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We consider theories containing scalar fields interacting with vector or with tensor degrees of freedom,
equipped with symmetries that prevent the propagation of linearized scalar excitations around solutions of
the equations of motion. We first study the implications of such symmetries for building vector theories that
break Abelian gauge invariance without necessarily exciting longitudinal scalar fluctuations in flat space.
We then examine scalar-tensor theories in curved space, and relate the symmetries we consider with a
nonlinear realization of broken spacetime symmetries acting on scalar modes. We determine sufficient
conditions on the spacetime geometry to avoid the propagation of scalar fluctuations. We analyze linearized
perturbations around spherically symmetric black holes, proving the absence of scalar excitations, and
pointing out modifications in the dynamics of spin-2 fluctuations with respect to Einstein gravity. We then
study consequences of this setup for the dark energy problem, determining scalar constraints on
cosmological configurations that can lead to self-accelerating universes whose expansion is insensitive
to the value of the bare cosmological constant.
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I. INTRODUCTION

In this work we examine covariant theories describing
scalar fields interacting with themselves, with vectors, or
with tensors, where symmetries prevent the propagation of
linearized scalar excitations around solutions of the equa-
tions of motion. Our motivations for studying these systems
are the following:

They can constitute examples of theories of gravity
alternative to general relativity (GR) that automati-
cally avoid fifth force constraints, since they only
admit a massless spin-2 propagating mode. In fact, if
scalar fluctuations do not propagate, long range scalar
interactions are absent. These systems circumvent the
Lovelock theorem [1] by spontaneously breaking
Lorentz invariance by a nontrivial profile for the
scalar background configuration.

These theories might avoid instabilities associated with
scalar fluctuations in scalar-tensor systems, as for
example graviton decay into dark energy [2], or scalar
instabilities around spherically symmetric black holes
[3–7]. Yet, the dynamics of tensor fluctuations can be
distinct with respect to GR, making them distinguish-
able from Einstein gravity.

Symmetries can limit the number of allowed interactions
for the setup under examination, and protect their
structure under classical and quantum corrections. The
structure of the corresponding theories can lead to new
perspectives for the dark energy problem, and for
explaining the smallness of the present-day cosmo-
logical acceleration rate [8].

Examples of scalar-tensor or massive gravity theories
where scalar fluctuations do not propagate have already been
discussed in the literature (see, e.g., [9–13]), usually per-
forming a Hamiltonian analysis aimed at determining the
constraints that avoid the propagation of scalar modes. In
many of the existing examples, scalar fluctuations do not
propagate in a unitary gauge, where an homogeneous, time-
dependent-onlyconfiguration for thebackgroundscalar field
is selected. In this work, we address the problem of
determining scalarless scalar-tensor theories of gravity
making use of symmetry principles that guide us for building
covariant scalarless theories and for better understanding the
dynamicsof thepropagatingmodes.Wefocusonsymmetries
first explored in [14,15] that arise when taking certain limits
of Dirac-Born-Infeld (DBI)-Galileon interactions [16], and
we further develop and expand previous results. We aim to
better understandhowsuchscalarless interactionsarisewhen
breaking gauge or spacetime symmetries in vector or tensor
theories,with the scalar playing the role ofGoldstone bosons
of such symmetries. We then study the consequences of our
results for spherically symmetric configurations and for
cosmology. We proceed as follows:

(i) We start in Sec. II considering scalar theories in
flat space in the absence of gravity and studying a
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field-dependent coordinate reparametrization [πðxÞ
is the scalar field, and ωμ an arbitrary infinitesimal
constant vector]

xμ → xμ þ πðxÞωμ: ð1Þ
As we shall see, this symmetry forbids the propa-
gation of scalar fluctuations. Scalar theories invari-
ant under this transformation inevitably lead to
spontaneous breaking of Lorentz invariance, by
turning on a nonvanishing scalar gradient ∂μπ.
The vacuum of these theories selects a preferred
direction that can be identified with the time
coordinate, making this setup reminiscent of Ein-
stein-Ether systems (see, e.g., [17] for a review). In
our case, after Lorentz symmetry is spontaneously
broken, no scalar excitations propagate. This result
is not in contrast with the Lovelock theorem, where
Lorentz invariance is assumed.

(ii) In Sec. III we couple scalar modes with vector fields
in flat space, showing how to select interactions
that—although we break the standard Abelian Uð1Þ
symmetry—preserve a scalar-vector generalization
of symmetry (1). The system spontaneously breaks
Lorentz invariance, and the new symmetry can
prevent the propagation of scalar excitations, leading
to theories where only transverse vector modes are
dynamical, even in the absence of Abelian Uð1Þ
gauge invariance.

(iii) In Sec. IV we study four-dimensional scalar-tensor
interactions in curved space, deriving them from a
brane-world construction of a dynamical brane
embedded in five-dimensional (5D) space [16].
We start in Sec. IVA turning gravity off, reviewing
the arguments of [14,16], and showing how sym-
metry (1) arises as a nonlinear realization of broken
global symmetries in the 5D brane-world model. In
Sec. IV B we then consider the case of dynamical
gravity, showing that although symmetry (1) gets
generally broken, nevertheless a novel continuous
symmetry arises, inherited from 5D diffeomorphism
invariance. In Sec. IV C we study consequences of
this symmetry, providing sufficient conditions for
avoiding the propagation of scalar modes around
certain configurations. As a representative example,
we demonstrate that no scalar excitations arise
around a Schwarzschild solution, although the
dynamics of spin-2 fluctuations is different with
respect to Einstein gravity, making the theory dis-
tinguishable from GR. In Sec. IV D we study
cosmology, pointing out that the structure of our
theories leads to scalar constraints on cosmological
configurations, leading to expanding spacetime
geometries insensitive to the value of the cosmo-
logical constant. Correspondingly, we discuss some
consequences for the dark energy problem.

(iv) We conclude our discussion in Sec. V, followed by a
technical Appendix.

II. A SYMMETRY FOR SCALARLESS SCALAR
THEORIES AROUND FLAT SPACE

A. The scalarless symmetry

We start considering a class of scalar theories around flat
space in the absence of gravity, whose Lagrangian densities
are Lorentz invariant and lead to second order equations of
motion for the scalar field πðxÞ. Besides a shift symmetry,
we demand that these theories are invariant under the field-
dependent coordinate transformation

xμ → xμ þ πðxÞωμ ð2Þ

with ωμ a constant, infinitesimal 4-vector. This infinitesi-
mal coordinate transformation acts on the scalar field
πðxÞ as

πðxÞ → πðxÞ þ δslπðxÞ; with δslπðxÞ≡ 1

2
ωμ∂μπ

2ðxÞ:
ð3Þ

As we shall demonstrate soon, theories invariant under the
symmetry (3) spontaneously break Lorentz symmetry, and
the corresponding equations of motion require one to turn
on a nonvanishing timelike background gradient ∂μπ̄
whose norm satisfies the condition ∂μπ̄∂μπ̄ < 0 (we work
with “mostly plus” metric conventions).
On the other hand, the symmetry (3) prevents the

propagation of linearized scalar excitations π̂ around the
background configuration π̄. For this reason we dub trans-
formation (3) scalarless (SL) symmetry. This fact was first
noticed in [14], and we now reconsider it here. We select a
background scalar field π̄ðtÞ that spontaneously breaks
Lorentz symmetry and solves the equations of motion.
Splitting the scalar into a background homogenous configu-
ration plus a small perturbation, πðt; x⃗Þ ¼ π̄ðtÞ þ π̂ðt; x⃗Þ,
these two quantities transform under symmetry (3) as

π̄ðtÞ → π̄ðtÞ þ ω0π̄ðtÞ _̄πðtÞ; ð4Þ
π̂ðt; x⃗Þ → π̂ðt; x⃗Þ þ ω0∂0½π̄ðtÞπ̂ðt; x⃗Þ� þ π̄ðtÞωi∂iπ̂ðt; x⃗Þ;

ð5Þ
for infinitesimal quantities ωμ and π̂. This implies that, after
fixing once for all the background configuration π̄ðtÞ, there
remains a residual symmetry depending on the spatial
components ωi of the vector ωμ and acting on the small
fluctuations as

π̂ðxμÞ → π̂ðxμÞ þ π̄ðtÞωi∂iπ̂ðxμÞ: ð6Þ
Such residual symmetry prevents a standard kinetic term for
the fluctuations around Minkowski space: the contribution
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ð1=2Þð∂0π̂Þ2 to the scalar kinetic term containing time
derivatives1 is not invariant under the residual symmetry
(6); hence it cannot appear in the quadratic action for scalar
fluctuations.
For these reasons, we regard scalar theories invariant

under the SL symmetry (3) as a flat-space proxy for
scalarless scalar-tensor systems in a unitary gauge, where
the scalar profile is time dependent. For the rest of this
section we characterize the structure and properties of these
scalar theories to then explore their possible physical origin
in the next sections.

B. The scalarless scalar Lagrangians

Are there shift-symmetric scalar theories invariant under
the infinitesimal transformation (3)? The answer is affirma-
tive, and these theories arise as a limit of a certain
generalization of DBI-Galileons [16]: this fact was first
shown in [14]. Here we streamline and elaborate on the
analysis of [14].
To express more concisely the scalar systems we are

interested in, we adopt the notation ∂μπ ¼ π;μ for denoting
derivatives. In this section we raise and lower indexes with
the Minkowski metric ημν. We define

X ¼ −π;μπ;μ ð8Þ

and the convenient combinations

½Πn� ¼ π;μ;α1π
;α1

;α2 � � � π;αn ;μ;
½Φn� ¼ π;μπ

;μ
;α1 � � � π;αn ;μπ;μ: ð9Þ

The shift-symmetric Lagrangian densities describing the
theories respecting the symmetry (3), up to total deriva-
tives, are

L1 ¼
ffiffiffiffi
X

p
; ð10Þ

L2 ¼
1

X
½Φ�; ð11Þ

L3 ¼
1ffiffiffiffi
X

p ð½Π2� − ½Π�2Þ; ð12Þ

L4 ¼
1

X
ð½Π�3 þ 2½Π3� − 3½Π2�½Π�Þ: ð13Þ

The Lagrangian (10) corresponds to a flat-space version of
the cuscuton system [11], while Lagrangians (11)–(13)
might be thought as higher derivative versions of this
system (some common properties of all these Lagrangians
will be discussed in what follows). These Lagrangians are
weighted by appropriate powers of an energy scale (which
we set to one) to provide the correct dimensionality.
We now present a more compact way to express and

analyze these Lagrangians, which allows one to drive closer
parallelisms with generalized Galileons, and more easily
understand their symmetry properties. The previous four
quantities—up to total derivatives and overall constants—
can be expressed as

Ln ¼
ffiffiffiffi
X

p
YðnÞμ
μ ; ð14Þ

for n ¼ 1;…; 4, where the tensors YðnÞμ
μ read

Yð1Þν
μ ¼ ϵμα1β1δ1ϵ

να1β1δ1 ; ð15Þ

Yð2Þν
μ ¼ ϵμα1β1δ1ϵ

να1β1δ2ðπ;δ1=
ffiffiffiffi
X

p
Þ;δ2 ; ð16Þ

Yð3Þν
μ ¼ ϵμα1β1δ1ϵ

να1β2δ2ðπ;β1=
ffiffiffiffi
X

p
Þ;β2ðπ;δ1=

ffiffiffiffi
X

p
Þ;δ2 ; ð17Þ

Yð4Þν
μ ¼ ϵμα1β1δ1ϵ

να2β2δ2ðπ;α1=
ffiffiffiffi
X

p
Þ;α2ðπ;β1=

ffiffiffiffi
X

p
Þ;β2

× ðπ;δ1=
ffiffiffiffi
X

p
Þ;δ2 : ð18Þ

The analogy with Galileon Lagrangians as expressed with
the Levi-Civita symbols (see, e.g., [18,19] for early papers

on these topics) is apparent. The traces of the tensors YðnÞ
μν

are total derivatives by themselves—they lead to nontrivial
theories only when weighted by the overall

ffiffiffiffi
X

p
coefficient

in Eq. (14).
Thanks to the antisymmetric properties of the Levi-

Civita symbols, the scalar equations of motion are at most
second order, as it happens for generalized Galileons (see,
e.g., [20,21] for reviews). Once applying the SL infinitesi-
mal transformation (3), one finds the relations

δsl
ffiffiffiffi
X

p
¼ ωρ∂ρðπ

ffiffiffiffi
X

p
Þ; ð19Þ

δsl

�
π;μffiffiffiffi
X

p
�

;ν
¼ ωρ∂ρ

�
π
π;μffiffiffiffi
X

p
�

;ν
: ð20Þ

Making use of these results, of the chain rule, and the
structure (14) of the Lagrangians, it is straightforward
to realize that they transform under the infinitesimal SL
transformation (3) as

δslLn ¼ ωρ∂ρðπLnÞ; ð21Þ

for n ¼ 1;…; 4. This is a total derivative, showing that the
SL transformation (3) is a symmetry for these theories.

1Instead, the contribution to the kinetic term containing spatial
derivatives, ð∇⃗πÞ2, is invariant under the infinitesimal residual
symmetry up to total derivatives, since

1

2
∂jπ̂∂jπ̂ → ∂jπ̂∂j½ωi∂iðπ̄ðtÞπ̂Þ� ¼

ωi

2
∂i½π̄ðtÞ∂jπ̂∂jπ̂�: ð7Þ

We will explore in the next sections some consequences of
this fact.
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After the work [14], these symmetries have been more
recently reconsidered in related contexts in [22,23] and
recognized to be specific of the cuscuton Lagrangian

ffiffiffiffi
X

p
as

Eq. (10). Here we emphasize that they are common to all
the Lagrangians above (11)–(13).

1. Spontaneous breaking of Lorentz symmetry and
remarks on stability under radiative corrections

Besides their symmetries, another important feature of
Lagrangians (10)–(13) is their specific structure: they are
nonpolynomial functions of X (containing factors as

ffiffiffiffi
X

p
and 1=X), implying that the corresponding equations of
motion do not allow for solutions with X ¼ 0. A conse-
quence is that these systems spontaneously break Lorentz
symmetry: although their Lagrangians are Lorentz invari-
ant, the theories require vacua with a nonvanishing gradient
for the scalar, with π̄;μ ≠ 0 (a well-defined square root

ffiffiffiffi
X

p
further requires π̄;μπ̄

;μ < 0). Scalar backgrounds that
depend only on time, π̄ ¼ π̄ðtÞ, are special: making this
choice of homogeneous background, the Lagrangians (12)
and (13) vanish identically, while (10) and (11) become
linear functions of the time derivatives _̄π. Any linear
combination of them with constant coefficients then
reduces to a total derivative, ensuring that the homogeneous
scalar configuration π̄ðtÞ automatically satisfies the (trivial)
equations of motion in Minkowski space and represents a
consistent vacuum for the theory. For this reason, it is
natural to concentrate on the choice π̄ðtÞ. This property
of the Lagrangians of becoming linear in the scalar
first derivative, once one focuses on homogeneous time-
dependent backgrounds, remains true also when the scalar
system is coupled with other fields: we shall study some of
its cosmological consequences in Sec. IV D.
Around homogeneous scalar backgrounds π̄ðtÞ—as

we proved in Sec. II A—no linearized scalar fluctuations
propagate, making these scalar theories interesting. What
should we expect about the stability of the structure of
these theories under quantum effects? In the absence of
dynamical fluctuations around homogeneous backgrounds,
we might think that the structure of the Lagrangians is
protected under quantum corrections associated with scalar
modes—simply because no scalars propagate. When con-
sidering couplings with additional fields, one can induce
symmetry breaking effects that render dynamical the scalar,
making arguments of stability of the structure of the theory
more subtle, also due to the absence of Lorentz invariance.
Symmetry principles might help, as for the nonrenormal-
ization theorems that characterize Galileons [24,25]. We
defer this problem to a future work, although we make
some additional remarks about this point in discussing
cosmological models based on these theories in Sec. IV D.
In what comes next, we show that these scalar systems

can arise in a variety of contexts, once continuous or
global symmetries get broken in certain ways. Scalar

modes—coupled with extra fields—can then arise as
Goldstone bosons of broken symmetries. We start in
Sec. III to discuss vector theories in Minkowski space
with broken Uð1Þ symmetry, while in Sec. IV we consider
scalar-tensor theories of gravity.

III. SCALARLESS INTERACTIONS FROM
BROKEN GAUGE SYMMETRIES

In this section, we discuss how the scalarless SL
symmetry of Sec. II A can characterize the physics of
scalar excitations associated with broken gauge symmetries
for vector degrees of freedom in flat space, again in the
absence of gravity. This opens the possibility to study
covariant theories that break explicitly gauge symmetries,
without propagating scalar modes around appropriate
backgrounds. For definiteness, we focus on the simplest
case of a broken Abelian Uð1Þ gauge symmetry.
We consider the vector Lagrangian around flat space:

LV ¼ −
1

4
FμνFμν − VðAμ; ∂ρAνÞ; ð22Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength of a vector
field Aμ, while VðAμ; ∂ρAνÞ is a vector potential. The vector
potential generically breaks the Abelian gauge invariance

Aμ → Aμ þ ∂μξ; ð23Þ

that is instead obeyed by the vector field strength Fμν: this
fact normally implies the propagation of a longitudinal
scalar excitation, due to the gauge symmetry breaking
potential V. In some cases, in an appropriate limit the
Goldstone boson Lagrangian enjoys Galilean symmetries:
this fact was first explored in [26–28]. Here we instead
study possible realizations of the SL symmetry (3). For
definiteness we focus on the vector Lagrangian (22) with a
potential

V ¼ βm3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ημνAμAν

p
; ð24Þ

where β is a dimensionless parameter and m a mass scale
providing the correct dimensionality. This potential explic-
itly breaks the Uð1Þ gauge symmetry (23); moreover, it is
characterized by a square-root structure similar to the scalar
Lagrangians investigated in Sec. II A.
In fact, our aim here is to exploit this similarity: given

what we learned in the previous section, can we find new
symmetries associated with the vector Lagrangian (22),
which can prevent the propagation of linearized scalar
modes? To answer this question more transparently,
it is convenient to work with an equivalent system, making
use of the Stuckelberg trick. We can reinstate the original
gauge symmetry (23) introducing a scalar field π in the
combination
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mAμ → mAμ þ ∂μπ; ð25Þ

and writing the scalar-vector potential

V ¼ βm2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ημνðmAμ þ ∂μπÞðmAν þ ∂νπÞ

q
: ð26Þ

The system associated with the potential (26) is now
invariant under the Abelian gauge symmetry

Aμ → Aμ þ ∂μξ; ð27Þ

π → π −mξ; ð28Þ

for an arbitrary scalar function ξ. The scalar-vector poten-
tial (26) is distinct from the original one, Eq. (24). On the
other hand, using the gauge symmetry (28) to fix the gauge
π ¼ 0 one recovers the original Lagrangian (22) that is
therefore physically equivalent to (26).
Here we make use of the symmetries Eqs. (27) and (28)

and conveniently adopt the transverse Lorenz gauge
∂μAμ ¼ 0 for describing the vector field dynamics. At this
stage, the structure of the potential (26) would seem to
imply that 3 degrees of freedom propagate in this system:
2 degrees of freedom in a gauge vector Aμ and 1 degree of
freedom in the scalar π. On the other hand, considering
Eq. (26) and taking the decoupling limit m → 0, β → ∞
such that βm2 is kept finite, we get the scalar Lagrangian

Ldec ¼ βm2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ημν∂μπ∂νπ

q
; ð29Þ

which describes self-interactions of the Goldstone boson
associated with the broken symmetry. Having takenm → 0
this scalar Lagrangian loses the Abelian gauge symmetry
(28); on the other hand, it enjoys the additional SL
symmetry introduced in Sec. II, which prevents the
propagation of scalar modes around time-dependent back-
grounds π̄ðtÞ that solve the equations of motion and
spontaneously break Lorentz symmetry.
Such a decoupling limit argument suggests that the

initial scalar-vector potential (26) is invariant under a more
general scalar-vector global symmetry, even outside a
decoupling limit. In fact, a straightforward computation
along the arguments of Sec. II shows that the trans-
formations (with ωρ an infinitesimal constant vector)

Aμ → Aμ þ ωρ∂ρðπAμÞ; ð30Þ

π → π þ 1

2
ωρ∂ρπ

2 ð31Þ

leave the full potential (26) invariant up to total derivatives.
This global symmetry is independent from m and holds
also outside the decoupling limit discussed above.

While we focused so far on the specific square root
cuscuton potential (24), these very same considerations
apply also to the vector versions of all the covariant scalar
Lagrangians (11)—(13), which shall contain derivatives of
the vector fields. It is sufficient to substitute the scalar first
derivatives with the vector Aμ in those Lagrangians to
determine covariant vector potentials. Since the resulting
vector Lagrangians contain nonpolynomial functions as
square roots and inverses of AμAμ, consistent vacua around
which fluctuations can be studied require a nonvanishing
vacuum expectation value for Aμ, or the more convenient
Stückelberg combination (25). The actual structure of the
time-dependent vacuum expectation value will depend on
the details of the complete theory, and possibly on the
couplings of the vector with charged matter: a complete
discussion goes beyond the scope of this section. (We will
study in more detail this topic in the next section, when
coupling scalars with gravity.) On the other hand, we notice
that the simplest option is to choose the interactions so to
select a time-dependent background for the Stückelberg
field π̄ðtÞ. Linearized excitations around such a back-
ground are parametrized by hat quantities Aμ ¼ Âμ,
πðtx⃗Þ ¼ π̄ðtÞ þ π̂ðt; x⃗Þ. The scalar fluctuations π̂ enjoy
the residual symmetry (6) which ensures that no scalar
excitation propagates around this vacuum.2

In fact, the inevitable spontaneous breaking of Lorentz
invariance of the initially covariant systems is the key to
prevent the propagation of linearized scalar excitations
around flat space, by exploiting the scalarless symmetry
(3). Notice that these results are different from the partially
massless vector theories of [29], where scalar excitations are
forbidden by a new gauge symmetry in de Sitter space that
arises when the vector mass is related with the de Sitter scale.
On the other hand, it would be interesting to understand
whether our arguments and techniques can be applied to
theories of massive gravity, leading to examples of partially
massless massive gravity theories in systems that sponta-
neously break Lorentz symmetry.3

IV. SCALARLESS INTERACTIONS FROM
BROKEN SPACETIME SYMMETRIES

Besides broken gauge symmetries, another context
where scalarless interactions can arise are theories breaking
spacetime symmetries. In fact, previous investigations [14]
based on [16] studied the possibility of obtaining these
theories from broken global symmetries in five-
dimensional brane worlds. In this section we analyze in

2Notice that the vector kinetic term −F2
μν=4 in Eq. (22) does

not satisfy symmetry (30). On the other hand, this term preserves
by itself the Abelian gauge symmetry which ensures that it does
not excite scalar modes.

3See, e.g., [30] for an example of enhanced symmetry in a
spontaneously broken Lorenz violating setting, for a Fierz-Pauli
theory of massive gravity.
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more generality this topic and the consequences of cou-
pling the scalar theories of Sec. II with gravity. Namely,

(i) In Sec. IVA we review the arguments of [14] and
show that the scalarless SL symmetry (3) arises as a
nonlinear realization of broken global symmetries in
a five-dimensional brane-world context with a fixed
spacetime geometry.

(ii) In Sec. IVB we turn on dynamical gravity and
consistently couple our scalar Lagrangians (11)–(13)
with tensor modes in curved space. This process
generally breaks the SL symmetry that only holds in
flat space; nevertheless we show that the scalar-tensor
system obeys a novel continuous symmetry, inherited
from broken diffeomorphism invariance in the five-
dimensional brane-world model. Such new symmetry
reduces to the SL symmetry in the flat-space limit.

(iii) In Sec. IVC we investigate the consequences of the
new symmetry in the scalar-tensor system for the
number of propagating degrees of freedom. In par-
ticular, we demonstrate that no linearized scalarmodes
propagate around spacetimes satisfying appropriate
conditions, and then focus on the dynamics of fluc-
tuations around spherically symmetric Schwarzschild
black holes. We show that no additional degrees of
freedom propagate besides the ones of GR. On the
other hand, the dynamics of perturbations around
black holes are different with respect to GR, making
these theories distinguishable from Einstein gravity.

(iv) In Sec. IV D we focus on cosmology and discuss the
possible relevance of our theories for the infrared
dynamics of gravity and for the dark energy prob-
lem. We show that the effective action controlling
homogeneous cosmological quantities acquires the
form of a constrained system, and a constraint
associated with the scalar field leads to expanding
spacetime geometries which are insensitive to the
value of the cosmological constant. Moreover, the
system leads to self-accelerating configurations,
with the rate of acceleration proportional to the
parameters entering the scalar-tensor interactions.

A. Embedding in flat five-dimensional brane-world
models: The scalar as Goldstone boson

of broken global symmetries

A compelling physical motivation for the symmetry (3)
and the Lagrangians of Eqs. (11)–(13) arises from a brane-
world perspective. This brane-world point of view was first
developed in [14], building on the results of [16] which
introduced the DBI-Galileons. Here we briefly review this
viewpoint [14,16] and show that the scalar symmetry (3)
arises as a nonlinear realization of a broken global
spacetime symmetry in extradimensions.
We consider a four-dimensional brane whose world-

volume metric, γμν, is embedded in a five-dimensional bulk
whose metric reads

ds25d ¼ gMNdXMdXN ¼ κ0γμνdxμdxν þ dy2; ð32Þ

where y is the spatial extradimension. We introduce the
constant parameter κ0 as a constant “warp factor” that
plays an important role for our arguments. We choose a
foliation of the five-dimensional space expressing the brane
embedding as

Xμ ¼ xμ; ð33Þ

X5 ¼ πðxÞ: ð34Þ

The scalar πðxÞ geometrically parametrize fluctuations of
the brane position in the fifth dimension. We then introduce
four 5-vectors as

eMμ ¼ ∂XM

∂xμ ;

¼ ð…; δMμ ;…; ∂μπÞ: ð35Þ

[For example, e0M ¼ ð1; 0; 0; 0; ∂0πÞ.] These four 5-
vectors allow us to build the induced metric on the brane
(or first fundamental form) as

gμνðxÞ≡ eμMeνNgMN ¼ κ0γμνðxÞ þ ∂μπðxÞ∂νπðxÞ: ð36Þ

Introducing a unit normal vector to the brane nM, orthogo-
nal to the vectors (35), one builds the second fundamental
form—usually called extrinsic curvature—as the tensor

Kμν ¼ eμMeνN∇MnN: ð37Þ

These are the tools needed to build the scalar theories we
are investigating. Indeed, as proposed in [16], one can
consider those Lagrangian densities on the brane world
volume that lead to second order equations of motion for
the fields involved. These are the Lovelock invariants [1]
with the addition of Gibbons-Hawking-York terms on the
brane [31,32], leading to the actions

S1 ¼
1

κ30

Z
d4x

ffiffiffiffiffiffi
−g

p
; ð38Þ

S2 ¼
1

κ20

Z
d4x

ffiffiffiffiffiffi
−g

p
K; ð39Þ

S3 ¼
1

κ0

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð40Þ

S4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
KGB; ð41Þ

where K is the trace of the extrinsic curvature, R is the
Ricci scalar computed with the induced metric gμν,
while KGB, the “boundary-term” for the five-dimensional
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Gauss-Bonnet combination [33], is given by KGB¼
KK2

μν−2K3
μν=3−K3=3−2GμνKμν, with Gμν the Einstein

tensor evaluated with the metric gμν. (The reason for the
powers of κ0 as overall coefficients will be clear soon.)
When expressing the actions of (38) in terms of the

quantities γμν and π that appear in the expression for the
induced metric (36), one obtains covariant scalar-tensor
theories whose equations of motion are automatically at
most second order. The scalar field π, in this perspective,
plays the role of the Goldstone boson of broken global
symmetries that are nonlinearly realized in the scalar theory
under examination.
We now fix γμνðxÞ ¼ ημν: the resulting scalar theories

one obtains from Lagrangians (38) are the DBI-Galileons
of [16]. While in this section we focus on broken global
symmetries, in the next sections we shall examine how the
scalars can nonlinearly realize broken continuous sym-
metries in curved spacetime. In this global case, the broken
translation symmetry in the bulk is nonlinearly realized in
terms of shift symmetry acting on the scalar field. Broken
five-dimensional rotations are nonlinearly realized in terms
of the infinitesimal symmetry transformation

π → π þ κ0ωμxμ þ πωμ∂μπ; ð42Þ

for an arbitrary infinitesimal vector ωμ. In the limit κ0 → 0,
the symmetry (42) boils down to the infinitesimal SL
symmetry introduced in Eq. (3).
In fact, the limit κ0 → 0 can be taken consistently [when

including the appropriate powers of κ0 as overall coeffi-
cients, as in Eq. (38)] and leads to the system (10)–(13).
As shown in [14], these correspond to a particular case of
DBI-Galileon actions, equipped with the symmetry (3) [or
equivalently the κ0 → 0 limit of (42)]. We refer the reader to
[14] for more details on the κ0 → 0 limit of the geometrical
brane-world construction with a flat brane-world volume,
and the associate global symmetries. In the next sections, we
turn on gravity to study how the scalar π can be related with
broken continuous spacetime symmetries.

B. Coupling the scalar theory with gravity:
A new symmetry arises

As first noticed in [16], a consistent coupling with
gravity for the system discussed in Sec. IVA is straightfor-
ward: since actions (38) are built in terms of Lovelock
invariants and Gibbons-Hawking–like terms, they are
ensured to lead to second order equations of motion when
expressed in terms of the constituents γμν; π of the brane
induced metric. In fact, taking the κ0 → 0 limit of actions
(38), one obtains special cases of Horndeski Lagrangian
densities, which control possible interactions between the
metric γμν and the scalar π:

L1 ¼
ffiffiffiffi
X

p
; ð43Þ

L2 ¼
π;μΠμνπ;ν

X
; ð44Þ

L3 ¼ Rþ 1

X
ð½Π2� − ½Π�2Þ; ð45Þ

L4¼
1

X
ð½Π�3þ2½Π3�−3½Π2�½Π�−12Πμ

ρπ;ρGμνπ;νÞ; ð46Þ

where π;μ ≡∇μπ, Πμν ≡∇μ∇νπ, X ≡ −π;μπ;μ, and indexes
are raised/lowered with the dynamical metric γμν, which is
also used to take covariant derivatives. The Ricci scalar
R and Einstein tensor Gμν appearing in the previous
expressions are computed in terms of the induced four-
dimensional metric γμν.
As anticipated above, these theories lead to second order

equations of motion, and belong to the class of Horndeski
actions. Besides Horndeski systems, also special cases of
beyond Horndeski or DHOST theories [34–37] can be
obtained in terms of brane-induced scalar quantities, as
pointed out in [15]. In particular, systems built in terms of
the trace of powers of the extrinsic curvature tr ½Kn

μν�, n ≥ 2

are known to lead to consistent covariant theories which
avoid Ostrogradsky instabilities [36,38]. Before starting to
analyze the properties of these systems, we can make some
general comments:

(i) The Lagrangians (43)–(46) contain nonpolynomial
functions of X as

ffiffiffiffi
X

p
, 1=X; hence they sponta-

neously break Lorentz invariance, since consistent
solutions of the equations of motion require a
nonvanishing gradient for the scalar ∂μπ̄ ≠ 0. In
what follows we will be interested to explore the
consequences of this fact.

(ii) The scalarless symmetry (3) is expected to break
around curved spacetimes, since a covariantly con-
stant vector ωμ generally does not exist outside flat
space. Nevertheless, we shall learn that the scalar-
tensor system obeys a novel continuous symmetry,
inherited from broken diffeomorphism invariance in
the five-dimensional brane-world model.

1. A local symmetry inherited from higher dimensions

The covariant scalar-tensor theories discussed above are
expected to break symmetry (3) around generic curved
configurations; on the other hand, we now discuss an
additional symmetry for these systems, inherited from five-
dimensional bulk continuous symmetries. This symmetry
was already noticed in [15], without, however, realizing its
higher dimensional origin.
We focus on the same five-dimensional brane-world

perspective introduced in Sec. IVA. We consider the
continuous symmetry associated with reparametrization
invariance of the bulk spacetime, broken by the presence
of the brane. The bulk coordinate transformations read as
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XM → XM − χMðXNÞ; ð47Þ

with χM denoting a five-dimensional vector with five
independent components. The five-dimensional metric
transforms as a tensor under this symmetry, which leads
to the infinitesimal transformation

gMNðXÞ →
∂X̃P

∂XM

∂X̃Q

∂XN gPQðX̃Þ
¼ gMN þ χL∂LgMN þ ∂Mχ

LgLN þ ∂Nχ
LgLM:

ð48Þ

We get nonlinearly realized induced symmetries in the
brane-world volume, controlled by the components of the
5-vector χA. We concentrate on vectors χM depending only
on four-dimensional coordinates

χM ¼ ðξμðxÞ; κ0ψðxÞÞ; ð49Þ

with ψðxÞ an arbitrary scalar field. This choice is made to
preserve the standard four-dimensional diffeomorphism
transformations. In fact, the first four components ξμ act
on the induced metric γμν and the scalar π exactly as the
standard coordinate invariance of general relativity, which
we assume to hold in the covariant scalar-tensor system. The
component χ5 ¼ κ0ψ provides us with a new symmetry
transformation that acts on the metric and the scalar as

gμνðxÞ → gμν þ ðeμρeν5 þ eνρeμ5Þ∂ρχ
5g55

¼ κ0ðγμν þ ∂μψ∂νπ þ ∂μπ∂νψÞ þ ∂μπ∂νπ; ð50Þ

while

πðxÞ → πðxÞ − κ0ψðxÞ: ð51Þ

In the limit κ0 → 0 that, as we learned in Sec. IVA, is of
most interest for us, the transformation acts on the tensor
field γμν only and reads

γμν → γμν þ ∂μψ∂νπ þ ∂μπ∂νψ ; ð52Þ

for an arbitrary, infinitesimal scalar function ψðxÞ. The
transformation (52) acting on the metric (and not on the
scalar) is then a continuous infinitesimal symmetry for
the covariant scalar-tensor actions (43)–(46).
As a concrete example, we consider the cuscuton

system (43) minimally coupled with gravity, which we
rewrite here as

S1 ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p ffiffiffiffi
X

p
: ð53Þ

The argument of the integral transforms under the sym-
metry as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γμν

q ffiffiffiffi
X

p

→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðγμν þ ∂μψ∂νπ þ ∂μπ∂νψÞ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðγμν − ∂μψ∂νπ − ∂μπ∂νψÞ∂μπ∂νπ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γμν

q
ð1þ ∂π · ∂ψÞ ffiffiffiffi

X
p

ð1 − ∂π · ∂ψÞ ð54Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γμν

q ffiffiffiffi
X

p
; ð55Þ

where we kept terms up to linear order in the small scalar
quantity ψ, showing as stated that action (43) is invariant
under symmetry (52).

2. Relating curved and flat space symmetries
in the Minkowski limit

We now argue that symmetry (52) might be regarded as a
scalar-tensor, curved-space version of the infinitesimal
scalar symmetry (3) introduced around flat space. To do
so, we focus on fluctuations around a Minkowski geometry
and assume a Lorentz-violating scalar background π̄ whose
gradient has a nonvanishing norm, say, ∂νπ̄∂νπ̄ < 0; for
definiteness, we choose π̄ ¼ t. We aim to then relate (52)
with (3). Symmetry (52) acting on infinitesimal metric
fluctuations hμν around flat space (that is, γμν ¼ ημν þ hμν)
reads

hμν → hμν þ ∂μðψ∂νπ̄Þ þ ∂νðψ∂μπ̄Þ; ð56Þ

which is equivalent to an infinitesimal coordinate trans-
formation

xμ → xμ þ ψ∂μπ̄; ð57Þ

for an arbitrary infinitesimal scalar quantity ψ. We stress,
on the other hand, that the specific transformation (57) only
acts on the tensor fluctuations hμν, and not on the scalar
field.
We can exploit the similarity of (56) with diffeomor-

phisms to “transfer” the symmetry transformation from the
tensor to the scalar sector: we apply a standard infinitesimal
diffeomorphism transformation to the metric fluctuation

hμν → hμν þ ∂μξν þ ∂νξμ ð58Þ

and choose ξμ ¼ −ψ∂μπ̄. The combination of the two
transformations (56) and (58) compensates each other,
leaving the metric fluctuations unchanged; on the other
hand, the diffeomorphism transformation in (58) acts on the
scalar fluctuations as well,

π̂ → π̂ þ ξμ∂μπ̄ ¼ π̂ − ψð∂μπ̄∂μπ̄Þ: ð59Þ
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By choosing the free function ψ as ψ ¼ ðπ̄ωi∂iπ̂Þ=X̄, this
transformation becomes identical to the flat-space residual
symmetry (6) acting on scalar fluctuations. In this sense,
the symmetry acting on the metric (52) is a scalar-tensor
generalization of the flat-space scalar symmetry we started
with in Sec. II A.

C. Consequences of the symmetry for the
propagating degrees of freedom

We investigate the consequences of symmetry (52) for
the number of propagating degrees of freedom around
curved spacetimes, extending the arguments of [15].
Theories (43)–(46) lead to scalar background configu-

rations that solve the equations of motion spontaneously
breaking Lorentz symmetry, via a spacelike gradient for the
background scalar π̄ðxÞ such that ∂μπ̄ ≠ 0. We study the
dynamics of linearized fluctuations around background
solutions. We split scalar and metric fluctuations as

π ¼ π̄ þ π̂; ð60Þ

γμν ¼ γ̄μν þ ĥμν; ð61Þ

where the hat quantities are infinitesimal. Symmetry (52)
does not act on the scalar (hence it leaves invariant the
scalar background π̄) and acts on metric fluctuations as

ĥμν → ĥμν þ ∇̄μψ̂∇̄νπ̄ þ ∇̄νψ̂∇̄μπ̄ ð62Þ

with ψ̂ðtx⃗Þ an arbitrary infinitesimal scalar field. In certain
circumstances, symmetry (62) ensures that scalar excita-
tions do not propagate. To see this fact explicitly, we work
with the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p �
M2

PlRþ
X
i

ciLi

�
; ð63Þ

whereLi, i ¼ 1;…; 4 are the Lagrangian densities (43)–(46)
and ci constant coefficients. We add for completeness the
Einstein-Hilbert termM2

PlR that, of course, by itself does not
introduce scalar excitations. We select background configu-
rations that are solutions to the corresponding equations of
motion with nonvanishing gradient ∇̄μπ̄, and study the
dynamics of small fluctuations defined as in Eqs. (60)
and (61). The total action (63) is invariant under diffeo-
morphisms:

ĥμν → ĥμν þ ∇̄μξ̂ν þ ∇̄νξ̂μ; ð64Þ

π̂ → π̂ þ ξ̂ρ∇̄ρπ̄; ð65Þ

for an infinitesimal vector ξ̂μ (the covariant derivatives are
taken with respect to the background metric γ̄μν). We can use

this fact to “gauge away” the scalar fluctuations by selecting
the gauge-fixing vector

ξ̂μgf ¼ −π̂
� ∇̄μπ̄

∇̄ρπ̄∇̄ρπ̄

�
≡ −σ̂∇̄μπ̄; ð66Þ

where, for convenience, we collect pieces depending on the
infinitesimal parts of the transformation into the scalar
combination σ̂. This choice of diffeomorphism vector ξ̂μgf
breaks diffeomorphism invariance fixing a gauge: while
this is not an issue for the Einstein-Hilbert contribution to
action (63)—which we know propagate only two tensor
modes—it can be a problem for Lagrangians Li: such a
gauge choice “moves” scalar excitations from the scalar to
the metric sector through the gauge transformation (64),
which reads here

ĥμν → ĥμν − ∇̄μðσ̂∇̄νπ̄Þ − ∇̄νðσ̂∇̄μπ̄Þ: ð67Þ

Ontheotherhand, recall that the scalar-tensorLagrangians
are invariant under symmetry (52): in cases where the scalar
gradient ∇̄μπ̄ is a Killing vector for the geometry

∇̄μ∇̄νπ̄ ¼ 0; ð68Þ

then—when choosing ψ̂ ¼ σ̂—the symmetry transforma-
tion (62) exactly compensates diffeomorphism transforma-
tion (67), leaving the metric fluctuations unchanged. Hence,
for background configurations satisfying the Killing con-
dition (68) our symmetry arguments ensure that no scalar
fluctuations propagate.
It is important to emphasize that our arguments do not

imply that only configurations satisfying (68) avoid the
propagation of scalar modes. In fact, there are studies
based on Hamiltonian analysis that show that theories such
as ours do not propagate scalar modes, once the scalar
profile satisfies a unitary gauge, with no hypothesis on the
metric profile [12,13]. In fact, our arguments provide
sufficient conditions based on symmetries, not necessary
ones: there can very well be situations where scalar modes
do not propagate thanks to second-class constraints. Such
second-class constraints might get “promoted” to first
class—and then to local gauge symmetries—around certain
configurations, as we are finding here.
We now proceed making a concrete example of spheri-

cally symmetric configurations where the symmetry pre-
vents the propagation of scalar excitations, similarly to
what happens in General Relativity (GR). On the other
hand, differences with respect to GR arise in the propaga-
tion of tensor modes, whose properties are distinct from the
ones of Einstein gravity.

1. Spherically symmetric configurations

The specific theories we examine admit various branches
of spherically symmetric configurations, which have been
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studied in [15]. Solutions exist whose metric is identical to
the ones of GR, and the scalar acquires a time-dependent
profile, as in the configurations first discussed in [39,40].
Including for definiteness only Lagrangian L4 in (63), we
consider the action

S ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−γ

p �
Rþ λ

ffiffiffiffi
X

p �
Rþ 1

X
ð½Π2� − ½Π�2Þ

��
;

ð69Þ

corresponding to a special case of quartic Horndeski, with
G4 ¼ 1þ λ

ffiffiffiffi
X

p
; when choosing the dimensionless constant

parameter λ ¼ 0, we recover the standard Einstein-Hilbert
action. This theory admits a spherically symmetric solution
whose metric corresponds to a Schwarzschild black hole;
for our purposes it is convenient to express it in terms of
Lemaitre coordinates, as proposed in the recent work [5]

π̄ ¼ Λ̄τ; ð70Þ

ds2 ¼ −dτ2 þ rs
r
dρ2 þ r2dΩ2

2; ð71Þ

where rs ¼ 2M, Λ̄ is an energy scale that from now on we
set equal to one, and the quantity r is expressed in terms of
time and radial coordinates ðτ; ρÞ as

r ¼ r1=3s

�
3

2
ðρ − τÞ

�
2=3

: ð72Þ

The Horndeski function G4 reads for this configuration
Ḡ4 ¼ 1 − λγ00ð∂0πÞ2 ¼ 1þ λ. (Recall that we take Λ̄ ¼ 1.)
The constant parameter λ controls deviations from GR. A
simple change of coordinates allows one to express the
previous configuration in standard Schwarzschild coordi-
nates; on the other hand, for our purposes it is convenient to
make use of Lemaitre coordinates in which the scalar
profile only depends (linearly) on time, and whose gradient
satisfies the Killing condition (68).
Around the scalar-tensor configuration (70) and (71),

then, no scalar excitations propagate for the arguments we
developed above, but only the spin-2 tensor excitations of
GR. On the other hand, the dynamics of linear fluctuations
change with respect to GR, making this scalar-tensor theory
distinguishable with respect to Einstein gravity. The study
of scalar and metric fluctuations around black hole back-
grounds with time-dependent scalar profiles was started in
[41,42], and stability issues in the scalar sector have been
discussed in [3–7]. In our case, instabilities are absent
because scalar modes do not propagate. We study the
dynamics of tensor modes using the methods of [5] and
relegate the technical analysis to Appendix.
As a representative example, we write here the linearized

Lagrangian governing the single parity odd-excitation Ψ
for multipoles l ≥ 2 (see Appendix for details):

Lodd ¼
1

2ð1þ λÞ
ffiffiffiffi
rs
r

r
r2

lðlþ 2Þ − 2

�
_Ψ2 −

ð1þ λÞr
rs

Ψ02

þ
�
15rs
4r3

þ ð1þ λÞ
4r2

ð3 − 4lðlþ 1ÞÞ
�
Ψ2

�
; ð73Þ

where the dot and prime indicate, respectively, derivatives
along τ and ρ. When λ ¼ 0, this Lagrangian density leads to
the Regge-Wheeler equation for parity-odd black hole
fluctuations in Lemaitre coordinates. When λ ≠ 0, instead,
we notice that fluctuations propagate with a nonunit sound
speed

cΨ ¼ 1þ λ; ð74Þ

and the Regge-Wheeler potential is also affected in the
contributions proportional to the multipole numbers l. For
avoiding gradient instabilities, we must require 1þ λ > 0.
This explicitly demonstrates that black hole fluctuations

can allow one to distinguish GR from a gravity theory
controlled by action (69), even if they admit spherically
symmetric solutions identical to Einstein gravity and do
propagate the same degrees of freedom. While we discussed
here odd-parity modes, also even-parity mode dynamics is
sensitive to the parameter λ, and in Appendix we explicitly
demonstrate that scalar kinetic terms relative to scalar
modes vanish. This does not indicate strong coupling
problems—instead it is a consequence of the symmetry
(62) discussed above.

D. Constrained cosmology
and the dark energy problem

In this section we point out some additional features of
the scalar-tensor systems under considerations, which make
them interesting for characterizing the infrared properties of
gravity. In the structure of the scalar-tensor interactions
(43)–(46) the scalar π formally appears with a single power
in each of these Lagrangians (in the loose sense that a
square root as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∂πÞ2p

reduces the power from two to
one). This structure is essential for developing the sym-
metry arguments as in the previous sections, but has the
extra consequence that the scalar field, in certain circum-
stances, can act as the Lagrange multiplier for the scalar-
tensor setup. Namely, its equation of motion can provide a
constraint for the gravity sector of the theory, independent
from additional couplings of gravity with other fields. This
feature occurs when focusing in homogeneous time-
dependent configurations. In fact, we already remarked
in Sec. II (in the absence of gravity) that when the scalar
depends on time only, the Lagrangians become linear in _π,
and this quantity becomes a constraint. When gravity is
turned on, this linear dependence leads to a constraint
condition for cosmological systems. We investigate this
property in a specific example, aimed to explore its
implications for the dark energy problem.
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We focus on the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p �
M2

PlR − 6Λþ λ

2

�
6H2

0

ffiffiffiffi
X

p
þ

ffiffiffiffi
X

p
R

þ 2

X3=2 ð∂μπΠμρΠρσ∂σπ − Π∂μπΠμρ∂ρπÞ
��

: ð75Þ

The first line is the Einstein-Hilbert action equipped with a
cosmological constant Λ; the second line contains the
interactions we are interested in, weighted by an overall
dimensionless constant λ. They include the cuscuton termffiffiffiffi
X

p
, with an extra factor H2

0 with a dimension of mass
squared, and a specific nonminimal coupling with gravity
in the degenerate higher order scalar theories (DHOST)
class, selected so to ensure that tensors propagate with the
speed of light around curved background configurations.
(Notice that these specific interactions do not respect the
symmetry discussed in Sec. IV B, but this is not relevant for
the arguments of this section: here we only make use of the
structure of the actions discussed in Sec. IV B.) These
interactions have the property that the scalar appears
linearly in the action. We specialize on a time-dependent,
homogeneous background with a Friedmann-Robertson-
Walker Ansatz for the metric

π ¼ π̄ðtÞ; ð76Þ

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdx⃗2: ð77Þ

We can derive the following effective action for the time-
dependent quantities πðtÞ, NðtÞ, and aðtÞ once the previous
Ansatz is plugged into action (75):

S ¼ C
Z

dtNðtÞa3ðtÞ
�
H2ðtÞ
N2ðtÞ þ

Λ
M2

Pl

−
λ

M2
Pl

_̄πðtÞ
2NðtÞ

�
H2

0 −
H2ðtÞ
N2ðtÞ

��
: ð78Þ

The overall constant C includes the three-dimensional
volume factor, and we denote H ¼ _a=a. Both the lapse
NðtÞ and the scalar derivative _πðtÞ act as Lagrange multi-
pliers for the system. The two independent field equations
for the scale factor and π read

H2ðtÞ
�
1þ λ

_̄π

M2
Pl

�
¼ Λ

M2
Pl

; ð79Þ

H2ðtÞ þ 2

3
_HðtÞ ¼ H2

0: ð80Þ

The second equation is a constraint associated with the
scalar Lagrange multiplier: it controls the Hubble param-
eter independently from the cosmological constant Λ. The
solution for this system of equations is

HðtÞ ¼ H0 tanh

�
3H0

2
ðtþ t0Þ

�
→ H0; ð81Þ

_̄πðtÞ ¼ −H2
0M

2
Pl þ Λcoth2½3H0

2
ðtþ t0Þ�

λH2
0

→
Λ −H2

0M
2
Pl

λH2
0

;

ð82Þ

with t0 an integration constant, and the arrows indicate the
late time asymptotics. At late times the Hubble parameter
converges to the constant value H0 independent from Λ,
as expected from the constraint condition (80). Being a
constrained field, the scalar profile accommodates as in
expression (82) so to solve Eq. (79). Notice that in our
discussion we did not include additional contributions in
the form of matter or radiation; here we are only interested
in cosmic acceleration, and we leave a study of realistic
cosmology to a separate work. We nevertheless point out
that the scalar can couple linearly to matter fields, pre-
serving the property of the constraint equation above.
At what extent is this mechanism of use for addressing

the dark energy problem? The ideas discussed above rely
on two features, whose study goes beyond the scope of
this work:
(1) As apparent from Eq. (81), the scale of late-time

acceleration is controlled by the parameter H0

entering as an overall factor in the cuscuton con-
tribution to action (75). If it were for this term only,
we would expect that the scalar is not dynamical
thanks to the symmetries discussed in the previous
sections. The scalar, on the other hand, couples to
itself through DHOST contributions in (75), and
possibly to matter fields in a realistic cosmological
setting, making it dynamical in an expanding space-
time. Propagating fields—the scalar, graviton, or
matter fields—can induce quantum loop corrections
that renormalize the scale H0 in the cuscuton action.
It would be interesting to understand whether
symmetries as the ones discussed in Sec. II can
lead to nonrenormalization theorems similar to
Galileons [24,25] which can protect the overall
coefficients in the Lagrangian, even when they are
softly broken in a cosmological setup [43].

(2) Besides a mechanism of self-acceleration, a distinc-
tive feature of the mechanism above is that the bare
cosmological constant Λ does not contribute to the
rate of expansion, thanks to the constraint condition
(82). This result seems relevant for addressing the
cosmological constant problem (see, e.g., [8,44] for
reviews). Whether it can lead to a realistic solution to
the problem without fine-tuning is an interesting
question: we notice here that this idea resembles the
approach of unimodular gravity to solve the cos-
mological constant problem, where a constraint
condition compensates a cosmological constant
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contribution to the field equations. Unimodular
gravity does not solve the cosmological constant
problem since operators that impose the constraint
conditions (and control the rate of expansion)
receive large quantum contributions equivalent to
the cosmological constant problem, as shown in
[45]. In our case, the analog question arises with
respect to the stability of the parameter H0 under
loop corrections, as mentioned above.

We leave investigations on these points to future work.

V. OUTLOOK

In this work we developed the analysis of [14,15],
discussing how symmetry principles can be used for
determining scalarless scalar interactions, which prevent
the propagation of scalar fluctuations around certain back-
grounds solving the equations of motion. We understood
how scalarless interactions can arise when breaking gauge
or spacetime symmetries in vector or tensor theories, with
the scalar playing the role of Goldstone bosons of such
symmetries. We have shown that such symmetries are
generally associated with theories that spontaneously break
Lorentz invariance by a nonvanishing scalar field gradient.
In the scalar-tensor case, we provided sufficient conditions
for ensuring that scalar perturbations do not propagate
around appropriate background configurations equipped
by Killing vectors. We then studied the consequences of
our results for spherically symmetric configurations and
for cosmology. We proved that scalar excitations do not
propagate around black hole solutions; the dynamics of
spin-2 modes, nevertheless, is different with respect to
Einstein gravity, making these theories distinguishable
from general relativity. In a cosmological setting, we
noticed that these theories lead to constrained cosmological
settings, with self-accelerating cosmological solutions in
which the rate of cosmological expansion is independent
from the value of a bare cosmological constant.
We leave many interesting questions to future work:
(i) Symmetry principles can limit the number of al-

lowed interactions for the setup under examination
and protect them under classical and quantum
corrections. It would be interesting to understand
how symmetries, even when broken in a spacetime
setup as in Sec. IV D, can protect the size and
structure of operators useful for addressing the dark
energy problem.

(ii) Besides solutions with Killing vectors (see Sec. IV C),
it would be interesting to find other contexts where
the spacetime symmetry of Sec. IVB can be used to
prevent the propagation of scalar fluctuations. A
possibility is to use the high/low frequency splitting
to study gravitational wave propagation in scalar-
tensor theories as in [46] and to study whether
symmetries acting on high-frequency modes forbid
the propagation of scalar fluctuations.

(iii) While in Sec. III we studied broken Abelian vector
theories that do not propagate scalar modes, it would
be interesting to investigate whether partially mass-
less massive gravity theory exists, in systems that
spontaneously break Lorentz symmetry.
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APPENDIX: SCALARLESS PERTURBATIONS
AROUND BLACK-HOLE SPACETIMES

In this Appendix we further develop the arguments of
Sec. IV C. Using methods and results of [5], we study
fluctuations around the spherically symmetric black hole
configurations that are solutions to the field equations with
spherically symmetric Ansatz associated with the action
(we set here MPl ¼ 1)

S¼
Z

d4x
ffiffiffiffiffiffi
−γ

p �
Rþλ

ffiffiffiffi
X

p �
Rþ 1

X
ð½Π2�− ½Π�2Þ

��
; ðA1Þ

which corresponds to quartic Horndeski withG4¼1þλ
ffiffiffiffi
X

p
.

A branch of spherically symmetric solutions is the
Schwarzschild geometry written in Lemaitre coordinates as

π̄ ¼ τ; ðA2Þ

ds2 ¼ −dτ2 þ rs
r
dρ2 þ r2ðdθ2 þ sin2 θdφ2Þ; ðA3Þ

where rs is the Schwarzschild radius and

r ¼ r1=3s

�
3

2
ðρ − τÞ

�
2=3

: ðA4Þ

Notice that the scalar profile depends on time only (and
X̄ ¼ 1); hence its gradient is a Killing vector for the
spacetime we consider. The symmetry arguments of the
main text prevent the propagation of scalar degrees of
freedom. We now show explicitly that the only dynamical
degrees of freedom are the ones of GR; on the other hand,
their evolution equations are distinct from the ones of
Einstein gravity. As anticipated, we use the methods and
results of the recent paper [5] which can be directly applied
to our configuration, and we refer the reader to that work for
the intermediate steps and for a clear discussion of the gauge
conditions.
Linearized perturbations around spherically symmetric

black holes are conveniently expanded in terms of spherical
harmonics Ylmðθ;φÞ. The modes separate into quantities
that are odd or even under the parity symmetry ðθ;φÞ →
ðπ − θ; π þ φÞ (here π denotes the number 3.1415…) that
do not mix at the linearized level. We study them separately.
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1. Odd parity fluctuations

This class of fluctuations only includes metric perturba-
tions, because scalar fluctuations are of even parity. There
are then two modes to be analyzed (a third one can be
gauged away using diffeomorphism invariance), usually
denoted as hlmð0Þðτ; ρÞ, hlmð1Þ ðτ; ρÞ. The metric can be decom-

posed at the linearized level as (we focus on odd parity
fluctuations with l ≥ 2)

ds2 ¼ −dτ2 þ rs
r
dρ2 þ r2ðdθ2 þ sin2θdφ2Þ

− 2dτdθ
1

sin θ

�X∞
l¼2

Xl
m¼−l

hlmð0Þ∂φYlm

�

þ 2dτdφ sin θ

�X∞
l¼2

Xl
m¼−l

hlmð0Þ∂θYlm

�

− 2dρdθ
1

sin θ

�X∞
l¼2

Xl
m¼−l

hlmð1Þ∂φYlm

�

þ 2dρdφ sin θ

�X∞
l¼2

Xl
m¼−l

hlmð1Þ∂θYlm

�
: ðA5Þ

Plugging this decomposition into the action (A1), one
gets the effective Lagrangian for the modes hð0Þ and hð1Þ
[from now on we understand the multipole indexes ðl; mÞ
in the hðiÞ],

Lodd ¼
ffiffiffiffiffiffiffi
r
4rs

r  
h0ð0Þ − _hð1Þ −

ffiffiffiffiffiffiffi
4rs
r3

r
ðhð0Þ þ hð1ÞÞ

!
2

þ lðlþ 1Þ − 2

2

� ffiffiffiffi
rs
r

r
h2ð0Þ − ð1þ λÞ

ffiffiffiffi
r
rs

r
h2ð1Þ

�
2

;

ðA6Þ

with dot and prime denoting derivatives along τ and ρ,
respectively. Notice that the scalar-tensor interactions
associated with the additional coupling λ in action (A1)
only controls the coefficient depending on λ in the last
term of Eq. (A6). The two quantities hð0Þ and hð1Þ are not
independent: the corresponding field equations can be
combined so to obtain a constraint between the two fields
that can be solved by reexpressing the two quantities in
terms of a single field Ψ as follows:

hð0Þ ¼
1

lðlþ 1Þ − 2

r2

rs

�
rΨ0 þ 5

2

ffiffiffiffi
rs
r

r
Ψ
�
; ðA7Þ

hð1Þ ¼
1

lðlþ 1Þ − 2

r
1þ λ

�
r _Ψ −

5

2

ffiffiffiffi
rs
r

r
Ψ
�
: ðA8Þ

Plugging these expressions in Eq. (A6) one finds

Lodd ¼
1

2ð1þ λÞ
ffiffiffiffi
rs
r

r
r2

lðlþ 2Þ − 2

�
_Ψ2 −

ð1þ λÞr
rs

Ψ02

þ
�
15rs
4r3

þ ð1þ λÞ
4r2

ð3 − 4lðlþ 1ÞÞ
�
Ψ2

�
; ðA9Þ

that we discussed as Eq. (73) in the main text.

2. Even parity fluctuations

Scalar excitations can contribute to even parity pertur-
bations that we parametrize as

πðxÞ ¼ τ þ
X
l

Xl
m¼−l

π̂lmðτ; ρÞYlmðθ;φÞ; ðA10Þ

hevenμν ¼
X
l

Xl
m¼−l

0
BBB@

Hlm
ð0Þ Hlm

ð1Þðτ; ρÞ αlm∇A

Hlm
ð1Þ

rs
r H

lm
ð2Þðτ; ρÞ βlmðτ; ρÞ∇A

αlm∇A βlm∇A ðr2KlmgAB þQlm∇A∇BÞ

1
CCCAYlmðθ;φÞ; ðA11Þ

respectively, in the scalar and metric sector, and gAB
parametrize the metric on the two-sphere (the capital Latin
indexes denote coordinates on such a sphere). Under-
standing again the indexes ðl; mÞ, the quantities π̂ (scalar
fluctuation), and Hð0Þ, Hð1Þ, Hð2Þ, K, Q, α, β (parity even
metric fluctuations) depend on τ and ρ. Some of these
quantities can be set to zero exploiting diffeomorphism
invariance.
We shall now separate the discussion for modes with

l ¼ 0, 1 and l ≥ 2 with the specific aim to demonstrate the

absence of additional scalar modes with respect to GR,
thanks to the symmetry as discussed in the main text
in Sec. IV.

a. Monopole fluctuations, l= 0

For the monopole sector, the fluctuations α, β, Q are
absent, while we can set to zero H0 and K with a
diffeomorphism transformation. The resulting effective
Lagrangian reads (recall that we use conventions where
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the dot and prime denote, respectively, derivatives along
τ and ρ)

Ll¼0
even ¼ 2λ

ffiffiffiffi
rs
r

r
π̂02 þ 1þ λ

2

ffiffiffiffi
rs
r

r
H2

2

− 2λ

ffiffiffiffi
rs
r

r
H2π̂

0 þ 2rH1
_H2: ðA12Þ

H1 is a Lagrange multiplier that imposes the condition
H2 ¼ 0 (up to a contribution independent from time that
can be readsorbed in the background). Using this condition,
we get

Ll¼0
even ¼ 2λ

ffiffiffiffi
rs
r

r
π̂02: ðA13Þ

Hence the monopole scalar fluctuation does not propagate,
since π̂ only appears in the effective with spatial derivatives.
This is a consequence of the symmetry arguments dis-
cussed in the main text.

b. Dipole fluctuations, l = 1

In this case, a convenient gauge to choose is

H0 ¼ β ¼ r2K −Q ¼ 0:

The effective Lagrangian for l ¼ 1 fluctuations is

Ll¼1
even ¼ 2λ

ffiffiffiffiffi
r3s
r3

r �
r
rs
π̂02 −

π̂2

r2

�
þ 1þ λ

2

ffiffiffiffi
rs
r

r
H2

2

þ 2

ffiffiffiffi
rs
r

r
H2

�
ðrαÞ: − λr

�
π̂

r

�0�
þ

ffiffiffiffi
rs
r

r
H2

1

þ 2H1

�
r _H2 −

ffiffiffiffi
rs
r

r
α0
�
þ

ffiffiffiffi
rs
r

r
α02: ðA14Þ

The fieldH1 is nondynamical, and it is fixed by its equation
of motion to

H1 ¼ −
ffiffiffiffiffiffi
rsr

p _H2 þ α0: ðA15Þ

Plugging this condition in the Lagrangian, one finds that
the field α becomes a Lagrange multiplier, imposing the
condition

r _H0
2 þ 2

ffiffiffiffi
rs
r

r
_H2 þ

3rs
2r2

H2 ¼ 0: ðA16Þ

Using this information, the effective Lagrangian results:

Ll¼1
even ¼ 2λ

ffiffiffiffiffi
r3s
r3

r �
r
rs
π̂02 −

π̂2

r2

�
þ λ

ffiffiffiffi
rs
r

r
π̂

�
2H0

2 þ
ffiffiffiffi
rs
r

r
H2

�

−
ffiffiffiffiffiffiffiffi
rsr3

q
_H2
2 þ

ffiffiffiffiffi
rs
4r

r
H2

2; ðA17Þ

where the field H2 satisfies the constraint condition (A16).
The scalar field π̂ is nondynamical since it appears with no
time derivatives in the effective Lagrangian; hence also
monopole fluctuations do not rise to dynamical degrees of
freedom.

c. Multipole fluctuations with l ≥ 2

For higher multipoles the analysis is more involved,
since in this case there are propagating tensor degrees
of freedom (as in Einstein gravity) whose dynamics is
influenced by the nonpropagating scalar modes. It is hard to
fully diagonalize the equations of motion; on the other
hand, we shall prove that there are no additional degrees of
freedom with respect to GR.
A convenient gauge is

H0 ¼ K ¼ Q ¼ 0: ðA18Þ

We are left with five fields to analyze: H1, H2, α, β, π.
Exactly as for the monopole case l ¼ 1, the field H1 is
nondynamical and is algebraically determined by its
equations of motion. Plugging this information in the
effective Lagrangian, one finds that also in this case α
leads to a Lagrange multiplier that imposes the condition

r _H0
2 þ

�
lðlþ 1Þ

2
þ 1

� ffiffiffiffi
rs
r

r
_H2 þ

3lðlþ 1Þrs
4r2

H2

¼ lðlþ 1Þ
2

�
2

ffiffiffiffi
r
rs

r
_β0 þ 3

r
_β þ β0

r
þ 3

r2

ffiffiffiffi
rs
r

r
β

�
: ðA19Þ

This Lagrange constraint (A19) is not easy to immediately
interpret, but it says that the quantity H2 is not an
independent field. This can be made more manifest by
the change of variable from β to γ,

β≡ γ þ
ffiffiffiffiffiffi
rsr

p
lðlþ 1ÞH2; ðA20Þ

which allows us to reexpress the constraint (A19) as

∂τ

�
H2

r3=2

�
¼ 3lðlþ 1Þffiffiffiffi

rs
p ðl2 þ l− 2Þ

�
2

3
ffiffiffiffi
rs

p ∂τ

�
γ0ffiffiffi
r

p
�
þ 1

r
∂τ

�
γ

r

��
:

ðA21Þ

Although we do not use the field γ in what comes next,
relation (A21) demonstrates that the field H2 can be
expressed in terms of this quantity. (Notice that since r
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depends on τ [see Eq. (A4)], it is nevertheless not
immediate to integrate (A21).)
Using the previous information, the effective Lagrangian

for the modes π, H2, β results in

Ll≥2
even ¼

1 − l − l2

2

ffiffiffiffi
r
rs

r
_β2 þ 2r _H2

_β −
2

lðlþ 1Þ

ffiffiffiffiffi
r4

rs

s
_H2
2

− 2

ffiffiffiffi
r
rs

r
β _H2 þ 2λ

ffiffiffiffi
r
rs

r
π02 þ λ

2lðlþ 1Þ
r

βπ̂0

− 2λ

ffiffiffiffi
r
rs

r
H2π

0 −
lðlþ 1Þ

r2

� ffiffiffiffi
r
rs

r
β2 þ rβH2

þ 2λ

ffiffiffiffi
r
rs

r
βπ̂ − 2λrsH2π̂ þ λ

ffiffiffiffiffi
r3

r3s

s
π̂2
�

þ 1þ λ

2

ffiffiffiffi
r
rs

r
H2

2; ðA22Þ

where the quantities H2 and β are related by the Lagrange
constraint (A19), or alternatively the relation (A21), which
shows thatH2 is not an independent field. Then Lagrangian
(A22) contains two independent modes, β and π. On the
other hand, the scalar π̂ does not appear with time

derivatives, and it is not difficult to realize that its equation
of motion provides a constraint, algebraically fixing π in
terms of the remaining quantities. This fact is more easily
seen shifting H2 to K2 by the following relation:

H2 ≡ K2 − 2lðlþ 1Þ
ffiffiffiffiffi
rs
r3

r
π þ 2π0: ðA23Þ

When λ ≠ 0, the equation of motion for π provides the
following constraint, when expressed in terms of H2, β:

lðlþ 1Þð2l2 þ 2l − rÞπ

¼
ffiffiffiffiffiffiffi
r3

4rs

s
ð2lðlþ 1Þ − 1ÞK2 þ

r3

rs
K0

2 þ
ffiffiffiffiffi
r5

r3s

s
lðlþ 1Þβ0:

ðA24Þ

This relation—as well as (A21)—demonstrates that the
effective Lagrangian (A22) describes the dynamics of a
single propagating degree of freedom, as in Einstein
gravity, and our scalar-tensor interactions do not excite
additional modes around our black hole configuration, as
expected by our symmetry arguments.
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