.
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Possible relaxation of assumption (4.16)

Let (4.15) hold. One can weaken the assumption (4.16) as follows.

Let ξ ∈ Rd be such that b̃(ξ) < 0 (provided that such ξ exists). If, additionally,

J̃H∗ (ξ) ≤ m

B
A−, then, cf. (A.14),

r(ξ) ≥
(
A+ − m

B
A−
)(
B − 2b̃(ξ)

)
> 0,

as b̃(ξ) < 0.

Let now ξ ∈ Rd be such that b̃(ξ) < 0 and J̃H∗ (ξ) >
m

B
A−. By (A.12), we have

that then, with necessity, A+ > 2
m

B
A−. Then, by (A.12) and (A.13), one has:

r(ξ) ≥
(
m

B
A−
(
B − b̃(ξ)

)
+
(
A+ − m

B
A−
)
b̃(ξ)

)
=

(
mA− +

(
A+ − 2

m

B
A−
)
b̃(ξ)

)
> 0

if only (
A+ − 2

m

B
A−
)
|̃b(ξ)| ≤

(
A+ − 2

m

B
A−
)
B < mA−,

i.e. if A+ < 3
m

B
A−.

Therefore, assuming (4.15), one can replace (4.16) by the following assumption:

• let either

A+ < 3
A−m

B

• or

A+ ≥ 3
A−m

B
, (A.16)

b̃(ξ) ≥ 0, ξ ∈ Λ :=
{
ξ ∈ Rd : J̃H∗ (ξ) ≥ A−m

B

}
. (A.17)

Note that since J̃H∗ (0) = A+− A
−m

B
>
A−m

B
under (A.16), the set Λ is not empty,

it contains a neighborhood of the origin.

Remark A.1. A natural example when (A.17) may fail is

b(x) = C(1 + |x|2)e−s|x|
2

, s > 0, C > 0, x ∈ Rd, (A.18)

with small enough s > 0. Indeed, it is straightforward to check that b̃(ξ) < 0 for
|ξ| > d(s) for certain continuous d(s) with d(0) = 0. Therefore, taking s > 0 small

enough we ensure that b̃(ξ) < 0 for some ξ ∈ Λ given by (A.17). Note also that
a small s here corresponds to a large length scale of the kernel b(x) describing the
influence of parasites on hosts.

61



Proof of Theorem 4.4

Denoting, cf. (4.9),

g̃t(ξ) :=
(
g̃HHt (ξ), g̃HPt (ξ), g̃PHt (ξ), g̃PPt (ξ)

)T
,

we get

d

dt
g̃t(ξ) =

d

dt
ht(ξ)−

d

dt
(qHt , 0, 0, q

P
t )T

=
(
At(ξ) +A′t(ξ)

)
ht(ξ) + Bt(ξ)−

d

dt
(qHt , 0, 0, q

P
t )T

=
(
At(ξ) +A′t(ξ)

)
g̃t(ξ) + ft(ξ),

where

ft(ξ) : = Bt(ξ) +
(
At(ξ) +A′t(ξ)

)
(qHt , 0, 0, q

P
t )T − d

dt
(qHt , 0, 0, q

P
t )T

= Bt(ξ) +
(
At(ξ) +A′t(ξ)

)
(qHt , 0, 0, q

P
t )T

−
(
qHt (A+ − A−qHt −BqPt ), 0, 0, qPt (BqHt −m)

)T
.

Recall that g̃HPt (ξ) = g̃HPt (ξ). We can hence rewrite this in terms of the vector

gt(ξ) := (g̃HHt (ξ), g̃HPt (ξ), g̃PPt (ξ))T .

It is easy to see that, if the remove the third component (equal to the second one)

of the vector
(
At(ξ) +A′t(ξ)

)
g̃t(ξ), we will get the vector Ct(ξ)gt(ξ), where

Ct(ξ) :=

2at(ξ) 2bt(ξ) 0
ct at(ξ) + dt(ξ) bt(ξ)
0 2ct 2dt(ξ).


We consider also

Bt(ξ) :=
(
A+qHt + A−

(
qHt
)2
, 0,mqPt

)T
+BqHt q

P
t

(
1,−1, 1

)T
Then

d

dt
gt(ξ) = Ct(ξ)gt(ξ) + ft(ξ),

ft(ξ) : = Bt(ξ) + Ct(ξ)(qHt , 0, qPt )T − d

dt
(qHt , 0, q

P
t )T

= Bt(ξ) + Ct(ξ)(qHt , 0, qPt )T −
(
qHt (A+ − A−qHt −BqPt ), 0, qPt (BqHt −m)

)T
.

It is straightforward to check that we can apply now [3, Lemma 3.1] in both

Banach spaces X =
(
L1(Rd)

)⊗3
or X =

(
L∞(Rd)

)⊗3
, provided that there exist

limits f∗ := lim
t→∞

ft ∈ X and C∗ := lim
t→∞
Ct ∈ L(X) (the space of bounded linear
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operators on X) and also provided that the operator (matrix) C∗ is invertible. We
have that C∗(ξ) is given by (4.18) and

f∗(ξ) : =
(
A+qH∗ + A−

(
qH∗
)2
, 0,mqP∗

)T
+BqH∗ q

P
∗

(
1,−1, 1

)T
+ C∗(ξ)(qH∗ , 0, qP∗ )T + (0, 0, 0)T

=
(
qH∗ (A+ + A−qH∗ +BqP∗ ),−BqH∗ qP∗ , qP∗ (m+BqH∗ )

)T
+ C∗(ξ)(qH∗ , 0, qP∗ )T

=
(

2A+qH∗ ,−BqH∗ qP∗ , 2mqP∗
)T

+

2a∗(ξ) 2b∗(ξ) 0

c∗ a∗(ξ) + d∗(ξ) b∗(ξ)

0 2c∗ 2d∗(ξ)

 (qH∗ , 0, q
P
∗ )T

=
(

2qH∗ J̃
H
∗ (ξ),−qH∗ qP∗ b̃(ξ), 2qH∗ qP∗ b̃(ξ)

)T
.

Th show that C∗ is invertible in X it is evidently enough to show that the
function det

(
C∗(ξ)

)
is separated from 0. We have

det
(
C∗(ξ)

)
= 4a∗(ξ)d∗(ξ)

(
a∗(ξ) + d∗(ξ)

)
− 4a∗(ξ)b∗(ξ)c∗ − 4b∗(ξ)c∗d∗(ξ)

= 4
(
a∗(ξ) + d∗(ξ)

)(
a∗(ξ)d∗(ξ)− b∗(ξ)c∗

)
.

By (HP2) and (A.13),

a∗(ξ) + d∗(ξ) = J̃H∗ (ξ)− A+ + qH∗
(̃
b(ξ)−B) ≤ −α < 0. (A.19)

By (A.15),

a∗(ξ)d∗(ξ)− b∗(ξ)c∗ = qH∗
(
J̃H∗ (ξ)− A+

)(̃
b(ξ)−B)) +BqP∗ q

H
∗ b̃(ξ)

= qH∗

((
A+ − J̃H∗ (ξ)

)(
B − b̃(ξ))) +BqP∗ b̃(ξ)

)
≥ m

B
max

{
mA−, A+B −mA−

}
> 0. (A.20)

Therefore,

det
(
C∗(ξ)

)
≤ −4

m2

B2
A−max

{
mA−, A+B −mA−

}
< 0, (A.21)

the proves the needed.
As a result, by [3, Lemma 3.1],(
g̃HH∗ (ξ), g̃HP∗ (ξ), g̃PP∗ (ξ)

)T
= −

(
C∗(ξ)

)−1

f∗(ξ)

= qH∗

(
C∗(ξ)

)−1(
−2J̃H∗ (ξ), qP∗ b̃(ξ),−2qP∗ b̃(ξ)

)T
,

and moreover g̃ABt → g̃AB∗ in both L1(Rd) and L∞(X) as t → ∞, A,B ∈ {H,P}.
The convergence in L1 implies, by (SL2), the convergence in L∞(Rd) for the inverse
Fourier transforms, that fulfills the proof.
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Proof of Corollary 4.5

Since hHP∗ (ξ) = hPH∗ (ξ), (4.21) is equivalent to

C∗(ξ)
(
hHH∗ (ξ), hHP∗ (ξ), hPP∗ (ξ)

)T
=
(
−2A+qH∗ ,mq

P
∗ ,−2mqP∗ )T ,

where C∗(ξ) is given by (4.18). By (A.21), we have then (4.22).
On the other hand,(

gHH∗ (ξ), gHP∗ (ξ), gPP∗ (ξ)
)T

+ (qH∗ , 0, q
P
∗ )T

= qH∗

(
C∗(ξ)

)−1(
−2J̃H∗ (ξ), qP∗ b̃(ξ),−2qP∗ b̃(ξ)

)T
+ (qH∗ , 0, q

P
∗ )T

=
(
C∗(ξ)

)−1(
qH∗
(
−2J̃H∗ (ξ), qP∗ b̃(ξ),−2qP∗ b̃(ξ)

)T
+ C∗(ξ)(qH∗ , 0, qP∗ )T

)
=
(
C∗(ξ)

)−1
(
qH∗
(
−2J̃H∗ (ξ), qP∗ b̃(ξ),−2qP∗ b̃(ξ)

)T
+
(

2qH∗ (J̃H∗ (ξ)− A+), qH∗ q
P
∗ (B − b̃(ξ)), 2qH∗ qP∗ (̃b(ξ)−B)

)T)
=
(
C∗(ξ)

)−1(
−2A+qH∗ ,mq

P
∗ ,−2mqP∗

)T
=
(
hHH∗ (ξ), hHP∗ (ξ), hPP∗ (ξ)

)T
,

that fulfills the statement.

Proof of Proposition 4.6

Step 1. We have, by (2.40),

hABt,0 (ξ) = hABt (ξ), A,B ∈ {H,P},

where, recall, hABt satisfy (4.9), (4.10). Then, by (4.31), (4.30), we obtain(
hHHt,∆t(ξ)

hHPt,∆t(ξ)

)
= exp

(∫
∆t

0

Et+τ (ξ) dτ
)(

hHHt (ξ)
hHPt (ξ)

)
and (

hPHt,∆t(ξ)

hPPt,∆t(ξ)

)
= exp

(∫
∆t

0

Et+τ (ξ) dτ
)(

hHPt (ξ)
hPPt (ξ)

)
,

where ∫
∆t

0

Et+τ (ξ) dτ =


∫

∆t

0

at+τ (ξ) dτ

∫
∆t

0

bt+τ (ξ) dτ∫
∆t

0

ct+τ dτ

∫
∆t

0

dt+τ (ξ) dτ

 . (A.22)
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Similarly to the proof of Theorem 3.2, we note that qHt+τ and qPt+τ solves the
system

d

dτ
q̂Hτ = q̂Hτ

(
A+ − A−q̂Hτ −Bq̂Pτ

)
,

d

dτ
q̂Pτ = q̂Pτ

(
Bq̂Hτ −m)

(A.23)

with the initial conditions q̂H0 = qHt , q̂P0 = qPt . Next, we rewrite (A.23) as follows

d

dτ
log q̂Hτ = A+ − A−q̂Hτ −Bq̂Pτ ,

d

dτ
log q̂Pτ = Bq̂Hτ −m.

Integrating over τ ∈ [0,∆t], we get

log
q̂H∆t
q̂H0

= A+∆t− A−
∫

∆t

0

q̂Hτ dτ −B
∫

∆t

0

q̂Pτ dτ,

log
q̂P∆t
q̂P0

= B

∫
∆t

0

q̂Hτ dτ −m∆t.

Therefore, ∫
∆t

0

q̂Hτ dτ = qH∗ ∆t+
1

B
log

q̂P∆t
q̂P0
,

∫
∆t

0

q̂Pτ dτ = qP∗ ∆t− 1

B
log

q̂H∆t
q̂H0
− A−

B2
log

q̂P∆t
q̂P0
,

hence ∫
∆t

0

qHt+τ dτ = qH∗ ∆t+
1

B
log

qPt+∆t

qPt
,

∫
∆t

0

qPt+τ dτ = qP∗ ∆t− 1

B
log

qHt+∆t

qHt
− A−

B2
log

qPt+∆t

qPt
.

(A.24)

Remark A.2. It should be mentioned that the trajectories of the system (4.3) cannot
intersect, therefore, qHt > 0 and qPt > 0 for all t > 0, provided that it holds for
t = 0.

By (A.24) and (4.4), we have∫
∆t

0

at+τ (ξ) dτ = ã+(ξ)∆t−
(
A− + ã−(ξ)

)(
qH∗ ∆t+

1

B
log

qPt+∆t

qPt

)
−B

(
qP∗ ∆t− 1

B
log

qHt+∆t

qHt
− A−

B2
log

qPt+∆t

qPt

)
=
(
J̃H∗ (ξ)− A+

)
∆t+ log

qHt+∆t

qHt
− ã−(ξ)

B
log

qPt+∆t

qPt
,
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∫
∆t

0

bt+τ (ξ) dτ = −b̃(ξ)
(
qH∗ ∆t+

1

B
log

qPt+∆t

qPt

)
,∫

∆t

0

ct+τ dτ = B

(
qP∗ ∆t− 1

B
log

qHt+∆t

qHt
− A−

B2
log

qPt+∆t

qPt

)
,∫

∆t

0

dt+τ (ξ) dτ = b̃(ξ)

(
qH∗ ∆t+

1

B
log

qPt+∆t

qPt

)
−m∆t.

Therefore, by (A.22), ∫
∆t

0

Et+τ (ξ) dτ = ∆t · E∗(ξ) + Ft,∆t(ξ),

where E∗(ξ) is given by (4.38), i.e., cf. (4.17),

E∗(ξ) =

(
J̃H∗ (ξ)− A+ −qH∗ b̃(ξ)

BqP∗ b̃(ξ)qH∗ −m

)
(A.25)

and

Ft,∆t(ξ) = log
qHt+∆t

qHt

(
1 0
−1 0

)
− 1

B
log

qPt+∆t

qPt

(
ã−(ξ) b̃(ξ)

A− −b̃(ξ)

)
. (A.26)

Note that (4.38) holds.
As a result,(

hHHt,∆t(ξ)

hHPt,∆t(ξ)

)
= exp

(
∆t · E∗(ξ) + Ft,∆t(ξ)

)(
hHHt (ξ)
hHPt (ξ)

)
, (A.27)

(
hPHt,∆t(ξ)

hPPt,∆t(ξ)

)
= exp

(
∆t · E∗(ξ) + Ft,∆t(ξ)

)(
hHPt (ξ)
hPPt (ξ)

)
, (A.28)

Step 2. Find limits of g̃ABt,∆t(ξ) as |ξ| → ∞, A,B ∈ {H,P}. Let ∆t > 0
(otherwise, there is nothing to prove). By (4.25),

g̃HHt,∆t (ξ) = hHHt,∆t(ξ)− qHO∆t , g̃PPt,∆t(ξ) = hPPt,∆t(ξ)− qPO∆t ;

and by (4.32), for each t ≥ 0, ξ ∈ Rd,

qHO∆t = exp

(
−
∫

∆t

0

(
BqPt+τ + A−qHt+τ

)
dτ

)
qHO0

and using (A.24), one can continue

= exp

(
−(BqP∗ + A−qH∗ )∆t+ log

qHt+∆t

qHt

)
qHt

= e−A
+∆t qHt+∆t; (A.29)
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and also by (4.32),

qPO∆t = e−m∆tqPO0 = e−m∆tqPt . (A.30)

Denoting henceforth f(∞) = lim
|ξ|→∞

f(ξ) for a function (or a matrix-valued

function) f and using the Riemann–Lebesgue lemma, we obtain

a∗(∞) = −A+, b∗(∞) = 0, c∗ = BqP∗ , d∗(∞) = −BqH∗ = −m,

and hence

∆t · E∗(∞) + Ft,∆t(∞)

= ∆t ·

(
−A+ 0

BqP∗ −m

)
+ log

qHt+∆t

qHt

(
1 0
−1 0

)
− 1

B
log

qPt+∆t

qPt

(
0 0
A− 0

)

=

 −A+
∆t+ log

qHt+∆t

qHt
0

BqP∗ ∆t− log
qHt+∆t

qHt
− 1

B
log

qPt+∆t

qPt
−m∆t

 .

Next, any matrix

M =

(
a 0
c d

)
, a, c, d ∈ R,

has eigenvalues a and d and the corresponding eigenvectors
(
a−d
c
, 1
)T

and (0, 1)T .
Therefore,

eM =

(
a−d
c

0
1 1

)(
ea 0
0 ed

)(
a−d
c

0
1 1

)−1

=

(
a−d
c

0
1 1

)(
ea 0
0 ed

)(
c

a−d 0

− c
a−d 1

)
=

(
ea 0

c
a−d(ea − ed) ed

)
.

Therefore,

exp

(
∆t · E∗(ξ) + Ft,∆t(ξ)

)
=

(
qHt+∆t

qHt
e−A

+∆t 0

vt,∆t e−m∆t,

)

where

vt,∆t =
BqP∗ ∆t− log

qHt+∆t

qHt
− 1

B
log

qPt+∆t

qPt

−(A+ −m)∆t+ log
qHt+∆t

qHt

(
qHt+∆t

qHt
e−A

+∆t − e−m∆t

)
.

Next, by Theorem 4.4, Corollary 4.5,

hHHt (∞) = qHt , hHPt (∞) = hPHt (∞) = 0, hPPt (∞) = qPt .
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Then, by (A.27), (A.28),(
hHHt,∆t(∞)

hHPt,∆t(∞)

)
=

(
qHt+∆t

qHt
e−A

+∆t 0

vt,∆t e−m∆t,

)(
qHt
0

)
=

(
qHt+∆t

qHt
e−A

+∆tqHt
vt,∆tq

H
t

)
, (A.31)

(
hPHt,∆t(∞)

hPPt,∆t(∞)

)
=

(
qHt+∆t

qHt
e−A

+∆t 0

vt,∆t e−m∆t,

)(
0
qPt

)
=

(
0

e−m∆tqPt

)
. (A.32)

As a result,
g̃PHt,∆t(∞) = hPHt,∆t(∞) = 0,

next, by (A.29), (A.30)

hHHt,∆t(∞) = qHO∆t , and hence g̃HHt,∆t (∞) = 0,

hPPt,∆t(∞) = qPO∆t , and hence g̃PPt,∆t(∞) = 0,

whereas

g̃HPt,∆t(∞) = hHPt,∆t(∞) = vt,∆tq
H
t

=
BqP∗ ∆t− log

qHt+∆t

qHt
− 1

B
log

qPt+∆t

qPt

−(A+ −m)∆t+ log
qHt+∆t

qHt

(
qHt+∆t e

−A+∆t − qHt e−m∆t

)
, (A.33)

and hence, in general, g̃HPt,∆t(∞) 6= 0.
Step 3. Prove the integrability of g̃ABt,∆t(ξ), AB ∈ {HH,HP ′, PH, PP}. We

denote
Mt,∆t(ξ) = ∆t · E∗(ξ) + Ft,∆t(ξ). (A.34)

By the above,(
g̃HHt,∆t (ξ)

g̃HP
′

t,∆t (ξ)

)
=

(
hHHt,∆t(ξ)

hHPt,∆t(ξ)

)
−

(
hHHt,∆t(∞)

hHPt,∆t(∞)

)

= eMt,∆t(ξ)

(
hHHt (ξ)
hHPt (ξ)

)
− eMt,∆t(∞)

(
qHt
0

)
= eMt,∆t(ξ)

(
g̃HHt (ξ)
g̃HPt (ξ)

)
+
(
eMt,∆t(ξ) − eMt,∆t(∞)

)(qHt
0

)
. (A.35)

The entries of matrix Mt,∆t(ξ) are bounded in ξ functions, and also functions
g̃HHt (ξ), g̃HPt (ξ) are integrable, by the proof of Theorem 4.4 above. Then the first
summand in (A.35) is integrable. The second summand in (A.35) is a vector which
has integrable in ξ entries iff its (any) norm is integrable. The latter evidently holds
if
∥∥eMt,∆t(ξ) − eMt,∆t(∞)

∥∥ is integrable.
For any (square) matrices A and B, one has, for n ∈ N,

An −Bn =
n−1∑
j=0

Aj(A−B)Bn−1−j,
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hence

‖An −Bn‖ ≤ nmax{‖A‖, ‖B‖}n−1‖A−B‖.

Therefore,

‖eA − eB‖ ≤
∞∑
n=1

1

n!
‖An −Bn‖ ≤

∞∑
n=1

1

(n− 1)!
max{‖A‖, ‖B‖}n−1‖A−B‖

= emax{‖A‖,‖B‖}‖A−B‖. (A.36)

Hence, since

Mt,∆t(ξ)−Mt,∆t(∞) = ∆t ·

(
J̃H∗ (ξ) −qH∗ b̃(ξ)

0 qH∗ b̃(ξ)

)
− 1

B
log

qPt+∆t

qPt

(
ã−(ξ) b̃(ξ)

0 −b̃(ξ)

)
,

one can conclude that
∥∥eMt,∆t(ξ) − eMt,∆t(∞)

∥∥ is integrable, so such are the entries
of the second summand in (A.35).

The proof of the integrability of g̃PHt (ξ) and g̃PPt (ξ) can be done in the same
way.

Proof of Theorem 4.7

Step 1: Eigenvalues of E∗(ξ) We prove firstly that the eigenvalues of E∗(ξ)
have indeed negative real parts (and even uniformly in ξ ∈ Rd).

For each ξ ∈ Rd, the eigenvalues λ1(ξ), λ2(ξ) ∈ C of E∗(ξ) are equal to

1

2

(
tr
(
E∗(ξ)

)
±
√(

tr(E∗(ξ))
)2 − 4 det(E∗(ξ))

)
.

By (A.19), (A.20), there exist α, β > 0 such that, for all ξ ∈ Rd,

tr
(
E∗(ξ)

)
= a∗(ξ) + d∗(ξ) ≤ −α,

det
(
E∗(ξ)

)
= a∗(ξ)d∗(ξ)− b∗(ξ)c∗ ≥ β.

We denote

z∗(ξ) :=
(
tr(E∗(ξ))

)2 − 4 det(E∗(ξ)) =
(
a∗(ξ)− d∗(ξ)

)2
+ 4b∗(ξ)c∗.

Substituting the expressions from (4.17), one can easily rewrite

z∗(ξ) =
(
A+ − J̃H∗ (ξ)− qH∗

(
B − b̃(ξ)

))2 − 4mqP∗ b̃(ξ).

Therefore, if z∗(ξ) < 0, then the eigenvalues are not real, and

Reλ1(ξ) = Reλ2(ξ) ≤ −α
2
< 0;

otherwise, if z∗(ξ) ≥ 0 then the eigenvalues are real, and e.g.

λ1(ξ) ≤ λ2(ξ) =
1

2

(
tr
(
E∗(ξ)

)
+

√(
tr(E∗(ξ))

)2 − 4 det(E∗(ξ))
)
.
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We have also, by (A.19), (3.16),

tr
(
E∗(ξ)

)
= J̃H∗ (ξ)− A+ + qH∗

(̃
b(ξ)−B) ≥ −A+ − qH∗ A− − A+ − 2BqH∗ =: −γ.

For a fixed d > 0, function f(x) := x +
√
x2 − 4d is negative and decreasing on

[−γ,−α], therefore, f(x) ≤ f(−γ). As a result,

λ2(ξ) ≤ 1

2

(
−γ +

√
γ2 − 4 det(E∗(ξ))

)
≤ 1

2

(
−γ +

√
γ2 − 4β

)
< 0.

Hence, in both cases, there exists δ > 0, such that

Reλ1(ξ) ≤ Reλ2(ξ) ≤ −δ, ξ ∈ Rd.

Step 2: Convergence as ∆t→∞ By (A.26), for t ≥ 0 and ξ ∈ Rd,

lim
∆t→∞

Ft,∆t(ξ) = log
qH∗
qHt

(
1 0
−1 0

)
− 1

B
log

qP∗
qPt

(
ã−(ξ) b̃(ξ)

A− −b̃(ξ)

)
, (A.37)

there exists T > 0 such that, for all ∆t > T , the eigenvalues λ̂i = λ̂i(t,∆t, ξ),
i = 1, 2, of the matrix

E∆t :=
1

∆t
Mt,∆t = E∗(ξ) +

1

∆t
Ft,∆t(ξ) (A.38)

satisfy
Re λ̂1 ≤ Re λ̂2 < −δ < 0, ∆t > T.

Let P∆t be the matrix constructed by eigenvectors of E∆t, so that

E∆t = P∆tL∆tP
−1
∆t , L∆t :=

(
λ̂1 0

0 λ̂2

)
.

By (A.38) and (A.37),

lim
∆t→∞

P∆t = P (ξ), lim
∆t→∞

P−1
∆t = P (ξ)−1,

where P (ξ) is the matrix constructed by eigenvectors of E∗(ξ).
Let ‖ · ‖2 denote the Euclidean (a.k.a. spectral) matrix norm. Using the repre-

sentation
eMt,∆t(ξ) = e∆t·E∆t = eP∆t(∆t·L∆t)P

−1
∆t = P∆te

∆t·L∆tP−1
∆t ,

with

e∆t·L∆t =

(
e∆t·λ̂1 0

0 e∆t·λ̂2

)
,

we may estimate, for large enough ∆t,∥∥∥eMt,∆t(ξ)
∥∥∥

2
≤
∥∥P∆t

∥∥
2

∥∥P−1
∆t

∥∥
2
e∆t·Re λ̂2

≤
(

1 +
∥∥P (ξ)

∥∥
2

∥∥P (ξ)−1
∥∥

2

)
e−δ∆t → 0, ∆t→∞.

Therefore both summand in (A.35) converges to zero-vectors pointwise as ∆t→∞.
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Step 3: Convergence as t→∞, item (a) By Proposition 4.1 and Remark A.2,
there exists c1, c2 > 0, such that 0 < c1 < qAt < c2, A ∈ {H,P}, for all t > 0,
provided that qH0 > 0, qP0 > 0. Therefore, by (A.25), (A.26), (A.34), the entries
of matrix Mt,∆t(ξ) are uniformly bounded in both t ≥ 0 and ξ ∈ Rd. Next, by
Theorem 4.4, g̃ABt (ξ) converges to g̃ABt (ξ), A,B ∈ {H,P}, in L1(Rd). Clearly, for
any function |ut(ξ)| ≤ C, t ≥ 0, ξ ∈ Rd, which converges to some u∗(ξ) pointwise
as t→∞, and for any wt → w∗, t→∞, in L1(Rd), we have

‖utwt − u∗w∗‖L1(Rd) ≤ C‖wt − w∗‖L1(Rd) + ‖(ut − u∗)w∗‖L1(Rd) → 0,

by the assumption and the dominated convergence theorem. Therefore, the follo-
wing entry-wise limit, cf. (A.35), takes place in L1(Rd):

eMt,∆t(ξ)

(
g̃HHt (ξ)
g̃HPt (ξ)

)
→ e∆t·E∗(ξ)

(
g̃HH∗ (ξ)
g̃HP∗ (ξ)

)
, t→∞,

where we used that, by (A.26),

lim
t→∞
Ft,∆t(ξ) = 0, ∆t ≥ 0, ξ ∈ Rd, (A.39)

where, recall, 0 denotes 2× 2 matrix of zeros.
Next, by (A.36),∥∥eMt,∆t(ξ) − eMt,∆t(∞)

∥∥ ≤ emax{‖Mt,∆t(ξ)‖,‖Mt,∆t(∞)‖}

×

(∥∥∥∥∆t ·

(
J̃H∗ (ξ) −qH∗ b̃(ξ)

0 qH∗ b̃(ξ)

)∥∥∥∥+

∥∥∥∥ 1

B
log

qPt+∆t

qPt

(
ã−(ξ) b̃(ξ)

0 −b̃(ξ)

)∥∥∥∥
)
,

and the latter can be majorized uniformly in t by the norm of a matrix with
integrable in ξ entries. As a result, the second summand in (A.35) converges to its
limit in L1(Rd) as well:

(
eMt,∆t(ξ) − eMt,∆t(∞)

)(qHt
0

)
→
(
e∆t·E∗(ξ) − e∆t·E∗(∞)

)(qH∗
0

)
, t→∞.

As a result, the following convergence is in L1(X) (entrywise) as t→∞(
g̃HHt,∆t (ξ)

g̃HP
′

t,∆t (ξ)

)
→ e∆t·E∗(ξ)

(
g̃HH∗ (ξ)
g̃HP∗ (ξ)

)
+
(
e∆t·E∗(ξ) − e∆t·E∗(∞)

)(qH∗
0

)
.

As a result, the inverse Fourier transforms converges uniformly in space. For the
rest two functions, the proof is the same.

Step 4: Convergence as t→∞, items (b)–(c) The convergences in (4.36)–
(4.37) follows immediately from the expressions (A.27)–(A.28) and the limit in
(A.39). This, together with Step 1 above finishes the proof of item (c).
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Next, by the above, for each AB ∈ {HH,HP ′, PH, PP},

g̃ABt,∆t(ξ) = hABt,∆t(ξ)− hAB∞,t,∆t(∞).

By the proved in (4.36)–(4.37), one can pass here to the limit as t → ∞. Then,
by passing t to ∞ in (A.31)–(A.32), we immediately get the first three equalities
in (4.34). Finally, by (A.33), for A+ 6= m,

hAB∞,t,∆t(∞) = lim
t→∞

BqP∗ ∆t− log
qHt+∆t

qHt
− 1

B
log

qPt+∆t

qPt

−(A+ −m)∆t+ log
qHt+∆t

qHt

(
qHt+∆t e

−A+∆t − qHt e−m∆t

)

=
BqP∗ q

H
∗ ∆t

−(A+ −m)∆t

(
e−A

+∆t − e−m∆t
)

=
mqP∗

m− A+

(
e−A

+∆t − e−m∆t
)

;

and for A+ = m, also from (A.33), we have:

hAB∞,t,∆t(∞) = lim
t→∞

BqP∗ ∆t− log
qHt+∆t

qHt
− 1

B
log

qPt+∆t

qPt

log
qHt+∆t

qHt

(
qHt+∆t − qHt

)
e−A

+∆t

= lim
t→∞

BqP∗ ∆t− 1
B

log
qPt+∆t

qPt

log
qHt+∆t

qHt

(
qHt+∆t

qHt
− 1

)
qHt e

−A+∆t,

and since, by L’Hôpital’s rule, lim
x→1

x−1
lnx

= lim
x→1

1
1
x

= 1, we conclude that

hAB∞,t,∆t(∞) = BqP∗ ∆tqH∗ e
−A+∆t = mqP∗ ∆t e−A

+∆t

for A+ = m, that finishes the proof of (4.35).
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