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ABSTRACT 25 

1. Individual-level traits mediate interaction outcomes and community structure. It is 

important, therefore, to identify the minimum number of traits that characterise ecological 

networks, i.e. their ‘minimum dimensionality’. Existing methods for estimating minimum 

dimensionality often lack three features associated with increased trait numbers: alternative 

interaction modes (e.g. feeding strategies such as active vs. sit-and-wait feeding), trait-30 

mediated ‘forbidden links’ and a mechanistic description of interactions. Omitting these 

features can underestimate the trait numbers involved, and therefore, minimum 

dimensionality. We develop a ‘minimum mechanistic dimensionality’ measure, accounting 

for these three features.  

2. The only input our method requires is the network of interaction outcomes. We 35 

assume how traits are mechanistically involved in alternative interaction modes. These 

unidentified traits are contrasted using pairwise performance inequalities between interacting 

species. For example, if a predator feeds upon a prey species via a typical predation mode, in 

each step of the predation sequence the predator’s performance must be greater than the 

prey’s. We construct a system of inequalities from all observed outcomes, which we attempt 40 

to solve with mixed integer linear programming. The number of traits required for a feasible 

system of inequalities provides our minimum dimensionality estimate.  

3. We applied our method to 658 published empirical ecological networks including 

primary consumption, predator–prey, parasitism, pollination, seed dispersal and animal 

dominance networks, to compare with minimum dimensionality estimates when the three 45 

focal features are missing. Minimum dimensionality was typically higher when including 

alternative interaction modes (54% of empirical networks), ‘forbidden interactions’ as trait-

mediated interaction outcomes (92%), or a mechanistic perspective (81%), compared to 

estimates missing these features. Additionally, we tested minimum dimensionality estimates 

on simulated networks with known dimensionality. Our method typically estimated a higher 50 

minimum dimensionality, closer to the actual dimensionality, while avoiding the 

overestimation associated with a previous method. 



Final author version accepted for publication in Methods in Ecology and Evolution (22/8/20).  
DOI: 10.1111/2041-210X.13493  

3 
 

4. Our method can reduce the risk of omitting traits involved in different interaction 

modes, in failure outcomes, or mechanistically. More accurate estimates will allow us to 

parameterise models of theoretical networks with more realistic structure at the interaction 55 

outcome level. Thus, we hope our method can improve predictions of community structure 

and structure-dependent dynamics. 

 

ΠΕΡΙΛΗΨΗ (Abstract in Greek) 

1. Τα φαινοτυπικά χαρακτηριστικά των οργανισμών συνεισφέρουν στην έκβαση των 60 

οικολογικών αλληλεπιδράσεων και στη δομή των οικολογικών κοινοτήτων. Είναι επομένως 

σημαντικό να προσδιοριστεί ο ελάχιστος αριθμός χαρακτηριστικών που εμπλέκονται σε ένα 

οικολογικό δίκτυο, δηλαδή η «ελάχιστη διαστασιμότητα». Οι υπάρχουσες μέθοδοι για την 

εκτίμηση της ελάχιστης διαστασιμότητας δεν διαθέτουν κοινώς τρεις ιδιότητες που 

σχετίζονται με μεγαλύτερο αριθμό χαρακτηριστικών: εναλλακτικούς τρόπους 65 

αλληλεπίδρασης (π.χ. στρατηγικές θήρευσης μέσω ενεργής αναζήτησης ή ενέδρας), 

«απαγορευμένες συνδέσεις» λόγω χαρακτηριστικών, και μηχανιστική περιγραφή των 

αλληλεπιδράσεων. Η παράλειψη αυτών των ιδιοτήτων μπορεί να υποτιμήσει τον αριθμό των 

συμμετεχόντων χαρακτηριστικών, και συνεπώς την ελάχιστη διαστασιμότητα. Στην παρούσα 

εργασία, αναπτύσσουμε μια μετρική «ελάχιστης μηχανιστικής διαστασιμότητας», η οποία 70 

λαμβάνει υπόψιν αυτές τις τρεις ιδιότητες. 

2. Τα μόνα δεδομένα που χρειάζεται η μέθοδός μας είναι οι εκβάσεις αλληλεπιδράσεων 

ενός δικτύου. Κάνουμε μια παραδοχή για το πώς τα χαρακτηριστικά εμπλέκονται 

μηχανιστικά μέσω εναλλακτικών τρόπων αλληλεπίδρασης. Αυτά τα αφηρημένα 

χαρακτηριστικά συγκρίνονται κατά ζεύγη μέσω ανισοτήτων στην επίδοση των 75 

αλληλεπιδρόντων οργανισμών. Για παράδειγμα, εάν ένας θηρευτής τρέφεται με κάποια λεία 

μέσω ενός τυπικού τρόπου θήρευσης, σε κάθε βήμα της θηρευτικής διαδικασίας, η επίδοση 

του θηρευτή πρέπει να είναι μεγαλύτερη από της λείας. Κατασκευάζουμε ένα σύστημα 

ανισοτήτων από όλες τις παρατηρηθείσες εκβάσεις αλληλεπιδράσεων, το οποίο προσπαθούμε 

να λύσουμε με μικτό ακέραιο γραμμικό προγραμματισμό. Ο αριθμός των χαρακτηριστικών 80 
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που απαιτούνται για ένα επιλύσιμο σύστημα ανισοτήτων είναι η εκτίμησή μας για την 

ελάχιστη διαστασιμότητα. 

3. Εφαρμόσαμε τη μέθοδό μας σε 658 δημοσιευμένα εμπειρικά οικολογικά δίκτυα, 

συμπεριλαμβανομένων δικτύων κατανάλωσης παραγωγών, λείας–θηρευτή, παρασιτισμού, 

επικονίασης, διασποράς σπερμάτων και κυριαρχικότητας σε ομάδες ζώων, για να συγκριθεί 85 

με εκτιμήσεις ελάχιστης διαστασιμότητας όταν παραλείπονται οι τρεις προαναφερθείσες 

ιδιότητες. Η ελάχιστη διαστασιμότητα ήταν τυπικώς υψηλότερη όταν ενσωματώσαμε 

εναλλακτικούς τρόπους αλληλεπίδρασης (54% των εμπειρικών δικτύων), «απαγορευμένες 

αλληλεπιδράσεις» εξαιτίας χαρακτηριστικών (92%) ή μηχανιστική προσέγγιση (81%), σε 

σύγκριση με εκτιμήσεις από τις οποίες έλειπαν αυτές οι ιδιότητες. Επιπλέον, ελέγξαμε 90 

εκτιμήσεις ελάχιστης διαστασιμότητας σε προσομοιωμένα δίκτυα γνωστής διαστασιμότητας. 

Η μέθοδός μας τυπικώς εκτίμησε μια υψηλότερη ελάχιστη διαστασιμότητα, πιο κοντά στην 

πραγματική διαστασιμότητα, αποφεύγοντας παράλληλα υπερεκτιμήσεις χαρακτηριστικές 

μιας προηγούμενης μεθόδου. 

4. Η μέθοδός μας μπορεί να μειώσει τον κίνδυνο παράλειψης χαρακτηριστικών που 95 

εμπλέκονται σε διαφορετικούς τρόπους αλληλεπίδρασης, σε αποτυχημένες εκβάσεις 

αλληλεπίδρασης ή μηχανιστικά. Οι πιο ακριβείς εκτιμήσεις θα μας επιτρέψουν να 

παραμετροποιήσουμε μοντέλα θεωρητικών δικτύων πιο εύλογης δομής στο επίπεδο των 

εκβάσεων αλληλεπίδρασης. Έτσι, ελπίζουμε ότι η μέθοδός μας μπορεί να συνεισφέρει σε 

βελτιωμένες προβλέψεις της δομής και δυναμικής οικολογικών κοινοτήτων. 100 

 

KEYWORDS 

Cyclic rock–paper–scissors intransitive game, food web intervality, multilayer ecological 

networks, mutualism, niche space, phenotype space, social networks, trophic interactions. 

 105 
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1 INTRODUCTION 

 

Ecological networks are structured by different forces, including dispersal, habitat 

filtering processes and species interactions (Bartomeus et al., 2016). Interaction outcomes are 110 

determined by the relative performance of each organism’s traits, i.e. whether one individual 

successfully exploits another (Bartomeus et al., 2016; Pichler et al., 2020). For example, a 

nectarivory outcome can depend on the length of a nectarivore’s mouth part compared to the 

depth of the plant’s corolla tube. Thus, the comparison of trait-mediated performance between 

interacting exploiters and resources underlies interaction outcomes and, subsequently, 115 

community structure (Arnold, 1983). Here, we develop a method which leads backwards from 

the observed interaction outcomes to an estimate of the minimum number of traits involved in 

that type of interaction, which we term ‘minimum dimensionality’. 

 

Knowing the minimum dimensionality for a set of interaction outcomes focusses our 120 

investigations on which traits underpin community structure (Eklöf et al., 2013). A set of 

interaction outcomes can be represented by a network (Delmas et al., 2019), illustrating which 

organisms achieve success in their interactions. They can be represented as unipartite 

networks, where all participants are included in a single group, and interactions occur 

between any group member, e.g. a food web; or bipartite networks, where participants are 125 

assigned to either of two groups, and interactions can occur between different groups, e.g. a 

plant–pollinator network. Estimating the minimum dimensionality of such networks before 

deciding how many traits to investigate can prevent the omission of important traits. More 

accurate prediction of interaction outcomes can then be made by combining information on 

the minimum number of necessary traits with appropriate biological knowledge and methods 130 

to investigate the contribution of specific traits (Pichler et al, 2020). Minimum dimensionality 

can also inform theoretical network models about the minimum number of trait axes which 

have to be included for the reproduction of realistic networks. 
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Since interaction networks are often characterised by traits, accurately estimating 135 

minimum dimensionality will improve our understanding of interaction outcomes. Here, we 

combine three relevant features for the first time, which we predict will increase the estimated 

minimum number of traits involved in interactions. First, resources can be successfully 

exploited via alternative strategies, which we term ‘interaction modes’. For example, 

flowering plants use visual or olfactory signals to achieve pollination (Schiestl & Johnson, 140 

2013), and zooplankton species exhibit feeding modes such as active predation and filter 

feeding (Kiørboe, 2011). These different trait combinations can modify the minimum 

dimensionality. Second, failure to exploit a resource can be considered a trait-mediated 

outcome of interaction, i.e. a ‘forbidden link’ or ‘forbidden interaction’ (Jordano, Bascompte, 

& Olesen, 2003). Here, we assume that two organisms interact given their inclusion in the 145 

network, even if they never actually meet, e.g. through temporal mismatch. Thus, traits 

involved in failures can also be included, which may differ from traits involved in successes. 

Third, to successfully exploit a resource via a given mode, an exploiter may have to succeed 

in different ‘tasks’, each employing different traits. For instance, a predator must succeed in 

all tasks of the predation sequence: encounter, detect, identify, approach, subjugate and 150 

consume a prey (Endler, 1991).  

 

Existing methods for estimating minimum dimensionality lack at least one of these 

three features. The minimum dimensionality method of Eklöf et al. (2013) estimates the 

minimum number d of dimensions such that the trait values of each exploiter’s resources lie 155 

in a contiguous volume of a d-dimensional space (also applied to each resource’s exploiters).  

Alternative interaction modes are not considered because all d dimensions act in conjunction 

to determine exploitation. Additionally, each dimension potentially accounts for multiple 

traits. Thus, although their method tells about the niches of the exploiters and resources, it 

does not address the issues of alternative interaction modes and tasks (see an illustrative 160 

example in Fig. 1). Ignoring interaction modes and tasks places this method towards the 

phenomenological end of a phenomenological–mechanistic continuum, where we consider 
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mechanistic approaches in a proximate (ecologically motivated) rather than an ultimate 

(evolutionarily motivated) sense. Dalla Riva and Stouffer (2016) adopted a more mechanistic 

approach to minimum dimensionality, with a simple trait space representation for trophic 165 

interactions. They explicitly modelled interaction network structure, comparing paired 

exploiter–resource trait values. However, Dalla Riva and Stouffer (2016) model interactions 

via a single interaction mode; the task outcomes act additively from each corresponding 

exploiter–resource trait pair comparison. Finally, corresponding to forbidden links, it is 

common for behavioural studies to employ predictor traits to explain only the observed 170 

dominance events in a system, i.e. only the success outcomes (Chase & Seitz, 2011). Such 

attempts can overlook relevant traits which might contribute only to the interaction failure 

outcomes.  

  

We developed a novel method providing a different view on interaction networks by 175 

combining alternative interaction modes, trait-mediated failures and mechanistically-based 

tasks, in a minimum dimensionality measure. Our ‘minimum mechanistic dimensionality’ 

measure can be applied to a broad range of ecological networks, including animal dominance, 

predator–prey, primary consumption, pollination, parasitism and seed dispersal networks. We 

investigated how our minimum dimensionality estimate compares with previous approaches 180 

across a range of empirical networks: under the assumption of alternative interaction modes 

compared to a single mode; with failure outcomes taken into account instead of omitted; and 

under a more mechanistic perspective compared to the minimum dimensionality under the 

more phenomenological, niche approach of Eklöf et al. (2013). We go on to estimate 

minimum dimensionality on simulated networks with a known underlying number of 185 

dimensions. Therefore, we test for potential underestimation of minimum dimensionality 

across different scenarios which could lead to the omission of key traits and mechanisms 

underlying interactions and community structure. 

 

2 METHODS 190 
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We illustrate our approach with an empirical example of cyclic spatial replacement 

among three competing marine invertebrates. While the minimum dimensionality of this 

intransitive network equals one dimension following Eklöf et al.’s (2013) method, since each 

exploiter (resource) has a single resource (exploiter), our method estimates two dimensions, 195 

providing a useful illustrative example. We describe the interactions in the context of 

exploiter and resource roles, going on to define and calculate the minimum mechanistic 

dimensionality of the network using inequalities. We then describe how we compared 

competing minimum dimensionality estimates across 658 empirical networks―including 

social hierarchies, mutualistic networks and food webs―and on simulated networks of known 200 

dimensionality. 

 

2.1 Minimum mechanistic dimensionality: an overview 

 

Jackson and Buss (1975) described the cyclic spatial replacement of three encrusting 205 

marine invertebrates: ectoproct species Stylopoma spongites (player A) replaces sponge 

species Tenaciella sp. (player B); Tenaciella replaces the sponge Toxemna sp. (player C), 

which in turn replaces the ectoproct player A. In our framework, a player (individual or 

species) can adopt the role of an exploiter, a resource, or both. In the marine invertebrates 

example, we consider any species both exploiter-and-resource of the other species, 210 

representing the observed replacement outcomes of spatial competition with a unipartite 

network (Fig. 1). Exploiters possess traits involved in achieving exploitation, whereas 

resources possess traits working against exploitation. For task success, an exploiter’s 

performance in a given trait, termed ‘power’, must be higher than the resource’s performance 

in a corresponding trait, called ‘toughness’ (taken from the creature combat rules of the card 215 

game Magic: The Gathering® in Garfield, 2017). Exploiter and resource are challenged in one 

trait ‘dimension’ of their phenotype space, where the corresponding power–toughness trait 

performance is directly compared to determine who succeeds in that task. Using Boolean 
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logic terms, interaction modes can be represented as OR-associated clauses of AND-

associated tasks (see examples of one 2-dimensional mode and two 1-dimensional modes in 220 

Fig.1). In logic, any structure of logical statements can be expressed in this ‘disjunctive 

normal form’, which we term the ‘interaction form’, providing a systematic description of 

how interactions occur. 

 

 225 

FIGURE 1 Explaining the observed competitive outcomes in an empirical rock–paper–scissors system of spatial 

replacement in three marine invertebrates. Each species was considered exploiter-and-resource of the others, 

possessing a power|toughness trait pair per task. We illustrate three minimal explanations for the observed 

outcomes: a 1-dimensional mode is mechanistically impossible, presuming a single trait pair for a single task, i.e. 

one dimension; the other two attempts are feasible, requiring two trait pairs in two tasks, i.e. two dimensions. We 230 

indicate hypothetical tasks, and power|toughness trait scores in arbitrary units of performance. The indicative 

power|toughness values demonstrate that only the 2-dimensional minimal explanations are mathematically 

feasible. 

 

The only input our method requires is the set of observed interaction outcomes. We 235 

then define an interaction form describing the number of interaction modes which produced 

these outcomes, with each mode having a specific number of tasks. Since our aim is a 

minimum dimensionality estimate, we start with the simplest interaction form of a single task. 

In our example, we assumed that interactions occurred via the destructive overgrowth of a 
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rival invertebrate. For this task, a single pair of opposed, exploiter–resource power–toughness 240 

traits is assumed for all species. For example, the body height of the invertebrates when 

extending to an adjacent rival could be a trait for the power to overgrow destructively; and 

their body height when defending against overgrowth by rivals could be a trait for the 

toughness against destructive overgrowth. We then confront this trait pair in a system of 

inequalities, to satisfy the observed task successes and failures which correspond to the 245 

observed outcomes for this single-task interaction form. For task successes, the power of a 

winning exploiter must be greater than the toughness of a defeated resource, e.g. the 

exploiter’s body height must be higher than the defender’s. For task failures, the power of a 

losing exploiter must be less than or equal to the toughness of an undefeated resource. In our 

example, the resulting system of six inequalities creates a cyclic sequence of ever-increasing 250 

power–toughness scores (the impossible ‘one 1-dimensional mode’ in Fig. 1). Thus, it is 

impossible to explain the observed outcomes in this unipartite graph if we presume that 

interactions occurred via a 1-dimensional interaction mode of a single task. 

 

Our framework provides two alternative minimal mechanistic explanations for the 255 

emergence of this rock–paper–scissors network. First, we can find feasible power–toughness 

scores if we add a second task, i.e. another pair of power–toughness traits in the same mode 

(minimal explanation I in Fig. 1). We explain the failure of players A and B as failure in the 

first task (failure in overgrowth), and the failure of C as failure in the second task (failure to 

destroy the rival, even if C can overgrow B). Alternatively, we can find solutions if we add a 260 

second interaction mode with one task, i.e. another pair of power–toughness traits in a new 1-

dimensional mode (minimal explanation II in Fig. 1). In that case, A and B achieve success 

via the first mode (destructive overgrowth), and C achieves success via a second mode 

(allelochemical elimination). Since the addition of a second task (power–toughness trait pair) 

leads to feasible power–toughness scores under both minimal explanations, the minimum 265 

mechanistic dimensionality of the empirical network equals two dimensions in both cases. 

This result, combined with biological insight from Jackson and Buss (1975), suggests that 
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minimal explanation II is the more plausible one, since: player A replaces B via overgrowth, 

player B replaces C via overgrowth, but player C replaces A via toxic effects. Appendix S1 

presents the complete systems of inequalities for this network under minimal explanations I 270 

and II, following the details presented next. 

 

2.2 Minimum mechanistic dimensionality: formulating the inequalities 

 

As illustrated above (Fig. 1), the mechanistic explanation of the interaction outcomes in 275 

a network might require more than one pair of opposed exploiter–resource trait dimensions. 

One method to find this minimum number of trait dimensions is by attempting to solve a 

system of inequalities. If the system of inequalities is impossible, a simple strategy is to 

increase the number d of dimensions by one, and retry (illustrated with pseudocode in Fig. 2). 

Our minimum mechanistic dimensionality estimate is, therefore, the minimum d ≥ 1 for a 280 

feasible system of inequalities. In the marine invertebrates example, there were two types of 

minimal explanation: additional trait pairs belonging to the same interaction mode (minimal 

explanation I); or belonging to other, independent, 1-dimensional modes (minimal 

explanation II). We will illustrate these two extreme explanations, although tasks could be 

distributed to interaction modes in other ways for cases requiring more than two tasks.  285 
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FIGURE 2 Pseudocode for estimating the minimum mechanistic dimensionality of an ecological network, from the 

observed outcomes under minimal explanations I and II. 

 290 

When a new task is added to a single mode, permitting feasibility of the system of 

equalities, the d exploiter–resource trait pairs (dimensions) must be involved in the same 

mode (minimal explanation I, Fig. 1). On one hand, an observed success of exploiter A 

against resource B must be the result of success in all tasks (e.g. player A succeeds in both 

overgrowing and destroying B in Fig. 1). Specifically, the power PA,i ≥ 0 of exploiter A in any 295 

trait pair i must be greater than the toughness TB,i ≥ 0 of resource B in that trait pair: PA,i > TB,i. 

Since each trait pair i appears only in one task in our current formulation, we use the same 

index i for both trait pairs and tasks. If success requires more than the marginal superiority of 

the exploiter’s power, a superiority threshold can be added, tA,B,i > 0, making the task success 

requirement: 300 

 PA,i ≥ TB,i + tA,B,i.  (1) 

On the other hand, the observed failure of exploiter A against resource B must be the result of 

failure in at least one task (e.g. player C failing at task 2 against B in Fig. 1). We can use a 

binary variable as an indicator of failure in trait pair i, fA,B,i (Williams, 2013). If fA,B,i = 1, then 
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exploiter A fails against resource B in trait pair i; otherwise, fA,B,i = 0, representing exploiter 305 

success in the task. Finally, we include bounds for the power–toughness differences for 

computational efficiency (Williams, 2013): a sufficiently negative lower bound m of the 

exploiter’s power inferiority in case of task failure; and a sufficiently positive upper bound M, 

of the exploiter’s power superiority in case of task success. Here, we set m = −200 and M = 

200, but these limits were not reached in any of the empirical and simulated networks we 310 

considered. Thus, for an observed failure, the following pair of inequalities must be satisfied 

in any trait pair i: 

 PA,i + M fA,B,i ≤ TB,i + M,  (2) 

 PA,i – m fA,B,i ≥ TB,i+ tA,B,i.  (3) 

With an extra inequality for the observed failure, we can force at least one of the binary 315 

indicator variables to equal one, i.e. failure in at least one task: 

 ∑d
i = 1 fA,B,i ≥ 1.  (4) 

With a task failure in trait pair i (fA,B,i = 1), inequality (2) is the task failure requirement and 

inequality (3) is the lower bound for the exploiter’s power inferiority. With a task success 

(fA,B,i = 0), inequality (2) gives the upper bound for the exploiter’s power superiority and 320 

inequality (3) becomes a success requirement. 

 

Adding a new 1-dimensional mode that creates a feasible system of inequalities 

(minimal explanation II, Fig. 1), each of the d pairs of opposed exploiter–resource traits must 

be involved in a different mode. Again here, each trait pair appears only in one mode j, so we 325 

use the same index j for both trait pairs and modes. On one hand, the observed failure of any 

exploiter A against any resource B must be the result of failure in any mode j of the d modes 

(e.g. player A failing via both overgrowth and allelopathy against C in Fig. 1): 

 PA,j ≤ TB,j.  (5) 

On the other hand, the observed success of exploiter A against resource B must come from 330 

success via at least one mode (e.g. player C replacing A via allelopathy in Fig. 1). We now use 
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a binary variable, sA,B,j, to indicate success via mode j. Given the same bounds as in minimal 

explanation I, the following pair of inequalities must be satisfied to indicate exploiter success 

in any mode j: 

 PA,j + m sA,B,j ≥ TB,j + tA,B,j + m,  (6) 335 

 PA,j − M sA,B,j ≤ TB,j.  (7) 

With an extra inequality for the observed success, we can force at least one of the binary 

indicator variables to equal one, i.e. exploiter success occurs via at least one interaction mode: 

 ∑d
j = 1 sA,B,j ≥ 1.  (8) 

 340 

A complete system of inequalities takes into account all observed successes and 

failures for all possible exploiter–resource pairs (Fig. 2). Such systems of linear inequalities, 

with continuous trait values and integer indicator variables, can be formulated and attempted 

to be solved as mixed integer linear programming problems (Williams, 2013). In both 

minimal explanations (I and II), minimum mechanistic dimensionality is the minimum d 345 

leading to a feasible system of inequalities.  

 

2.3 Minimum dimensionality of empirical networks 

 

We applied our method to 658 empirical systems, covering six different types of 350 

ecological networks: animal social dominance networks, food webs excluding basal species, 

basal–consumer interactions, plant–pollinator, host–parasite and seed dispersal networks 

(Appendix S1). By assuming adequate sampling effort (e.g. no observed failures due to 

rarity), we computed five dimensionality measures (Appendix S1). Four of the measures were 

based on our framework: (a) a single, potentially multidimensional mode; (b) one-or-more 1-355 

dimensional modes; (c) as b, but excluding observed failures; (d) as c, but with players 

interacting via a common trait per dimension, rather than a power against toughness trait. To 

compare our approach with another established dimensionality estimate in this first account, 
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we considered (e) Eklöf et al.’s (2013) niche-based method. We asked three questions about 

our minimum mechanistic dimensionality (MMD) estimates; does MMD change: (1) under 360 

the assumption of alternative 1-dimensional modes (dimensionality estimate b), compared to 

the assumption of a single multidimensional mode (dimensionality a)? (2) with observed 

failures taken into account (dimensionality b), or excluded (dimensionality c or d)? (3) 

compared to the measure developed by Eklöf et al. (2013) (dimensionality a versus e)?  

 365 

The systems of inequalities for our four minimum mechanistic dimensionality measures 

a–d were formulated and solved as mixed integer linear programming problems with the 

Gurobi Optimizer (Gurobi Optimization and Inc., 2020). R and Python codes for formulating 

and solving these are provided (see ‘DATA ACCESSIBILITY’). We computed the fifth 

dimensionality estimate with code available in Eklöf et al. (2013). The empirical networks 370 

were retrieved from five data sources (Cohen, 2010; Ortega, Fortuna, & Bascompte, 2017; 

Shizuka & McDonald, 2015; Stanko & Miklisova, 2014; Thompson & Townsend, 2004). We 

provide the network characteristics and references, raw data from the five computed 

dimensionality measures for each of the 658 empirical systems, and R code for plotting the 

results (see ‘DATA ACCESSIBILITY’).  375 

 

2.4 Minimum dimensionality of simulated networks with known dimensionality 

 

We generated networks where we knew how many dimensions contributed to the 

interaction outcomes, based on Santamaría & Rodríguez-Gironés’ (2007) ‘barrier’ traits 380 

model with differences in exploiter–resource performance traits, in this first evaluation of our 

method. We then estimated minimum dimensionality in these networks with our MMD 

method and that of Eklöf et al. (2013), testing which method performed better by comparing 

minimum dimensionality estimates with the actual number of dimensions involved. We note 

that a minimum dimensionality method does not estimate the actual dimensionality of a 385 

network, but only the lower bound required to generate such a structure. For simplicity, we 
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generated each simulated network with species traits involved either in a single interaction 

mode, or with each trait dimension belonging to an alternative, single-task mode. We 

generated unipartite and bipartite networks, to give four scenarios: single-mode unipartite, or 

bipartite; multi-mode unipartite, or bipartite.  390 

 

We generated unipartite networks with S = {3, 5, 10, 15, 20 or 25} species. This was 

doubled for bipartite networks, where the number of exploiters was chosen randomly from a 

uniform distribution in the range 1 to S − 1, and the remaining species were resources. Each 

uni- or bipartite network had D dimensions, D = {2, 5, 10, 15 or 20}. The S–D combinations 395 

were chosen in a fully factorial design, giving 30 unique combinations. For each combination, 

we generated ten replicate networks, leading to 300 networks for each of the four scenarios.  

 

Random values for power and toughness traits were drawn independently from distinct 

normal distributions of equal variance (s2 = 0.01) for each replicated S–D combination. We 400 

set the distance between the means of the two distributions such that networks of size S had a 

wide range of connectance given the range of D (Appendix S1). R codes for simulating these 

networks and plotting results are provided (see ‘DATA ACCESSIBILITY’). 

 

3 RESULTS 405 

 

3.1 Minimum dimensionality of empirical networks 

 

For the five dimensionality measures we considered, the inclusion of alternative 

interaction modes, forbidden links, and a more mechanistic approach describing interaction 410 

tasks, consistently increased the minimum dimensionality estimate across a wide range of 

empirical networks (Fig. 3 and Fig. 4). 
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We frequently estimated higher minimum mechanistic dimensionality under the 

alternative rather than the single mode explanation (Fig. 3), especially in systems of non-basal 415 

consumption, biotic pollination, ectoparasitism, and seed dispersal (Fig. 3b,d–f). 54% of the 

empirical systems had higher dimensionality if alternative modes were assumed, with only 

7% of the systems having higher unimodal dimensionality (Fig. 4a). 

 

 420 

FIGURE 3 Minimum mechanistic dimensionality estimates from 658 empirical systems. Cell colour indicates 

frequency of the n systems with the corresponding pair of values in our two minimum mechanistic 

dimensionalities (MMD), i.e. number of exploiter–resource trait pairs assuming: alternative 1-dimensional modes 

(x-axis; minimal explanation II); and tasks in a single mode (y-axis; minimal explanation I). Panels represent: (a) 

animal dominance in n = 168 unipartite graphs (6–31 individuals); (b) consumption of non-basal species in n = 95 425 

unipartite food webs (6–57 species; basal species excluded from the original food webs); (c) consumption by 

consumers exclusively feeding on basal species in n = 95 bipartite graphs (11–91 species; same food webs used in 

panel b); (d) biotic plant pollination in n = 105 bipartite graphs (8–114 species); (e) ectoparasitism of small 

mammals in n = 165 bipartite graphs (8–92 species); and (f) plant seed dispersal in n = 30 bipartite graphs (6–86 

species). Parameter values in the inequalities method: m = −200, M = 200, tA,B,i = 1, for all pairs of exploiter A with 430 

resource B, and in any trait pair i. 
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FIGURE 4 Comparisons of minimum dimensionality measures estimated from 658 empirical systems. Violin plots 

show the normalised distributions of the dimensionality ratios (see Section 2.3 for details) of: (a) our minimum 

mechanistic dimensionality under minimal explanation II (alternative 1-dimensional modes), to our minimum 435 

mechanistic dimensionality under minimal explanation I (tasks in a single mode); (b) our minimum mechanistic 

dimensionality under minimal explanation II, to the same dimensionality estimate with the failures ignored; and (c) 

our minimum mechanistic dimensionality under minimal explanation I, to the comparable dimensionality of Eklöf 

et al. (2013). The raw data are displayed as semi-transparent points which, for the same x–y value, are spread 

regularly among the x-axis to avoid overplotting. Dotted horizontal lines mark a ratio of one, with values above the 440 

line indicating higher minimum dimensionality when assuming: alternative modes (a), failures as trait-mediated 

outcomes (b), and a more mechanistic perspective (c). 

 

Comparing our minimum multimodal dimensionality with the same dimensionality 

estimate excluding failure inequalities from the system of inequalities, showed that minimum 445 
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mechanistic dimensionality was higher in 92% of the empirical systems when including 

failure outcomes (Fig. 4b). In the remaining 8% of empirical systems, both dimensionality 

estimates were equal. With failures excluded, minimum dimensionality was always one 

dimension. In this case, the structure of observed successes can be explained unimodally, as 

exploiters can have a single power trait with a greater value than the single toughness trait of 450 

any resource (in the absence of any inequalities constraining the power scores). We further 

required that exploiters and resources possess the same trait for power and toughness in the 

unipartite systems of animal dominance and non-basal consumption, instead of the default 

power–toughness trait pair. Thus, the unipartite systems could require more than one 

dimension with failures excluded. Even when modelling trait opposition with a common trait 455 

per dimension, 79% of the unipartite systems had higher minimum dimensionality with 

failures included rather than excluded (Fig. 4b). 

 

In 81% of the empirical systems, our minimum mechanistic dimensionality was higher 

than the dimensionality estimate of Eklöf et al. (2013) (Fig. 4c). We assumed a single mode 460 

(minimal explanation I), comparable to the niche approach of Eklöf et al. (2013). Only 2% of 

the networks had higher minimum dimensionality under Eklöf et al.’s (2013) more 

phenomenological approach, with no bipartite networks among them (Fig. 4c). The minimum 

number of trait pairs for the explanation of all outcomes in our approach, was (median) 1.5 

times larger than with the more phenomenological dimensionality estimate across all 465 

networks. Note that since our dimensionality refers to exploiter–resource trait pairs, the actual 

number of necessary traits is double our dimensionality, i.e. our approach suggested a median 

of 3 times more trait axes required for the explanation of the observed outcomes. 

 

3.2 Minimum dimensionality of simulated networks with known dimensionality 470 

 

In simulated networks built with a single mode of multiple tasks, our MMD method 

(also assuming a single mode) typically estimated a higher minimum dimensionality―i.e. 
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closer to the actual number of dimensions involved―than the comparable Eklöf et al. (2013) 

method (Fig. 5a,c), particularly in larger networks (Appendix S1). The Eklöf et al. (2013) 475 

method sometimes erroneously estimated a minimum dimensionality which was higher than 

the actual dimensionality for some large, two-dimensional unipartite networks (Fig. 5c; 

Appendix S1).  

 

As Eklöf et al. (2013) essentially assumed a single interaction mode, applying their 480 

approach to theoretical networks with multiple modes is not straightforward. Nevertheless, we 

experimented by using the Eklöf et al. (2013) and our method by assuming the opposite 

interaction form than the one used for building the networks, to identify any characteristic 

trend in minimum dimensionality estimates when an incorrect assumption is used. Applying 

our MMD assuming multiple modes to networks built with a single mode, resulted in higher 485 

estimates compared to those assuming a single mode (Fig. 5a,b). Similarly, when applying 

our MMD and the Eklöf et al. (2013) method, both assuming a single mode, to networks built 

with multiple modes, the minimum dimensionality estimate was higher than with our MMD 

correctly assuming multiple modes (Fig. 5d,f versus Fig. 5e, respectively).  

 490 

 

FIGURE 5 The minimum dimensionality estimates for simulated networks with known dimensionality. The top 

row shows networks built with one multi-task mode, the bottom row shows networks with multiple, single-task 

modes. For each value of actual dimensionality (x-axis), there are 60 unipartite (circles) and 60 bipartite networks 

(squares), with all panels on the same row with the same x-value hosting the same networks. Symbol colour 495 
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indicates the frequency that networks had the corresponding pair of actual and minimum dimensionality values. 

Panels show: (a) MMD assuming a single mode with multiple tasks (minimal explanation I); (b) MMD assuming 

multiple, single-task modes (minimal explanation II); (c) Eklöf et al. (2013) method; (d) MMD under minimal 

explanation I; (e) MMD under minimal explanation II; and (f) Eklöf et al. (2013) method. Dotted lines show y = x. 

 500 

4 DISCUSSION 

 

We introduced a novel method for calculating the minimum number of traits required 

to explain all observed interaction outcomes of ecological networks more mechanistically, 

using a general framework applicable to different interaction (network) types, modes, tasks, 505 

and types of traits. Applying this to 658 empirical systems, and simulated networks of known 

dimensionality, we showed that the minimum number of traits involved is typically 

underestimated when ignoring any of the three framework features we combined here for the 

first time: (1) alternative interaction modes; (2) trait-mediated failure outcomes; and (3) a 

more mechanistic description of interactions broken down to tasks. This underestimation risks 510 

omitting important traits in empirical investigations, and generating less realistic theoretical 

networks at the level of interaction outcomes.  

 

Our minimum mechanistic dimensionality framework can explicitly incorporate the 

alternative interaction modes frequently observed empirically, e.g. alternative feeding modes. 515 

In previous theoretical trait-based works, an exploiter has to overcome all barriers or defences 

of a potential resource to exploit the resource (Gilman, Nuismer, & Jhwueng, 2012; 

Santamaría & Rodríguez-Gironés, 2007). Similarly, in other works adopting a niche 

approach, a niche arises from the intersection of all niche dimension intervals (Eklöf et al., 

2013; Stouffer, Camacho, & Amaral, 2006). The interaction mode in our framework is 520 

equivalent to these two approaches―an exploiter’s performance must be sufficiently high in 

all the mode’s tasks. Generalising to alternative modes, we also showed that minimum 

mechanistic dimensionality was frequently higher under alternative modes than under a single 
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mode (Fig. 4a). By simulating networks of known dimensionality and interaction form, we 

showed that applying a method assuming the incorrect interaction form frequently increased 525 

minimum dimensionality estimates (Fig. 5). Thus, we suggest that many of the empirical 

networks we tested may be built using fewer modes of multiple tasks, a hypothesis that can be 

investigated further in future work. Our framework’s generalization to alternative modes can 

offer a new mechanistic perspective to the study of interactions, for example, offering 

alternative minimal explanations for the emergence of intransitive networks (Fig. 1), or for 530 

the emergence of pollination syndromes and floral mimicry (Schiestl & Johnson, 2013). 

 

We regarded failures as trait-mediated outcomes of interaction, meaning more traits 

were expected to be involved in the interactions (Fig. 4b). We found that three to six pairs of 

opposed traits must be involved in several behavioural dominance systems (Fig. 3a), whereas 535 

only a few traits are commonly employed in behavioural studies for the explanation of only 

the successful dominance outcomes (Chase & Seitz, 2011). For example, in the elephant 

family named ‘AA’ in Archie et al. (2006), almost all observed dominance events were 

directed towards younger elephants, and the authors conclude the system is an age-ordered 

dominance hierarchy based only on the successes, agreeing with the one dimension estimated 540 

in our failures-excluded analysis (Fig. 4b). However, incorporating failures in our minimum 

mechanistic dimensionality estimates suggests three trait pairs under both minimal 

explanations, because there are several older–younger pairs where no dominance or 

aggression was observed, i.e. failures unaccounted for by Archie et al. (2006). In fact, most 

elephants dominated younger members within their matriline, but also younger members of 545 

two specific matrilines (Archie et al., 2006). These two behavioural tendencies are candidates 

for the two extra dimensions predicted by our method, overlooked when ignoring failure 

outcomes. Again, we recommend combining our approach—incorporating interaction failures 

with trait-based methods—with system-specific biological knowledge, to improve estimates 

when other approaches perform poorly; e.g. our MMD can indicate a minimum bound for the 550 
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number of traits that might be represented by phylogeny when missing traits may be difficult 

to ascertain (e.g. Brousseau et al., 2018). 

 

We adopted a phenotype rather than a niche space representation for traits. Studies of 

interactions commonly use the ‘resource-utilization’ approach to represent the ‘ecological 555 

niche’ concept (Schoener, 1989). Despite its operational advantage, dimensions usually arise 

more phenomenologically, as in the minimum dimensionality of Eklöf et al. (2013). For 

example, body size is a trait with high explanatory power in food webs (Stouffer, Rezende, & 

Amaral, 2011). However, other traits scaling allometrically with body size are mechanistically 

involved in trophic interactions (Woodward et al., 2005). Even if taken mechanistically, 560 

realised niches commonly span a range of the resource gradient, implying two traits per niche 

dimension. For instance, in systems where the maximum prey size is limited by a predator’s 

mouth gape, the size range minimum must be limited by a second trait, like the predator’s 

inability to handle smaller prey. The resource-utilization approach also excludes exploiters 

from the niche space, as it is created by resource trait dimensions (Schoener, 1989). Our 565 

framework accounts for the traits of both interacting players simultaneously; a dimension is 

simply a challenged trait-axis in the phenotype space of exploiters and resources, as in Dalla 

Riva and Stouffer (2016). Thus, our minimum dimensionality assuming a single interaction 

mode was frequently higher than the comparable dimensionality of Eklöf et al’s (2013) niche-

based approach in empirical networks of unknown dimensionality (Fig. 4c). Comparing the 570 

two methods on simulated networks with known dimensionality confirmed that minimum 

dimensionality can often be underestimated when using this more phenomenological, niche-

based approach (Fig. 5a,c). 

 

In this first account, we assumed two simple and extreme minimal interaction forms, 575 

but users can input any number of traits and values, in any interaction form. While we 

presented a deterministic version, future versions could incorporate stochasticity (Dalla Riva 

& Stouffer, 2016), e.g. more probable successes explained by larger power–toughness 
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differences. Further extensions could consider the effects of abundance, and indirect 

interactions in the estimation of minimum dimensionality. Additionally, we tested our method 580 

in simulated networks only generated with a ‘barrier’ traits mechanism (Santamaría & 

Rodríguez-Gironés, 2007), but future work can address the effect of other mechanisms, such 

as ‘complementarity’ or ‘mixed’ barrier–complementarity traits. Lastly, we assumed that 

performance is independent in the different tasks, i.e. a unique trait per task per player in our 

formulation of the inequalities. In reality, several traits can contribute to performance in the 585 

same task, and the same trait can contribute to performance in several tasks (Arnold, 1983). 

Since our aim was a minimum dimensionality measure, we assumed independence in task 

performance, to impose fewer constraints in the linear inequalities system, allowing the 

estimation of a lower minimum. We expect that trait correlations will increase the minimum 

number of dimensions required to explain a specific network, given the associated restrictions 590 

on possible trait values. 

 

In conclusion, we have outlined a novel method under a different perspective on how 

interactions occur, for estimating the minimum dimensionality of ecological networks. 

Informed by a more accurate minimum dimensionality estimate, future studies can rely on 595 

network models reproducing community structure more accurately at the interaction outcome 

level, reducing the risk of omitting important traits that are involved in alternative interaction 

modes, only in failure outcomes, and mechanistically in tasks. In that way, our method, 

combined with appropriate biological insight and other methods, could improve 

understanding, explanation, and prediction of community structure and structure-dependent 600 

processes.  
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1. The five minimum dimensionalities 

The first four of the five cases of minimum dimensionality presented below were based on our framework, and the 
fifth was the dimensionality developed by Eklöf et al. (2013):  

(1) minimum mechanistic dimensionality under the assumption of a single, (potentially) multidimensional mode 
(‘minimal explanation I’ in the article, and ‘min. mech. dimensionality 01’ in Table S1 herein);  

(2) minimum mechanistic dimensionality under the assumption of (potentially) multiple, one-dimensional modes 
(‘minimal explanation II’ in the article, and ‘min. mech. dimensionality 02’ in Table S1);  

(3) multimodal minimum mechanistic dimensionality of case (2), but excluding any linear inequalities required by ob-
served failures (‘excluded failures’ in the dimensionality ratio of the article’s Fig. 4b, and ‘min. mech. dimension-
ality 03’ in Table S1);  

(4) multimodal minimum mechanistic dimensionality excluding the observed failures of case (3), but with players in-
teracting via a common trait per dimension, instead of a power against a toughness trait (results reported in the ar-
ticle’s main text, and ‘min. mech. dimensionality 04’ in Table S1); and  

(5) the minimum dimensionality of Eklöf et al. (2013) (computed with the C code provided by the authors in their ar-
ticle’s Supporting Information, ‘phenomenological’ in the dimensionality ratio of our article’s Fig. 4c). 

We did not make any modifications in computing the minimum dimensionality of Eklöf et al. (2013). Hence, we 
focus on our four minimum mechanistic dimensionalities in this Appendix. 

2. Complete systems of linear inequalities  

We provide complete systems of linear inequalities by attempting to explain the observed rock–paper–scissors, intran-
sitive outcomes in Fig. 1 of the main text. We attempt to explain these observed outcomes with one exploiter–resource 
power–toughness (P–T) trait pair (Table S1). Three of the six observed outcomes were observed successes: inverte-
brate player A replaced B, B replaced C, and C replaced A. The other three outcomes were failures: player A failed to 
replace C, C failed to replace B, and B failed to replace A. 

 
TABLE S1 Complete systems of linear inequalities created for the explanation of the observed intransitive outcomes in Fig. 1 of the main text, un-
der the assumptions of our four minimum mechanistic dimensionalities. The systems of linear inequalities list the inequalities from the observed 
successes first, followed by the inequalities imposed by the observed failures. Variables and parameters for an exploiter X against a resource Y in 
trait pair i: PX,i and TY,i are the power and toughness variables, respectively; tX,Y,i is the power superiority threshold parameter for a success; fX,Y,i and 
sX,Y,i are the binary indicator variables of a failure and success, respectively; M and m are the power superiority upper bound and the power inferiori-
ty lower bound parameters, respectively. 

Min. mech. dimensionality 01 Min. mech. dimensionality 02 Min. mech. dimensionality 03 Min. mech. dimensionality 04 

 PA,1 ≥ TB,1 + tA,B,1  PA,1 + m sA,B,1 ≥ TB,1 + tA,B,1 + m  PA,1 + m sA,B,1 ≥ TB,1 + tA,B,1 + m  PA,1 + m sA,B,1 ≥ PB,1 + tA,B,1 + m 
 PB,1 ≥ TC,1 + tB,C,1  PA,1 − M sA,B,1 ≤ TB,1   
 PC,1 ≥ TA,1 + tC,A,1  sA,B,1 ≥ 1  sA,B,1 ≥ 1  sA,B,1 ≥ 1 
 PB,1 + M fB,A,1 ≤ TA,1 + M  PB,1 + m sB,C,1 ≥ TC,1 + tB,C,1 + m  PB,1 + m sB,C,1 ≥ TC,1 + tB,C,1 + m  PB,1 + m sB,C,1 ≥ PC,1 + tB,C,1 + m 
 PB,1 − m fB,A,1 ≥ TA,1 + tB,A,1  PB,1 − M sB,C,1 ≤ TC,1   
 fB,A,1 ≥ 1  sB,C,1 ≥ 1  sB,C,1 ≥ 1  sB,C,1 ≥ 1 
 PC,1 + M fC,B,1 ≤ TB,1 + M  PC,1 + m sC,A,1 ≥ TA,1 + tC,A,1 + m  PC,1 + m sC,A,1 ≥ TA,1 + tC,A,1 + m  PC,1 + m sC,A,1 ≥ PA,1 + tC,A,1 + m 
 PC,1 − m fC,B,1 ≥ TB,1 + tC,B,1  PC,1 − M sC,A,1 ≤ TA,1   
 fC,B,1 ≥ 1  sC,A,1 ≥ 1  sC,A,1 ≥ 1  sC,A,1 ≥ 1 
 PA,1 + M fA,C,1 ≤ TC,1 + M  PB,1 ≤ TA,1   
 PA,1 − m fA,C,1 ≥ TC,1 + tA,C,1  PC,1 ≤ TB,1   
 fA,C,1 ≥ 1  PA,1 ≤ TC,1   

 

 
Since we attempted to explain the observed intransitive outcomes by employing one trait pair for Table S1, the 

assumed interaction form is a single one-dimensional mode for all four minimum mechanistic dimensionalities. 
Hence, ‘min. mech. dimensionality 01’ requires a similar system of linear inequalities as ‘min. mech. dimensionality 
02’ (apparent if both systems of linear inequalities are simplified in Table S1). Simplification is possible because the 
binary (0–1) indicator variables for a task failure or success of exploiter X against resource Y, fX,Y,1 or sX,Y,1 
respectively, have to equal one: the sums of indicator variables in the inequalities ∑d

i = 1 fX,Y,i ≥ 1 and ∑d
i = 1 sX,Y,i ≥ 1 have 

only one term (assumed number of trait pairs in one mode, or number of one-dimensional modes:  d = 1). ‘Min. mech. 
dimensionality 03’ has the same system of linear inequalities as ‘min. mech. dimensionality 02’, but with any 
inequalities for failures excluded (see removed entries in Table S1). The exclusion of failures from the system of 
linear inequalities permits the explanation of any set of observed outcomes in one trait pair: the single power trait of 
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all exploiters can take a value greater than the value of the single toughness trait of all resources, in the absence of any 
inequalities constraining the power scores (all power scores are in the ‘greater than or equal to’, left hand side of the 
inequalities). ‘Min. mech. dimensionality 04’ has the same system of linear inequalities as ‘min. mech. dimensionality 
03’, but exploiters and resources compete over a common power trait (the toughness traits are excluded, replaced by 
the power traits). Contrary to ‘min. mech. dimensionality 03’ which is always equal to one, ‘min. mech. 
dimensionality 04’ can take larger values (the power scores are in both hand sides of the inequalities). For instance, 
the observed rock–paper–scissors outcomes cannot be explained by one trait pair under the assumptions of ‘min. 
mech. dimensionality 04’ (Table S1). After simplifying the system of linear inequalities because all success indicator 
variables have to equal one, we have an impossible to solve cyclic relation: PA,1 ≥ PB,1 + tA,B,1 ≥ PC,1 + tB,C,1 + tA,B,1 ≥ 
PA,1 + tC,A,1 + tB,C,1 + tA,B,1. The first PA,1 cannot be greater than or equal to the last PA,1 + tC,A,1 + tB,C,1 + tA,B,1 because all 
threshold parameters tX,Y,i > 0. 

3. Solving complete systems of linear inequalities 

We formulated and solved systems of linear inequalities with continuous traits and integer indicator variables, like the 
systems in Table S1, as mixed integer linear programming problems (Williams 2013). The formulation of a mixed in-
teger programming problem was done sequentially, by appending linear inequalities to the problem, until all require-
ments from all observed outcomes of a network were incorporated. 

4. Information about the empirical systems  

Interactions in animal dominance networks occurred between individuals. In these unipartite systems, all 
individuals were regarded as exploiters and resources in dominance of the other social group members. Even a single 
dominance event of animal A against animal B was assumed an observed success of A against B, because of an 
expected benefit even after a single dominance success (e.g. animal A claimed a resting spot from animal B, even for 
a short period). In other words, we analysed data qualitatively, not considering the quantitative strength of interactions 
in this initial account of the method. Each network concerned a specific group of animals, from elephants to jackdaws, 
in a natural environment or in captivity. Dominance was inferred from observed animal behaviour, e.g. physical 
aggression or threat displays. The data were in square matrix format, recording the number of times animal X was 
observed to dominate animal Y. The dominance networks were retrieved from Shizuka and McDonald (2015).  

Interactions in non-basal consumption networks were between species (or other taxonomic or functional groups). 
For non-basal consumption, we removed the basal species (species without any resource) from the original food webs. 
For simplicity, we additionally excluded self-loop outcomes from the current considerations (successful self-
consumption, and failure to self-consume). In the resulting unipartite systems, all species were exploiters and 
resources of non-basal consumption of the other species. The same original food webs were studied for basal 
consumption as well, by keeping only the basal species and the species exclusively feeding on them (see next 
paragraph). Each network was from a specific ecosystem (terrestrial, lake or other aquatic environment). Consumption 
was inferred in different ways, for example, direct observation or gut analysis. The data were in square matrix format, 
recording the intensity by which consumer X was consuming resource Y. For the present analysis, only the qualitative 
outcome of consumption was used. We retrieved the non-basal networks from Thompson and Townsend (2004), and 
Cohen (2010).  

Interactions in basal consumption networks were between species (or other taxonomic or functional groups). For 
basal consumption, we kept only the basal species (species without any resource), and the species exclusively feeding 
on basal species in the original food webs. In the resulting bipartite systems, the consumers of basal species were the 
exploiters, and the basal species were the resources. Some of the basal species could not be considered representative 
individuals of species (e.g. fish eggs), or even biological organisms (e.g. detritus), but we supposed they possess 
toughness traits acting against their consumption, to compete with individual traits of exploiting species. The 
characteristics of these food webs, and the associated data, are described in the previous paragraph. 

Interactions in pollination networks were between species (or other taxonomic or functional groups). The input 
data files, retrieved from the source website (Ortega et al., 2017), omit from the original networks any animals that do 
not pollinate any plant, and any plants that are not pollinated by any animal. In the resulting bipartite systems, the 
plants were the exploiters of pollination, and the animals were the resources. Pollination was inferred in different 
ways, for example, direct observation of pollination, or from analysis of pollen carried by pollinators. The data were 
in matrix format, recording the intensity by which animal X was pollinating plant Y. For the present analysis, only the 
qualitative outcome of pollination was used.  

Interactions in ectoparasitism networks were between species (or other taxonomic or functional groups). In these 
bipartite systems, the potential parasites were the exploiters, and the mammal hosts were the resources. Networks 
described host rodents and their ectoparasitic mites and fleas recorded in Slovakia, from different habitats, such as 
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forest and grassland. Ectoparasitism intensity in the matrix format was the number of parasite individuals of species X 
collected from host animals of species Y. For the present analysis, only the qualitative outcome of ectoparasitism was 
used. The networks were retrieved them from Stanko & Miklisova (2014).  

Interactions in seed dispersal networks were between species (or other taxonomic or functional groups). The input 
data files, retrieved from the source website (Ortega et al., 2017), omit from the original networks any animals that do 
not fruit-consume or seed-disperse any plant, and any plants that do not receive the respective services from any 
animal. In the resulting bipartite systems, the plants were the exploiters of seed dispersal, and the animals were the 
resources. The data were in matrix format, recording the intensity by which animal X was dispersing seeds of plant Y. 
For the present analysis, only the qualitative outcome of seed dispersal was used.  

5. Connectance of simulated networks with known dimensionality 

We have chosen to use the ‘barrier’ traits version of the model in Santamaría & Rodríguez-Gironés’ (2007) 
(focussing on the measurable differences between contrasted trait pairs) for three main reasons. Firstly, it provides a 
simple, reproducible method of testing the performance of our MMD method across the broad range of networks types 
that we considered. Secondly, the best performing models in Santamaría & Rodríguez-Gironés’ (2007) study were 
based on Neutral, rather than trait-based assumptions, so were not amenable to testing our new methods. Finally, we 
have framed our work in terms of trait differences; matching traits, as in Santamaría & Rodríguez-Gironés’ 
‘complementarity’ model can also be recast as trait performance differences under our method. 

We generated unipartite networks with S = {3, 5, 10, 15, 20 or 25} species. This was doubled for bipartite 
networks, where the number of exploiters was chosen randomly from a uniform distribution in the range 1 to S − 1, 
and the remaining species were resources. Each uni- or bipartite network had D dimensions, D = {2, 5, 10, 15 or 20}. 
The S–D combinations were chosen in a fully factorial design, giving 30 unique combinations. For each combination, 
we generated ten replicate networks, leading to 300 networks for each of the four scenarios. Random values for power 
and toughness traits were drawn independently from distinct normal distributions of equal variance (s2 = 0.01) for 
each replicated S–D combination. We set the distance between the means of the two distributions such that networks 
of size S had a wide range of connectance given the range of D (Fig. S1).  

 

FIGURE S1 The connectance of the simulated networks. (a) unipartite networks built with a single, multi-task mode; (b) bipartite 

networks built with a single, multi-task mode; (c) unipartite networks built with multiple, single-task modes; and (d) bipartite 

networks built with multiple, single-task modes. The semi-transparent points in each panel correspond to 300 networks. For each 

network size, there are 10 replicate networks built with actual dimensionality D = {2, 5, 10, 15 or 20}, according to the main text.  
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6. Minimum dimensionality of simulated networks with known dimensionality in relation to network size  

In simulated networks built with a single mode of multiple tasks, our MMD method (also assuming a single mode) 
typically estimated a higher minimum dimensionality―i.e. closer to the actual number of dimensions involved―than 
the comparable Eklöf et al. (2013) method (for unipartite networks, compare Fig. S2a with Fig. S2b; and for bipartite 
networks, compare Fig. S2c with Fig. S2d). This was particularly true for networks of larger size (Fig. S2). 
Additionally, the Eklöf et al. (2013) method sometimes erroneously estimated a minimum dimensionality which was 
higher than the actual dimensionality for some large, two-dimensional unipartite networks (networks above the dotted 
line of y = x in Fig. S2b).  

 

FIGURE S2 The minimum dimensionality estimates for simulated networks with known dimensionality. The networks were built 

with a single, multi-task mode. The top row shows unipartite networks, the bottom row shows bipartite networks. For each value of 

actual dimensionality (x-axis), there are 60 networks, with both panels on the same row with the same x-value hosting the same 

networks. Symbol size indicates the size of each network in number of species. Panels show: (a and c) MMD assuming a single 

mode with multiple tasks (minimal explanation I); (b and d) Eklöf et al. (2013) method. Dotted lines show y = x.  
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