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Abstract

Free and forced bending vibration of damped nonlocal nano-beams resting on an elastic
foundation is investigated. Two types of nonlocal damping models, namely, strain-rate-
dependent viscous damping and velocity-dependent viscous damping are considered. A
frequency-dependent dynamic finite element method is developed to obtain the forced
vibration response. Frequency-adaptive complex-valued shape functions are used for the
derivation of the dynamic stiffness matrix. It is shown that there are six unique coefficients
which define the general dynamic stiffness matrix. These complex-valued coefficients are
obtained exactly in closed-form and illustrated numerically as functions of the frequency.
It is proved that the general dynamic stiffness matrix reduces to the well known special
cases under different conditions. The stiffness and mass matrices of the nonlocal beam
are also obtained using the conventional finite element method. A numerical algorithm to
extract the eigenvalues from the dynamic stiffness matrix with a transcendental element
for the special case when the system is undamped is suggested. Results from the dynamic
finite element method and the conventional finite element method are compared. The
application of the dynamic stiffness approach is shown through forced response analysis of
a double-walled carbon nanotube in pinned-pinned and cantilever configurations. Explicit
closed-form expressions of the dynamic response for both the cases have been obtained
and the role of crucial system parameters such as, the damping factors, the nonlocal
parameter and the foundation stiffness have been investigated.

Keywords: bending vibration; nonlocal mechanics; dynamic stiffness; asymptotic
analysis; frequency response

1. Introduction

The dynamics of damped structures is of great significance in many engineering appli-
cations on macro as well as on micro- and nano-scales [1]. For this reason, studying the
steady-state, and transient motion in nanostructure systems has been an exciting perspec-
tive in the last few years [2]. Here, we will analyse the free and forced vibration of damped
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beam-like nanostructures placed on the elastic foundation by using the finite element dis-
cretisation and dynamic stiffness matrix. Investigation of the frequency response function
(FRF) is extremely important in order to determine the responses of a given system and
their application to real nanoengineering structures. The various interesting problems
can occur in micro-electromechanical systems (MEMS), nano-electromechanical systems
(NEMS) devices, where the structural collapse can be caused by very small external load
at the resonant frequency. Theoretical analysis of nano-scale systems become an impor-
tant task in design procedures and development of new types of micro- and nano-devices
[3]. Special classes of beam-like nanostructures are related to single and multi-walled
carbon nanotube [4], boron nitride nanotubes (BNNTs) [5] and Zinc Oxide nanotubes [6].
There are many examples of mathematical models studying the vibration behaviour of
beam-like nanostructures in piezoelectric sensors and actuators, MEMS, NEMS [7] and
atomic force microscopes [8]. Special attention of the scientific community is related to the
vibration analyses of beam nanostructures, which become an important topic especially
in the design of NEMS devices.

By conducting experiments, it is found that small-scale effects play a significant role in
the physical behaviour of nanostructures. However, performing experiments on the nano-
scale level is not an easy task due to weak control of parameters in the experiment and
considerable cost. Therefore, many investigators focused on theoretical methods splitting
in two different directions. The first method is based on atomistic models accounting
discrete nature of nanostructures such as molecular dynamics, density function theory
etc. These methods are shown to be efficient only for the systems with a small number
of particles and time-consuming for more complex nanostructure systems [9]. Another
approach is based on modified continuum theories accounting size effects, which allows us
to use standard methods from structural mechanics to model and solve different dynamic
and stability problems of simpler and complex nanostructure systems. One among the
first such theories that account size effects through a single material parameter was the
nonlocal theory of elasticity established by Eringen [10, 11]. This theory is shown to
be very effective in describing the mechanical behaviour of various nanostructures and
nanocomposites compared to other methods. It is important to note that the value of the
nonlocal parameter is usually obtained by fitting the results from the nonlocal continuum
model with the molecular dynamics simulation results for natural frequencies or dispersion
curves for Born-Karman model of lattice dynamics.

One of the first studies of bending of a nanobeam using nonlocal continuum me-
chanics for different boundary conditions was proposed by Peddinson et al. [12]. They
investigated the influence of the material length-scale parameter on the deflection of a
Euler-Bernoulli nanobeam model and concluded that the nonlocal effect is important
in the development of a micro/nano-scale device. Murmu and Adhikari [13, 14] devel-
oped a nonlocal double-nanobeam model to investigate the natural frequency for simply
supported boundary conditions. They found that the small-scale effects in the vibrating
system are higher with increasing values of the nonlocal parameter for the case of in-phase
modes of vibration than in the out-of-phase modes of vibration. Reddy [15] reformulated
the local nanobeam theory by using nonlocal differential constitutive relations of Erin-
gen to analytically study bending, vibration and buckling behaviours of a nanobeam.
Reddy and Pang [16] derived an analytical solution of bending, vibration and buckling
based on the Eringen nonlocal elasticity theory for a carbon nanotube. Eltaher et al.



[17] considered free vibrations of a Euler-Bernoulli nanobeam by using the finite element
method. They showed the effects of nonlocal parameter, slenderness ratios, rotator inertia
and boundary conditions on the fundamental frequency of the nanobeam. Phadikar and
Pradhan [18] derived a variation formulation and the Finite Element (FE) analysis for
the nonlocal nanobeams and nanoplates models. They obtained corresponding numerical
framework for analysing the bending, vibration and buckling of the nonlocal beam with
four classical boundary conditions. Based on the Euler-Bernoulli beam theory, integral
nonlocal elasticity and FE analysis, Tuna and Kirca [19] analysed free vibration behaviour
of nanobeam structures. Pradhan [20] investigated the FE model for bending, buckling
and vibration of nonlocal beams with clamped-clamped, hinged-hinged, clamped-hinged
and clamped-free boundary conditions, based on the nonlocal elasticity theory. Adhikari
et al. [21–23] analysed free and forced vibration of an axial rod vibration based on the dy-
namic stiffness matrix method. They show an advance methodology for the investigation
of the frequency response of the nonlocal nanostructures.

Based on the above discussion, in this paper, we develop the dynamic finite element
based on nonlocal elasticity with the aim of considering modal analysis and dynamic
response analysis of beams undergoing bending vibrations. The dynamic finite element
method belongs to the general class of spectral methods for linear dynamical systems
[24]. This approach, or approaches very similar to this, is known by various names such
as the dynamic stiffness method [25–31], spectral finite element method [24, 32] and
dynamic finite element method [33, 34]. So far the dynamic finite element method has
been applied to classical local beams only. In this paper, we generalise this approach
to nonlocal beam resting on an elastic foundation. This is useful, for example, dynamic
response analysis of nanotubes and nanowires resting on a subgrade. One of the novel
features of the analysis proposed here is the employment of frequency-dependent complex
nonlocal shape functions for damped systems. This, in turn, enables us to obtain the
element stiffness matrix using the usual weak form of the finite element method.

Overview of the paper is as follows. In Section 2 we briefly introduce the theory of
nonlocal elasticity and describe the equation of motion for bending vibration of undamped
and damped beams resting on elastic foundation. The conventional finite element method
and the dynamic finite element method are developed in Section 3. Closed-form expres-
sions are derived for the conventional mass and stiffness matrices and the complex-valued
dynamic stiffness matrix. We explicitly demonstrate how the general dynamic stiffness
matrix reduces to well known special cases under different conditions. Free vibration anal-
ysis of nonlocal beams is discussed in Section 4 using the Wittrick-Williams algorithm.
In Section 5 the proposed methodology is applied to an armchair double-walled carbon
nanotube (DWCNT) for illustration. The evolution of the dynamic stiffness coefficients
as functions of the frequency is numerically illustrated. The dynamic response obtained
from the conventional finite element method is compared with the dynamic stiffness ap-
proach. Finally, in Section 6 some conclusions are drawn based on the results obtained in
the paper.



2. Bending vibration of undamped and damped nonlocal beams on elastic

foundation

2.1. Introduction to nonlocal elasticity

A well-known assumption of the nonlocal elasticity theory is that the stress at a point
x within an elastic body is a function not only of the strain at that point x, but is also
a function of strains at all the other points within that body. Eringen and co-workers
[10, 11] introduced the nonlocal elasticity constitutive equation with a single material
parameter that takes into account small-scale effects and discrete nature of materials.
The integral form [11] of a nonlocal linear constitutive relation for a three-dimensional
body is given as

σij (x) =

∫

V

α (|x− x′| , τ) tij (x′) dV (x′) , ∀x ∈ V (1)

σij,i = ρ (üj − fj) (2)

εij (x
′) =

1

2
(ui,j (x

′) + uj,i (x
′)) (3)

tij (x
′) = λεrr (x

′) δij + 2µεij (x
′) (4)

Here σij and εij are respectively the stress and strain tensors, uj is the displacement
vector and fj is the body force, tij (x

′) is the macroscopic (classical) stress tensor at x′

which is related to the linear strain tensor εij (x
′) at any point x′ in the body, where

λ and µ represents Lame’s constants. In Eq. (1), α (|x− x′| , τ) denotes the nonlocal
modulus or attenuation function that incorporates nonlocal effects into the constitutive
equation at a reference point x produced by the local strain at a source x′. The above
absolute value of the difference |x− x′| denotes the Euclidean metric. In the parameter
τ = (e0a)/l, the characteristic length (crack length, wavelength) is denoted with l. This
can describe an internal characteristic length such as, a lattice parameter, granular size
and the distance between C-C bonds. The parameter e0 is a constant appropriate to each
material that can be identified from atomistic simulations or by using the dispersive curve
of the Born-Karman model of lattice dynamics.

Since it is not an easy task to solve particular governing equations when the integral
form of nonlocal constitutive relation is employed, one should use a differential form of
nonlocal elasticity constitutive relation for the one-dimensional case as

[
1− (e0a)

2 ∂2

∂x2

]
σxx = Eεxx (5)

where (e0a)
2 is the nonlocal parameter (length scales), E is the Young elastic modulus.

Since the exact value of the nonlocal parameter is scattered and depends on applied
boundary conditions, material and geometric properties of nanostructures, in the present
study we assumed the value of e0a to be in the range 0 − 2 nm. When e0a = 0, there
is no influence of nonlocal parameter (same as in macro-scale modelling) and we get
back to classical stress-strain relation of an elastic body. By combining the constitutive
relation given in (5) along with the assumptions form the Euler-Bernoulli beam theory,
the governing equation of motion can be derived, as it showed in the next section.



2.2. Undamped system

For the bending vibration of a nonlocal damped beam resting on a nonlocal elastic
foundation, the equation of motion [35–37] can be expressed by

EI
∂4V (x, t)

∂x4
+

(
1− (e0a)

2 ∂
2

∂x2

){
m
∂2V (x, t)

∂t2
+ kV (x, t)

}

=

(
1− (e0a)

2 ∂
2

∂x2

)
{F (x, t)} (6)

An illustrative diagram of the system is shown in Fig. 1 In the above equation, EI is

E, I, L, A 

k

Fig. 1: A nonlocal Euler-Bernoulli beam on elastic foundation. Here A is the cross sectional area, E is
the Young’s modulus of the material, I is area the moment of inertia, m is mass per unit length, k is the
stiffness per unit length of the elastic foundation and L is the length of the beam. Different boundary
conditions can be applied at the both ends of the beam.

the bending rigidity, m is mass per unit length, k is the stiffness per unit length of the
elastic foundation, e0a is the nonlocal parameter, V (x, t) is the transverse displacement
and F (x, t) is the applied force. In some cases, the value of the nonlocal parameter
can be obtained from fundamental principles [38, 39]. It may be noted that the nonlocal
parameter value can be dependent on the physics of the problem (e.g., buckling, vibration)
as well as on the boundary conditions (e.g., fixed, free, pinned). In literature, both
differential and integral forms of the nonlocal model have been employed [40, 41]. Here
we employ the differential form. Considering the free vibration, i.e., setting the force to
zero, and assuming harmonic motion with frequency ω

V (x, t) = v(x) exp [iωt] (7)

Substituting this in Eq. (6) we have

EI
d4v

dx4
−
(
mω2 − k

)(
v − (e0a)

2 d
2v

dx2

)
= 0 (8)

or
d4v

dx4
+ b4(e0a)

2 d
2v

dx2
− b4v = 0 (9)

In the above equation, for any positive value of frequency ω, the frequency dependent
constant b can be written as

b4 =
mω2 − k

EI
=

mω2

EI

(
1− k

mω2

)
= c4(1− ω2

s/ω
2) (10)

Here the frequency dependent constant c and the elastic medium natural frequency ωs

are defined as

c4 =
mω2

EI
and ω2

s =
k

m
(11)

To obtain the characteristic equation we assume

v(x) = exp [λx] (12)



Substituting this in Eq. (9) we obtain

λ4 + b4(e0a)
2λ2 − b4 = 0 (13)

or λ2 = b2
(
−b2(e0a)

2 ±
√

4 + b4(e0a)4
)
/2 (14)

Defining
γ = b2(e0a)

2 (15)

the two roots can be expressed as

λ2 = −α2, β2 (16)

where

α = b

√(√
4 + γ2 + γ

)
/2 (17)

and β = b

√(√
4 + γ2 − γ

)
/2 (18)

Therefore, the four roots of the characteristic equation can be expressed as

λ = iα,−iα, β,−β (19)

where i =
√
−1 is the unit imaginary number. The displacement function within the

beam can be expressed by linear superposition as

v(x) =
4∑

j=1

cj exp[λjx] (20)

Here the unknown constants cj need to be obtained from the boundary conditions.
Using Eq. (20), the natural frequency of the system are obtained by imposing the

necessary boundary conditions [42]. For example, the bending moment and shear force
are given by:

• Bending moment at x = 0 or x = L:

EI
d2v(x)

dx2
−mω2(e0a)

2v(x) = 0 or
d2v(x)

dx2
− c4(e0a)

2v(x) = 0 (21)

• Shear force at x = 0 or x = L:

EI
d3v(x)

dx3
+
(
mω2 − k

)
(e0a)

2dv(x)

dx
= 0 or

d3v(x)

dx3
+ b4(e0a)

2dv(x)

dx
= 0 (22)

Boundary conditions involving displacements and rotations can be applied in a conven-
tional manner. There are different ways in which the nonlocal boundary condition can be
applied. Several authors have shown inconsistent results in the application of the Erin-
gen differential constitutive relation in modelling the cantilever beam by comparing with
other types of boundary conditions [43, 44]. Moreover, it is stated that for all bound-
ary conditions except the cantilever, application of the differential form of constitutive
relation in modelling nano-beam predicts softening effect for increasing of the nonlocal
parameter as is stated in [44]. In order to overcome this paradox, which appear in the
boundary conditions, there are few approaches. One of the first paper is proposed by



Challamel and Wang [45], showed that the gradient elastic model as well as an integral
nonlocal elastic model that is based on combining the local and the non-local curvatures
in the constitutive elastic relation. Then, in [46], the authors presented a two-phase uni-
fied integro-differential nonlocal model for analysing the cantilever Euler-Bernoulli beam
where the finite element method is employed in order to solve the bending problem, where
the problem of the cantilever beam is also included. On the other hand, in [47, 48], the
authors proposed the application of a stress-driven integral constitutive law instead of
the Eringen strain-driven integral constitutive law, in order to get well-posed nonlocal
elastic problems for applications to structural mechanics. We refer to the papers by Chal-
lamel et. al [49, 50] for further comprehensive discussions. The focus of this paper is the
derivation of the element dynamic stiffness matrix of the beam. This matrix captures the
relationship between applied forces and displacements at the two nodes of the beam. As
a result, the boundary conditions do not impact the derivation of the element dynamic
stiffness matrix. The resulting dynamic response, of course, will depend on the applied
boundary conditions as will be seen later in the paper.

2.3. Damped system

The equation of motion of bending vibration for a damped nonlocal beam can be
expressed as

EI
∂4V (x, t)

∂x4
+

(
1− (e0a)

2 ∂
2

∂x2

){
m
∂2V (x, t)

∂t2
+ kV (x, t)

}
+ĉ1

(
1− (e0a)

2
1

∂2

∂x2

)
∂5V (x, t)

∂x4∂t

+ ĉ2

(
1− (e0a)

2
2

∂2

∂x2

)
∂V (x, t)

∂t
=

(
1− (e0a)

2 ∂
2

∂x2

)
{F (x, t)} (23)

Here ĉ1 is the strain-rate-dependent viscous damping coefficient and ĉ2 is the velocity-
dependent viscous damping coefficient. The parameters (e0a)1 and (e0a)2 are nonlocal
parameters related to the two damping terms respectively. For simplicity, we have not
taken into account any nonlocal effect related to the damping. Although this can be
mathematically incorporated in the analysis, the determination of these nonlocal parame-
ters is beyond the scope of this work and therefore only local interaction for the damping
is adopted. Thus, in the following analysis, we consider (e0a)1 = (e0a)2 = 0.

Assuming harmonic response as in Eq. (7) and considering free vibration, from Eq.
(23) we have

EI
d4v

dx4
−
(
mω2 − k

)(
v − (e0a)

2 d
2v

dx2

)
+ iωĉ1

d4v

dx4
+ iωĉ2v = 0 (24)

Following the damping convention in dynamic analysis [42], we consider stiffness and mass
proportional damping. Therefore, we express the damping constants as

ĉ1 = ζ1EI and ĉ2 = ζ2m (25)

where ζ1 and ζ2 are stiffness and mass proportional damping factors. Substituting these,
from Eq. (24) we have

EI (1 + iωζ1)
d4v

dx4
+
(
mω2 − k

)
(e0a)

2 d
2v

dx2
−
(
mω2 − k

)
(1− iζ2/ω) v = 0 (26)

or
d4v

dx4
+ b̄4(e0a)

2 d
2v

dx2
− b̄4θv = 0 (27)



where we define b̄ and introduce θ as

b̄4 =
(mω2 − k)

EI (1 + iωζ1)
and θ = (1− iζ2/ω) (28)

Comparing this with the equivalent expression for the undamped case in Eq. (10) we
notice that b̄4 is a complex function of the frequency parameter ω as opposed to a real
function. In the special case when damping coefficients ζ1 and ζ1 go to zero, b̄4 in Eq. (28)
reduces to the expression of b4 in Eq. (10) and θ becomes 1. The characteristics equation
can be obtained in manned similar to the undamped system with the expressions of α
and β being

α = b̄

√(√
4θ + γ2 + γ

)
/2 (29)

and β = b̄

√(√
4θ + γ2 − γ

)
/2 (30)

Here γ = b̄2(e0a)
2 is now a complex valued function of the frequency.

3. The dynamic finite element matrix

3.1. Classical finite element of nonlocal beams

We first consider standard finite element analysis of the nonlocal beam. Phadikar
and Pradhan [51] proposed a variational-formulation-based finite element approach for
nanobeams and nanoplates. We consider an element of length L with bending stiffness
EI, elastic foundation stiffness k and mass per unit length m. An element of the beam
is shown in Fig. 2. This element has four degrees of freedom and there are four shape

1 2
1

2 4

3

Fig. 2: A nonlocal element for the bending vibration of a beam. It has two nodes and four degrees of
freedom. The displacement field within the element is expressed by cubic shape functions for the classical
finite element analysis. Complex valued frequency-dependent transcendental shape functions are used for
the proposed dynamic finite element analysis.

functions. The shape function matrix for the bending deformation [52] can be given by

N(x) = [N1(x), N2(x), N3(x), N4(x)]
T (31)

where
N1(x) = 1− 3 x2

L2 + 2 x3

L3 , N2(x) = x− 2x2

L
+ x3

L2 ,

N3(x) = 3 x2

L2 − 2 x3

L3 , N4(x) = −x2

L
+ x3

L2

(32)



Using this, the stiffness matrix can be obtained following the conventional variational
formulation [53] as

Ke = EI

∫ L

0

d2N(x)

dx2

d2NT (x)

dx2
dx+ k

∫ L

0

N(x)NT (x)dx+ k(e0a)
2

∫ L

0

dN(x)

dx

dNT (x)

dx
dx

=
EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2


+

kL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2




+
(e0a

L

)2 kL
30




36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2




(33)

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ L

0

N(x)NT (x)dx+m(e0a)
2

∫ L

0

dN(x)

dx

dNT (x)

dx
dx

=
mL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


+

(e0a
L

)2 mL

30




36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2




(34)

For the special case when the beam is local, the mass matrix derived above reduces to
the classical mass matrix [52, 53] as e0a = 0. It should be noted that since the shape
function in the classical finite element method is not exact for dynamic problems, a number
of elements should be used to model a beam member. Therefore, the elemental stiffness
Ke and mass Me matrices should be assembled to form global stiffness Kg and mass Mg

matrices and finally global dynamic stiffness matrix of the overall structure based the
above classical finite element method becomes

Dg(ω) = Kg − ω2Mg (35)

and the equation of dynamic equilibrium is

Dg(ω)v̂g(ω) = f̂g(ω) (36)

which can be used for forced vibration directly. For free vibration analysis, natural fre-
quencies ω are computed for when (Kg−ω2Mg)v̂g(ω) = 0 has nontrivial solutions v̂g and
will be mentioned later in Section 4.

3.2. Dynamic finite element for damped nonlocal beam

The first step for the derivation of the dynamic element matrix is the generation
of dynamic shape functions. The dynamic shape functions are obtained such that the
equation of dynamic equilibrium is satisfied exactly at all points within the element.
Similarly to the classical finite element method, assume that the frequency-dependent
displacement within an element is interpolated from the nodal displacements as

ve(x, ω) = NT (x, ω)v̂e(ω) (37)



Here v̂e(ω) ∈ C
n is the nodal displacement vector N(x, ω) ∈ C

n is the vector of frequency-
dependent shape functions and n = 4 is the number of the nodal degrees-of-freedom.
Suppose the sj(x, ω) ∈ C, j = 1, · · · , 4 are the basis functions which exactly satisfy Eq.
(27). It can be shown that the shape function vector can be expressed as

N(x, ω) = Γ(ω)s(x, ω) (38)

where the vector s(x, ω) = {sj(x, ω)}T , ∀ j = 1, · · · , 4 and the complex matrix Γ(ω) ∈
C

4×4 depends on the boundary conditions. The elements of s(x, ω) constitutes exp[λjx]
where the values of λj are obtained from the solution of the characteristics equation as
given in Eq. (19). An element for the damped beam under bending vibration is shown
in Fig. 2. The degrees-of-freedom for each nodal point include a vertical and a rotational
degrees-of-freedom.

In view of the solutions in Eq. (19), the displacement field with the element can
be expressed by linear combination of the basic functions e−iαx, eiαx, eβx and e−βx so

that in our notations s(x, ω) =
{
e−iαx, eiαx, eβx, e−βx

}T
. We can also express s(x, ω) in

terms of trigonometric functions. Considering e±iαx = cos(αx) ± i sin(αx) and e±βx =
cosh(βx)± i sinh(βx), the vector s(x, ω) can be alternatively expressed as

s(x, ω) =





sin(αx)
cos(αx)
sinh(βx)
cosh(βx)





∈ C
4 (39)

The displacement field within the element can be expressed as

v(x) = s(x, ω)Tve (40)

where ve ∈ C
4 is the vector of constants to be determined from the boundary conditions.

The relationship between the shape functions and the boundary conditions can be
represented as in Table 1, where boundary conditions in each column give rise to the
corresponding shape function. Writing Eq. (40) for the above four sets of boundary

N1(x, ω) N2(x, ω) N3(x, ω) N4(x, ω)
v(0) 1 0 0 0
dv

dx
(0) 0 1 0 0

v(L) 0 0 1 0
dv

dx
(L) 0 0 0 1

Table 1: The relationship between the boundary conditions and the shape functions for the bending
vibration of beams.

conditions, one obtains
[R]
[
v1
e,v

2
e,v

3
e,v

4
e

]
= I (41)

where

R =




s1(0) s2(0) s3(0) s4(0)
ds1
dx

(0) ds2
dx

(0) ds3
dx

(0) ds4
dx

(0)
s1(L) s2(L) s3(L) s4(L)
ds1
dx

(L) ds2
dx

(L) ds3
dx

(L) ds4
dx

(L)


 (42)



and vk
e is the vector of constants giving rise to the kth shape function. In view of the

boundary conditions represented in Table 1 and equation (41), the shape functions for
bending vibration can be shown to be given by Eq. (38) where

Γ(ω) =
[
v1
e,v

2
e,v

3
e,v

4
e

]T
=
[
R−1

]T
(43)

By obtaining the matrix Γ(ω) from the above equation, the shape function vector can be
obtained from Eq. (38).

The stiffness and mass matrices can be obtained similarly to the static finite element
case discussed before. Note that for this case all the matrices become complex and
frequency-dependent, which is different from the finite element matrices of Eq. (35). The
dynamic stiffness matrix (omitting the subscript) is therefore

D(ω) = Ke(ω)− ω2Me(ω) (44)

and dynamic equilibrium can be also formulated as

De(ω)v̂e(ω) = f̂(ω) (45)

In Eq. (44), the frequency-dependent stiffness and mass matrices can be obtained as

Ke(ω) = EI

∫ L

0

d2N(x, ω)

dx2

d2NT (x, ω)

dx2
dx (46)

and Me(ω) = m

∫ L

0

N(x, ω)NT (x, ω)dx (47)

After some algebraic simplifications similar to [27, 54], it can be shown that the dynamic
stiffness matrix is given by the following closed-form expression

D(ω) = EI




d1 d2 d4 d5
d3 −d5 d6

d1 −d2
sym d3


 (48)

where the matrix coefficients are

d1 = −α β
(
α2 + β2

)
(Cα s+ cβ S) /∆ (49)

d2 = −αβ
(
2 sSαβ +

(
β2 − α2

)
(Cc− 1)

)
/∆ (50)

d3 = − (Cβ s− α cS)
(
α2 + β2

)
/∆ (51)

d4 = α β
(
α2 + β2

)
(β S + α s) /∆ (52)

d5 = −α β (C − c)
(
α2 + β2

)
/∆ (53)

and d6 =
(
α2 + β2

)
(−αS + β s) /∆ (54)

In the above equations
∆ = sS(α2 − β2)− 2αβ(1− cC) (55)

and
C = cosh(βL), c = cos(αL), S = sinh(βL) and s = sin(αL) (56)

The elements of the dynamic stiffness matrix are frequency dependent complex quantities
because α and β are functions of ω and damping factors.

So far we did not explicitly consider any forces within the element. A distributed
body force can be considered following the usual finite element approach [52] for the



classical finite element method, and replacing the static shape functions with the dynamic
shape functions given in Eq. (38). Suppose p(x, ω), x ∈ [0, L] is the frequency depended
distributed body force. The element nodal forcing vector can be obtained as

f(ω) =

∫ L

0

p(x, ω)N(x, ω)dx (57)

As an example, if a point harmonic force of magnitude p is applied at length b < L then,
p(x, ω) = pδ(x− b) where δ(•) is the Dirac delta function. The element nodal force vector
becomes

f(ω) = p

∫ L

0

δ(x− b)N(x, ω)dx (58)

For a structure built up from beam members with different properties, the dynamic
stiffness matrices of Eq. (44) for all members can then be easily assembled as in the
classical finite element method. This will lead to the global dynamic stiffness matrix
Dg(ω) for the whole structure, whose dynamic equilibrium can be also expressed by

Dg(ω)v̂g(ω) = f̂g(ω) (59)

This equation can be directly used for the forced vibration analysis. For the free vibra-
tion analysis, natural frequencies ω are solved for when Dg(ω)v̂g(ω) = 0 has non-trivial
solutions and will be mentioned later in Section 4.

It is worth emphasising that for both the free and forced vibration analysis of a beam
member with a uniform cross-section, the dynamic finite element method only needs a
4 × 4 matrix as in Eq. (48) with complex entries whereas the classical finite element
method in Eq. (35) needs a number of elements which depends on the frequency range
and desired analysis accuracy. This is a significant advantage of the proposed dynamic
finite element approach compared to the conventional finite element approach discussed
in the previous subsection.

3.3. Analysis of the dynamic stiffness matrix

The dynamic stiffness matrix given by Eq. (48) is general and expressed in a compact
form. There are six unique coefficients. Here we discuss three special cases for the
undamped system so that Eq. (48) becomes intuitively meaningful.

First we consider the special case when there is no elastic foundation and the frequency
is zero, that the static case. When k = 0 and ω → 0, from Eqs. (17) and (18) we have
α → 0 and β → 0. Note that the damping has no influence when the frequency is 0.
Considering this case and taking the mathematical limit we have

lim
α,β→0

D(ω) = D0 =
EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2


 (60)

This matrix is the well known static stiffness matrix of a conventional (local) Euler-
Bernoulli beam without an elastic foundation. This demonstrates that the static stiffness
matrix is a special case of the general dynamic stiffness matrix given in Eq. (48).

Next we consider the case when the frequency is zero but the foundation stiffness is
not zero, that is ω → 0 and k 6= 0. Neglecting the nonlocal effect, the general dynamic



stiffness matrix degenerates to the following special case

lim
ω,(e0a)→0

D(ω) = D1

=
2EIb′

(S2 − s2)




2 b′
2

(SC + sc) b′ (C2 − c2) −2 b′
2

(cS + sC) 2 sSb′

b′ (C2 − c2) SC − sc −2 sSb′ sC − cS

−2 b′
2

(cS + sC) −2 sSb′ 2 b′
2

(SC + sc) −b′ (C2 − c2)
2 sSb′ sC − cS −b′ (C2 − c2) SC − sc


 (61)

In the above equation

b′ =
4

√
k

4EI
(62)

and
C = cosh(b′L), c = cos(b′L), S = sinh(b′L) and s = sin(b′L) (63)

Equation (61) represents the exact transcendental stiffness matrix of a conventional (lo-
cal) Euler-Bernoulli beam resting on an elastic foundation (see for example [27]). To
understand the nature of this transcendental stiffness matrix further, it is expanded in
a Taylor series about k = 0. Substituting b′ from equation (62) in equation (61) and
differentiating all the elements with respect to k, after simplifications we have the series
expansion

D1 =
EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2


+

L

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


 k

+
L5

69854400EI




−25488 −5352L −23022 5043L
−5352L −1136L2 −5043L 1097L2

−23022 −5043L −25488 5352L
5043L 1097L2 5352L −1136L2


 k2 +O(k3) + · · ·

(64)

It is interesting to note that the first two terms of this expansion is exactly the same as
the first two terms of the static nonlocal matrix in equation (33).

For the third case we consider the special condition when the beam is a local beam.
In that case e0a = 0 and consequently

α = β = b =
4

√
mω2 − k

EI
(65)

Using these, the general dynamic stiffness matrix degenerates to the following special case

lim
α→b,β→b

D(ω) = D2(ω) =
EIb

Cc− 1




−β2 (Cs+ Sc) −β Ss β2 (S + s) −β (C − c)

−β Ss −Cs + Sc β (C − c) −S + s

β2 (S + s) β (C − c) −β2 (Cs+ Sc) β Ss

−β (C − c) −S + s β Ss −Cs+ Sc




(66)
here

C = cosh(bL), c = cos(bL), S = sinh(bL) and s = sin(bL) (67)

The equation derived in (66) match exactly with the dynamic stiffness matrix of a con-



ventional (local) Euler-Bernoulli beam without an elastic foundation [55]. It is useful to
expand the dynamic stiffness matrix in (66) in a Taylor series around ω = 0. Ignoring the
foundation stiffness (k = 0) and after some simplification we can deduce that

D2(ω) =
EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2


− ω2mL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2




− ω4 m2L6

161700EI




59
L

223
18

1279
24L

−1681
144

223
18

71L
27

1681
144

−1097L
432

1279
24L

1681
144

59
L

−223
18

−1681
144

−1097L
432

−223
18

71L
27



+O(ω6) + · · ·

(68)

It is useful to note that the first two terms of this expansion is exactly the same as the
stiffness and mass matrix of a classical Euler-Bernoulli beam. A similar Taylor series
expansion in ω can also be performed for the general dynamic stiffness matrix in (48).
This analysis clearly shows that the dynamic stiffness matrix contains the static stiffness
matrix and the mass matrix and also contains all the higher orders terms associated with
frequency. For this reason, Eq. (48) is valid for all values of frequency.

4. Free vibration analysis of nonlocal beams

In the last section, two forms of dynamic stiffness matrices have been developed based
on both the classical finite element method (Subsection 3.1) and dynamic finite element
method (Subsection 3.2). The corresponding procedures for free vibration analyses are
provided as follows.

For the nonlocal beam element based on the classical finite element method as dis-
cussed in Subsection 3.1, the stiffness matrix Ke of Eq. (33) and mass matrix Me of Eq.
(34) are frequency independent. Therefore, after assembling elemental matrices (Ke and
Me) into the corresponding global matrices (Kg and Mg) and applying prescribed bound-
ary conditions, one will arrive at a generalized eigenvalue problem (Kg−ω2Mg)v̂e(ω) = 0̂,
where the natural frequencies can be computed by using well-established linear algebraic
solver.

For the nonlocal beam member based on dynamic finite element method (Section 3.2),
after assembling procedure and application of prescribed boundary conditions such as in
the classical finite element method, one will obtain the global dynamic stiffness matrix
Dg(ω). Since each nonzero entry of the matrix Dg(ω) is a transcendental functions of
frequency ω and nonlocal parameter e0a, a special solution technique called the Wittrick-
Williams algorithm [56] need to applied to compute the natural frequencies ω. Eq. (69) is
the key equation of the Wittrick-Williams algorithm, which is used to calculate the mode
count J when ω is lower than the trial frequency ω∗

J(ω∗) =
Ne∑

i=1

J0i(ω
∗) + s{Dg(ω

∗)} (69)

where s{Dg(ω
∗)} is the number of negative diagonal elements after upper triangular

transformation by using Gauss elimination of Dg(ω
∗) when ω = ω∗. J0i(ω

∗) is the number



of natural frequencies between ω = 0 and ω = ω∗ when both ends of the ith beam member
are clamped and Ne is the number of beam members.

Undoubtedly, J0i(ω
∗) plays an important role in the Wittrick-Williams algorithm.

There are three ways of getting the value of J0i(ω
∗) for the ith member.

The first technique is to refine the mesh to make sure J0i = 0. Obviously, it will
introduce unnecessary computational cost significantly.

The second technique is letting the common denominator of the member’s dynamic
stiffness matrix (see Eq. (55)) become zero, i.e., sS(α2 − β2) − 2αβ(1 − cC) = 0. Then
the natural frequencies ωs can be numerically solved and J0i(ω

∗) can be easily obtained.
However, this technique relies on numerical solvers for transcendental equations and might
miss some of the roots.

A third technique is applied in this study which is the most reliable and efficient,
i.e., the J0i problem of a beam member is resolved by applying an indirect method [57],
which improves the computational efficiency of the dynamic stiffness method. According
to Wittrick-Williams algorithm, the mode count JSSi(ω

∗) of the ith beam member with
both ends simply supported can be given by Eq. (69), which can be recast as JSSi(ω

∗) =
J0i(ω

∗) + s{DSSi(ω
∗)}, where DSSi(ω

∗) is the dynamic stiffness matrix for the ith beam
member with both ends simply supported. Therefore

J0i(ω
∗) = JSSi(ω

∗)− s{DSSi(ω
∗)} (70)

Next we will provide the analytical expression for both JSSi(ω
∗) and s{DSSi(ω

∗)}. For a
simply-supported nonlocal beam member with length L, the shape function can be given
as v(x) = C sin(jπ/L) where j is a non-negative integer and C is an arbitrary constant.
Substituting into Eq. (27) and ignoring the damping effect, one will have

(jπ/L)2 = b̄2
(√

4 + γ2 + γ
)
/2 (71)

and solving for J leads to

JSSi(ω
∗) = floor

(
b̄L/π

√(√
4 + γ2 + γ

)
/2

)
(72)

where γ = b̄2(e0a)
2, and b̄4 = (mω∗2 − k) /EI and floor gives the largest integer smaller

than the followed value. Besides, the matrix DSSi(ω
∗) for the ith member is essentially

the second and fourth rows and columns of the dynamic stiffness matrix in Eq. (48) after
applying the simply supported boundary conditions on both ends, namely,

DSSi(ω
∗) = EI

[
d3 d6
d6 d3

]
(73)

Therefore,
s{DSSi(ω

∗)} = s(d3) + s(d3 − d26/d3) (74)

It is easy to know that for s(•) takes 1 when ‘•’ is negative scalar and zero for non-
negative scalar. Next we illustrate the formulations derived in these two sections using
an example.



5. Numerical results and discussions

5.1. Analysis of the dynamic stiffness coefficients

The generality of the dynamic stiffness matrix given in Eq. (48) was investigated
analytically in Subsection 3.3. Here we numerically investigate the scope of the dynamic
stiffness matrix. There are six unique elements in the matrix. They are complex-valued
and frequency-dependent quantities. A double-walled carbon nanotube (DWCNT) is
considered to illustrate the dynamic stiffness matrix. An armchair (5, 5), (8, 8) DWCNT
with Young’s modulus E = 1.0 TPa, L = 30 nm, density ρ = 2.3 × 103 kg/m3 and
thickness t = 0.35 nm is considered as in [58]. The inner and the outer diameters of the
DWCNT are respectively 0.68nm and 1.1nm. The system considered here is shown in
Fig. 3. In Fig. 3, we show the pinned-pinned boundary condition for the DWCNT as an

Fig. 3: Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nanotube (DWCNT) with
pinned-pinned boundary condition.

illustration. The coefficients of the dynamic stiffness matrix are not dependent on the
boundary conditions.

In Fig. 4 we show the amplitudes of all the six unique dynamic stiffness coefficients of
the DWCNT for e0a = 0.5nm. The stiffness and mass proportional damping factors are
ζ1 = 10−4 and ζ2 = 0.05 respectively. Each dynamic stiffness coefficient is normalised with
respect to its static value given in (60). Although the dynamic coefficients are different
in values, they have peaks at the same frequency. These peaks do not correspond to the
resonance frequency of the beam (they will depend on the boundary conditions). The
peak frequencies correspond to the real part of the complex solution of the denominator
equation (55) given by

∆ = 0 or sS(α2 − β2) = 2αβ(1− cC) (75)

The frequency axis is normalised with respect to the first natural frequency of a pinned-
pinned local Euler-Bernoulli beam, that is

ω1 =
(π
L

)2√EI

m
(76)
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Fig. 4: Amplitudes of the six unique dynamic stiffness coefficients of the DWCNT for e0a = 0.5nm.
The stiffness and mass proportional damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively. In each
plot, we have shown four values of foundation stiffness k = ω2

s
m. Each dynamic stiffness coefficient is

normalised with respect to its static value given in Eq. (60).



In each plot, four values of the foundation stiffness obtained as k = ω2
sm are shown. The

case when ωs = 0 represents when there is no elastic foundation. This case represents the
lowest peaks in the dynamic stiffness coefficients. Higher values of foundation stiffness k
move the peaks to the right, indicating that the system is becoming stiffer. The foun-
dation stiffness has a higher impact on the first peak. Its effect diminishes in the higher
frequencies. Amplitudes of the six unique dynamic stiffness coefficients of the DWCNT
for e0a = 1.5nm are shown in Fig. 5. This is similar to the previous plot, except for a
higher value of the nonlocal parameter. We have shown four values of foundation stiffness
k = ω2

sm. A key difference between this case from Fig. 4 is that there is more number
of peaks within the chosen frequency range. This is because a higher value of the non-
local parameter reduces the peak frequency values. We also observe that the foundation
stiffness moves the fist peak significantly higher. As an example, for ωs = 9, the first
peak is close to the third peak of the beam without the elastic foundation. Such extreme
difference is less pronounced in the higher frequency regions.

Figures 4 and 5 clarify the individual variation of the six unique dynamic stiffness
coefficients as a function of frequency. Now we are interested on how the coefficients
compare and contrast to each other. In Fig. 6 amplitudes of the normalised dynamic
stiffness coefficients are shown for e0a = 1.0nm. Four different values of the foundation
stiffness k = ω2

sm are shown in the four subplots. The dynamic stiffness coefficients are
normalised with respect to their respective static values given in Eq. (60). All the six
coefficients start with a value of 1 in Fig. 6 (a) confirming the validity of the static limit in
Eq. (60). The plots in Fig. 6 reconfirm that even the amplitudes of the dynamic stiffness
coefficients are different, they all peak at the same frequency values, which arise from
the solution of denominator equation (75). From Fig. 6(b), (c) and (d) we also observe
that higher values of the foundation stiffness progressively shift the peak towards higher
frequency ranges. Amplitudes of the dynamic stiffness coefficients for a higher value of
the nonlocal parameter, namely e0a = 1.5nm, are shown in Fig. 7. Here we can clearly
see more number of peaks compared to Fig. 6 within the same frequency range. This in
turn also implies that the spacing between the peaks is comparatively smaller.

In the discussions so far, the damping factor values are kept constant. Now we investi-
gate the role of damping factors on the dynamic stiffness coefficients. In Fig. 8 amplitudes
of all the six dynamic stiffness coefficients are shown. The values of the nonlocal param-
eter and the foundation stiffness are kept constant with e0a = 1.0nm and ωs = 3. Six
combinations of damping factor values consisting ζ1 = 10−2, 10−3, 10−4 and ζ2 = 0.05, 0.1
are shown. The stiffness proportional damping factor ζ1 has the most impact on the
dynamic stiffness coefficients in the high-frequency ranges. For higher values of ζ1, the
dynamic stiffness coefficients are independent of the ζ2 values. On the other hand, for
smaller values of ζ1, the amplitudes of dynamic stiffness coefficients depend on the mass
proportional damping factor ζ2. As expected, smaller damping factor values lead to higher
peaks in the dynamic stiffness coefficients.

5.2. Dynamic response analysis in the frequency domain

Results in the previous section exposed the nature of the coefficients of the proposed
dynamic stiffness matrix. In the presence of damping, they are complex valued functions
of the frequency. In this subsection we demonstrate how to utilise the nonlocal dynamic
stiffness matrix for nano-mechanical systems. In Fig. 3 the DWCNT is shown with a
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Fig. 5: Amplitudes of the six unique dynamic stiffness coefficients of the DWCNT for e0a = 1.5nm. In
each plot, we have shown four values of foundation stiffness k = ω2

s
m. Each dynamic stiffness coefficient

is normalised with respect to its static value given in Eq. (60). The stiffness and mass proportional
damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively.
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(a) ωs = 0 (no elastic foundation)
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(b) ωs = 3.0
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(c) ωs = 6.0
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(d) ωs = 9.0

Fig. 6: Amplitudes of the normalised dynamic stiffness coefficients of the DWCNT for e0a = 1.0nm. The
stiffness and mass proportional damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively. In each plot,
we have shown all the six unique dynamic stiffness coefficients together (normalised with respect to their
respective static values). Four different values of foundation stiffness k = ω2

s
m are shown.

pinned-pinned boundary condition. Undamped nonlocal natural frequencies for this case
can be obtained [59] as

λj =

√
EI

m

β2
j√

1 + β2
j (e0a)

2
where βj = jπ/L, j = 1, 2, · · · (77)

Here EI is the bending rigidity and m is the mass per unit length of the DWCNT. For
the finite element analysis, the DWCNT is divided into 100 elements. The dimension of
each of the system matrices become 200× 200, that is n = 200. The global stiffness and
mass matrices are obtained by assembling the element stiffness and mass matrix given by
(33) and (34).

The natural frequencies obtained using the analytical expression (77) are compared
with direct finite element simulation in Fig. 9. The frequency values are normalised with
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(a) ωs = 0 (no elastic foundation)
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Fig. 7: Amplitudes of the normalised dynamic stiffness coefficients of the DWCNT for e0a = 2.0nm.
In each plot, we have shown all the six unique dynamic stiffness coefficients together (normalised with
respect to their respective static values). Four different values of foundation stiffness k = ω2

s
m are shown.

The stiffness and mass proportional damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively.

respect to the first local natural frequency. First 20 nonlocal natural frequencies without
the elastic foundation are shown for four distinct values of e0a, namely 0.5, 1.0, 1.5
and 2.0nm. Natural frequencies corresponding to the underlying local system is shown
in Fig. 9. Local frequencies are qualitatively different from nonlocal frequencies as it
increases quadratically with the number of modes. Nonlocal frequencies, on the other
hand, increases approximately linearly with the number of modes.

For the response analysis, we first consider the rotation response of the pinned-pinned
beam due to the application of a dynamic moment. The moment is applied at the right
end of the beam and we are interested in the dynamic response

θ(ω) =
dv(ω)

dx
(78)

at the right-end. Considering the dynamic equilibrium in Eq. (45) and applying the
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Fig. 8: Amplitudes of the six unique dynamic stiffness coefficients of the DWCNT for e0a = 1.nm and
ωs = 3 (note that k = ω2

s
m). In each plot, we have shown six combinations of damping factor values

consisting ζ1 = 10−2, 10−3, 10−4 and ζ2 = 0.05, 0.1 (see the legend in (f)). Each dynamic stiffness
coefficient is normalised with respect to its static value given in Eq. (60).
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Fig. 9: The variation of the first 20 undamped natural frequencies for the bending vibration of DWCNT
with pinned-pinned boundary condition and foundation stiffness k = 0. Four representative values of e0a
(in nm) are considered.

boundary conditions we obtain the matrix equation
[
D22(ω) D24(ω)
D42(ω) D44(ω)

]{
θ1ω)
θ2(ω)

}
=

{
0
M

}
(79)

The above equation arises due to the fact that degrees of freedom 1 and 3 (refer to Fig. 2)
are zero. Using the analytical expressions of the matrix coefficients we have

EI(α2 + β2)

∆

[
−Cβ s + α cS −αS + β s

−αS + β s −Cβ s+ α cS

]{
θ1ω)
θ2(ω)

}
=

{
0
M

}
(80)

Solving this equation, the damped dynamic response of the rotation at the right end
(removing the subscript for simplicity) can be obtained in closed-form as

θ(ω) =
(α s (C − 1) (C + 1) c+ S (C) β (c− 1) (c+ 1))M

EI (α2 + β2) (C2 − 1) (c2 − 1)
(81)

Taking the limiting case when the excitation frequency is zero (static case), we have

lim
α,β→0

θ(ω) = θst =
ML

3EI
(82)

This matches exactly with the well known classical expression [60].
In Fig. 10 the amplitude of the dynamic rotation θ(ω) at the right-end is shown for the

four representative values of the nonlocal parameter. We consider the mass and stiffness
proportional damping such that the damping factors ζ2 = 0.05 and ζ1 = 10−4. In the
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Fig. 10: Amplitude of the normalised frequency response of the DWCNT θ(ω) at the right-end for different
values of e0a for pinned-pinned boundary condition. Exact finite element results are compared with the
approximate analysis based on local eigensolutions. The foundation stiffness k = 0 and the stiffness and
mass proportional damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively.

x-axis, excitation frequency normalised with respect to the first local frequency given
in Eq. (76) is considered. The frequency response is normalised by the static response
θst in Eq. (82). The frequency response function of the underlying local model is also
plotted to show the difference between the local and nonlocal response. For the nonlocal
system, the frequency response is obtained by the direct finite element method and the
dynamic stiffness method. For the finite element analysis we used 100 elements. This
in turn, results in global mass and stiffness matrices of dimension 200 × 200. While for
the dynamic stiffness method, only the inversion of a 2 × 2 matrix is necessary. The
results demonstrates the computational efficiency and accuracy of the proposed dynamics
stiffness method over the conventional finite element method.

Once the accuracy of the proposed dynamic stiffness method has been established, the
interest now is to obtain dynamic response of the DWCNT in the cantilever configuration
(figure not shown). A harmonic force is applied at the right end of the beam and we are



interested in the dynamic response at the right-end. The left-end of the beam is fixed.
Considering the dynamic equilibrium in Eq. (45) and applying the boundary conditions
we obtain the matrix equation

[
D33(ω) D34(ω)
D43(ω) D44(ω)

]{
v2ω)
θ2(ω)

}
=

{
P
0

}
(83)

The above equation arises due to the fact that degrees of freedom 1 and 2 (refer to Fig. 2)
are zero. Solving this equation, the damped dynamic response of the displacement at the
right end (removing the subscript for simplicity) can be obtained in closed-form as

v(ω) = P
(
α2 + β2

) (
C2α2β3cs+ C2β5cs− CSα5c2 − CSα3β2c2 + CSα3β2

−CSα β4 + 2Cα2β3s− 2Sα3β2c+ α4β cs− α2β3cs
)
/

EIα
(
C2α8c2 + C2α6β2c2 + C2α2β6c2 + C2β8c2 − C2α6β2 + 2C2α4β4 − C2α2β6

+4Cα6β2c+ 4Cα2β6c− α6β2c2 + 2α4β4c2 − α2β6c2 + α6β2 + 2α4β4 + α2β6
)
β (84)

Taking the limiting case when the excitation frequency is zero (the static case), we have

lim
α,β→0

v(ω) = vst =
PL3

3EI
(85)

This matches exactly with the well known classical expression [60].
In Fig. 11 the amplitude of the dynamic displacement v(ω) at the right-end is shown

for the four representative values of the foundation stiffness k = ω2
sm. As the response

quantity is a complex valued function, in Fig. 12 the corresponding phase of the response
is shown. We consider the mass and stiffness proportional damping such that the damp-
ing factors ζ2 = 0.05 and ζ1 = 10−4. In the x-axis, excitation frequency normalised with
respect to the first local frequency as before. The frequency response is normalised by the
static response vst =

PL3

3EI
as given in Eq. (85). The increasing value of the nonlocal param-

eter results in a reduced natural frequency as observed before. However, interestingly we
observe an increase in the damping effect with the increasing value of the nonlocal param-
eter even when the same damping factors are used in all the plots. This can be observed
from a diminishing response amplitude for higher values of the nonlocal parameter. This
damping effect is particularly prominent at higher frequencies and it is independent of
the foundation stiffness. For higher values of the foundation stiffness, we observe that the
first few resonance frequencies shifts to the left. This is expected as the system becomes
stiffer. The impact of the foundation stiffness is less at the high-frequency ranges. The
phase response in Fig. 12 corresponds to the characteristics of the amplitude response.
A significant phase change is observed around the resonance peaks as expected. As the
amplitude response becomes flatter for higher values of the nonlocal parameter, a dimin-
ishing change in the phase is observed. The analysis conducted here demonstrates that
the dynamic stiffness approach developed here can be used to investigate the dynamics
of damped nonlocal nano-beams without conducting a modal analysis. As the dynamic
stiffness elements are exact, they are valid for all frequency ranges.

6. Conclusions

A novel dynamic finite element approach for bending vibration of damped nonlocal
beams has been proposed. Strain rate dependent viscous damping and velocity-dependent
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Fig. 11: Amplitude of the normalised frequency response of the DWCNT v(ω) at the right-end for four
different values of foundation stiffness k = ω2

s
m. A cantilever boundary condition with a harmonic forcing

at the right-end is considered. In each plot, we have shown four values of the nonlocal parameter. The
stiffness and mass proportional damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively.

viscous damping were employed. It was considered that the beam is resting on an elastic
foundation. Damped and undamped dynamics were discussed. The stiffness and mass
matrices of the nonlocal beam were obtained using the conventional finite element method.
In the special case when the nonlocal parameter becomes zero, the expression of the mass
and stiffness matrices reduce to the classical case. Frequency-dependent complex-valued
shape functions were used to obtain the dynamic stiffness matrix in closed-form. It was
shown that the 4×4 complex symmetric dynamic stiffness matrix is uniquely characterised
by six transcendental functions. It was proved that, when the nonlocal parameter is zero
(classical beam), the foundation stiffness is zero (no elastic foundation), frequency is
zero (the static case), or the damping is zero (undamped case), the general dynamic
stiffness matrix reduces to the well established special cases available in the literature.
The dynamic stiffness matrix derived here, therefore, embodies the most general case
within the scope of liner Euler-Bernoulli beam theory.
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Fig. 12: Phase of the normalised frequency response of the DWCNT v(ω) at the right-end for four different
values of foundation stiffness k = ω2

s
m. A cantilever boundary condition with a harmonic forcing at the

right-end is considered. In each plot, we have shown four values of the nonlocal parameter. The stiffness
and mass proportional damping factors are ζ1 = 10−4 and ζ2 = 0.05 respectively.

The proposed method was numerically applied to the bending vibration of an arm-
chair (5, 5), (8, 8) double-walled carbon nanotube. The evolution of the elements of the
dynamic stiffness matrix in the frequency domain has been shown for selected parameter
values. Although the six dynamic stiffness coefficients are different, they show peaks at
the same frequency values. Increasing values of the nonlocal parameter tend to make
the stiffness coefficients softer while increasing values of the foundation stiffness tend to
make the stiffness coefficients stiffer. However, the impact of the foundation stiffness is
only prominent in the first few modes of vibration. Among the two types of damping
considered in the paper, the strain rate dependent viscous damping has the most sig-
nificant influence on the response behaviour in the high-frequency region. The dynamic
response in the frequency domain was obtained by inverting the dynamic stiffness ma-
trix with appropriate end conditions. Explicit closed-form expressions of the dynamic
response for pinned-pinned and cantilever boundary conditions were obtained exactly in



terms of transcendental functions. It was shown that in the special case of the static re-
sponse, these complex expressions reduce to known simple classical formulas. The natural
frequencies and the dynamic response obtained using the conventional finite element ap-
proach were compared with the results obtained using the dynamic finite method for the
pinned-pinned boundary condition. Good agreement between conventional finite element
with 100 elements and proposed dynamic finite element with only 1 element was found.
This demonstrated the accuracy and computational efficiency of the proposed dynamic
stiffness method.
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