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1 Introduction

Integrable (classical) field theories, a prototypical example being the principal chiral model

(PCM), offer a particularly tractable — and yet rich — class of theories. Given the principal

chiral model on a group manifold G, one might wish to deform it in such a way so as to

preserve its integrability whilst generalising the resulting target space geometry, possibly

adding a B-field contribution. To this end, two models have been particularly successful,

namely the η-deformation of the PCM (sometimes called Yang-Baxter model) and the

λ-deformation of WZW CFTs, introduced respectively by Klimcik [2] and Sfetsos [3].

Recent work has highlighted a close connection between such integrable models and

Poisson-Lie (PL) symmetry. A non-linear σ-model is said to have a Poisson-Lie symmetry

when the target space manifold, M, admits the action of a Lie group G (with algebra

g) for which the corresponding world sheet Noether currents are not conserved (i.e. G
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is not an isometry group) but obey a modified on-shell conservation law that is non-

commutative with respect to a “dual” algebra g̃ [4, 5]. Such PL models have an elegant

Hamiltonian formalism, now called the E-model [6–8], describing currents on a Drinfel’d

double, i.e. a 2D-dimensional Lie group, D, whose algebra, d, can be decomposed into two

maximally isotropic subalgebras g and g̃ with respect to an ad-invariant inner product.

The η-deformation of the PCM on G falls into this class [8] with the Drinfel’d double

given by the complexification of the Lie algebra, d = gC. Relaxing the requirement that

d be a Drinfel’d double allows the E-model to also describe the λ-deformation of WZW

CFTs [9, 10].

The above construction has been generalised in two key ways. First one can consider a

multi-parametric integrable deformation of the theories on group manifolds. As an example,

the so-called bi-Yang-Baxter deformation [11, 12] augments the deformation parameter,

η, of the Yang-Baxter model with a second deformation parameter, ζ, whilst retaining its

(classical) integrability. Further work in this direction [13–15] extends this model including

a Wess-Zumino term.

A second generalisation is to consider models defined on spaces other than group man-

ifolds. This was initiated in [5], where E-models with a gauge symmetry are shown to

give rise to the “dressing coset” construction of Poisson-Lie T-duality. This construction

is motivated by the observation that a description without a gauge symmetry is not suit-

able to capture Abelian and non-Abelian T-duality which act on isometries with fixed

point. The additional data this construction requires is an isotropic subgroup H which

allows one to realise the target space of the underlying non-linear σ-model as the double

coset M = H\D/G̃. This setting has come under renewed interest since it includes (the

bosonic sector of) integrable deformations of the AdS5×S5 superstring [2, 16–23]. Recently,

Poisson-Lie T-duality and variations thereof were studied in the context of non-geometric

backgrounds [24].

In this article we will consider integrable deformations on a particular class of coset

spaces where h = Lie(H) is coisotopic. In a first instance, they result in a very natural

Ansatz for a deformed Lagrangian containing two deformation parameters. Although such

“double deformations” have already been considered in a previous work [25], their integra-

bility and geometric properties have so far remained quite obscure. In fact, these models

come with a precise constraint, detailed in appendix A, which allows for the identification

of their target spaces as Poisson homogeneous spaces. In order to address integrability, we

shall require these spaces to be additionally Hermitian and symmetric. As it turns out,

complex projective spaces CPn are the natural setting where to carry out our investiga-

tion. They are exemplars of a broader class of algebraic varieties, known as generalised flag

manifolds, which have recently benefited, alongside para-complex manifolds, from a surge

of interest in the physics literature as they materialise in rich examples [26–31].

The key results of this paper include:

1. We show how generalised geometry and, in particular, generalised frame fields in the

context of E-models are a useful tool to investigate properties of (integrable) σ-models

on both group manifolds and coset spaces.

– 2 –



J
H
E
P
1
0
(
2
0
2
0
)
0
8
6

2. If the coset space G/H is an Hermitian and Poisson homogenous space (i.e. H is

a coistropic subgroup) we demonstrate that the deformed target space geometry is

generalised Kähler [32, 33] (equivalently, bi-Hermitian [34]). As an example, and

with future holographic applications in mind, we consider the case of G/H= CPn

and construct its generalised Kähler structure. We show that for n > 1 the space

is parametrised by semi-chiral multiplets plus an additional chiral multiplet when

n is odd. If n = 1 a single chiral multiplet turns out to be sufficient. We give an

explicit and elegant closed form for the pure spinors corresponding to the generalised

complex structures for every n and provide the generalised Kähler potential that

entirely specifies the geometry for n = 1, 2.

3. Writing down a tentative two-parameter deformation when G/H is also a symmetric

space we prove, by giving an explicit Lax connection, the classical integrability of this

would-be double deformation. We complete the analysis by finding the twist function

describing the Maillet algebra [35] of such models. As a byproduct of this analysis, we

identify a new tension and deformation parameter making the double deformation

equivalent to the single parameter deformation. We confirm this by constructing

a diffeomorphism undoing the deformation induced by the second parameter in an

appropriate chart.

The outline of the remainder of this paper is as follows: in section 2 we discuss the

world sheet of the theories under consideration taking both Lagrangian non-linear σ-model

and Hamiltonian E-model perspectives. In section 3 we focus our attention to a class of

two-parameter integrable Poisson-Lie coset models constructing their Lax representation

and demonstrating that they fulfil the requirement of strong integrability. In section 4 we

show that they induce a generalised Kähler structure on the target space, culminating in

some explicit examples based on CPn.

2 World sheet perspective

The generalised coset construction which we will present in the next section was originally

motivated by closed string world sheet theories with Poisson-Lie symmetry. We shall begin

in section 2.1 by presenting a conventional Poisson-Lie σ-model, taking the opportunity

to review some known features. From this perspective one can readily extract conven-

tional target space geometric data even though the underlying algebraic structure is rather

obscured. To expose this structure it is helpful to adopt a Hamiltonian approach called

the E-model [8] — introduced in section 2.2 — and construct the corresponding Poisson

brackets.

2.1 Poisson-Lie σ-models and subgroup invariance

The Poisson-Lie non-linear σ-model on a Lie group G is defined by the action1

SG =
1

π

∫
Σ

d2σ ea+
(
E−1

0 + πg
)−1

ab
eb− , (2.1)

1We use coordinates ξ± = τ±σ such that ∂± = 1
2
(∂τ±∂σ) with volume element d2σ = dσdτ = 1

2
dξ+dξ−.
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in which ea± denote the pull-backs of the left-invariant Maurer-Cartan one-forms ea = eaidx
i

onto the world sheet given in terms of a group valued map g : Σ → G by e± = g−1∂±g =

ea±Ta and Ta, with a = 1, · · · , D and D = dimG, generate the algebra g. For later use we

denote the vector fields dual to these one-forms as va = va
i∂i.

The matrix E0 = g0 + b0 contains D2 constant entries (which one could promote to

fields depending on external spectator coordinates) expressed in terms of a symmetric and

a skew-symmetric matrix, g0 and b0, respectively. π is a Poisson-Lie structure compatible

with the group multiplication of G [36], i.e.2

πg1g2 = πg2 + Adg−1
2
⊗Adg−1

2
πg1 , (2.2)

thus turning the pair (G, π) into a Poisson-Lie group. The Poisson structure induces a Lie

algebra structure on the dual vector space g∗, which we will denote by g̃, and we indicate the

corresponding structure constants by f̃abc. The two algebras can be put together so as to

form a (classical) Drinfel’d double d = g+g̃, a 2D-dimensional Lie algebra equipped with an

ad-invariant inner product ⟪•, •⟫ for which g and g̃ are maximally isotropic subalgebras [4].

Whilst the action (2.1) is not invariant under global G transformations acting from

the left, the properties of π ensure that the corresponding would-be-Noether currents j,

whilst not conserved, still obey a modified non-commutative conservation law [4]

d ? ja = f̃bca ? jb ∧ ?jc . (2.3)

It is this peculiar property that is called a Poisson-Lie symmetry.

By introducing local coordinates xi on G, one can extract from the action (2.1) a metric

gij and a two-form bij . For later use we also define local coordinates on the double (xi, x̃ı̃)

on respectively G and G̃ in D = exp d and the corresponding doubled partial derivatives

∂I = (∂ ı̃, ∂i). In general, π will contain rather involved functional dependence on these local

coordinates and the inverted matrix that defines (2.1) will be complicated, thus rather

obscuring the elegance of the action that is indicated by the equation of motion (2.3).

Instead, a clearer view is obtained by working with the generalised metric which combines

the metric and B-field in a unified object. We will come back to this point in the next

subsection.

An example of a Poisson-Lie symmetric model that will play a particular role in this

letter is the well-established two-parameter integrable model known as the bi-Yang-Baxter

theory [11, 37], which is associated to the Drinfel’d double d = gC, and for which

E−1ab
0 + πab = tκab + tηRab

g + tζRab . (2.4)

Here η and ζ are real valued deformation parameters, t is the tension for the σ-model,

g ∈ G is a group element, κ is the Killing form, Rab = −Rba = κacRc
b solves the modified

classical Yang-Baxter equation and Rg = Adg−1 · R · Adg. As an element of g ∧ g, the

Yang-Baxter matrix R is constructed following the Drinfel’d-Jimbo prescription, namely

2For the adjoint action, we adopt the convention Adgx ≡ gxg−1.
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taking the wedge product of (properly normalised) positive and negative roots3

R =
1

2

∑
λ∈∆+

Xλ ∧X−λ ∈ g ∧ g. (2.5)

With abuse of notation, we will use the same letter R to indicate the corresponding Lie al-

gebra endomorphism, now operating diagonally on the Cartan-Chevalley generators. The

essential properties enjoyed by the latter are that it obeys R3 = −R and projects to

zero directions in the Cartan subalgebra of g. In fact, the R-matrix completely cap-

tures the Lie algebra structure of the dual bialgebra g̃ to g inside d through the identity

f̃abc = 2Rd[afdc
b].

Suppose now g admits a subalgebra h such that g = h + m is a symmetric space

decomposition. That is, we assume the presence of an involutive Lie algebra automorphism

σ grading g, whereby we identify the ±1 eigenspaces g(0) and g(1) with h and m, respectively.

We thus split the generators accordingly Ta =
(
Ta, Tα

)
such that m = span(Ta) and

h = span(Tα). A natural suggestion for a Poisson-Lie σ-model on the coset G/H (which

we will always take to be reductive) is to restrict the indices in (2.1) to run over m, and so

we consider

SG/H =
1

π

∫
Σ

d2σ ea+
(
E−1

0 + πg
)−1

ab
eb− . (2.6)

However, a priori, the degrees of freedom entering this action still contain those corre-

sponding to the subgroup H and thus, without imposing further constraints, (2.6) does

not provide a description of the coset G/H. This is remedied by demanding that the ac-

tion develops a local gauge symmetry under the action of H from the right which serves

to eliminate the unwanted degrees of freedom. A short calculation shows that under an

infinitesimal transformation this is the case provided that [38]

0 = f̃abγ + E−1 ad
0 fγd

b + fγd
aE−1 db

0 . (2.7)

The doubly deformed model we will introduce will demand us to specialise to the situation

where f̃abγ = 0. This can be stated in a more invariant fashion as demanding that h is

coistropically4 embedded in g. A useful consequence of this condition is that the coset-

coset components of the bi-vector evaluated on a subgroup element vanish, i.e. πabh = 0 for

h ∈ H. As a consequence, under the parametrisation g = mh with h ∈ H, we have from

the multiplication law (2.2) that

ea(g) = (Adh−1)b
aeb(m) , πabg = (Adh−1)c

a(Adh−1)d
bπcdm . (2.8)

This makes it immediately clear that, provided E0 is H-invariant, the action (2.6) only

depends on the coset representative m in the decomposition g = mh.

3We adopt a Cartan-Chevalley basis {Hλ, Xλ, X−λ}, where λ ∈ ∆+ is a positive root, Hλ span the

Cartan subalgebra and X±λ are ladder operators. We choose the normalisation, with respect to the Killing

form 〈·, ·〉, 〈Xλ, X−λ〉 = 2
〈λ,λ〉 .

4The mathematical terminology used here is detailed in appendix A.
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2.2 E-model for group manifolds

In this section we will first define E-models for group manifolds and introduce the central

concept of generalised frame fields. The latter enables one to access the σ-model geometry

directly from the corresponding E-model.

The E-model [6–8] is a theory of currents J = TAJ A(σ) = g−1∂σg valued in the

loop algebra of d which originate from the embedding map g : Σ→ D of the string world

sheet into the Drinfel’d double and TA are the dimD generators of d. The dynamics is

generated by the Hamiltonian

HamE =
1

4π

∮
dσ⟪J , EJ ⟫ , (2.9)

in which the eponymous operator E : d → d is an involution, E2 = 1, that is self-adjoint

with respect to the inner product ⟪·, E·⟫ = ⟪E·, ·⟫. This involution can be specified by D2

parameters which are associated to those of the Poisson-Lie σ-model by

EAB = (Hη−1)A
B , HAB =

(
g−1

0 g−1
0 b0

−b0g−1
0 g0 − b0g−1

0 b0

)
AB

, ηAB =

(
0 1

1 0

)
AB

, (2.10)

where g0 and b0 are, respectively, a constant symmetric and antisymmetric matrix and

HAB is the associated generalised metric. The Poisson structure of the theory is defined to

be a current algebra

{JA(σ),JB(σ′)} = 2πFAB
CJC(σ)δ(σ − σ′) + 2πηABδ

′(σ − σ′) , (2.11)

in which FAB
C are the structure constants on d. Accordingly, we find the equations of

motion

∂τJ = {J ,HamE} = ∂σEJ + [EJ ,J ] . (2.12)

Taking into account that E is an involution, we could also decompose the currents into

chiral and anti-chiral parts

J± =
1

2
(1± E)J , (2.13)

and rewrite (2.12) as

∂−J+ + ∂+J− + [J−,J+] = 0 . (2.14)

Since EJ± = ±J±, only half of the components of J+ and J− are independent. There-

fore, although the E-model apparently depends on 2D degrees of freedom contained in g ,

the first order equations of motion allow half of them (those associated to the subalgebra

g̃) to be eliminated on-shell to yield second order equations for the rest (those associated

to g). In this way the dynamics of the theory specified by the σ-model (2.1) on the target

spaceM = D/G̃ is recovered. The Hamiltonian for a non-linear σ-model can be expressed

in terms of a generalised metric HIJ as

HamH =
1

4π

∮
dσ
(

2πp ∂σx
)I
HIJ

(
2πp

∂σx

)J

with HIJ =

(
tg−1 g−1b

−bg−1 t−1(g − bg−1b)

)
IJ

,

(2.15)
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in which the canonical momentum is given by pi = (gij∂τx
j − bij∂σx

j)/2πt and where

(gij , bij) is the geometric data entering the σ-model. Here the indices I denote that the

fields act on the generalised tangent space of M and one has the usual canonical Poisson

brackets {xi(σ), pj(σ
′)} = δijδ(σ − σ′). Given the structure of HamH, it is natural to

introduce some generalised currents JI =
(
∂σx

i, 2πpi
)

taking values in the generalised

tangent space of the target space M. By virtue of the canonical Poisson brackets for

(x, p), they can be shown to obey

{JI(σ),JJ(σ
′)} = 2πηIJδ

′(σ − σ′) , (2.16)

where η is again the O(d, d)-invariant metric. The same choice of letter for these currents is

not accidental as they can be related to the E-model currents JA by introducing generalised

frame fields EA
I such that

JA = EA
IJI , EA

IηIJEB
J = ηAB , EA

IHIJEB
J = HAB . (2.17)

Here, and henceforth, ηAB and ηIJ are used to raise and lower “doubled” algebra and target

space indices respectively. The generalised frame field EA
I is the generalised geometry

analog of the left invariant Maurer-Cartan forms eai on the target space group manifold

M = G. For each value of the algebra index A, EA
I defines a generalised vector — a

section of the generalised tangent bundle E = TM⊕ T ∗M — comprising of a vector field

and a one-form (whose components in a coordinate basis are EA
i and EAi, respectively).

For a Poisson-Lie σ-model on a group manifold the generalised frame fields are [39]

EA =

{
Ea = πabvb + ea

Ea = va
, (2.18)

and obey5

LEAEB = FAB
CEC . (2.19)

This relation is well known in the context of generalised parallellisable spaces and its

connection to the E-model was recently studied [40].

Armed with such a generalised frame field, the elegant results of Alekseev and

Strobl [41] show that one can indeed, starting from the canonical Poisson-brackets for

pi and xi appearing in (2.15), derive the Poisson brackets for the currents JA as

{JA(σ),JB(σ′)} = 2πLEAEB
IEC

IJCδ(σ − σ′) + 2πηABδ
′(σ − σ′) . (2.20)

Upon substitution of (2.19) into (2.20) one does consistently re-obtain the Poisson-

brackets (2.11).

5Here we are using the generalised Lie derivative acting on sections of the generalised tangent space.

For a pair of generalised vectors U = ui∂i + µidx
i and V = vi∂i + νidx

i the derivative takes the form

LUV = [u, v] + (Luν − ιvdµ) ,

where L is the conventional Lie derivative.
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In the remainder of this section, we will take the opportunity to work out and clarify,

following [14, 42], the relation between the σ-model and the E-model description. Although

we will not aim to encompass all possible E-models, the construction below will cover most

of the relevant models studied to date.

The equations of motion for the σ-model on G are well-known to be expressed in terms

of some currents j± ∈ g; the latter, however, are not in general trivially embedded in their

doubled (anti)chiral counterparts J±. To keep track of this, we introduce a surjective map

S : g× g→ d, called the S-map, satisfying the following axioms for all x, y ∈ g

S(x, y) = S(x, 0) + S(0, y) , (2.21)

S(x, y) = 0 iff x = y = 0 , (2.22)

S(x, y) = ES(x,−y) . (2.23)

Given the splitting (2.13), we are allowed to identify

J+ = S(j+, 0) and J− = S(0, j−) with j± ∈ Ω1(Σ, g) . (2.24)

Particularly interesting are E-models where the time evolution (2.14) can be recast as the

flatness

∂+L− − ∂−L+ − [L−,L+] = 0 (2.25)

of a gC-valued Lax connection L(z) = L+(z)dξ+ + L−(z)dξ− with spectral parameter z.

In fact, (2.25) guarantees their classical weak integrability. For example, one can consider

a class of models whose equation of motion and Bianchi identity have the form

∂±j∓ + [(ν± +O±) j±, j∓] = 0 , (2.26)

where ν± ∈ C and O± is an endomorphism of g.

Many different models like, for instance, the principal chiral model, the Yang-Baxter

model (possibly with a Wess-Zumino term) and the bi-Yang-Baxter model fit into this

scenario, upon choosing the appropriate form for ν± and O±. They all admit the Lax

representation with

L± = O±j± +
2ν±

1± z
j± . (2.27)

For each of these, in order to recover this result from the E-model, a further condition

replicating (2.26) is needed, namely

[S(0, y), S(x, 0)] = S([(ν− +O−)y, x], [(ν+ +O+)x, y]) . (2.28)

A similar construction has already been considered, albeit in a slightly more abstract fash-

ion, in some explicit cases, for instance for the bi-Yang-Baxter model in [43] where d = gC.

2.3 E-model for coset spaces

On coset spaces the situation is similar albeit the derivation of the Poisson brackets is more

involved. An extensive and general analysis of this setting was recently carried out in [1];

here, we aim at specialising the construction therein to the case at hand.
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We take the generalised coset space6 M = H\D/G̃ and label its generators as TA =

(T̃ a, Ta), with M = span(TA), where this partition of generators respectively spans m∗ and

its dual m. In this case we wish to restrict the Hamiltonian to depend only on the currents

J = TAJ A(σ). To better fit into this formalism, the condition (2.7) can be equivalently

rewritten as

0 = FαA
CHCB + FαB

CHCA , (2.29)

and the Jacobi identity of d ensures that (Tα)A
B = FαA

B generate h. Hence, we see that

the generalised metric is ad-invariant under H-action. As a result the model develops a

gauge symmetry and the currents along the subgroup directions become non-dynamical,

invoking constraints.

Just as one can obtain conventional frame fields for a normal coset G/H by reducing

and gauge fixing the frames defined on the group G, we can obtain generalised frame fields

on the generalised coset by adopting a similar process. A particularly simple example is

provided by the case of H being a coisotropic subgroup of a Poisson-Lie group G (recall from

the discussion around eq. (2.7) that this requires f̃abγ = 0) since then the Poisson structure

on G descends directly to one on G/H [36]. This is sometimes called a Bruhat-Poisson

structure and denoted by πB. Paralleling the discussion for E-models on group manifolds,

the σ-model geometry for coset spaces can be obtained by introducing the generalised frame

fields given by [1]

EA =

{
Ea = πabB vb + ea

Ea = va
. (2.30)

Here ea are the (gauge-fixed) coset components of the left invariant one-forms and va are

their Poincaré dual vector fields. They arise naturally from the decomposition of the left-

invariant Maurer-Cartan form m−1dm = Tae
a + Tαe

α where m ∈ M parameterises the

generalised coset space. Similarly to conventional coset spaces, we need to invoke an h-

valued generalised connection Ωα (introduced in [1]) entering the generalised frame field

on the coset mediating the H-compensating transformations and taking care of the gauge

invariance,

Ωα = eα + παbvb . (2.31)

In order to find the frame algebra obeyed by the generalised frame field, we make use of

the machinery in [1] to obtain

LEAEB = FAB
CEC + 2Ωα

[AFαB]
CEC + FαABΩα ,

LΩαEB = (ΩαβFβBC + FαBC)EC + FαβγΩβ
BΩγ ,

(2.32)

where Ωα = ΩαBEB, so that

{JA(σ),JB(σ′)} = 2πFABC(σ)J C(σ)δ(σ − σ′) + 2πηABδ
′(σ − σ′) . (2.33)

Here the currents JA are defined in the same spirit as in (2.17), where we now restrict

indices to run over generalised coset generators, A→ A, and coordinates, I→ I. In contrast

6For the case we will eventually be interested in, i.e. CPn, we will assume that the coisotropic subgroup

H sits in G. More general situations for the dressing coset construction are addressed in [1].

– 9 –



J
H
E
P
1
0
(
2
0
2
0
)
0
8
6

to the case of a group manifold, the FABC appearing in (2.33) are no longer constants but

instead given by

FABC(σ) = FABC + 3Ω[ABC](σ) , (2.34)

where ΩAB
C = Ωδ

AFδB
C . Enforcing the corresponding Jacobiator one obtains the consis-

tency requirement

D[AFBCD]
!

=
3

4
F[AB

EFECD] , (2.35)

where we have introduced the derivative operator DA = EA
I∂I obtained by contracting the

doubled partial derivative with respect to the generalised coset coordinates with the frame

fields restricted as above. Due to the properties of the compensator Ω and the generalised

frame field this condition is satisfied by construction [1]. To completely characterise the

system we shall also require the Poisson brackets for the compensator

{JA(σ),Ωβ
C(σ′)} = 2πDAΩβ

Cδ(σ − σ′) , {Ωα
A(σ),Ωβ

B(σ′)} = 0 . (2.36)

The Jacobiators involving the combinations (J ,J ,Ω), (J ,Ω,Ω) and (Ω,Ω,Ω) vanish

identically as well.

The equations of motion can be cast in a form similar to (2.14) by introducing the

quantity B± = TαBα
± = TαΩα

BJ B
± to find equations for the currents JA(σ)

∂−J+ + ∂+J− + [J−,J+] + [B−,J+] + [B+,J−] = 0 . (2.37)

Note that the two objects J± = J A
± TA are defined as in eq. (2.13). While the equations

of motion for B± read

∂+B− − ∂−B+ + [B+,B−] + Ph[J+,J−] = 0 , (2.38)

where Ph is a projector from d to the isotropic subgroup h.

Let us now construct the S-map explored above for coset E-models when H is a

coisotropic subgroup and G/H a symmetric space. This latter assumption is sufficient

to prove that the dual algebra g̃ equipped with the Lie bracket induced by the R-matrix

gives rise to the symmetric space M̃ = G̃/H∗, h∗ = Lie(H∗) being the vector space dual to

h (see appendix A for a concise proof). As a consequence, the structure coefficients FABC
vanish and with them so does the projection along M of the bracket [J−,J+]. In such a

scenario we wish to express the currents J± valued in M in terms of the m-valued currents

j± using the S-map as before. To this end, suppose that S : g × g → d satisfies the two

constraints (2.21) and (2.22). Assume now it admits a restriction to the coset m such that

its image lies in M, ImS(m,m) ⊂M. The constraint (2.23) is preserved, provided that we

now interpret, using the coisotropy property of h, E as the restriction of the generalised

metric to the generalised coset, i.e. E : M→M, and take x, y ∈ m. In addition, we impose

that for all x, y ∈ m

[x, y] = Ph[S(x, 0), S(0, y)] , [Tα, S(x, y)] = S([Tα, x], [Tα, y]) . (2.39)
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The field equation (2.37) is then equivalent to

∂−j+ + [B−, j+] = 0 , ∂+j− + [B+, j−] = 0 , (2.40)

while the Bianchi identity reads

∂+B− − ∂−B+ + [B+,B−] + [j+, j−] = 0 . (2.41)

Such theories are classically integrable and their dynamics is encoded in the flatness of the

Lax connection

L(z) = B+dξ++B−dξ−+zj+dξ++
1

z
j−dξ− , B± ∈Ω1(Σ,h) , j± ∈Ω1(Σ,m) . (2.42)

To give a flavour of S in a case relevant to the discussion ahead, the map for a Yang-Baxter

deformation of CPn turns out to be,7 for every x, y ∈ m,

S(x, y) =
1√

1 + η2

(
x+ y + ηR(x− y)

t−1κ(x− y)

)
, (2.43)

where η is the deformation parameter, t the tension of the σ-model and the upper and lower

components refer to m and m̃, respectively, where we use m̃ to denote the linear space such

that exp(m̃) ∼= M̃ = G̃/H∗.

3 Integrable deformations of CPn

In this section we shall put the general machinery presented thus far to use. We start by

considering a double deformation already introduced in [25] consisting of the deformation

parameters η and ζ. However, as it transpires from the study of its integrability structure,

the second parameter ζ does not play a role, for it can be reabsorbed in new effective

tension and deformation parameter. At the geometrical level we can equivalently construct

a diffeomorphism undoing the deformation introduced by ζ. Remarkably though, the

deformed geometry of CPn spaces can be elegantly described in terms of generalised Kähler

geometry. All the geometrical aspects will be the subject of section 4, while we devote the

present one to the study of its integrability.

3.1 σ-model description

Let us first return to the constraint of H-invariance required on E−1
0 |m in eq. (2.7) (or

equivalently eq. (2.29) on the generalised metric). We wish to consider specific choices of

(d, g, h) for which the admissible HAB allows for multiple free parameters. A model with

such features was already identified in [25]. There it was shown that H-invariance of its

generalised metric implied the constraint

f̃abγ = 0⇔ ([x,Ry] + [Rx, y]) |h = 0 ∀x, y ∈ m . (3.1)

7We assume that R here is a restriction of the Yang-Baxter matrix to the sole coset directions, i.e.

R : m → m. It acts on an element x ∈ m via R(x) = xbRb
aTa. Analogously, κ is the restriction of the

Killing form to the generators of m.
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When this condition holds, h is said to be a coisotropically embedded subalgebra, as in-

troduced above in section 2.1, and the Poisson structure on G descends to one on G/H

making it a Poisson homogenous space.8

In what follows it will be crucial to refine, motivated by the goal of integrability,

the set of coset spaces to Hermitian symmetric spaces, implying that Ra
cRc

b = −δab

i.e. the R-matrix descends to a complex structure (see appendix A for a more precise

treatment). The canonical examples of such a set-up are the complex Grassmannians for

which G = SU(n+m) and H = S(U(n)×U(m)), of which CPn is a particularly interesting

subcase.9

Thus, assuming that G/H is an Hermitian symmetric space with H a coisotropic

subgroup, the σ-model reads

S =
1

πt

∫
Σ

d2σ〈P1e+(m),
1

1− ηRmP1 − ζRP1
P1e−(m)〉 , (3.2)

in which Rm = Adm−1 · R · Adm and where, to match notation elsewhere, we introduce

projectors Pi onto g(i) in the symmetric space decomposition and let κab = 〈Ta, Tb〉. Be-

cause of gauge invariance, the action (3.2) depends only on the coset representative m in

the parametrisation g = mh with h ∈ H.

3.2 Weak and strong integrability

Proving that a model is (classically) integrable in the weak sense amounts to find a Lax

connection whose flatness implies the equations of motion and Bianchi identity. To this

end we introduce the currents10

B± =
1

1± ηRmP1 ± ζRP1
e±(m) , j± = kB

(1)
± ±

ζ

k
P1RB

(1)
± , (3.3)

where k is the combination of parameters solving k4 − (1 + η2 − ζ2)k2 − ζ2 = 0. The Lax

connection can then be shown to be

L± = B
(0)
± + z±1j± . (3.4)

As for strong integrability, a sufficient condition is to ascertain that the Lax matrix

L(z) = L+(z)− L−(z) obeys the Maillet algebra [35, 48]

{L1(σ,z),L2(σ′,w)}= [r12(z,w),L1(σ,z)+L2(σ,w)]δ(σ−σ′)
+[s12(z,w),L1(σ,z)−L2(σ,w)]δ(σ−σ′)−2s12(z,w)δ′(σ−σ′) ,

(3.5)

8Notice that this condition holds for g = so(n + 1) and h = so(n) so that one could think of applying

the same construction to Sn [44]. However, in this case the restriction R|m vanishes, making the inclusion

of the second parameter trivial from the outset.
9Regarding CPn σ- models we are making statements only about classical integrability; one should

anticipate that quantum integrability necessitates the inclusion of appropriate fermionic content [45, 46].

Fortunately our results point to how this should be done since they will be compatible with N = 2 world

sheet supersymmetry.
10To make contact with the literature we adopt the notation in [47].
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for a specific choice of the matrices r and s. These two are, respectively, the skew-symmetric

and symmetric part of a solution R of the mCYBE for the loop algebra of g. Of particular

interest are the models for which R is fully specified by a model independent R0, usually

expressed in terms of the graded projections of the Casimir operator11 C(ij) of g, multiplied

by a scalar function of the spectral parameter ϕ(z), known as the twist function [49]. In

this case and when considering coset spaces, r and s assume the form

r12(z,w) =−1

2

1

z2−w2

[
(zϕ−1(z)+wϕ−1(w))C(00)

12 +(wϕ−1(z)+zϕ−1(w))C(11)
12

]
, (3.6)

s12(z,w) = +
1

2

1

z2−w2

[
(zϕ−1(z)−wϕ−1(w))C(00)

12 +(wϕ−1(z)−zϕ−1(w))C(11)
12

]
. (3.7)

The E-model formalism facilitates the analysis; we first introduce the Lie algebra valued

quantities

Xa = eai(g)pi , Y a =
1

2πt
eaσ(g)−Xb(ηRg + ζR)b

a , (3.8)

where we take g = mh and p the canonical momentum. The advantage of these definitions is

that the Lax matrix can be written as a function of X and Y . In turn, these are conveniently

embedded into a generalised vector via ZA = 2π(tY a, Xa). The crucial observation is that

the latter is related to the currents JA introduced in section 2.2 by a constant O(d, d)

transformation β

ZA = βA
BJB with β =

(
1 t(η + ζ)κ−1R

0 1

)
. (3.9)

As a result, the Poisson brackets for Z , and thus the ones for L(z), can be inferred from

the ones for J already given in (2.11). Eventually, the Poisson brackets for the Lax matrix

can be used to check if the Maillet algebra (3.5) is satisfied. As it turns out, our model fits

into the class of models with twist function, where we find

ϕ(z) =
k2

tπ(k2 + ζ2)

z

(z2 − 1)2 + k2(k2−1)
k2+ζ2 (z2 + 1)2

. (3.10)

Upon identifying new deformation parameter and tension according to

η̃2 =
k2(k2 − 1)

k2 + ζ2
, t̃ = t

k2 + ζ2

k2
, (3.11)

one can see that the twist function above coincides with the one for the single Yang-Baxter

deformation already present in the literature [47]. It is tempting to infer, judging from this

analysis, that the second parameter ζ is not affecting the model. Nevertheless, given the

existence of transformations not affecting the twist function [42] and yet yielding to a non

trivially deformed target space, a more detailed geometric check is needed. We will explic-

itly construct the diffeomorphism removing ζ from the deformed metric in the next section.

11The superscripts refer to the corresponding subspace in the symmetric space decomposition, i, j = 0, 1.
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3.3 Renormalisation group flow

A useful cross-check of the above result comes from analysing the renormalisation group

flow for the effective parameters η̃ and t̃. Using the doubled formalism introduced in

section 2.3, the renormalisation group flow can be written as

dHAB
d log µ

∝ R̂AB , (3.12)

where R̂AB denotes a projection of the generalised Ricci tensor for a generalised symmetric

space whose form can be found in eq. (3.36) in [1]. An equivalent form of the flow equation,

which is the one we shall eventually make use of, is given by

dH
d log µ

H−1 ∝ [O, E ] with O =

(
ηtRt 0

κ ηtR

)
. (3.13)

Of the three parameters η, ζ and t entering eq. (3.2) there are two RG invariants

which can be chosen to be ηt and 1+ζ2+η2

ηζ . The remaining non-trivial flow equation is

obtained as12

dη

d log µ
∝ ηt(1− ζ2 + η2) . (3.14)

One can prove that η̃ and t̃, as defined in eq. (3.11), obey the same flow eq. (3.14) (upon set-

ting ζ = 0). In particular, the fact that ηt = η̃t̃ implies that the latter is again an invariant.

4 Generalised Kähler structure of deformed CPn

In this section we show how the backgrounds presented in the previous section are, notwith-

standing their apparent complexity, exemplars of generalised Kähler manifolds.

4.1 Target space geometry

We now turn to the curved target space geometry. One can extract a conventional metric

g and NS two-form field b either from directly evaluating the σ-model action of eq. (3.2)

or equivalently by dressing the generalised metric

HAB =

(
(1 + (η + ζ)2)tκ−1 (η + ζ)Rt

(η + ζ)R t−1κ

)
(4.1)

with the generalised frame fields which we recall are given by13

EA =

(
ea ηtπabB e

−t
b

0 e−ta

)
=

(
δab ηtπabB

0 δba

)(
eb 0

0 e−tb

)
, (4.2)

12For the case of S2 = CP1 this coincides with the result obtained through geometric methods in [25]. A

second verification of this result can be obtained by considering the RG equations obtained for PL-models

on a group space in [50] and applying the limit procedure described in [38].
13With respect to eq. (2.30) we have introduced the factor ηt needed to ensure the equivalence between

the Poisson-Lie model (2.6) and the action (3.2).
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in which we have introduced a coset representative m with m−1dm = eaTa + eαTα. Here

πB is the Bruhat-Poisson structure on the Poisson homogenous space G/H, which we can

express as

πabB = (Rm −R)ab , (4.3)

where we recall that Rm = Adm−1 ·R ·Adm. By assumption the target space is in addition

equipped with a complex structure, an Hermitian metric (e.g. the Fubini-Study metric in

the case of CPn), and a Kähler two-form that we denote respectively by

J = eaRa
be−tb , G = eaκabe

b , ω = JG . (4.4)

It will be convenient to observe that in this set up we can introduce a more general bi-vector

consisting of the linear combination of the Bruhat-Poisson structure and the inverse of the

Kähler-Fubini structure, forming a so-called Poisson pencil,

πτ = πB − τ ω−1 τ ∈ R , (4.5)

which, for CPn at least,14 obeys the Schouten identity and defines a genuine Poisson

structure. After some manipulations one finds that the deformed geometry encapsulated

by g and b can be expressed in terms of G and πτ as

g−1 = G−1 − η2πτGπτ , bg−1 = −η Gπτ , (4.6)

in which the Poisson pencil parameter is fixed to τ = 1+ ζ
η . Let us emphasise that, despite

the elegant form of (4.6), in terms of explicit coordinate expressions these become rather

intractable.

4.2 From double to single parameter deformation

Let us start by recalling the Fubini-Study metric on CPn

ds2 =
dzidz̄i

1 + |z|2
− ziz̄jdzjdz̄i

(1 + |z|2)2
, (4.7)

in which the coordinates zi, which we will similarly refer to as Fubini-Study (FS) coordi-

nates, are holomorphic with respect to a complex structure J = idzi ⊗ ∂zi − idz̄i ⊗ ∂z̄i and

|z|2 = ziz̄i. More precisely, we put ourselves in the patch, often called the largest Bruhat

cell, where the first homogeneous coordinate is not vanishing. Let us now introduce coor-

dinates (xi, φi) better adapted to the deformed geometry; they are defined by

zi =

(
xi

1−X

)1/2

eiφi , with 0 ≤ xi < 1−
i−1∑
k=1

xk and 0 ≤ φi < 2π , (4.8)

where X =
∑

i xi. With respect to these, the Poisson-Bruhat structure reduces to

πB =
∑
i

(
−1 +

i∑
k=1

xk

)
∂xi ∧ ∂φi +

∑
i>j

xi∂xi ∧ ∂φj . (4.9)

14In general πτ does not obey the Schouten identity. However, as proven in [51], it does on any Hermitian

symmetric space (see appendix A for a thorough discussion).
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As the strong integrability and RG-flow analysis suggested, the second parameter ζ appears

to be redundant. Indeed, we have explicitly checked up to n = 6 that its effect induced on

metric and 3-form H = db can be removed using new coordinates x̃i defined as

x̃i =
(k2 − α2)xi

[k + α(2
∑

j<i xj − 1)][k + α(2
∑

j≤i xj − 1)]
, i = 1, . . . , n (4.10)

where α is given by α2 = k2 − 1 − η̃2 and leaving the angles φi untouched. Although we

do not dispose of a general proof, we believe we can safely conjecture its existence for all

n. Given this diffeomorphism, we will henceforth drop any dependence on ζ setting ζ = 0.

Nevertheless, the geometry is still best described using the Poisson pencil πτ as in (4.5) by

fixing τ = 1.

Even with a single parameter and in adapted coordinates, the forms of the deformed

metric and B-field result in quite involved expressions and we will thus refrain from showing

them here explicitly. Rather, we will argue in the next section that the resulting geometry

is bi-Hermitian and we will provide canonical formulas for the geometric objects of interest.

4.3 Generalised Kähler structure

We will now study the generalised Kähler structure of the above integrable models. We

first present a rapid recap of the salient details of this geometry [52, 53], before examining

the structure and pure spinors for the deformed CPn keeping n unspecified. To progress

further we give some explicit expressions for (generalised) Kähler potential for the cases of

n = 1, 2.

4.3.1 A précis of generalised Kähler geometry

Demanding that a non-linear σ-model admits an N = (2, 2) extended supersymmetry re-

quires that the target space be bi-Hermitian [34, 54, 55]. That is, the metric should be

Hermitian with respect to two complex structures J± each of which is covariantly constant

with respect to the torsionful connections 0 = ∇(±)J± = (∂ + Γ±H) J± with H = db. As

shown by Gualtieri [52], bi-Hermitian geometry is equivalent to generalised Kähler geom-

etry in which the generalised metric can be decomposed in terms of two commuting inte-

grable generalised complex structures as E = J1J2. The map between these two notions is

J1,2 =
1

2

(
1 0

t−1b 1

)(
(J t+ ± J t−) −t(ω−1

+ ∓ ω−1
− )

t−1(ω+ ∓ ω−) −(J+ ± J−)

)(
1 0

−t−1b 1

)
, (4.11)

with ω± = J±g.

A useful alternative description is based on the construction of the pure spinors Ψ̂i

associated to each complex structure. A generalised (not necessarily pure) spinor can be

either viewed as chiral/anti-chiral Spin(D,D) Majorana-Weyl spinor or as the formal sum

of either even or odd degree differential forms [52]. When thought of as a polyform, a spinor

is naturally acted upon by a generalised vector V = v + ξ via the Clifford multiplication

V · Ψ̂ = ιvΨ̂ + ξ ∧ Ψ̂ . (4.12)
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A spinor is then said to be pure when its null space under the Clifford action is maximally

isotropic. It can be shown that there is in fact a one-to-one correspondence between

integrable generalised complex structures and non-degenerate (Ψ̂ ∧ ¯̂
Ψ 6= 0) complex pure

spinors [53, 56]. Integrability of Ji is recast as dΨ̂i = Xi ·Ψ̂i, where Xi are some generalised

vectors. Finally, to a pure spinor we will associate an integer number k, called type,

corresponding to the lowest degree of the forms appearing in its expression.

Whichever point of view we wish to adopt, the entire geometrical data (g, b, J±) can in

principle be encoded in a single function K of superfields called the generalised Kähler po-

tential [57]. However, explicit forms for such K are generally rather challenging to extract.

To progress in this direction it is useful to first note that one can construct three

Poisson structures15 [58] π± = ±1/2
(
ω−1

+ ± ω−1
−
)

and σ = g−1[J+, J−]. The types of

supersymmetric multiplets required to furnish an N = (2, 2) action can be extracted from

these. Namely, chiral superfields parameterise

ker(J+ − J−) = kerπ− , (4.13)

whereas twisted chirals are needed to parameterise

ker(J+ + J−) = kerπ+ . (4.14)

The remaining directions i.e. (ker([J+, J−]))⊥ corresponding to the symplectic leaves of σ

are to be parametrised by semi-chiral superfields [58].

A key challenge in establishing the generalised Kähler potential is to find appropriate

coordinates. It is a trivial matter to check that J t±σJ± = −σ, i.e. that σ splits into

σ = σ(2,0) + σ(0,2) with respect to either complex structures. Invertibility, however, is not

necessarily guaranteed. It is well known (see e.g. [59] for a comprehensive treatment) that

each Poisson structure π defines a foliation. Specifically, although π might not be globally

invertible, when restricted to one of its leaves Σ, the two-form (π|Σ)−1 is well-defined. It

has been first proven in [54] that for π = σ, the leaves have real dimension 4m, for some

m ∈ N. In the CPn case, the integer m is related to the complex dimension of the projective

space via m = [n2 ].

Suppose we now restrict to one leaf Σ, dim Σ = 4m, where σ−1 is well defined.16

Because σ is a Poisson structure dσ−1 = 0 has to hold. In general σ−1 will inherit from σ

the decomposition σ−1 = σ−1(2,0)
+ σ−1(0,2)

and the holomorphic coordinates we look for

should be such that it is brought to the canonical form

σ−1 =

m∑
i=1

dqi ∧ dpi + c.c. =

m∑
i=1

dQi ∧ dPi + c.c. (4.15)

Alternatively, (q, p) and (Q,P ) can be thought of as the complex coordinates diagonalising,

respectively, J+ and J− restricted to Σ (where they do not commute, so that they cannot

be simultaneously diagonalised). In the language of supersymmetry, one can also look at

15We choose to introduce an extra factor of ±1/2 with respect to the standard definitions so as to get rid

of some numerical factors which will not affect the subsequent analysis.
16Here and henceforth σ−1 should be understood as σ−1 ≡ (σ|Σ)−1.
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(qi, q̄i, Pi, P̄i), for a fixed value of i, as part of a semi-chiral superfield [57]. The crucial

point is that the transformation between (p, p̄, Q, Q̄) and (P, P̄ , q, q̄) is canonical with a

(real) generating function K(P, P̄ , q, q̄) such that

pi =
∂K
∂qi

, Qi =
∂K
∂Pi

. (4.16)

It is this generating functional that becomes identified with the generalised Kähler poten-

tial. Thus extracting K can in general be hard and cumbersome: first one has to obtain pi
and Qi and then integrate the above equations to determine K.

The discussion above completely determines the Kähler potential when semi-chiral

fields parametrise the whole geometry, as will turn out to be the case for the η-deformation

of CP2m. As we shall see shortly, for CP2m+1 we will be required to augment the semi-

chiral multiplets with a single chiral multiplet. When chiral and/or twisted chiral multiplets

are required, the algorithm for determining the Kähler potential is slightly more involved

but has been detailed in the literature [57, 60]. In essence, one simply repeats the above

construction on each symplectic leaf; however, the resulting expressions are somewhat more

complicated [57]. In the present paper, however, we will content ourselves with considering

explicitly the Kähler potential for the case of CP1 and CP2.

4.3.2 CPn

We will start by studying the invariance property of CPn as a coset manifold, taking

G = SU(n+ 1) and H = S(U(n)×U(1)). In this case we obtain the branching rule

adjG → adjH + n1 + n−1 (4.17)

of G irreps to H. Eventually our goal is to find forms which are invariant, i.e. singlets,

under the holonomy group H. For SU(n) we know that trivial representations only arise

in the tensor product n × n. Thus, with the decomposition (4.17), we find that there are

two SU(n) invariant two forms: a symmetric one which is the restriction κ of the Killing

form on G to the coset and an antisymmetric one which is ω, the Kähler form. Both are

invariant under SU(n) and U(1). Furthermore there are two SU(n) invariant n forms Ω

and Ω with U(1)-charges n and −n, respectively. There also has to be an invariant Rab but

the only invariant two-form we found is ω. Thus, we conclude that Rab = ωab, in perfect

agreement with the interpretation of Ra
b as a complex structure on the algebra.

We can now observe that the generalised metric with flat indices given in eq. (4.1)

(now with ζ set to zero) admits the decomposition E = J1J2 with

J1A
B =

(
Rt 0

0 −R

)
and J2A

B =

(
η (1 + η2)tκ−1R

t−1Rκ −η

)
, (4.18)

such that

J 2
i = −1 , [J1,J2] = 0 . (4.19)

Thus upon dressing these flat space quantities with the generalised frame fields (4.2) we

see that the target space geometry is indeed generalised Kähler with

J1 =

(
J t tη(J tπB + πBJ)

0 −J

)
, J2 =

(
−ηπτω −t(ω−1 + η2πτωπτ )

t−1ω ηωπτ

)
. (4.20)
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It is now easy to show that, if we introduce the quantities Q± = 1± bg−1 = 1∓ ηGπτ ,

the objects appearing in the map (4.11) are given by

J± = Q−1
± JQ± , ω−1

± = Qt±ω
−1Q± , g = Q−1

± GQ−t± . (4.21)

The three Poisson structures π± and σ are extracted as

π+ = (1 + η2πτωπτω)ω−1 , π− = η(J tπB + πBJ) , σ = ω−1
− J+ − ω−1

+ J− . (4.22)

Let us briefly study the superfields associated to these structures. For π+, its kernel

is isomorphic to the kernel of 1 + (ηπτω)2 which, since (ηπτω)2 is positive definite, is

trivial. Hence, no twisted chiral multiplets are present. The kernel for π− is better studied

in Fubini-Study coordinates of the largest Bruhat cell. Here the complex structure is

diagonal and the expression (4.22) for π− amounts to selecting the diagonal blocks of πB

which, in this patch, turn out the complex conjugates of one another. Each one of these

blocks is a n× n dimensional matrix and, therefore, has vanishing determinant for odd n.

In particular, each block has a null space parametrised by one single vector so that, upon

linearly combining them, we have a total of two vectors generating the null space. In the

even case, it turns out that the determinant is non-vanishing, implying a trivial kernel.

In summary, when n is odd we have two vectors generating the kernel of π− and, thus, a

single chiral superfield. We therefore end up with (n − 1)/2 semi-chiral multiplets plus a

single chiral multiplet in the odd case and n/2 semi-chiral multiplets in the even case.

The same results can be obtained employing pure spinors; we recall that the type k1,2

of a pure spinor Ψ̂1,2 is related to the kernel of the Poisson structures via the relation

dim kerπ∓ = 2k1,2 . (4.23)

To compute these pure spinors it is efficient to first compute the corresponding flat space

equivalents Ψi corresponding to the complex structure in eq. (4.18) and, using the spinorial

representation of the generalised frame fields SE , later build Ψ̂i = SEΨi, where SE = SπSe
is the corresponding spinorial representatives of the decomposition in (4.2).

We can now check how the exterior derivative acts on these two spinors. Pulling the

exterior derivate through the spinor action of the generalised frame field results in the

F -twisted derivative

dΨ̂1,2 = SEdFΨ1,2 , with dF = −1

4
e−dΩABCΓAΓBC (4.24)

with the generalised dilaton d = Φ − 1/4 log det g. Note that because we are consider-

ing a symmetric space there is no FABC contribution. Using the definition (2.31) of the

generalised connection we eventually obtain

dΨ̂1 = 0 and dΨ̂2 = X · Ψ̂2 with X = e−d
(
e0 + π0ava

)
, (4.25)

where the index 0 refers to the component of eα and the bi-vector along the holomorphic

U(1) in the branching (4.17). This proves that we have a generalised Kähler manifold
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(eq. (4.25) is equivalent to the integrability of the generalised complex structures, cf. sec-

tion 4.3.1) and at the same time that the three Poisson structures we presented above are

indeed Poisson structures.

Finding the generalised Kähler potential K for a deformation of CPn is complicated,

at least for generic n. We thus defer to the next section the explicit computation in the

n = 1, 2 cases, whilst we devote the present paragraph to some more general reasoning.

To find the (p, q) and (P,Q) coordinates explicitly we exploit the fact that there are n

Killing vectors which leave σ−1 invariant (considering for simplicity here the case relevant

to CPeven for which σ is invertible). The coordinates (xm, φm) introduced in eq. (4.8) are

adapted to this such that the Killing vectors are simply given by the ∂φm . We can select

the holomorphic (with respect to J±) part of σ−1 by acting with a projector

σ−1
± =

1

2i
(i+ J±)σ−1 , (4.26)

such that

dq ∧ dp+ dQ ∧ dP = σ−1
+ + σ−1

− . (4.27)

Because both σ−1
± are invariant under the action of the Killing vectors ∂φm

L∂φmσ
−1
± = 0 = d(ι∂φmσ

−1
± ) , (4.28)

we obtain the momentum maps

dµ±m = ι∂φmσ
−1
± , (4.29)

which, together with the one-forms dφm dual to the isometries, form a basis of one-forms.

A symplectic form σ−1 which satisfies (4.29) has to have the form

σ−1
± =

1

2
(a+ aba)mndφm ∧ dφn + (1 + ab)m

ndφm ∧ dµ±n +
1

2
bmndµ±m ∧ dµ±n , (4.30)

where

amn = ι∂φmdµn with damn = 0 . (4.31)

Furthermore, σ−1 has to be closed. This implies that the only free parameter bmn has to

be constant like amn. To fix bmn, we just have to match the left and right hand side. As

result, we find that

σ−1
+ = dqm ∧ dpm and σ−1

− = dQm ∧ dPm , (4.32)

where dqm and dpm are linear combinations (with constrained coefficients) of dφm and

dµ+
m. The same holds for dQm and dPm but with respect now to the linear combination

built from dφm and dµ−m. So the procedure is simple in principle: first integrate the

moment map to find the µm and take appropriate linear combinations µ and φ to define

the canonical coordinates. Then find the generating function K by integrating the canonical

transformation of eq. (4.16).
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4.3.3 Pure spinors

Pure spinors for η-deformed CPn can be studied without fixing a specific (complex) dimen-

sion. We will follow the standard procedure, namely we will first compute a basis V j
1,2 for

the +i-eigenspace of each complex structure and then we will impose that the same basis

annihilates the associated pure spinor.

Let us start from J1. It is most easily analysed in Fubini-Study coordinates: J is

diagonal and n +i-eigenvectors for J1 are immediately found to be V j
1 = ∂zj , j = 1, . . . , n.

On the other hand, π− in these coordinates reads

π− = 2η
∑
j>i

(zizj∂zi ∧ ∂zj + c.c.) , (4.33)

making it easy to see that the remaining eigenvectors are

V n+j
1 = dz̄j + iηt z̄j

∑
i>j

z̄i∂z̄i −
∑
i<j

z̄i∂z̄i

 , j = 1, . . . , n . (4.34)

As proved by Gualtieri [52], the general form of a non-degenerate complex pure spinor is

Ψ̂ = Ξ∧eρ, where ρ is a complex two-form, Ξ a decomposable k-form and k the type of the

spinor. For odd n, we proved that dim ker π− = 2 and the spinor will be of type 1 (that

is, Ξ will be a one-form). On the contrary, for even n the Poisson structure π− has trivial

kernel: the spinor will have type 0 and we can consistently set Ξ = 1 since the spinor is

defined up to an overall function.

Now, the requirement V j
1 ·Ψ̂1 = 0 for j = 1, . . . , n implies that the spinor is made up of

anti-holomorphic forms only. The constraints arising from V n+j
1 · Ψ̂1 = 0 with j = 1, . . . , n

are equivalent to

0 = ξn+j
1 + ι

vn+j
1

ρ for even n , (4.35)

0 = ι
vn+j
1

Ξ− Ξ ∧ ι
vn+j
1

ρ+ ξn+j
1 ∧ Ξ for odd n , (4.36)

where vn+j
1 and ξn+j

1 are, respectively, the vector and form part of the generalised vec-

tors (4.34). Observe that (4.36) can be in fact split into two separate equations, corre-

sponding to degree zero and two. In this sense, the degree zero requirement is the same as

saying that the interior product of Ξ with vn+j
1 vanishes for all j = 1, . . . , n. As one can

explicitly check, all of the equations are satisfied with

ρ =
i

ηt

∑
k>i

(−1)i+k
dz̄i ∧ dz̄k
z̄iz̄k

and Ξ =

{
1 even n

iηt
∑

k(−1)k+1 dz̄k
z̄k

odd n
. (4.37)

With this normalisation, we remark that for vanishing η the pure spinor is well defined and

coincides (after an appropriate rescaling) with the decomposable anti-holomorphic form

Ω = dz̄1 ∧ · · · ∧ dz̄n.

As for J2 it is sufficient to notice that its explicit form (4.20) implies that each and

every generalised eigenvector V j
2 with +i eigenvalue will be given by

V j
2 = it(ω−1 + iηπτ )ξj2 + ξj2 j = 1, . . . , 2n, (4.38)
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being ξj2 a set of 2n independent one-forms. The second pure spinor then results in

Ψ̂2 = exp
[
−it−1(ω−1 + iηπτ )−1

]
. (4.39)

In particular, notice that the η → 0 limit correctly yields the exponential of the Kähler

form, as it should for a Kähler manifold.

Finally, notice that, for every value of n, dρ = dΞ = 0; also, d(ω−1 + iηπτ )−1 = 0

follows from the compatibility of πB and ω−1. Thus, dΨ̂1,2 = 0. Actually, this is a

consequence of our choice of normalisation for the spinors; for instance, we have set the

zero-form component of Ψ̂2 to one. Instead, we could impose a different normalisation

using the Mukai pairing ||Ψ̂i||2 = Ψ̂i ∧ σ(
¯̂
Ψi)|top, where σ reverses the order of the indices

in the polyform and |top stands for restriction to the top-dimensional form. Should we scale

the pure spinors such that they have equal normalisation, then they would no longer be

closed. The geometry is hence not generalised Calabi-Yau.17

4.3.4 Generalised Kähler potential

CP1. It is a well-known fact that every two-dimensional complex manifold is Kähler;

as such, the deformed CP1 geometry is completely determined by the standard (i.e. non

generalised) Kähler potential. In fact, one can further notice that, given the dimensionality,

the B-field is always pure gauge and thus negligible. As for the patch, we put ourselves

in the largest Bruhat cell where the homogeneous coordinate Z0 6= 0 and introduce the

holomorphic coordinate z ≡ Z1/Z0. The Kähler potential is

K = − 1

2η
Im Li2

(
η − i
η + i

|z|2
)
, (4.40)

where we notice that the η → 0 limit is non-singular and yields KFS, i.e. the undeformed

Fubini-Study Kähler potential for CP1, KFS = log(1 + |z|2).

As CP1 is Kähler, J+ = J−, and π− vanishes. In turn there is a single set of complex

coordinates diagonalising J± expressed by

q=−2µ log(z) = µ

(
log

(
1−x
x

)
−2iφ

)
= µ (log (sin(β+χ) csc(β−χ))−2iφ) , (4.41)

and its conjugate, where (x, φ) were introduced in (4.8), and18

x =
1

2η
(η − tanχ) , µ =

i− 1

8
√
η t

, η = tanβ . (4.42)

CP2. CP2 is the first case where we can study a non-trivial generalised Kähler potential

and give a rather nice explicit presentation thereof.

17A generalised Kähler geometry is generalised Calabi-Yau when the pure spinors associated to the

generalised complex structures are nowhere-vanishing, closed when choosing their relative norm with respect

to the Mukai-pairing to be a constant [52, 53].
18Strictly speaking, for CP1 the precise form for µ is undetermined. We nevertheless choose it so as to

match the higher dimensional cases, see next section.
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A first step in computing it is to find the holomorphic coordinates of J±, that is, to

identify p(z, z̄), q(z, z̄), P (z, z̄), Q(z, z̄), such that

J+ = idp⊗ ∂p − idp̄⊗ ∂p̄ + idq ⊗ ∂q − idq̄ ⊗ ∂q̄ ,
J− = idP ⊗ ∂P − idP̄ ⊗ ∂P̄ + idQ⊗ ∂Q − idQ̄⊗ ∂Q̄ ,
σ−1 = dp ∧ dq + dp̄ ∧ dq̄ = dP ∧ dQ+ dP̄ ∧ dQ̄ .

(4.43)

Using the symplectic moment map associated to U(1) actions as described previously one

finds for p, q (with p̄, q̄ given by standard complex conjugation)

q = µ
(
log
(
−e−iχ2 sin (β + χ1 − χ2) csc (β − χ1)

)
− 2iφ1

)
,

p = µ
(
log
(
−ie−iχ1 sec(β) csc (χ2) sin (β + χ1 − χ2)

)
− 2iφ2

)
,

(4.44)

where the angles χ1,2 are a generalisation of the one previously introduced

x1 =
1

2
− 1

2η
tan(χ1) , x2 =

1

2η
sec(χ1) sec(χ1 − χ2) sin(χ2) , (4.45)

and µ and β follow the definition in (4.42). In particular, µ is a coefficient needed to ensure

that σ−1 has the correct form (4.43). The relations (4.44) in Fubini-Study coordinates are

q = µ

[
−2 log

(√
z1√
z̄1

)
+ log

(
−η(1− |z1|2 + |z2|2) + i(1 + |z|2)

|z1|2(η(1− |z|2) + i(1 + |z|2))

)]
, (4.46)

p = µ

[
−2 log

(√
z2√
z̄2

)
+ log

(
−η(1− |z1|2 + |z2|2) + i(1 + |z|2)

|z2|2(1 + |z|2)

)]
, (4.47)

where we recall |z|2 ≡ |z1|2 + |z2|2. Instead, one can use the angles χ1,2 to show that a

simple relation between p, q and P,Q exists, namely

p+ P = −2iµχ1 , q +Q = −2iµχ2 . (4.48)

Letting the generating function

K(P, P̄ , q, q̄) = −(Pq + P̄ q̄) +K1(P, P̄ , q, q̄) , (4.49)

we require, in accordance with (4.16) and (4.48), that

∂qK1 = −2iµχ1 , ∂PK1 = −2iµχ2 . (4.50)

A closed form for the potential in terms of the angles χi can be given in terms of the

parametric integral

Iα(y) =

∫
y cot

(
y + α

2

)
dy = 2

(
y log

(
1− ei(α+y)

)
− iLi2

(
ei(y+α)

))
− iy2

2
, (4.51)

such that

K1(χ1, χ2) =
1

32tη
(I−2β(2χ1)− I2β(2χ1 − 2χ2)− I0(2χ2)) . (4.52)

To complete the specification of the potential one needs to express the χi in terms of

(P, P̄ , q, q̄) which can be done implicitly via the relations

e|p|/|µ| = sec(β) csc(χ2) sin(β + χ1 − χ2) ,

e|q|/|µ| = csc(β − χ1) sin(β + χ1 − χ2) .
(4.53)
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5 Conclusions and outlook

In this work, using the tools of Poisson-Lie non-linear σ-models on generalised coset spaces

G/H [1], we have described a specific but particularly striking class of examples in which

G/H were Poisson Hermitian spaces. Upon constructing an integrable Yang-Baxter de-

formation of these, we showed that their target space is described by generalised Kähler

geometry. We discussed in detail CPn as a prototypical example and, for the case of CP2,

gave an explicit formulation of the corresponding generalised Kähler potential. We filled

a gap in the literature by showing that a previously conjectured two parameter deforma-

tion for CPn is indeed integrable but coinciding with the already well-known Yang-Baxter

deformation of coset spaces.

A background motivation for this work was to investigate integrable deformations of

AdS4 × CP3 with the aspiration of identifying quantum group deformations in the ABJM

model. At first sight the corresponding geometry is rather unattractive but in this work

we have elucidated many of the key features. A complete analysis would of course require

furnishing the geometry with appropriate RR fields and investigating the fermionic sector.

Whilst one might “boot-strap” an RR sector, an approach done for the case of Poisson-Lie

models on groups in [40], ultimately it would be desirable to extend the considerations to

super-cosets [19–23].

In this letter we only considered coset spaces for which the gauge group is coisotropic,

as these naturally solve the invariance constraint, leaving the construction of other holo-

graphically relevant coset spaces open. Moreover, the explicit examples taken into account

here were based on quotients in which the Drinfel’d double was d = gC. The incorporation

of λ models requires the more general case of d = g + g; our general tool kit [1] accommo-

dates this scenario and so it would be interesting to explore if there can be some underlying

generalised Kähler structures in the λ-deformations of G/H-WZW models.

A fruitful further line of investigation would be to consider the presence of D-branes

in these geometries and understand how the elegant characterisation in generalised Kähler

geometry can relate to integrability preserving boundary conditions as in e.g. [61]. Beyond

such direct follow up tasks, this work suggests a number of interesting broader questions,

and we list a few here with the hope of returning to them later:

• How generic are the constructions of Poisson-Lie models on groups and coset spaces;

how much of the landscape of integrable σ-models do they capture?

• We saw some interplay between integrability and extended supersymmetry. However

one need not expect all N = (2, 2) models to be integrable, but which are? How is

this reflected at the level of superspace?
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A Coisotropic subgroups and Poisson pencils

In this section we provide a short introduction to the notions of coisotropic subgroup and

Poisson pencil, as they are extensively used in the paper; we will not aim at a comprehensive

treatment and instead refer the interested reader to standard textbooks on the subject,

e.g. [36].

We take g = Lie(G) to be a semi-simple Lie algebra. As such, g is naturally endowed

with a non-degenerate pairing κ, the Killing form. Non-degeneracy implies that κ induces

an isomorphism φ : g→ g∗ explicitly given by

φ(x) = κ(x, ·) ∈ g∗ ∀x ∈ g. (A.1)

We would like to promote g to a bialgebra which, by virtue of the Whitehead’s lemma,

is completely specified by a skew-symmetric Yang-Baxter matrix r ∈ g ⊗ g obeying the

modified classical Yang-Baxter equation. The matrix induces a Lie bracket [·, ·]∗ on the

dual space g∗

[ξ, η]∗ = ad∗rξη − ad∗rηξ , (A.2)

where ad∗ is the coadjoint action and ξ, η ∈ g∗. Alternatively, a Yang-Baxter matrix can be

seen as an endomorphism R : g→ g obeying the modified classical Yang-Baxter equation

[Rx,Ry] = R([Rx, y] + [x,Ry])− c2[x, y] ∀x, y ∈ g , (A.3)

where c2 is a parameter which can be taken to be either ±1 or 0. Here, we will fix c2 = −1.

Once a basis {Ta} for g is specified, the two matrices are related by the action of the Killing

form, rab = κacRc
b. Defining a new operation [·, ·]R : g⊗ g→ g given by

[x, y]R = [Rx, y] + [x,Ry] , (A.4)

one can show that, if R obeys the mCYBE (A.3), [·, ·]R is a Lie bracket. Hence, g can be

equipped with two different brackets, giving rise to two sets of structure constants

[Ta, Tb] = fab
cTc , [Ta, Tb]R = f̃ab

cTc = −2R[a
dfb]d

cTc . (A.5)

The brackets [·, ·]∗ and [·, ·]R are actually related. Indicating with 〈·, ·〉 the canonical pairing

between g and g∗ we have, for x ∈ g

〈[φ(z), φ(y)]∗, x〉 = κ([z, y]R, x) . (A.6)

A subalgebra h of a Lie bialgebra g is called coisotropic if its annihilator h⊥, i.e. the

space of functionals ξ ∈ g∗ such that〈ξ, x〉 = 0 ∀x ∈ h, is a Lie subalgebra in g∗ [62].
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Take M = exp(m) to be the coset M = G/H and further require it to be a symmetric

space, so that g = m⊕ h and κ(m, h) = 0, where h and m are, respectively, the +1 and −1

eigenspace of the Z2 involution. Defining m∗ = φ(m) and h∗ = φ(h) (so that g∗ = m∗⊕h∗),

orthogonality implies 0 = κ(m, h) = 〈m∗, h〉. There can be no ξ ∈ h∗ obeying 〈ξ, h〉 = 0, or

otherwise the restriction of κ to h would be degenerate, hence h⊥ = m∗. Without further

constraints, m∗ is not a subalgebra of g∗, as needed for h to be coisotropic. Requiring

[m∗,m∗]∗ ⊂ m∗ is equivalent to imposing [m,m]R|h = 0, via (A.6). We obtain the coisotropy

condition

([Rx, y] + [x,Ry])|h = 0 ∀x, y ∈ m . (A.7)

If h is coisotropic and the coset G/H is a symmetric space, H∗ = exp(h∗) is a subgroup

of G∗ = exp(g∗) and the coset M∗ = G∗/H∗ is a symmetric space, provided we endow

g∗ with the Lie bracket [·, ·]∗ induced by the Drinfel’d-Jimbo R-matrix.19 This is most

easily seen using the dual bracket [·, ·]R. More precisely, grading g into ±1-eigenspaces, it

follows from the definition of the Cartan-Chevalley basis that, for a fixed root λ, the ladder

operators Xλ and X−λ belong to the same subspace, while the Cartan subalgebra belongs

to the +1 eigenspace. The Drinfel’d-Jimbo construction then implies that the Yang-Baxter

matrix has no mixed components, R(h)|m = 0 and R(m)|h = 0. This fact, together with

coisotropy and symmetric space decomposition, yields

[m,m]R = 0 , [m, h]R ⊂ m , [h, h]R ⊂ h . (A.8)

Lifting these conditions to the dual algebra g∗ we get [h∗, h∗]∗ ⊂ h∗, [h∗,m∗]∗ ⊂ m∗ and

[m∗,m∗]∗ = 0, the defining relations for a (particular type of) symmetric space M∗. For

instance, it can be checked for G/H = SU(2)/U(1): assuming m = Span(σ1, σ2), where σi
are the Pauli matrices, the Drinfel’d-Jimbo R-matrix acts as R(σ1) = σ2, R(σ2) = −σ1

and R(σ3) = 0; the relations (A.8) follow.

Verifying that a given H is coisotropic, or better said coisotropically embedded, in G

is no trivial task. One possibility is to exploit the method introduced in [63]; however, we

shall pursue a different approach which better reflects the (Poisson-Lie) group theoretic

origin of our system.

A subgroup H of a Poisson-Lie group G is called a Poisson-Lie subgroup if the annihi-

lators h⊥ are an ideal in g∗ [62]. Since any ideal is a subalgebra, any Poisson-Lie subgroup

is automatically a coisotropic subgroup (but the converse is in general false). Moreover it

will be useful for us to notice that, whenever H is a Poisson-Lie subgroup, the reduction of

the Poisson structure π defined on G to its restricted counterpart on G/H is unique and

gives rise to the so-called Poisson-Bruhat structure πB [36].

Another relevant fact is that every coadjoint orbit O of a Poisson-Lie group arises

from the quotient of the latter with a Poisson-Lie subgroup [64]. Thus coadjoint orbits of

(compact semi-simple) Poisson-Lie groups can serve useful examples of target spaces in the

theories we are considering.

19In general, the Drinfel’d-Jimbo procedure is not the unique possibility for constructing an R-matrix.

However, it is most useful when building Poisson bi-vectors out of Yang-Baxter matrices, as in our case.
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Such coadjoint orbits can be equipped with a closed, non-degenerate, symplectic 2-

form ω usually known as the Kostant-Kirillov-Souriau (KKS) form, where non-degeneracy

implies that each orbit is an even-dimensional symplectic manifold. It can be further

shown [65, 66] that this symplectic structure is actually a Kähler form and thus every O
is a Kähler homogeneous space.

Now, in the light of the above, on each orbit we evidently have at our disposal two

different Poisson structures, namely πB and ω−1, since dω = 0 implies [ω−1, ω−1]s = 0

(where [·, ·]s is the Schouten bracket). Given two Poisson structures π1 and π2 one could

try and combine them so as to create a third one, π(τ) = π1 +τπ2, where τ ∈ R. In general,

the Schouten bracket [π(τ), π(τ)]s does not vanish but whenever [π1, π2]s = 0 (and in this

case π1 and π2 are said to be compatible) it obviously does. If such a condition is met

then π(τ) is referred to as a Poisson pencil. On the coadjoint orbit O, checking whether

[πB, ω
−1]s = 0 is not straightforward and might require an explicit calculation. However,

as shown in [51], on any (compact) Hermitian symmetric space the two Poisson structures

πB and ω−1 are compatible and hence give rise to a pencil.

Poisson pencils on Hermitian symmetric spaces. Thus we are particularly inter-

ested in finding coadjoint orbits which are also Hermitian symmetric spaces so that they

will be naturally endowed with a Poisson pencil. The first step is to observe, following

Kirillov [67], that any coadjoint orbit is a generalised flag manifold,20 a particular form

of algebraic varieties. On the other hand, compact Hermitian symmetric spaces are well-

known to be classified. One class of manifolds lying at the intersection of these two are the

complex Grassmanians, given by the quotient SU(n+m)/S(U(n)×U(m)) which includes

as the m = 1 case the complex projective spaces CPn.

Being complex manifolds, they come with an integrable complex structure J . For a

given choice of the parameter c, namely c2 = −1, the mCYBE coincides with the condition

of vanishing Nijenhuis tensor: this observation provides an intuitive hint to the fact that

the R-matrix on CPn, thought of as the coset space above, could be interpreted as a

complex structure. This statement has been made precise by Koszul [68] who has proved

that, in order for R to be a complex structure (in flat indices) on a reductive coset m

(where M = G/H), it is required to satisfy, besides the mCYBE (now interpreted as an

integrability condition), the constraints

J |2m = −1 , J h ⊂ h , [h, Jm] = J [h,m] . (A.9)

In addition, analogously to the Darboux theorem for standard complex structures, the R-

matrix can be diagonalized [69]: if we consider the two subalgebras q, q̄ such that gC = q⊕ q̄
and q ∩ q̄ = hC then it can be shown that the conditions of the Koszul theorem are met

provided that

J(x) = ix ∀x ∈ mC ∩ q , J(x̄) = −ix̄ ∀x̄ ∈ mC ∩ q̄ . (A.10)

20Equivalently, Lu and Weinstein [64] have shown that coadjoint orbits can be obtained as the quotient

O = GR/P , being GR the complexified (algebraic) group over the reals and P a parabolic subgroup thereof.
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