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Abstract 

In recent decades, the use of artificial intelligence (AI) techniques in the field of materials 

modeling has received significant attention owing to their excellent ability to analyze a vast 

amount of data and reveal correlations between several complex interrelated phenomena. In 

this review paper, we summarize recent advances in the applications of AI techniques for 

numerical modeling of different types of materials. AI techniques such as machine learning 

and deep learning show great advantages and potential for predicting important mechanical 

properties of materials and reveal how changes in certain principal parameters affect the overall 

behavior of engineering materials. Furthermore, in this review, we show that the application of 

AI techniques can significantly help to improve the design and optimize the properties of future 

advanced engineering materials. Finally, a perspective on the challenges and prospects of the 

applications of AI techniques for material modeling is presented. 

 

Highlights 

 We present an up to date review of the application of artificial intelligence in materials 

modeling and design. 

 We comprehensively discuss past and recent applications in modeling and design of 

polymers, metals, ceramics and other materials. 

 We identify current research focal points, challenges, and opportunities for the application 

of artificial intelligence in materials modeling and design. 
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1 Introduction 

Computer, as an indispensable tool in modern lives, has evolved in a very stunning pace and it 

is gradually taking the place of humans in many fields. The ever-increasing computing power 

and storage capacity have made the use of computers for many complicated tasks and systems 

very attractive. The use of computers with high computing power and storage capacity can help 

humans to handle large and messy data sets with a good level of precision. Recent advances in 

the field of computer science and technology have equipped modern computers with the 

abilities and skills of “self-teaching” and “self-learning” like humans [1-3]. One of the most 

significant and current discussions in the field of computer science is artificial intelligence (AI). 

Many of the well-known AI techniques such as cognitive intelligence (CI), machine learning 

(ML) and deep learning (DL) are fast becoming an essential component for a wide range of 

modern technologies [4, 5]. For example, AI techniques are widely used in different fields such 

as genomics [6, 7], drug discovery [8, 9], automation [10] and financial markets analysis [11].  

As one of the most famous branches of AI, ML is the science of getting computers to act like 

humans without being explicitly programmed [12]. It is usually employed to obtained hidden 

patterns in complicated systems through a training process in which a large amount of noisy 

data is given as input to be learned [13, 14]. ML can be classified into supervised learning 

where the machine learns from known data and unsupervised learning where the machine finds 
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patterns in data without assistance and reinforcement learning. For the latter, the machine is 

designed to make guesses at solutions and is “rewarded” for providing correct answers [15]. 

The typical working manner of different ML techniques is illustrated in Fig. 1.  

 

Fig. 1 The typical working manner of ML-based techniques. 

One of the most challenging and active research topics in this area is searching for the optimal 

representation as input variables in ML models, which is often referred to as feature 

engineering [16, 17]. Feature engineering is a super-set of activities that include feature 

extraction, feature construction and feature selection [18]. Investigating feature engineering is 

a continuing concern within ML since it determines the upper limit of proposed models and is 

fundamental to the effective application of ML. In addition to feature engineering, algorithm 

development is another important aspect of ML. Studies over the past few decades have 

provided several basic ML algorithms including decision trees [19], naive Bayesian 

classification [20], K-nearest neighbor (KNN) [21], linear regression [22], support vector 

machine (SVM) [23], logistic regression [24], and artificial neural networks (ANN) [25]. A 

detailed comparison of the various features of these algorithms is presented in Table 1. The 

recent advances in ML have facilitated the development of self-driving cars, practical speech 
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and face recognition, e-mail spam detection, and a vastly improved understanding of the human 

genome [26-32].  

DL, as an extension of ML, originates from the ANN approach, in which feedforward neural 

networks combined with many hidden layers are regarded as deep neural networks [33, 34]. 

DL systems make use of gradient-based optimization algorithms to adjust parameters 

throughout such a multilayered neural network based on errors at its output [35]. The 

architectures of some typical neural networks are presented in Fig. 2. And the characteristics 

of these neural networks are compared in Table 2. In comparison to ML, DL techniques that 

explain the vanishing effects of gradient [36] are most suitable for raw high-dimensional data, 

however, DL techniques suffer from certain drawbacks – they are time-consuming and data-

demanding [37]. Similar to ML, DL has also shown great potential in the field of image 

recognition, video games, structural engineering, chemoinformatics and material science [38-

41].  

 

Fig. 2 Representation of architectures of some basic neural networks. (a) Perceptron neural network (PNN); 

(b) Radial basis neural network (RBNN); (c) Back propagation neural network (BPNN); (d) Recurrent neural 

network (RNN); (e) Hopfield neural network (HNN); (f) Boltzman machines (BM); (g) Convolutional neural 

network (CNN). (a)-(g) are constructed based on Refs. [42-48], respectively. 
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Table 1 Comparison among different ML algorithms  

Algorithm Type of prediction Hypothesis Errors Advantages Disadvantages Ref. 

Decision 

trees 
Either - - 

Simple computation; 

easy to understand and 

interpret 

Easy to overfit; 

Neglects correlation 

among data 

[19] 

Naive 

Bayesian 

classification 

Classification - - 

Good performance for 

small data sets; Simple 

and stable algorithms 

Computation of prior 

probabilities; 

Sensitive to the format 

of input data 

[20] 

KNN Either - - 

Simple idea and 

algorithm; No 

assumption on data; 

Insensitive to outlier 

Large amount of 

computations; Poor 

effect for unbalanced 

samples 

[21] 

Linear 

regression 
Regression y  w x   

1

1
( )

N

n n

n

E y y
N 

    
Simple implementation 

and computation 

Inapplicable to 

nonlinear problems 
[22] 

SVM Either - - 
Applicable to high-

dimensional data space  

Sensitive to missing 

data; Lack of 

universal solution to 

nonlinear problems 

[23] 

Logistic 

regression 
Classification 

e
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Easy to implement; 

Small amount of 

computations; Less 

storage occupation 

Only applicable to 

classification problem; 

Easy to underfit 

[24] 

ANN Either - - 

High accuracy; Strong 

parallel distributed 

processing ability; High 

tolerance of noise  

Long learning 

duration; Unreadable 

learning process; 

Large number of 

parameters 

[25] 

Notes: w  represents the weights, x  represents the input variables of the model and y represents the output variable. N is the number of 

samples, yn is the prediction of sample n and 
n

y  denotes the actual quantity of the sample. 
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Table 2 Comparison among different neural networks 

 

Type Known applications Advantages Disadvantages Ref. 

PNN Classification Easy to implement Only applicable to linear systems [42] 

RBNN 
Pattern recognition; Analysis of 

time series; Classification 

Applicable to nonlinear systems; Simple 

algorithms; Fast convergence 

Loss of information; Unable to interpret the 

reasoning process 

[43] 

BPNN 
Regression; Pattern recognition; 

Classification; Data compression 

Excellent ability to process nonlinear 

problems 
Low training rate 

[44] 

RNN 
Analysis of sequential data; 

Natural Language processing 

Increasing the network depth without 

increasing the number of parameters  
Gradient explosion and vanishing 

[45] 

HNN 

Associative memory; Cluster 

analysis; Optimization 

calculation 

Symmetric weights between connection 

cells 

Crosstalk among patterns; Limited 

memorable pattern amounts 

[46] 

BM 

Dimensionality reduction; 

Classification; Regression; 

Collaborative filtering 

Symmetric weights between connection 

cells 

Long computation duration; Sensitive to 

sample noises 

[47] 

CNN Image recognition 
Applicable to high-dimensional data; Good 

performance on feature classification 

Need for a large number of samples; 

Ambiguous physical meaning 

[48] 
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In the past few decades, with rapid advances in computing power, material science and 

numerical modeling, many researchers have focused on the development of new techniques to 

accurately and efficiently predict the properties of several important engineering materials [49-

53]. For instance, quantum mechanics and density functional theory (DFT) can be used to study 

and predict the properties of isolated molecules, bulk solids, and materials interface [54-56]. 

Molecular dynamics (MD) and finite element method (FEM) can be applied to simulate 

materials at the nano-scale and continuum-scale [57, 58]. Multiscale models based on the 

meshfree method have also been developed to explore the mechanical properties of carbon 

nanotube (CNT) [59, 60], CNT-reinforced composites [61] and biological materials such as 

microtubules and red blood cells [62-64]. Numerical modeling has played a significant role in 

the field of material science since it can replace the repetitive process of synthesizing, 

manufacturing and testing materials in the laboratory with a more efficient and economical 

alternative with reasonable accuracy [13].  

Moreover, numerical modeling can precisely narrow down the gaps in time required to solve 

time-consuming problems and offer more detailed information about the mechanical and 

fracture behaviors of materials that are sometimes difficult to observe using experimental tools. 

For example, the fatigue life of a material can be quickly predicted using numerical modeling 

but cannot be readily obtained using experimental measurements since the actual duration of 

the fatigue process is quite long [65]. With the help of numerical modeling, researchers can 

learn about the constitutive relationship of a material, based on which improvement and 

optimization can be made to enhance any desired mechanical properties of the material. 

Recently, an emerging trend in computational mechanics and material science research is the 

combination of the existing numerical modeling methods with AI techniques [66-72]. 

Traditional material science is usually advanced based on accumulated experience and 

summarized rules. The recent advances in numerical modeling make the systematic acquisition 

of a large amount of data easier, while at the same time making the analysis, hypothesizing and 

prediction of patterns in the acquired data more complicated. For example, the factors 

influencing the hydration process of cement-based materials are too numerous to be considered 

together, thus making it difficult to propose a common rule that controls the hydration process. 

The emergence of AI techniques offsets this deficiency to a large extent.  

Over the past decades, rapid advances in AI techniques and relevant data science have 

promoted modern material modeling into the big data era. The application of AI techniques can 

be categorized into two types of problems [13]. One is referred to as a forward modeling 

problem in which the structure (e.g., atomic structure, crystal structure, topological structure) 
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of the material is given and the properties are controlled by physical laws such as quantum 

mechanics, thermodynamics, and solid mechanics. The other is referred to as an inverse 

modeling problem in which the structure of a material is generated based on the required 

properties. Common forward modeling problems, such as predicting material properties and 

constructing constitutive relationships, can be numerically calculated and analyzed using 

existing modeling tools such as DFT, MD, FEM and meshfree methods in combination with 

AI techniques such as ML and DL. Compared with the forward modeling problems, inverse 

modeling problems such as the design and optimization of material are more dependent on the 

use of AI techniques as there is no physics-based modeling tool that can solve inverse design 

problem except for trial and error method based on the knowledge and experience of the 

researcher. AI techniques are capable of accelerating the trial and error process, and able to 

explore all possible design space with satisfying accuracy. Therefore, AI techniques have been 

perceived as a promising tool for the design, optimization, and digital manufacturing of 

advanced engineering materials for sustainable application in modern technologies such as 

smart vehicles, robotics, and healthcare. 

In this review article, we discuss the recent developments in the application of AI techniques 

to the field of material modeling. Here, the focus will be on the application of AI techniques to 

predict and optimize the properties of different types of materials as well as AI-assisted design 

of materials with desired properties. We review several algorithms and recent studies applying 

these algorithms to material modeling. Lastly, we concluded with a summary and prospects of 

this interdisciplinary field.  

2 Application of AI techniques for modeling of polymers 

and their composites 

Numerous literature has focused on the different applications of AI techniques on the modeling 

of polymers and their composites. A list of recent studies applying AI techniques to polymer 

modeling is shown in Table 3. Among these applications, the most important and greatly 

mentioned aspect is the prediction of polymer properties while mechanical properties are the 

most studied [73-79]. Prediction procedure usually consists of a training process, testing the 

performance of models, adjusting the parameters and weights, and a predictive process using 

the optimized and trained model to predict new solutions.  

Pidaparti and Palakal [80] proposed a BPNN model to predict the nonlinear stress-strain 

behavior of graphite-epoxy laminates based on 959 data points. The network used in this work 
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had one input layer with three nodes (e.g., fiber-angles, initial stress, and incremental stress), 

two middle layers, and one output layer with one node (e.g., total strain). Trebar et al. [81] used 

a multilayer PNN to predict the mechanical properties of elastomers. In this study, rheological 

parameters such as minimum torque, maximum torque and scorch time in the vulcametric curve 

were treated as input variables while mechanical parameters such as hardness, various moduli 

of elasticity, elongation at break and tensile strength were used as out variables. Jiang et al. [82] 

adopted an ANN model to predict the mechanical and wear properties of short fiber reinforced 

polyamide composites. Two datasets were used in this work to train the network with material 

compositions, testing condition and the manufacturing process being the input variables. The 

output variables included wear characteristics and mechanical properties. Studies on glass 

transition temperature [83] and dielectric constant have also been mostly reported.   
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Table 3 Recent studies on applying AI techniques to model polymers and their composites. 

 

Type Materials Methods Input variable(s) 
Output 

variable(s) 

Optimization strategy of 

training process  
Number of samples Ref. 

Predictive 

Graphite-epoxy 

laminates 
BPNN 

Fiber-angles, initial 

stress and incremental 

stress 

Total strain Mean normalization 
959 data points for 

training and  
[80] 

Elastomers 
Multilayer 

PNN 

Rheological 

parameters 

Mechanical 

parameters 

Levenberg-Marquardt 

backpropagation minimization 

algorithm 

18649 samples for 

hardness dataset and 

4072 samples for 

tensile testing 

[81] 

Polyamide 

composites 
ANN 

Material composition, 

testing condition and 

manufacturing process 

Wear 

characteristics 

and 

mechanical 

properties 

Powell–Beale conjugate gradient 

algorithm, gradient descent 

algorithm; scaled conjugate 

gradient algorithm; BFGS quasi-

Newton method and Levenberg-

Marquardt algorithm 

101 samples for 

wear characteristics 

and 93 samples for 

mechanical 

properties 

[82] 

Polymers 
Genetic 

algorithm 
Several descriptors 

Glass 

transition 

temperature 

Multiple linear regression 

60 samples for 

training and 20 

samples for 

predicting 

[84] 

Polymers BPNN Several descriptors 

Dielectric 

dissipation 

factor 

Multiple linear regression 
91 samples for 

training 
[85] 

Design and 

optimization 
Polymers 

Genetic 

algorithm 

Combination of 

bandgap and total 

dielectric constant 

Optimal 

polymer 

structures 

- 
150000 possible 

systems 
[86] 
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Type Materials Methods Input variable(s) 
Output 

variable(s) 

Optimization strategy of 

training process  
Number of samples Ref. 

Polymers 
Genetic 

algorithm 

Refractive index, glass 

transition and thermal 

decomposition 

temperatures and 

solubility in standard 

solvents 

Polymer 

structures 

with 

satisfactory 

properties 

- 
Over 4000 unique 

structures 
[87] 

Descriptive 

Fiber-reinforced 

plastic plate 

Multilayer 

PNN 

Depth, width, modulus 

of elasticity, tensile 

strength of plate and 

concrete 

Bond strength Backpropagation algorithm - [88] 

Polyacrylonitrile 

nanofibers  

Multilayer 

PNN 

Polymer 

concentration, applied 

voltage and the 

nozzle-collector 

distance 

Fiber 

diameters 

Scaled conjugate gradient 

backpropagation algorithm 
- [89] 

Polyurethane ANN Temperature  

Dynamic 

moduli and 

damping 

factor 

Backpropagation algorithm - [90] 
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Chen et al. [84] investigated a descriptor-based quantitative structure-property relationship 

model for the prediction of the glass transition temperature of polymers. The results showed 

that the glass transition temperature depends on several different descriptors and the 7-variable 

model was estimated to have the best training performance. Yu et al. [85] constructed a 

quantitative structure-property relationship model to predict the dielectric dissipation factor of 

polymers using BPNN. Several models with a different number of descriptors were developed 

and the 6-descriptor model was verified to perform best.  

AI techniques are also reported to be applied in the field of polymer design and optimization. 

Unlike the predictive model, the design and optimization process requires an inverse thinking 

pattern. Although it is possible to cover all the design space using a brute-force enumeration, 

it is essentially infeasible in polymer design since it is a waste of computing resources. 

Therefore, a lot of attempts have been made to find an efficient way of obtaining polymers with 

desired properties. For instance, Mannodi-Kanakkithodi et al. [86] presented a new 

development in the field of polymer design by proposing a genetic algorithm to optimize the 

polymers given the desired properties. The idea is illustrated in Fig. 3. To demonstrate and 

validate the proposed algorithm, initial research was performed on polymers with 8 different 

repetitive chemical building blocks and 6 different combinations of bandgap and total dielectric 

constant are chosen as the targets. Results compared with the enumeration list showed that this 

approach indeed obtained several optimal solutions. Venkatraman and Alsberg [87] presented 

a machine learning strategy for the rapid design of new polymeric materials satisfying multiple 

desirable properties. In their study, the desired properties were set as refractive index, glass 

transition and thermal decomposition temperatures and solubility in standard solvents. All the 

proposed structures were evaluated in terms of desired properties which were obtained using 

ML models. After selection, all the remained candidates passing criterion were further analyzed 

using DFT approaches. 
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Fig. 3 The steps involved in the genetic algorithm leading to the direct design of polymers (modified after Ref. 

[86]). 

In addition to the above-mentioned application, another relevant topic involves the use of AI 

techniques to establish a descriptive relationship between parameters and properties based on 

data of experiments conducted by previous researchers. Park et al. [88] proposed a multilayer 

perceptional model to correlate several parameters with the bond strength of a fiber-reinforced 

plastic (FRP) plate based on the previous research data. The variables including depth, width, 

modulus of elasticity, the tensile strength of FRP plate and the compressive strength, tensile 

strength and width of concrete (to be reinforced with the FRP plate) were used as input layers. 

And the developed BPNN was learned to be converged within the range of 0.001. Nasouri et 

al. [89] investigated the average diameter of electrospun polyacrylonitrile nanofibers using a 

multilayer PNN. Three important electrospinning factors were studied as input variables 

including polymer concentration, applied voltage and the nozzle-collector distance. Their 
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results showed that second-order polynomial regression between input and output exhibited a 

high regression coefficient. Kopal et al. [90] used ANN techniques to model the temperature 

dependence of dynamic mechanical properties and visco-elastic behavior of thermoplastic 

polyurethane over a wide range of temperatures. Here, temperature was used as the input 

variable to estimate both dynamic moduli and damping factor. 

3 Applications of AI techniques for modeling of metals 

and their composites 

In this section, a review of recent studies applying AI techniques to the computational modeling 

of metals and their composite is presented. Like polymers, the application of AI techniques on 

the metals and their composites can also be categorized into predictive modeling, design and 

optimization, and descriptive modeling. Unlike polymers, the mechanical properties of metals 

and their composites are attracting more attention [91-102] and a large number of literature 

focusing on the predictive modeling of mechanical properties of metals are given in Table 4.  

The most common mechanical properties being predicted are static strength (e.g., tensile 

strength, compressive strength, shear strength and bending strength). For instance, Altinkok 

and Koker [103] applied a BPNN to predict the bending strength of Al2O3/SiC particulate 

reinforced aluminum. The particle size of the reinforced phase was treated as the input layer 

and bending strength served as the output layer. Experiments were also conducted to provide 

training and testing data sets of the neural network. Results showed that bending strength was 

inversely related to the reinforced SiC particle size. Besides, Altinkok and Koker [104] 

evaluated the performance of different training algorithms by checking the system accuracy for 

each training algorithm at the end of learning. Results showed that Levenberg-Marquardt 

learning algorithms made the best prediction for bending behaviors of aluminum metal matrix 

composites compared with quasi-Newton, resilient backpropagation and variable learning rate 

backpropagation algorithms.  

Jayaraman et al. [105] investigated the influences of friction stir welding process parameters 

on the tensile strength of A356 cast aluminum alloy. Three input nodes corresponding to 3 

process parameters (e.g., rotational speed, welding speed, axial force) were investigated and 

rotational speed was found to have the greatest influence on tensile strength. Chen et al. [106] 

adopted ANN to predict the strength of particulate reinforced metal matrix composites and 

understand how these values were related to the underlying composite structure. In this work, 
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both classification and regression networks were trained from the results of finite element 

simulations. Input variables were classified into 3 categories (e.g., homogenized material 

parameter, results of elastic simulation and highly strained volume fraction in the limit state). 

The obtained networks convinced that the highly stressed volume fractions, in particular the 

ones in the binder phase, had a significant influence over ultimate strength. Except for static 

strength, tribological behaviors of metallic materials also draws a lot attention.  

Kavimani and Prakash [107] adopted Taguchi coupled ANN technique to predict the 

tribological behaviors of reduced graphene oxide reinforced magnesium metal matrix 

composite. Specific wear rate characterizing the tribological behaviors of the composite was 

used as the output variable and 4 parameters were treated as input variables including weight 

ratio of reinforcement, load, sliding velocity, and sliding distance. Results indicated load 

exerted more contribution in determining the specific wear rate of composite. Genel et al. [108] 

established a multiple-layer feed-forward ANN to model the tribological behavior of short 

alumina fiber reinforced zinc-aluminum composites. Fiber volume, load, and fiber orientation 

were fed into the neural network as input variables to predict the specific wear rate. It could be 

concluded that ANN was a good analytical tool that has potential use in the field of wear 

behavior for the design of metal–matrix composites if properly used. Another remarkable 

application of AI techniques involves predicting the creep and fatigue behaviors of metallic 

materials. Gupta et al. [109] reported an ANN model for predicting the creep response of a 

rotating Al-SiCp composite disc operating at elevated temperature. The creep response was 

output based on several combinations of particle size, particle content, and temperature. The 

results predicted by ANN were slightly overestimated compared to the corresponding 

analytical values so that some factor of safety should be taken into consideration.  

Maleki and Kashyzadeh [110] developed an ANN model to predict the fatigue behavior of 

CK45 mild steel. Input layers consisting of stress amplitude and coating thickness were fed 

into the neural network to predict the fatigue life. Training data were obtained by performing 

fatigue life tests while predictive data were compared with FEM results. Results suggested that 

the ANN model outperformed FEM. Zhang et al. [111] used a neuro-fuzzy-based ML method 

for predicting the high cycle fatigue life of laser powder bed fusion stainless steel 316L. Two 

models employing different variables as the inputs were implemented. The process-based 

model adopted the processing and post-processing parameter as the inputs while the property-

based model used ultimate tensile strength and elongation to failure as the inputs.   

In addition to mechanical properties, other performances of metallic materials have also been 
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evaluated using AI techniques in recent decades. Sivasankaran et al. [112] analyzed the 

workability behavior of Al-SiC powder metallurgy metal matrix composites using an ANN 

model. The input parameters of the ANN model were the preform density, the particle size, the 

percentage of reinforcement and the applied load and the output variable is workability. Ji et 

al. [113] developed an ANN model to predict the hot deformation behavior of the ultrahigh 

strength steel. The inputs of the neural network were strain, strain rate and temperature, 

whereas flow stress was the output. The developed feed-forward backpropagation ANN model 

was trained with the Levenberg–Marquardt learning algorithm. The performance of the ANN 

model was evaluated using a wide variety of standard statistical indices.  

Kautz et al. [114] employed a deep neural network to predict the thermal conductivity of the 

uranium-molybdenum system. An input vector contained the following information: 

molybdenum concentration and uranium enrichment at both the beginning and end of life, 235U 

depletion and measured depletion, fission density and measured fission density, fission power, 

surface heat flux, neutron, and average advanced test reactor loop temperature. Yekta et al. [115] 

applied a hybrid ANN and genetic algorithm to predict the hysteresis loop and magnetic 

properties of Fe-48Ni. In this case, the thickness of samples, annealing temperature, holding 

time and field strength were treated as the network inputs and the magnetization as the output. 

The major conclusions of this research showed that ANNs as powerful computational 

techniques in the modeling of nonlinear systems could be reliably used in the prediction of 

hysteresis and magnetic properties of alloys. 
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Table 4 Recent studies applying AI techniques to predict mechanical properties of metallic materials 

Mechanical 

properties 
Material Methods 

Parameters of neural 

network 

Affecting 

parameter(s) 

Optimization 

algorithm for the 

training process 

Number of 

samples 
Ref. 

Bending strength 

Al2O3/SiC particulate 

reinforced aluminum matrix 

composite 

BPNN 

3 layers with learning rate 

of 0.2 and momentum 

coefficient of 0.8 

Reinforced 

particle size 

Gradient descent 

learning algorithm 
15 samples [103] 

Tensile strength A356 cast aluminum alloy BPNN 3 layers  
Process 

parameters 

Levenberg-Marquardt 

algorithm 
- [105] 

Ultimate 

strength 

Particulate reinforced metal 

matrix composites 
ANN 4 layers 3 categories - 500 samples [106] 

Specific wear 

rate 

Reduced graphene oxide 

reinforced magnesium 

metal matrix composite 

ANN 3 layers 

Weight ratio of 

reinforcement, 

load, sliding 

velocity, and 

sliding 

distance 

Levenberg-Marquardt 

algorithm 

24 samples for 

training and 3 

samples for 

testing 

[107] 

Specific wear 

rate or friction 

coefficient 

Short alumina fiber 

reinforced zinc-aluminum 

composites 

ANN 

3 layers with learning rate 

and momentum coefficient 

increasing from 0.1 to 0.9 

Fiber volume, 

load, and fiber 

orientation 

Backpropagation 

algorithm 

34 samples for 

training and 14 

samples for 

testing 

[108] 
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Mechanical 

properties 
Material Methods 

Parameters of neural 

network 

Affecting 

parameter(s) 

Optimization 

algorithm for the 

training process 

Number of 

samples 
Ref. 

Stress and strain 

rates 
Al-SiCp composite ANN 

4 layers with learning rate 

of 0.05 and momentum 

coefficient of 0.65 

Reinforcement 

size, content, 

and 

temperature 

Backpropagation 

algorithm 

6 data sets for 

training 
[109] 

Fatigue life 
CK 45 mild steel with 

nickel coating 
ANN 

4 layers with learning rate 

of 0.13, 0.14, 0.145 and 

0.15 

Stress 

amplitude and 

coating 

thickness 

Backpropagation 

algorithm 
- [110] 

Fatigue life Stainless steel  ANN 4 layers 

Processing 

parameters and 

tensile 

properties 

- 139 samples [111] 
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4 Applications of AI techniques for modeling of ceramics 

and their composites 

In this section, a concise review on the application of AI techniques for predicting the 

mechanical properties of ceramics and their composites is presented. The specific properties of 

interest are micromechanical behavior, electric conductivity, thermoelectric properties, and 

permittivity and diffusion coefficients. Rao and Mukherjee [116] presented a novel approach 

using ANN to predict micromechanical behaviors of ceramic matrix composites. The training 

examples for the network have been generated through an accurate micromechanical finite 

element analysis that simulated the interfacial debonding and sliding realistically. In their work, 

the stress and the corresponding strain at a point along with the desired small increment in 

stress were provided as inputs and the corresponding increment in strain served as output. Rao 

continued his work and proposed a genetic algorithm based BPNN to simulate the stress-strain 

response of Al2O3/SiC ceramic matrix composites [117]. The genetic algorithm was used to 

obtain the weights for BPNN. The newly proposed model was capable of predicting the stress-

strain relationship for a new interface shear strength even with this limited information.  

Wen et al. [118] applied an ANN model to investigate the relationship between the composition 

content and the properties of slag glass-ceramic. The investigation showed that the ANN had 

an excellent prediction performance once data sets reflected the relationship between the 

composition and property. Scott et al. [119] developed ANNs for the prediction of the properties 

of ceramic materials. Multi-layer perceptron ANNs were trained using the backpropagation 

algorithm and utilized data obtained from the literature to learn composition-property 

relationships between the inputs and outputs of the system. The trained networks used 

compositional information to predict the relative permittivity and oxygen diffusion properties 

of ceramic materials. Xu et al. [120] used a feed-forward, multilayer PNN model with eight 

hidden layers and 12 neurons to predict the corrosion behavior of Ni-SiC composite coatings 

deposited by ultrasonic electrodeposition. The effect of process parameters (e.g., ultrasonic 

power, SiC particle concentration, and current density) on the weight losses of Ni-SiC 

composite coatings were investigated.  

Guo et al. [121] adopted ANN to predict and analyze the electrical properties of piezoelectric 

ceramics. The input variables consisted of dopant content and temperature and output were 

electrical properties. The same set of results of piezoelectric ceramics samples were analyzed 
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using a backpropagation network in comparison with a multiple nonlinear regression analysis 

model. The results obtained revealed that the ANN model was much more accurate than 

multiple nonlinear regression analysis model. The importance of design and optimization of 

ceramics and their composite combined with AI techniques is also not to be ignored. Deng et 

al. [122] proposed a combined model of orthogonal experiment design and backpropagation 

ANN to solve multi-objective and multi-factor problems caused by the preparation of alumina 

slurry. The networks with five inputs, two outputs and a hidden layer of 11 nodes were used in 

this work. The optimal values with different weights of extrusion time and extrusion width 

deformation were obtained. The results from predicted values matched well with the 

experimental ones, and the average error was less than 3%.  

5 Applications of AI techniques for modeling of other 

materials 

In this part, the application of AI techniques for modeling of other materials such as cement-

based materials and nanoscale materials such as carbon nanotubes will be briefly reviewed. 

The modeling of cement-based materials mainly focuses on the prediction of their mechanical 

properties [123-127]. For example, Nazari and Sanjayan [128] used SVM to predict the 

compressive strength of geopolymers. Five different well-known optimization algorithms 

including genetic algorithm, particle swarm optimization algorithm, ant colony optimization 

algorithm artificial bee colony optimization algorithm and imperialist competitive algorithm 

are implemented to find parameters of SVM. By evaluating the proposed models through their 

coefficient of determination and errors, it was concluded that imperialist competitive algorithm 

and genetic were more suitable to optimize parameters of SVM for predicting compressive 

strength of the considered geopolymers. Other properties are also simulated and modeled using 

AI techniques.  

Ramadan and Nehdi [129] reported an approach to predict intrinsic self-healing in concrete 

using a hybrid genetic algorithm-ANN. A genetic algorithm was implemented in the network 

as a stochastic optimizing tool for the initial optimal weights and biases. The model inputs 

included the cement content, water-to-cement ratio (w/c), type and dosage of supplementary 

cementitious materials, bio-healing materials, and both expansive and crystalline additives. 

Self-healing indicated through crack width was the model output. The results showed that the 

proposed model was capable of capturing the complex effects of various self-healing agents on 

the self-healing performance in cement-based materials.  
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With regard to nanoscale materials, AI techniques are usually combined with FEM and MD to 

characterize the properties of nanomaterials. Shabani and Mazahery [130] modeled the 

mechanical properties of Al matrix nanocomposites. The effect of the volume fraction of the 

alumina nanoparticles on the mechanical properties of the Al-Si matrix composites was studied. 

The yield strength and tensile strength increase, but the elongation decreased with the increase 

in the volume fraction of the particles, indicating that increasing the volume fraction of the 

Al2O3 particles can improve the strength but degrade the plasticity of the composites.  

Vijayaraghavan et al. [131] proposed an MD-based AI simulation approach to investigate the 

thermal transport of carbon nanotubes. In this approach, the effect of size, chirality and 

vacancy defects on the thermal conductivity of carbon nanotubes was first analyzed using MD 

simulation. The data obtained using the MD simulation was then fed into the paradigm of an 

AI cluster comprising genetic programming, which was specifically designed to formulate the 

explicit relationship of thermal transport of CNT with respect to system size, chirality and 

vacancy defect concentration.  

6 Summary, challenges and prospects 

This paper presents a concise review of recent advances in the application of AI techniques to 

material modeling. A brief overview of some basic ML algorithms and DL neural networks is 

given to illustrate the advantages and disadvantages of these types of AI methods. Following 

the introductory section, a review of recent studies employing AI techniques to predict and 

model important mechanical properties of different types of materials is presented. In the 

reviewed studies, AI techniques were most frequently used to predict the properties of materials. 

For this kind of application, the learning process is first performed on training datasets, and 

then the predictive process is implemented to predict specific properties. Usually, a predictive 

model is accompanied by a validation or testing procedure to evaluate the predictive 

performance of the model. As for the design and optimization problem, the genetic algorithm 

seems to be the most suitable tool to solve the inverse forward problem. Descriptive models 

are similar to a regression model where the target is to find the correlation among several 

parameters.  

Although AI techniques show great potential in their applications to material modeling, there 

are still several challenges facing this emerging interdisciplinary field. For example, the 
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evolution of computers and computer science outpaces that of material science, which will lead 

to data deficiency. This deficiency not only indicates the shortage in the number of available 

datasets but also refers to the disunity in the data representation. The deficiency in data will 

inevitably hamper further developments in this important interdisciplinary field. One of the 

possible solutions to this issue is the establishment of general rules for constructing datasets, 

which is a tough and time-consuming task. The same problems exist in the usage of AI models. 

Presently, most ML and DL models are only applicable to a specific question under a specific 

environment such that every time a new problem is identified, a new model needs to be 

constructed, which is a huge waste of computing resources. For example, there is no acceptable 

generalized rule for selecting the number of neurons in the hidden layer, which will definitely 

influence the performance of a neural network. The best solution to this problem is to generalize 

the usage of models and neural networks. However, this is almost impossible at the present 

stage since we do not have a full understanding of how AI operates. It is necessary to advance 

in this direction so that the usage of models can be generalized in a unified form in the future.  

Another gap existing in the current body of research works on AI-assisted materials modeling 

is the sparse usage of multiscale modeling techniques. As accepted by many researchers, AI 

techniques can perform well at each independent scale, however, more research works are 

needed on constructing a linkage between multiple scales. This is quite a significant problem 

as materials’ properties are influenced by their inherent microstructures, which is similar to the 

idea that the overall physiological functions of the human body are influenced by the 

biomechanical behavior of cells. Although, some progress is currently being made on 

incorporating ML into multiscale modeling [132]. There is an urgent need to strengthen these 

linkages in order to harness the benefits of these two important methodologies for practical 

applications.  
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