
1 

 

Stock Returns, Quantile Autocorrelation, and Volatility 

Forecasting 

 

Yixiu Zhao, Harbin Engineering University, China 

Vineet Upreti, Swansea University, UK 

Yuzhi Cai, Swansea University, UK 

  

Abstract 

We examine stock return autocorrelation at various quantiles of the returns’ distribution 

and use it to forecast stock return volatility. Our empirical results show that the strength 

of the autoregression varies across the quantiles of the returns’ distribution in terms of 

both magnitude and persistence. Specifically, the autoregression order and magnitude 

of the coefficients is lower in the left tail in comparison with the right tail. Additionally, 

we show that the quantile autoregressive (QAR) framework proposed in this study 

improves out-of-sample volatility forecasting performance compared to the generalised 

autoregressive conditional heteroscedasticity (GARCH)-type models and other 

quantile-based models. We also observe greater outperformance in QAR estimates 

during periods of financial turmoil. Moreover, the QAR method also explains the 

stylized ‘leverage effect’ associated with asset returns in the presence of volatility 

asymmetry.  
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1. Introduction 

 

Research on volatility forecasting is abundant. Volatility forecasting is broadly 

applicable in financial markets, including, but not limited to, risk management (Engle 

and Patton, 2001), option pricing (Andersen and Bollerslev, 1998), and monetary policy 

(Bernanke and Gertler, 2000). One of the key strands running through the extant 

literature on volatility modelling is the use of models from the autoregressive 

conditional heteroscedasticity (ARCH) and generalised autoregressive conditional 

heteroscedasticity (GARCH) time series model family; see Poon and Granger (2003) 

for a review. Multiple extensions of these models have been proposed to capture 

additional stylised facts observed in volatility series, such as volatility asymmetry 

(Glosten et al., 1993; Engle & Ng, 1993), and structural changes in the dynamics of 

volatility documented in studies like Ardia et al. (2018) and Wang et al. (2019). 

Recently, greater attention has been given to quantile-based techniques for analysing 

realised volatility. For example, Taylor (2005) and Huang (2012) directly apply the 

quantile regression model to generate volatility forecasts and their studies show that the 

out-of-sample performance of their models is superior to traditional GARCH-type 

models. Choi and Shin (2019) also develop a parametric model for quantile forecasts 

of realized volatilities. Similar to GARCH models, quantile-based models contain all 

information of financial series that is captured in GARCH models (Baur and Dimpfl, 

2017).  

In this paper, we propose a novel quantile-based method to generate volatility 

forecasts. There are several important motivations for using this type of approach. The 

first motivation is that the existing studies, such as GARCH-type models, assume the 

innovation term follows a parametric distribution, e.g. the normal distribution. In other 

words, the volatility forecasts produced by these models are based on the assumption 

that the shape of the conditional distribution is fixed over time. However, as suggested 

in prior studies, the return and volatility distribution of assets is most often 

heterogeneous (Bouri et al., 2019), and if there is variation in the shape of the 

distribution over time, these models can generate inaccurate volatility forecasts (Taylor, 
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2005). Quantile regression, pioneered by Koenker and Bassett (1978), is immune to this 

parametric model problem. Moreover, prior studies suggest that quantile regressions 

can provide greater insight into the interdependence of variables across the whole 

distribution. For example, Troster et al. (2019) suggest that the mean-based model is 

inappropriate to analyse the casual relationship between financial assets in the presence 

of tail-dependence or nonlinear causal relationships. Their studies uncover the 

heterogeneity in the flights-to-safety effect with the implied volatilities by employing a 

quantile regression analysis. Han et al. (2016) use the cross-quantilogram to detect 

predictability from stock variance to excess stock return, and their results exhibit a more 

complete relationship between risk and return. Similarly, by employing quantile 

regression, Bouri et al. (2019) discover the differences in the dependence of volatilities 

of commodity prices and sovereign CDS spreads across different quantiles. Baur et al. 

(2012) documents that the lower and upper quantiles of past returns exhibit different 

dependence behaviors. In this study, we propose a quantile autoregressive (QAR) 

method that accommodates autocorrelation in stock returns at various quantile levels in 

order to generate volatility forecasts. Due to its ability to deal with temporal variation 

in returns’ distributions, the volatility forecasts produced via this method are likely to 

be more accurate.  

The use of quantile regression techniques has been increasing steadily in the field 

of finance. For example, these techniques are used to model capital asset pricing 

(Barnes and Hughes, 2002); return forecasts and optimal portfolio construction (Ma 

and Pohlman, 2008); hedge fund strategy implementation (Meligkotsidou et al., 2009); 

economic activity and financial development (Demirgüç-Kunt et al., 2012); identifying 

the determinants of credit default swap spreads (Pires et al., 2015); interest rate 

sensitivity (Ferrando et al., 2017); oil volatility shocks (Xiao et al. 2019); as well as in 

studying reaction of stock markets to international economic policy uncertainty and 

geopolitical risks (Kannadhasan & Das, 2020). However, studies focused on applying 

quantile-based methods for volatility forecasting are still evolving, and our paper adds 

to this stream of literature.    
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We start by investigating the dependence pattern in stock returns over a wide range 

of quantiles of the returns’ distribution via the estimation and analysis of the sample 

quantile partial autoregressive function (QPACF) of a number of stock index returns 

following the method proposed by Li et al. (2015). Specifically, we consider five stock 

indices, namely, the CAC 40, DAX 30, FTSE 100, NIKKEI 225, and S&P 500 at daily 

frequencies. This paper uses quantile levels ranging from 0.1 to 0.9, which increase in 

steps of 0.05, to examine the dependence pattern for stock returns at various quantiles 

of the returns’ distribution. The full sample spans the period from March 2000 to 

February 2019 and contains more than 4,600 observations for each return series. Our 

sample has been chosen such that the financial crisis of 2008/9 occurs in the middle of 

the sample, providing us with approximately the same number of observations to 

analyse before and after the crisis. In order to evaluate the forecasting performance, we 

divide the entire sample into two sets, i.e. training and testing datasets. Then the training 

dataset is used to estimate the sample QPACF, and the testing dataset is used to evaluate 

out-of-sample performance.  

Our QPACF analysis shows that, at the median (the middle quantile) of the returns’ 

distribution, the impact from past returns is relatively weak, as no significant and 

persistent dependence pattern in stock returns is detected. In contrast, the analyses 

conducted for the lower and upper quantiles reveal persistent dependence patterns for 

stock returns. Additionally, our results show that the lower quantiles of the current 

returns’ distribution are positively dependent on past returns, while the upper quantiles 

produce a negative dependence. We then go on to specify the QAR model based on the 

dependence pattern obtained using the QPACF analysis. Next, we compare the 

forecasting performance of the QAR specification with those of other forecasting 

models. A broad mix of benchmark models are used for comparison, namely, Markov 

switching (MS) and Markov switching Glosten-Jagannathan-Runkle (MS-GJR) 

versions of GARCH(1,1) models with different distribution assumptions, and variants 

of the quantile-based models of Taylor (2005) and Huang (2012) (see Section 2.3 for 

further details). The benchmark used for volatility estimation is the daily realized 
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volatility provided by the Oxford-Man Institute’s realized library (see, for example, 

Shephard and Sheppard, 2009). We find that, in general, our forecasting method 

significantly outperforms most of the MS-GARCH type models and all other quantile-

based models. These results are robust in out-of-sample forecast comparisons with 500, 

1,000, 1,500, and 2,000 observations, respectively.  

We further examine the forecasting performance of the QAR method over several 

subsamples. In this case, we partition the full sample for each index into three 

subsamples, ranging from March 2000 to December 2006 (pre-crisis), January 2007 to 

December 2009 (crisis), and January 2010 to February 2019 (post-crisis), respectively. 

We find that the results for the first and last subsamples are consistent with the full 

sample, which shows that, overall, the QAR forecasting method outperforms the MS-

GARCH-type and other quantile-based models. Furthermore, we find that the QAR 

forecasting method statistically outperforms all models for all indices when the sample 

corresponding to the financial crisis is used. In addition, the results show that the 

performances of other quantile-based models also exceed those of the MS-GARCH- 

type models during this period. Lastly, we show that QAR models can explain the 

“volatility asymmetry” phenomenon. 

 This study contributes to the literature in four important ways. Firstly, we extend 

the work of Baur et al. (2012), which documents that the lower and upper quantiles of 

the returns’ distribution exhibit dependences that occur in opposite directions from past 

returns. In addition to examining the direction of past returns’ influence across various 

quantiles, our work also identifies the magnitude and persistence of such dependence 

patterns, which could be potentially useful in modelling returns’ behaviour at the 

extremes of their distributions. Secondly, our study contributes to the literature by 

investigating stock market reactions and dependence structures based on market 

conditions. Our results are in concordance with several studies that have explored this 

issue. For instance, Sim and Zhou (2015) find that low oil price shock quantiles can 

affect US equities positively at high return quantiles. In a recent study, Trapin (2017) 

shows that autoregressive dependence is strong and persistent in both tails of the returns’ 
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distribution. We interpret our results in the following way. The lower quantiles, which 

contain negative returns, denote “bad times” for the market, while the upper quantiles, 

which contain positive returns, signal “good times” for the market. We find that future 

stock returns are negatively correlated with past returns when the market is 

experiencing ‘good times’, while they exhibit a positive autoregressive association 

during ‘bad times’. These findings are similar to the findings of Veronesi (1999), which 

documents that stock markets overreact to bad news in good times and underreact to 

good news in bad times. Further, we notice a perceptible difference in the magnitude of 

the coefficients of significant lags at the two tails, with the magnitudes obtained for the 

right tail being larger than those obtained for the left tail. This observation corroborates 

the results of Zikes and Barunik (2016), who find that the linear quantile regression 

models perform better at the right tail of the distribution for medium-horizon realised 

volatility forecasts. 

Thirdly, we propose an alternative method for generating conditional volatility via 

the QAR model that accommodates the quantile dependence between stock returns. Our 

proposed method is built on the conditional autoregressive value-at risk-model of 

Taylor (2005), which, in turn, is based on the work of Engle and Manganelli (2004) and 

Pearson and Tukey (1965). In particular, Taylor’s (2005) method generates variance 

forecasts based on linear functions of the square of the interval between symmetric 

quantiles. Unlike Taylor’s method, which relies on Pearson and Tukey’s work regarding 

forecasts, this paper applies the distribution constructed from the estimated quantiles 

directly to generate volatility forecasts. This feature imparts greater flexibility to our 

model in terms of incorporating temporal variations in the returns’ distribution into 

volatility forecasts, resulting in better forecasting ability, even in turbulent market 

conditions. This attribute can be useful in asset pricing and risk management. 

Finally, our method can also be applied to modelling “leverage effects” in asset 

returns. Several studies, such as Black (1976), Christie (1982), and Bekaert and Wu 

(2000), confirm that the conditional volatility of stock returns is asymmetric at both the 

market and the firm levels. In this study, we illustrate the link between the quantile 
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autoregressive dependence structure obtained using the QAR model to this well-

documented volatility feature of the return series. We confirm that the “leverage effect” 

of conditional volatility exists at the market level, as an increase in returns in the tails 

is associated with a decrease in returns’ volatility, and vice versa. This result is 

consistent with the findings of Dimpfl and Baur (2016), who use inter-quantile ranges 

to explain asymmetric volatility.    

The remainder of our paper is organized as follows. Sections 2 and 3 describe the 

methodology and data, respectively. Section 4 presents the empirical results, while 

Section 5 explores the volatility asymmetry using quantile autoregressive models. 

Section 6 concludes.  

 

2. Methodology  

 

2.1 Stock returns’ quantile autocorrelation 

 

The main purpose of this paper is to investigate stock returns’ quantile 

autocorrelation and use the resulting autocorrelation pattern to generate volatility 

forecasts for financial assets. Li et al. (2015) define the quantile covariance for two 

random variables 𝑋 and 𝑌 as follows: 

𝑞𝑐𝑜𝑣𝜏{𝑌, 𝑋} = 𝐸{𝜓𝜏(𝑌 − 𝑄𝜏,𝑌)(𝑋 − 𝐸(𝑋))},  

where 𝑄𝜏,𝑌  is the τth unconditional quantile of 𝑌,  and the function 𝜓𝜏(𝜔) = 𝜏 −

𝐼(𝜔 < 0) (𝐼(∙) being an indicator function). Correspondingly, the quantile correlation 

between two random variables is defined as: 

𝑞𝑐𝑜𝑟𝜏{𝑌, 𝑋} =
𝑞𝑐𝑜𝑣𝜏{𝑌, 𝑋}

√𝑣𝑎𝑟{𝜓𝜏(𝑌 − 𝑄𝜏,𝑌)}𝑣𝑎𝑟(𝑋)

 

=
𝐸{𝜓𝜏(𝑌 − 𝑄𝜏,𝑌)(𝑋 − 𝐸(𝑋))}

√(𝜏 − 𝜏2)𝜎𝑋
2

 ,  

where 𝜎𝑋
2 = 𝑣𝑎𝑟(𝑋).  

Li et al. (2015) also introduce the quantile partial autocorrelation function (QPACF), 

which can be used to identify the autoregressive order of an observed time series in the 

context of quantile autoregressive (QAR) model estimation. Specifically, the QPACF 
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between 𝑦𝑡 and 𝑦𝑡−𝑘 is defined as: 

∅𝑘𝑘,𝜏 = 𝑞𝑝𝑐𝑜𝑟𝜏{𝑦𝑡 , 𝑦𝑡−𝑘|𝒛𝑡,𝑘−1} 

=
𝐸 [𝜓𝜏 (𝑦𝑡 − 𝛼2,𝜏 − 𝛽′

2,𝜏
𝒛𝑡,𝑘−1) 𝑦𝑡−𝑘]

√(𝜏 − 𝜏2)𝐸(𝑦𝑡−𝑘 − 𝛼1 − 𝛽′
1

𝒛𝑡,𝑘−1)
2

, 

where 𝑘  is a positive integer with 𝒛𝑡,𝑘−1 = (𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)′, (𝛼1, 𝛽1
′) =

𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽𝐸(𝑦𝑡−𝑘 − 𝛼 − 𝛽′𝒛𝑡,𝑘−1)2,  and (𝛼2,𝜏, 𝛽2,𝜏
′ ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽𝐸[𝜌𝜏(𝑦𝑡 − 𝛼 −

 𝛽′𝒛𝑡,𝑘−1).  They show that for a given 𝜏 ∈ (0, 1), √𝑛∅̃𝑘𝑘,𝜏 →𝑑 𝑁(0, 𝛺3(𝜏, 𝜏)) .  

Hence, for fixed τ, the significance of ∅𝑘𝑘,𝜏  can be determined via this asymptotic 

result1. 

Following Li et al. (2015), we apply the sample QPACF to determine the dependence 

pattern between past returns and quantiles of the current returns’ distribution, which 

then allows us to evaluate the predictive ability of past returns for different sections of 

the returns’ distribution based on the varying order of significant lags2.  

 

2.2 Volatility forecasting method  

 

Our forecasting method comprises the following three steps. In step one, we specify the 

QAR model for stock returns using an appropriate lag structure. Let 𝑦𝑡 be the stock 

returns at time 𝑡, then the QAR model is given by: 

 𝑄𝜏(𝑦𝑡|𝑦𝑡−𝑖) = 𝛽0,𝜏 + 𝛽1,𝜏𝑦𝑡−1 + ⋯ + 𝛽𝑖,𝜏𝑦𝑡−𝑖, (2.1) 

where 𝑡 = 1, … 𝑇, and 𝜏 = 0.01, … , 0.99. The optimum lag order 𝑖 is determined via 

the method described in Section 2.1. We estimate 99 QAR models, i.e. one model at 

each quantile level. In step two, we obtain conditional density forecasts for stock returns, 

𝑦𝑇+𝑚 , with 𝑚 = 1, … , 𝑀 . Bondell et al.’s (2010) method is used to estimate the 

conditional quantiles of 𝑦𝑡, thus avoiding the crossing-over problem associated with 

quantiles3. The details of this procedure are as follows: 

(i) For 𝑚 = 1, use the estimated QAR models to estimate the density forecast of 𝑦𝑇+1 

via the cubic smoothing spline method. 

(ii) For 𝑚 = 2 , replace the variables 𝑦𝑇+1  in the QAR models with the observed 

 
1 See Appendix 1 for further details. 
2 The process of obtaining the QPACF is detailed in Appendix 1. 
3
 The R code for estimating the non-crossing quantile models are available in Professor Bondell’s personal website 

(https://blogs.unimelb.edu.au/howard-bondell/#tab25).  

https://blogs.unimelb.edu.au/howard-bondell/#tab25
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values at time 𝑇 + 1, which are available at time 𝑇 + 2.  

(iii) Return to (i) with 𝑚 = 2 to obtain the density forecast of 𝑦𝑇+2 using the cubic 

smoothing spline method. By repeating the above steps, the density forecasts can be 

obtained for 𝑦𝑇+𝑚, where 𝑚 = 1, … , 𝑀. 

The final step is to obtain the volatility forecasts for  𝑦𝑇+𝑚  using the following 

procedure: 

(i) Obtain a random sample of size N, which is 5,000 in this study, from the density 

forecasts for the 𝑦𝑇+𝑚 obtained in step 2. 

(ii) The conditional volatility forecasts of 𝑦𝑇+𝑚 are calculated as the sample standard 

deviations of the samples obtained in (i).  

 

2.3 Benchmark volatility forecasting models  

 The following sections summarize the key features of the benchmark models 

whose volatility forecasting performances are subsequently compared with that of our 

proposed approach. In total, we use twelve benchmark models: six from the GARCH 

family, and six variants of the quantile approach. We begin with the latter set of models. 

 

2.3.1 Quantile-based models 

Pearson and Tukey (1965) use a simple interval approximation approach to 

estimating standard deviations, which then provides a foundation for further research 

on the use of quantile regression (QR) to predict volatility in stock markets. They show 

that standard deviations can be approximated by using the interval between symmetric 

quantiles, i.e. 𝑄(𝜃) and 𝑄(1 − 𝜃). More specifically, they use the following equation 

to estimate the standard deviation: 

 
�̂� =

�̂�(1 − 𝜃) − �̂�(𝜃)

𝐶(𝜃)
, 

(2.2) 

where �̂�(1 − 𝜃)  and �̂�(𝜃)  are the estimated quantiles from a cumulative density 

function with probability 𝜃, while 𝐶(𝜃) is a correction constant chosen to be 4.65, 

3.92, and 3.25 for probabilities 0.01, 0.025, and 0.05, respectively. 

  Following Pearson and Tukey (1965), Taylor (2005) developed a new method for 

generating volatility forecasts via QR. This method involves two steps. First, the 

conditional autoregressive value-at-risk model (CAViaR) developed by Engle and 

Manganelli (2004) is used to produce value-at-risk (VaR) estimates at the required 
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probability levels. Next, the conditional volatility is calculated based on the interval 

approximation method developed by Pearson and Tukey (1965). Pearson and Tukey’s 

method estimates the standard deviations using the 98%, 95%, and 90% quantile 

intervals as:  

�̂� =
�̂�(0.99) − �̂�(0.01)

4.65
, 

�̂� =
�̂�(0.975) − �̂�(0.025)

3.92
, 

�̂� =
�̂�(0.95) − �̂�(0.05)

3.25
. 

Taylor (2005) uses a least squares (LS) regression of the squared errors, 𝜀𝑡
2, which 

serve as proxies for the actual variance, on the square of the difference between 

symmetric quantile estimates, i.e. (�̂�𝑡(1 − 𝜃) − �̂�𝑡(𝜃))2, and adds that it is possible to 

estimate parameters for the approximations in the above equations in lieu of the fixed 

values, 𝐶(𝜃), in the denominators. The specification for such a least squares regression 

is:  

 𝜀𝑡
2 = 𝛼 + 𝛽(�̂�𝑡(1 − 𝜃) − �̂�𝑡(𝜃))2 + 𝑢𝑡, (2.3) 

where the coefficient 𝛽  thus obtained is used to replace the denominator, 𝐶(𝜃),  in 

equation 2.2. Then, according to Taylor (2005), the one-step-ahead variance prediction 

is given by: 

𝜎𝑡+1
2 = �̂� + �̂�(�̂�𝑡+1(1 − 𝜃) − �̂�𝑡+1(𝜃))2, 

where �̂� and �̂� are the parameters estimated using equation 2.3.  

Huang (2012) later extended the work of Taylor (2005) by proposing a new approach 

to generating volatility forecasts via QRs. Huang (2012) suggests that a single pair of 

quantiles, such as �̂�𝑡(1 − 𝜃) and �̂�𝑡(𝜃), might not explain the dynamic behaviours 

of volatility; thus, a series of uniformly spaced quantiles are used in his study to 

construct the LS regression. The uniformly spaced series of quantiles are expected to 

not only reflect the tail behaviours but also explain the entire distribution pattern. Huang 

(2012) proposes the following model: 

 εt
2 = α + βF(Q̂t(θ))2 , (2.4) 

where F(∙)  represents an unspecified function, and Q̂t(
𝑖

100
)  is the (

𝑖

100
) 𝑡ℎ 

conditional quantile of 𝑦𝑡  for 𝑖 = 1, . . , 𝑚 .  As shown in Huang (2012), there are 

three alternative functions F(∙) with following specifications: 
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Standard deviation (SD): F(∙) = (
1

m−1
∑ (Q(0.01m) − Q̅)299

m=1 )

1

2
, 

Weighted SD: F(∙) = (∑ W99
m=1 (Q(0.01m) − Q̅)2)

1

2, 

Median SD: F(∙) = (
1

m−2
∑ (Q(0.01m) − Q(0.5))

299
m=1 )

1

2
, 

where �̅�𝑡  is the conditional mean of all fitted quantiles at time t, and W  is set as 

(
𝑖

100
) /25  when 

𝑖

100
≤ 0.5  and (1 −

𝑖

100
) /25  otherwise. Hence, the volatility 

forecasts can be obtained from: 

𝜎𝑡+1
2 = �̂� + �̂�𝐹(�̂�𝑡+1(𝜃))2, 

where �̂� and �̂� are the parameters estimated in equation 2.4 and vary according to 

the choice of function F(.).  

 

2.3.2 Markov-Switching GARCH models (MSGARCH models) 

The ARCH and GARCH models were introduced by Engle (1982) and Bollerslev 

(1986), respectively, and their variants are ubiquitous in volatility forecasting research 

as well as in practice. Over the past three decades, financial literature has indicated that 

the GARCH(1,1) and GJR-GARCH(1,1) models tend to deliver more accurate forecasts 

than other GARCH-type models relying on higher-order lags. One inherent 

disadvantage of the GARCH-type models is that they do not incorporate changes in 

means. One way to overcome this shortcoming is to use MS-GARCH models, as they 

allow the parameters of the GARCH models to vary over time according to a latent 

discrete Markov Process (Ardia et al., 2018)4. This feature, to some extent, is consistent 

with our forecasting method, which allows the parameters of the QAR models to vary 

over time in terms of both persistence and magnitude. MS-GARCH models are indeed 

a difficult benchmark to beat in volatility forecasting applications; hence, we compare 

the forecasts produced using our method with those of the MS-GARCH models.  

We follow Haas et al. (2004) when estimating the MS-GARCH models. According 

to Ardia et al. (2018), the general MS- GARCH specification can be expressed as: 

(𝑦𝑡|(𝑠𝑡 = 𝑘, 𝐼𝑡−1)~𝐷(0, ℎ𝑘,𝑡, 𝜉𝑘)), 

where 𝐼𝑡−1 is the information set observed up to time 𝑡 − 1, and 𝑠𝑡, defined on the 

 
4 The conditional volatility estimated in GARCH-type models is driven by shocks in the observed time series, while, 

in stochastic volatility models, conditional volatility is driven by volatility-specific shocks (see Kastner, 2016). 

Compared to the former method, estimation of stochastic forecasting models has proved to be difficult; as a result, 

they are not as widely used as GARCH models (Taylor, 2005). 
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discrete space {1, … , 𝐾}, characterizes the MS-GARCH model5. The variance in this 

model is filtered using a measurable function h(.), conditional on regime 𝑠𝑡 = 𝑘, such 

that: 

ℎ𝑘,𝑡 ≡ ℎ(𝑦𝑡−1, ℎ𝑘,𝑡−1, 𝜽𝑘), 

where ℎ(∙) not only defines the filter for the conditional variance but also ensures its 

positiveness given the information set It-1.  

The MS-GARCH(1,1) model is given by the following expression: 

ℎ𝑘,𝑡 = 𝛼0,𝑘 + 𝛼1,𝑘𝑦𝑡−1
2 + 𝛽𝑘ℎ𝑘,𝑡−1 

for 𝑘 = 1, … , 𝐾. Here, 𝛼0,𝑘, 𝛼1,𝑘, and 𝛽𝑘 are parameters in the regime 𝑘. In this case, 

𝜽𝑘 = (𝛼0,𝑘, 𝛼1,𝑘, 𝛽𝑘)
T
 represents the vector of the model parameters. The MS-

GJRGARCH(1,1) model, on the other hand, is given by: 

ℎ𝑘,𝑡 = 𝛼0,𝑘 + (𝛼1,𝑘 + 𝛼2,𝑘I{𝑦𝑡−1 < 0})𝑦𝑡−1
2 + 𝛽𝑘ℎ𝑘,𝑡−1, 

where I{∙}  is an indicator function with value one if the condition holds and zero 

otherwise. In this case, we have 𝜽𝑘 = (𝛼0,𝑘, 𝛼1,𝑘, 𝛼2,𝑘, 𝛽𝑘)
T
. Typically, the parameter 

𝛼2,𝑘 reflects the presence of the leverage effect in the conditional volatility for regime 

𝑘.  

 

3. Data 

We examine the stock return quantile autocorrelation for five stock indices, namely, 

the CAC 40, DAX 30, FTSE 100, NIKKEI 225, and S&P 500. The return series is 

calculated as the logarithmic difference of the closing index prices from time 𝑡 − 1 to 

time 𝑡, so 𝑅𝑡 = 𝑙𝑛(𝑝𝑡/𝑝𝑡−1) ∗ 100. Stock index data are from the Datastream market 

information service provided by Thomson Reuters. We use daily data for a sample 

period from 1 March 2000 to 28 February 2019. The sample sizes for indexes differ 

slightly from each other because of different numbers of trading days in each stock 

market. 

[Insert Table 1 here] 

Table 1 presents the descriptive statistics. Along with the usual summary statistics, 

including the mean, median, standard deviation (SD), skewness, and kurtosis for each 

index return, we also report the test statistics and results for the Jarque-Bera (JB) test 

 
5 Although the parametric formulation of the conditional distribution 𝐷(0, ℎ𝑘,𝑡, 𝜉𝑘) can be different across regimes, 

we use the same conditional distribution across each regime in this study for simplicity. The conditional distributions 

considered in this study are the normal distribution, Student’s t distribution, and skewed Student’s t distribution. 
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for normality and augmented Dickey-Fuller (ADF) test for stationarity. As shown in 

Table 1, the average daily return of these return series is close to zero. The negative 

skewness and high kurtosis values indicate that all the financial markets considered in 

this study experienced a high downside risk and unexpected extreme returns. In addition, 

the results of the Jarque-Bera test show that these return series do not follow the normal 

distribution. The results from the augmented Dickey-Fuller test show that the null 

hypothesis of a unit root is rejected at the 1% level of significance in all cases. Thus, 

all return series exhibit trend stationarity.  

 

4. Empirical Results  

 

4.1 Quantile dependence pattern of stock returns  

  This section reports the results of the QPACF analyses of the stock returns for the 

five stock indices considered. As described in Section 2.1, we apply the sample QPACF 

to examine the impact of past returns on current returns at different quantile levels in 

order to determine the optimal lag order at each quantile level. We use a relatively full 

set of quantile levels ranging from 0.1 to 0.9, increasing in steps of 0.05, to characterize 

the quantile dependence pattern of the stock returns over the entire distribution. 

  

[Insert Figures 1 to 6 here] 

 

Figures 1 to 6 report the QPACFs of the five return series at various quantile levels. 

Specifically, Figure 1 reports the QPACFs of the five return series at the median level, 

i.e. 50th percentile, and Figures 2 to 6 show the QPACFs of the return series at quantile 

levels ranging from 0.1 to 0.9, bar the median. In each plot, the horizontal axis depicts 

the order of the lags, and the vertical axis depicts the estimated QPACF (denoted by 

∅̃𝑘𝑘,𝜏). The dashed lines correspond to 95% confidence bounds. Following Li et al. 

(2015), we test for quantile autocorrelation for up to 15 lags. This analysis determines 

the optimal lag order to use for each return series at any given quantile.  

From Figure 1, we deduce that the autoregressive dependence in stock returns is 

weak in the case of the return series for the CAC 40, DAX 30, FTSE 100, and NIKKEI 
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225, as none of the lags are significant 6 . For the S&P 500, we find that a mild 

autocorrelation between stock returns at lag 1 is significant at the median. This finding 

is consistent with the weak form of the efficient market hypothesis (EMH) proposed by 

Fama (1970). Our finding suggests that when the financial market is stable, past returns 

have no predictive power for future returns. However, the situation is different when 

we focus on other quantile levels, as discussed below.  

For example, consider the dependence pattern obtained for the CAC 40 at various 

quantiles of the returns’ distribution. Figure 2 reveals that for the quantile level τ = 0.1, 

lags 1 and 4 are significant at a 95% confidence level. In contrast, the first two lags are 

significant at, or are very close to, the 95% confidence bounds for the quantile levels 

from the 15th to 30th percentile. This autoregressive dependence wanes as we move 

towards the central quantiles. At the 55th and 60th percentiles, we find that the first three 

lags and the fifth lag are statistically significant. Moreover, the number of significant 

lags increases as we consider the 65th and higher percentiles. Another interesting result 

is that at the lower end of the quantiles, the signs of the lag coefficients are positive. We 

interpret this finding as the likelihood that a negative return in the left tail is followed 

by another negative return, i.e. the current stock return occurs in the same direction as 

past returns. In contrast to the lower quantiles, the signs of the lag coefficients are 

negative in the upper quantiles, which means that in the right tail, a relatively large 

return will be followed by a smaller return.  

[Insert Table 2 here] 

 

Table 2 summarizes the significant number of lags for each return series for different 

quantiles. This table shows that the quantile dependence pattern for CAC 40 holds 

generally for the other four stock indices, although the identified order of significant 

lags can differ at specific quantile levels. To summarize, we find that the lower quantiles 

of the current returns’ distribution depend positively on past returns, while the upper 

quantiles exhibit a negative dependence on past returns. These findings suggest that a 

high-magnitude negative return is likely to be followed by a negative return of lower 

magnitude when the left tail of the distribution is being considered, and a positive return 

of a high magnitude is likely to be followed by a return of lesser magnitude when 

 
6 It seems that lags 2 and 3 for CAC 40, lag 2 for FTSE 100, and lag 1 for NIKKEI 225 are very close 

to the confidence bounds, although they are insignificant at the 5% significance level.  
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considering the right tail of the distribution. These results also suggest that when the 

financial markets are in extreme conditions, such as during the financial crisis of 2008-

9, stock returns exhibit a more pronounced dependence pattern, both in terms of the 

magnitudes of the coefficients and the number of significant lags. Our findings are 

consistent with Baur et al. (2012), which documents that the lower and upper quantiles 

exhibit different dependence behaviours on past returns and that such a pattern holds 

even when accounting for several stock-specific characteristics, such as market 

capitalization or market risk exposure. In the context of this study, we observe a similar 

pattern for market index returns. In contrast with Baur et al. (2012), we not only 

investigate the direction of the influence of past returns across various quantiles of the 

current returns’ distribution but also identify the degrees of persistence of such 

dependence patterns by identifying the number of significant lags at various points in 

the returns’ distribution. 

 

4.2 QAR specification  

As reported in the preceding section, the direction and persistence of the influence of 

past returns varies from one section of the returns’ distribution to another. To 

incorporate this finding in our analysis, we divide the full quantile interval (0, 1) into 6 

subintervals with unequal spans. These subintervals are constructed by combining the 

quantiles exhibiting similar dependence patterns. The six quantile ranges are (0.1, 0.15), 

(0.16, 0.25), (0.26, 0.55), (0.56, 0.75), (0.76, 0.84), and (0.85, 0.99), respectively. This 

exercise reduces the number of regressions required for fully specifying the QAR model 

and evaluating its forecasting performance greatly. Specifically, six QAR specifications 

corresponding to the six subintervals are specified for each stock index. For each 

interval, we incorporate different numbers of lags into the QAR specification to reflect 

the variation in the predictive ability of past returns across the corresponding quantiles 

of the returns’ distribution7.  

[Insert Table 3 here] 

Table 3 summarizes the number of lags used for the corresponding quantile ranges. 

The estimation results are similar across all indexes. For illustration, the estimation 

results for the S&P 500 sample are shown in Appendix 3. As can be seen from each 

 
7 Selection of the appropriate lag order is based on Table 2 and Figures 2 to 6. 
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table, the estimated coefficients for the intercept increase with quantile level, which 

implies that the stock returns are larger for the upper quantiles and lower for the lower 

quantiles. With respect to the other autoregressive coefficients, we find that the 

estimated coefficients are close to zero for returns around the median of the returns’ 

distribution, which implies that yesterday’s return is irrelevant to today’s return around 

the central part of the returns’ distribution. Similar to the QPACF analysis presented in 

Section 4.1, the estimated autoregressive parameter(s) becomes statistically significant 

as we move away from the middle towards the tails of the returns’ distribution, but the 

association is positive in the left tail and negative in the right tail. Our finding is 

consistent with Baur et al. (2012), which reports a decreasing pattern in the 

autoregressive coefficient estimates, especially for AR(1) terms, moving from the left 

tail to the right tail of the returns’ distribution. Having specified our QAR model for 

various quantile ranges, we will now present the forecasting performance of this method.  

 

4.3 Forecasting evaluation  

Our forecasting methodology involves dividing the full sample into two sets - 

training and testing datasets. The training dataset is used for parameter estimation, and 

the testing dataset is used for forecasting evaluation. Table 4 presents information on 

the full sample and the subsamples chosen for evaluating the volatility forecasting 

performance. Specifically, we adopt two alternative ways to examine the forecasting 

results. The first option involves dividing the full sample into two parts and examining 

the forecasting performance with the testing dataset. Another option is to divide the full 

sample into subsamples based on the state of the economy (see Method 2 below), then 

split each of the subsamples into two sets for evaluation. In each case, the size of the 

testing dataset is presented in parentheses. Some of the estimation results for the first 

method are shown in Section 4.2. For the second option, we re-specify all the 

forecasting models to accommodate the distribution specific to each subsample. 

[Insert Table 4 here] 

 

In each case, our forecasting results are compared with other widely used volatility 

forecasting methods to evaluate the out-of-sample predictive performance of each 

forecasting model. The forecast efficiency of all the models is measured relative to the 

daily non-parametric measure of the stock index volatility provided by the Oxford-Man 
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Institute’s realized library (also see Shephard and Sheppard, 2009; Heber et al., 2009). 

This proxy of the so-called “true volatility” for a given day depends solely on the high- 

frequency financial data collected that day. To evaluate the efficacy of the volatility 

forecasts produced by different models, we use the mean squared error (MSE) criterion 

and the Diebold and Mariano (1995) test (hereafter, the DM test)8.  

The MSEs of the volatility forecasts based on 1,500 out-of-sample predictions are 

reported in Table 5. The left column lists all the forecasting models considered in this 

study, in particular, the QAR model, the six variants of the GARCH-type models, and 

the six quantile-based models. The GARCH-type models include the MS-GARCH(1,1) 

model and the MS-GJRGARCH(1,1) model, with each then combined with the 

assumption that the stock index returns follow a normal distribution (N), Student’s t 

distribution (ST), and skewed Student’s t distribution (SST), respectively. In each case, 

we consider two regimes, i.e. k = 2. The quantile-based models contain the three 

forecasting models proposed by Taylor (2005), termed Taylor 98, Taylor 95, and Taylor 

90, along with the three variants of the forecasting model proposed by Huang (2012), 

labelled Huang SD, Huang WSD, and Huang MSD.  

[Insert Table 5 here] 

 

As reported in Table 5, we find that the QAR method has a lower MSE than most 

MS-GARCH models and other quantile-based models. In particular, our forecasting 

method delivers the best forecasting performance for the NIKKEI 225 stock index, as 

the QAR method has the lowest MSE in all cases. The results of the DM test show that 

the improvement in forecasting is statistically significant at the 1% level. For the other 

stock indices, our forecasting method outperforms the MS-GARCH-type models and 

all other quantile-based models. For example, compared with the MS-GARCH(1,1) 

model with the ST and MS-GJRGARCH(1,1) model with the SST, our method 

generates a lower MSE and improves the forecasting performance significantly. 

However, the results show that the MS-GJRGARCH(1,1) with the N performs 

marginally better. 

In Appendix 2, we show the prediction results for all models when considering other 

out-of-sample periods with 500, 1,000, and 2,000 observations, respectively. The 

 
8 The DM test is a popular comparison method for non-nested forecasting models, which is widely used by many 

recent related papers (e.g. Zhang et al., 2020; Zhang et al., 2019, Choi & Shin, 2019, and Gong & Lin, 2018).Here, 

we use DM test to examine whether the QAR Model outperforms the GARCH-type models. 
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results show that the QAR forecasts outperform most of the MS-GARCH-type models 

and that the reduction in MSE is significant at the 1% level of significance. For example, 

our method delivers a better forecasting performance than all the MS-GARCH(1,1) 

models, except for the MS-GARCH(1,1) with the SST, when taking 2,000 out-of-

sample observations into consideration. In addition, the QAR method outperforms all 

the other quantile-based models for all the stock indices over every testing period. These 

results further support the robustness of the outperformance of the QAR method. 

  Next, we discuss the forecasting results obtained when our full sample is split into 

three subsample periods. Table 6 presents the forecasting results of all models for the 

three subsamples, namely pre-crisis (Panel A), crisis (Panel B), and post-crisis (Panel 

C). As shown in Panel A, the QAR forecasts have a smaller MSE than the MS-

GARCH(1,1) model combined with any distribution for the CAC 40, DAX 30, and 

NIKKEI 225 indexes. For the S&P 500, the QAR forecasts outperform the MS-

GARCH(1,1) forecasts obtained via both the ST and SST. The DM test confirms that 

the difference in performance is statistically significant at the 1% significance level. 

However, the MS-GJRGARCH(1,1) model generates a lower MSE than the QAR 

model, and the reduction in MSE is significant at the 1% level. The results for the 

NIKKEI 225 are encouraging because they show that our forecasting method 

outperforms all the other models considered in this study. The DM test again confirms 

that the improvement is significant at the 1% level.  

[Insert Table 6 here] 

 

Panel B presents the forecasting results for all models for the financial crisis period 

spanning January 2007 to December 2009. During this period, the QAR model 

outperforms all other models statistically for all the indices analysed. Moreover, all the 

quantile-based models have better forecasting performances than the MS-GARCH-type 

models for this turbulent period according to all the evaluation measures used in the 

study. The DM test confirms that the forecasting improvements made by quantile-based 

models are statistically significant at all the usual significance levels. This finding 

suggests that during periods when extreme stock returns are observed frequently, using 

a quantile-based model is more appropriate than using a model with a pre-determined 

distribution. 

Panel C of Table 6 reports the forecasting results of all models for the post-crisis 
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period from January 2010 to February 2019. Overall, the results show that the QAR 

forecasting method outperforms all models in generating the conditional volatility 

forecasts for the NIKKEI 225 return series, and the DM test statistic is significant at the 

1% level. Additionally, for the CAC 40, our forecasting method delivers the lowest 

MSE of all, and the DM test confirms that the difference is significant at the 1% level, 

except in the case of the MS-GARCH(1,1) with the N. Consistent with previous 

findings, the MS-GJRGARCH(1,1) with the N performs well in the prediction of the 

conditional volatility for the DAX 30, FTSE 100, and S&P 500. On the other hand, the 

MS-GJRGARCH(1,1) with the ST and SST significantly underperform relative to the 

QAR model for these three indices, indicating that the forecasting performance of 

parametric distribution-based models is susceptible to pre-determined distribution 

assumptions. Although some MSE values for MS models are smaller than those for the 

QAR models, the two models have equal predictive abilities. Considering the 

performance of all models across all three subsamples suggests that the QAR model 

outperforms the MS-GARCH and all other quantile-based models. 

   The above results confirm the predictive power of quantile-based models used in 

volatility forecasting compared with traditional models, like GARCH-type models, and 

our results are similar to Taylor (2005) and Huang (2012). However, compared with the 

results in Taylor (2005) and Huang (2012), our model obtains relatively better results 

within quantile-based models. To the best of our knowledge, Taylor (2005) was the first 

study to propose a quantile regression method to generate variance forecasts, which is 

based on the CAViaR model of Engle and Manganelli (2004) and the simple 

approximation method of Person and Tukey (1965). In Taylor’s work, the variance 

forecasts were generated on the basis of linear functions of the square of the interval 

between symmetric quantiles. The method proposed in this paper differs from Taylor’s 

procedure of relying on the approximation method proposed in Person and Tukey 

(1965), and directly applies the distribution constructed from the estimated quantiles to 

generate variance forecasts. 

 

5. Volatility asymmetry  

The leverage effect refers to the observed negative correlation between an asset’s 

returns and the changes in its volatility (see, for example, Nelson, 1991; Engle and Ng, 

1993; and Ait-Sahalia et al., 2017). Previous literature in this area considers three 
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distinct economic channels to explain this relationship: the 'leverage effect' in Black 

(1976), the 'volatility feedback effect' in Campbell and Hentschel (1992) and Bekaert 

and Wu (2000), and the 'self-exciting behaviour' theory in Azizpour et al. (2018). Unlike 

the studies that consider economic channels, this paper explains the interaction between 

asset returns and their volatility using a quantile regression (QR) method9. We provide 

a new perspective to interpret the relationship between asset returns and volatility.  

Figures 2 to 6 and in-sample estimation (see Appendix 3) suggest that there is a 

decreasing pattern in the autoregressive coefficient estimates, especially for the AR (1) 

term, moving from the lower to upper quantiles. As reported in Section 4.1, past returns 

affect future returns positively in the left tail and negatively in the right tail. This finding, 

in fact, confirms a well-known empirical phenomenon, i.e. the “leverage effect” in 

finance, which states that asset volatility is negatively related to its returns. Next, we 

explain how our model can explain this leverage effect.  

[Insert Figure 7 here] 

Figure 7 shows the “leverage effects” of conditional volatility via the QAR model. 

In each plot, for illustration purposes, we use two curves (blue and red) to represent the 

distribution of the stock returns of a financial market, where the blue density curve has 

a greater variance than the red one, and both curves have area 𝜏. Consider two scenarios 

with respect to the future direction of the stock returns. On one side, there is an increase 

in stock returns, and, on the other side, there is a decrease in stock returns.  

Referring to our basic model presented in Table 3 with the following general 

specification: 

𝑄(𝑦𝑡|𝐹𝑡−1) = 𝛽0,𝜏 + 𝛽1,𝜏𝑦𝑡−1 + ⋯ + 𝛽𝑖,𝜏𝑦𝑡−𝑖 

and based on the results presented in Table 2, we infer that in the left tail, the coefficients 

𝛽1,𝜏 … 𝛽𝑖,𝜏 have a positive effect on the fitted conditional quantiles; however, the effect 

is negative in the right tail. Thus, in plot (a) of Figure 7, when there is an increase in 

stock returns in the future, i.e. 𝑦𝑡−1
(1)

< 𝑦𝑡−1
(2)

, there will be a corresponding increase in 

the fitted quantiles, i.e. 𝑄𝑦𝑡,𝜏

(1)
< 𝑄𝑦𝑡,𝜏

(2)
.  While, in the right tail, whenever there is an 

increase in stock returns in the future, i.e. 𝑦𝑡−1
(1)

< 𝑦𝑡−1
(2)

, there will be a decrease in the 

 
9 Carr and Wu (2017) examined these three economic channels on the index option pricing, and they found that the 

contribution of these three channels are different in companies with different business types and capital structure 

behaviours. 
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fitted quantiles, i.e. 𝑄𝑦𝑡,𝜏

(1)
> 𝑄𝑦𝑡,𝜏

(2)
. Therefore, the distribution of stock returns contracts.  

To the contrary, in plot (b), when there is a decrease in future stock returns, i.e. 

𝑦𝑡−1
(1)

> 𝑦𝑡−1
(2)

, there will be a corresponding decrease in the fitted quantiles in the left 

tail, i.e., 𝑄𝑦𝑡,𝜏

(1)
> 𝑄𝑦𝑡,𝜏

(2)
, as, in this part, the autoregressive coefficients have a positive 

effect on the fitted conditional quantiles. In contrast, there will be an increase in the 

right tail, i.e. 𝑄𝑦𝑡,𝜏

(1)
< 𝑄𝑦𝑡,𝜏

(2)
, as the autoregressive coefficients have a negative effect on 

the fitted conditional quantiles. Hence, the distribution of stock returns is stretched.  

 

6. Conclusion 

The QR framework of Koenker and Bassett (1978) provides a means with which to 

model and analyse any time-varying distribution of interest. In this paper, we propose 

a novel method for forecasting financial assets’ return volatility via combining QRs  

with Li et al.’s (2015) QPACF to identify the autoregressive dependence patterns in 

returns’ series over a wide range of quantiles of the returns’ distribution. Our first 

contribution concentrates on demonstrating that the quantile dependence pattern is 

variable across the returns’ distribution. Using data derived from five stock indices, 

namely, the CAC 40, DAX 30, FTSE 100, NIKKEI 225, and S&P 500, our results show 

that the direction of the influence of past returns varies across the spectrum of quantiles 

of the returns’ distribution. While the autoregressive coefficients are positive for 

quantiles close to the left tail, the opposite sign for these coefficients is obtained at the 

right end of the distribution. We find no significant dependence in quantiles 

corresponding to the middle section of the returns’ distribution. Moreover, quantiles at 

the upper end of the quantile range exhibit higher lag order than those for the left tails 

(see Table 3). Additionally, the degree of persistence differs between the two tails, as 

the magnitudes of the significant coefficients for the extreme-right quantiles is greater 

than those observed for the left tail of the returns’ distribution. This finding implies that 

the specification of an autoregressive forecasting model should change according to the 

section of the returns’ distribution being forecast, as is the case with our QAR model. 

The second key contribution of this work focuses on developing a QAR model 

framework suitable for volatility forecasting. We propose a volatility forecasting 

method that accommodates the quantile dependence in stock returns when generating 

conditional volatility forecasts. Using a battery of tests, we demonstrate that the QAR 
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framework improves out-of-sample volatility forecasting significantly when compared 

with various MS-GARCH-type models and other quantile-based forecasting models. 

We observe that this outperformance is more pronounced during episodes of high 

volatility, such as the financial crisis of 2007-2009. We attribute the outperformance of 

our method to its ability to capture temporal variations in the returns’ distribution by 

avoiding the distributional assumptions made by the GARCH-type models 

benchmarked in this paper. Being a quantile-based method, our model is able to forecast 

the full distribution of asset returns, thereby avoiding making assumptions about its 

distribution. Since our volatility forecasts are obtained by adopting a purely empirical 

approach, this approach is more flexible than those of other quantile-based methods, 

which, to some extent, employ a formulaic approach to obtaining volatility forecasts. 

The greater flexibility embedded in our method allows it to reproduce various structural 

features of the returns’ distribution, resulting in improved forecasting performance. 

As a third contribution, this paper illustrates the so called ‘leverage effect’ associated 

with conditional volatility by using the QAR model. This result provides further 

evidence to support the findings of related studies, such as Black (1976), Christie (1982), 

and Bekaert and Wu (2000). Although the economic utility of this stylized empirical 

fact is open to debate, our QAR model does provide a way to explain this phenomenon 

via QRs. 

Our findings have implications for investors and policymakers. Our results suggest 

that the autoregression varies across the quantiles of the returns’ distribution in terms 

of both magnitude and persistence, which sheds light on the predictive power of past 

returns based on the state of stock market. This insight could be useful for investors and 

policymakers who can adjust their trading strategies or portfolios according to different 

states of the stock market. Similarly, our model could act as an ‘early warning system’ 

for regulators to contain episodes of extreme volatility under high economic uncertainty.  

 In closing, we should point out some related issues beyond the scope of this study 

that could be relevant for future research. We have mentioned a few scenarios for which 

our method is relevant, but this aspect has not been elaborated upon. This study could, 

therefore, spawn future research that applies our method in situations other than those 

presented in this paper. Second, our analysis does not examine variables other than the 

past returns, such as macroeconomic variables, which may influence the returns’ 

distribution. Future research could remedy this shortcoming by including relevant 
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variables, such as the economic growth rate or interest rates, in the analysis. 
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Table 1- Descriptive statistics 

This table reports summary statistics for five stock index returns, namely, the CAC 40, DAX 30, FTSE 

100, NIKKEI 225, and S&P 500. The sample period is from 1 March 2000 to 28 February 2019, and 

daily observations are used. As the number of working days differs across markets, so does the number 

of observations across samples. The table shows the number of observations (Obs) as well as the mean, 

median, standard deviation (SD), skewness, and kurtosis for each stock index return series. We also report 

the test statistics and results for the Jarque-Bera (JB) test for normality and augmented Dickey-Fuller 

(ADF) test for stationarity. *** represents statistical significance at the 1% level.   

 

Index  Obs Mean Median SD  Skewness Kurtosis JB ADF 

CAC 40 4843 -0.003 0.025 1.407 

 

-0.089 8.005 5061*** -16.65*** 

DAX 30 4820 0.008 0.650 1.456 -0.075 8.715 6564*** -16.41*** 

FTSE 100 4791 0.003 0.031 1.144 -0.172 9.555 8602*** -17.63*** 

NIKKEI 225 4646 0.002 0.039 1.506 -0.428 9.276 7764*** -16.59*** 

S&P 500 4768 0.015 0.053 1.195 -0.197 11.234 13501*** -16.89*** 
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Table 2 - Summary of the significant lags for QPACFs at different quantiles 

This table summarises the identified significant lags of the QPACFs for the five stock return series at 

different quantiles ranging from 0.1 to 0.9 in steps of 0.05. In each row, numbers in bold script are used 

to indicate the significant lags, and asterisks indicate the absence of significant lags in the corresponding 

quantile ranges. The symbols “+”, “-“, and “++” presented in parentheses represent the positive, negative, 

and mixed impact past returns have on the current returns at the corresponding quantile levels. 

 

𝜏 0.1 0.15. 0.2 0.25 0.3 0.35 0.4 0.45 

CAC 40 1,4 1 * * * * * * 

 （+） （+） （+） （+） （+） （+） （++） （++） 

DAX 30 1,4 1,2,4 1,2,4 1,4 1,4 1 * * 

 （+） （+） （+） （+） （+） （++） （++） （++） 

FTSE 100 4 4 4 4 4 * * * 

 （+） （+） （+） （+） （+） （++） （++） （++） 

NIKKEI 225 * * 3 * * * * * 

 （+） （+） （+） （+） （+） （++） （++） （++） 

S&P 500 3 3,4 3,4 * 4 * * 1 

 （+） （+） （+） （+） （++） （++） （++） （++） 

𝜏 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 

CAC 40 2 1,2,3,5 1,2,3,5 1,2,3,4,5 1,2,3,5,6 1,2,3,5… 1,2,3,5… 1,2,3,5… 

 （-） （-） （-） （-） （-） （-） （-） （-） 

DAX 30 * 2 2 2 2,5 2,3,5,7 1,2,3,5,7 1,2,3,5,7 

 （++） （++） （++） （++） （-） （-） （-） （-） 

FTSE 100 2 2 1,2 1,2 1,2,3,5… 1,2,3,5… 1,2,3,5... 1,2,3,5... 

 （++） （++） （-） （-） （-） （-） （-） （-） 

NIKKEI 225 * * * 1 1 1,2,3,5 1,2,3,4,5 1,2,3,5 

 （++） （-） （-） （-） （-） （-） （-） （-） 

S&P 500 1 1,2 1,2 1,2 1,2 1,2 1,2,5,…,9 1,2,4,…,9 

 （++） （++） （-） （-） （-） （-） （-） （-） 
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Table 3 - The specifications of QAR models for different quantile ranges 

This table shows the specifications of QAR models for different quantile ranges for all five return series. 

The first column reports the number of lags used in the QAR specifications for the quantile ranges τ ∈

(0.01, 0.15),  τ ∈ (0.16, 0.25),   τ ∈ (0.26, 0.55),   τ ∈ (0.76, 0.84),  and  τ ∈ (0.85, 0.99), 

respectively. In each model, 𝐹𝑡−1 represents the information set available up to time t-1. 

 

Lag Model 𝜏 

5 𝑄𝜏(𝑦𝑡|𝐹𝑡−1) =  ∅0(𝜏) + ∅1(𝜏)𝑦𝑡−1 + ⋯ + ∅5(𝜏) 𝑦𝑡−5    (0.01, 0.15) 

4 𝑄𝜏(𝑦𝑡|𝐹𝑡−1) =  ∅0(𝜏) +  ∅1(𝜏)𝑦𝑡−1 + ⋯ + ∅4(𝜏) 𝑦𝑡−4 (0.16, 0.25) 

1 𝑄𝜏(𝑦𝑡|𝐹𝑡−1) =  ∅0(𝜏) + ∅1(𝜏)𝑦𝑡−1 (0.26, 0.55) 

2 𝑄𝜏(𝑦𝑡|𝐹𝑡−1) =  ∅0(𝜏) + ∅1(𝜏)𝑦𝑡−1 + ∅2(𝜏) 𝑦𝑡−2   (0.55, 0.75) 

5 𝑄𝜏(𝑦𝑡|𝐹𝑡−1) =  ∅0(𝜏) + ∅1(𝜏)𝑦𝑡−1 + ⋯ + ∅4(𝜏) 𝑦𝑡−4 + ∅5(𝜏) 𝑦𝑡−5 (0.76, 0.84) 

9 𝑄𝜏(𝑦𝑡|𝐹𝑡−1) =  ∅0(𝜏) +  ∅1(𝜏)𝑦𝑡−1 + ∅2(𝜏) 𝑦𝑡−2 + ⋯ + ∅9(𝜏) 𝑦𝑡−9 (0.85, 0.99) 
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Table 4 – Full sample and subsample periods used for forecasting performance evaluation 

This table presents information on the full sample and subsample periods chosen for evaluating the 

volatility forecasting performance. The first column lists the five stock market indices considered in this 

study, and the remaining columns lists the information on the full samples and subsample periods. Each 

sample is divided into two sets, i.e. training and testing datasets. The training dataset is used for model 

estimation, and the testing dataset is used for forecasting performance evaluation. Then each full sample 

is divided into three parts (see Method 2), and each subsample is split into training and testing datasets 

for estimation and evaluation, respectively. In each case, the size of the testing dataset is reported in 

parentheses. For the second method, our forecasting models are re-estimated based on the lag orders used 

in Table 3 for each quantile range. 

 

 Method 1 Method 2 

Market Index Full sample* Subsample period: 

pre-crisis 

Subsample period: 

crisis 

Sub-sample period: 

post-crisis 

CAC 40 Mar. 2000 – Feb.2019 

(1500) 

Mar. 2000 – Dec. 2006 

(500) 

Jan. 2007 – Dec. 2009 

(300) 

Jan. 2010 – Feb. 2019 

(500) 

DAX 30 Mar. 2000 – Feb.2019 

(1500) 

Mar. 2000 – Dec. 2006 

(500) 

Jan. 2007 – Dec. 2009 

(300) 

Jan. 2010 – Feb. 2019 

(500) 

FTSE 100 Mar. 2000 – Feb.2019 

(1500) 

Mar. 2000 – Dec. 2006 

(500) 

Jan. 2007 – Dec. 2009 

(300) 

Jan. 2010 – Feb. 2019 

(500) 

NIKKEI 225 Mar. 2000 – Feb.2019 

(1500) 

Mar. 2000 – Dec. 2006 

(500) 

Jan. 2007 – Dec. 2009 

(300) 

Jan. 2010 – Feb. 2019 

(500) 

S&P 500 Mar. 2000 – Feb.2019 

(1500) 

Mar. 2000 – Dec. 2006 

(500) 

Jan. 2007 – Dec. 2009 

(300) 

Jan. 2010 – Feb. 2019 

(500) 
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Table 5 - Forecast evaluations for the full samples  

This table presents the MSEs of the volatility forecasts based on 1,500 out-of-sample predictions. The 

left column lists the forecasting models benchmarked in this study. Apart from the QAR model proposed 

in the study, three variants each of the MS- GARCH(1,1) model and the MS- GJRGARCH (1,1) model, 

based on various distribution assumptions, are reported. N stands for the normal distribution, ST stands 

for the Student’s t distribution, and SST stands for the skewed Student’s distribution. Among the QR-

based models, the models proposed by Taylor (2005) and Huang (2012) are tested. The symbolic 

outcomes of the Diebold-Mariano test comparing the results of both GARCH-based and quantile-based 

models to the QAR volatility prediction are given in parentheses. The two models being compared have 

equal predictive ability under the null. *** and ** represent statistical significance at the 1% and 5% 

levels, respectively. 

 

Models: CAC 40 

CAC40 

DAX 30 

DAX30 

FTSE 100 

FTSE100 

NIKKEI 225 

NIKKEI225 

S&P 500 

S&P500 QAR Model 1.810   1.923  

 

1.181  

 

1.868  

 

1.319  

       

MS-GARCH(1,1)-N 2.088  2.459  1.319  2.421  1.295  

 (***) (***) (***) (***)  

MS-GARCH(1,1)-ST 2.259  2.582  1.350  2.297  1.477  

 (***) (***) (***) (***) (***) 

MS-GARCH(1,1)-SST 2.809  2.997  1.172  2.090  2.872  

 (***) (***)  (***) (***) 

MS-GJRGARCH(1,1)-N 1.620  1.547  0.957  1.955  0.947  

    (***)  

MS-GJRGARCH(1,1)-ST 1.902  1.777  0.831  1.891  2.448  

 (***)   (***) (***) 

MS-GJRGARCH (1,1)-SST 2.277  2.231  1.214  2.051  2.942  

 (***) (***) (***) (***) (***) 

Taylor 98 2.225  2.401  1.530  2.306  1.649  

 (***) (***) (***) (***) (***) 

Taylor 95 2.212  2.393  1.521  2.295  1.641  

 (***) (***) (***) (***) (***) 

Taylor 90 2.201  2.382  1.515  2.288  1.625  

 (***) (***) (***) (***) (***) 

Huang SD 2.189  2.364  1.501  2.283  1.612  

 (***) (***) (***) (***) (***) 

Huang WSD 2.172  2.346  1.481  2.278  1.589  

 (***) (***) (***) (***) (***) 

Huang MSD 2.182  2.360  1.494  2.282  1.609  

 (***) (***) (***) (***) (***) 
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Table 6 - Forecast evaluations for the sub-sample periods 

This table presents the forecasting results for all the models for the three subsamples. Panel A shows the 

forecasting results the prior-crisis period, Panel B shows the forecasting results for the crisis period, and 

Panel C reports the forecasting results for the post-crisis period. P-values for the Diebold-Mariano test 

comparing the GARCH-based and quantile-based model predictions to the QAR volatility prediction are 

given in parentheses. *** and ** represents statistical significance at the 1% and 5% levels, respectively.  

 

 CAC 40 

CAC40 

DAX 30 

DAX30 

FTSE 100 

FTSE100 

NIKKEI 225 

NIKKEI225 

S&P 500 

S&P500 Panel A: Forecasting evaluation for sub-sample (pre-crisis) 

Panel A: Forecasting evaluation for sub-sample (prior-crisis) 

 

QAR Model 2.093 2.520 1.200 1.988 1.343 

      

MS-GARCH(1,1)-N 2.873  3.600  1.584  2.209  1.315  

 (***) (***) (***) (***)  

MS-GARCH(1,1)-ST 2.732  3.644  0.976  2.213  1.478  

 (***) (***)  (***) (***) 

MS-GARCH(1,1)-SST 2.817  2.967  0.917  2.194  1.481  

 (***) (***)  (***) (***) 

MS-GJRGARCH(1,1)-N 1.214  1.848  0.751  2.178  0.920  

    (***)  

MS-GJRGARCH(1,1)-ST 1.229  1.828  0.613  2.157  0.879  

    (***)  

MS-GJRGARCH(1,1)-SST 2.552  1.967  0.747  2.146  0.959  

 (***)   (***)  

Taylor 98 2.505  

2.501  

2.502  

2.493  

2.490  

2.481 

2.966  1.464  2.249  1.545  

 (***) (***) (***) (***) (***) 

Taylor 95 2.501  

2.502  

2.493  

2.490  

2.481 

2.945  1.455  2.248  1.540  

 (***) (***) (***) (***) (***) 

Taylor 90 2.502 2.941  1.459  2.249  1.530  

 (***) (***) (***) (***) (***) 

Huang SD 2.493 2.932  1.422  2.245  1.516  

 (***) (***) (***) (***) (***) 

Huang WSD 2.490 2.940  1.394  2.247  1.502  

 (***) (***) (***) (***) (***) 

Huang MSD 2.481 2.925  1.403  2.245  1.515  

 (***) (***) (***) (***) (***) 

 

  



30 

 

 

Panel B: Forecasting evaluation for sub-sample (crisis) 

QAR Model 1.941 1.679 1.664 2.046 1.759 

      

MS-GARCH(1,1)-N 5.188  4.306  8.199  3.264  10.015  

 (***) (***) (***) (***) (***) 

MS-GARCH(1,1)-ST 5.411  7.294  8.783  3.309  14.413  

 (***) (***) (***) (***) (***) 

MS-GARCH(1,1)-SST 7.490  11.922  14.786  3.077  14.643  

 (***) (***) (***) (***) (***) 

MS-GJR-GARCH(1,1)-N 4.374  3.684  6.920  2.818  6.949  

 (***) (***) (***) (***) (***) 

MS-GJR-GARCH(1,1)-ST 8.154  4.273  4.044  2.893  23.063  

 (***) (***) (***) (***) (***) 

MS-GJR-GARCH(1,1)-SST 7.778  4.983  4.803  2.584  9.555  

 (***) (***) (***) (***) (***) 

Taylor 98 2.887  3.235  2.477  2.303  2.815  

 (***) (***) (***) (***) (***) 

Taylor 95 2.862  3.261  2.471  2.321  2.784  

 (***) (***) (***) (***) (***) 

Taylor 90 2.840  3.243  2.463  2.325  2.775  

 (***) (***) (***) (***) (***) 

Huang SD 2.882  3.299  2.474  2.372  2.899  

 (***) (***) (***) (***) (***) 

Huang WSD 2.901  3.363  2.486  2.437  3.014  

 (***) (***) (***) (***) (***) 

Huang MSD 2.900  3.309  2.487  2.396  2.966  

 (***) (***) (***) (***) (***) 
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Panel C: Forecasting evaluation for sub-sample (post-crisis) 

QAR Model 1.406 1.392 0.830 1.643 0.776 

      

MS-GARCH(1,1)-N 1.424  1.302  0.838  2.222  0.744  

    (***)  

MS-GARCH(1,1)-ST 1.501  1.455  1.147  2.615  0.890  

 (***) (***) (***) (***) (***) 

MS-GARCH(1,1)-SST 1.952  2.063  0.840  2.298  1.115  

 (***) (***)  (***) (***) 

MS-GJR-GARCH(1,1)-N 1.469  1.289  0.642  1.998  0.677  

 (***)   (***)  

MS-GJR-GARCH(1,1)-ST 1.656  1.786  1.089  1.936  1.836  

 (***) (***) (***) (***) (***) 

MS-GJR-GARCH(1,1)-SST 2.013  3.101  1.221  2.204  3.516  

 (***) (***) (***) (***) (***) 

Taylor 98 1.699  1.655  0.956  1.996  0.935  

 (***) (***) (***) (***) (***) 

Taylor 95 1.690  1.653  0.953  1.996  0.933  

 (***) (***) (***) (***) (***) 

Taylor 90 1.682  1.646  0.949  1.989  0.931  

 (***) (***) (***) (***) (***) 

Huang SD 1.673  1.642  0.946  1.982  0.928  

 (***) (***) (***) (***) (***) 

Huang WSD 1.658  1.634  0.940  1.970  0.923  

 (***) (***) (***) (***) (***) 

Huang MSD 1.668  1.640  0.944  1.979  0.927  

 (***) (***) (***) (***) (***) 
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Figure 1 - QPACFs at the median 

This figure shows the sample quantile partial autocorrelation functions (QPACFs) of the five return series 

at τ = 0.5. In each plot, the horizontal axis lists the lag orders, and the vertical axis lists the values of the 

sample QPACF, denoted by ∅̃𝑘𝑘,𝜏. The dashed lines correspond to 95% confidence bounds. The sample 

period is from March 2000 to March 2013. 

 

  

CAC 40 DAX30 FTSE 100 

NIKKEI 225 S&P 500 
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Figure 2 - QPACFs for the CAC 40 at various quantile levels 

This figure shows the sample quantile partial autocorrelation function (QPACF) values for the CAC 40 

return series at τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 ,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. 

In each plot, the horizontal axis lists the lag orders, and the vertical axis lists the values of the sample 

QPACF, denoted by ∅̃𝑘𝑘,𝜏. The dashed lines correspond to 95% confidence bounds. The sample period 

is from March 2000 to March 2013. 

 

 

𝜏 = 0.1 𝜏 = 0.15 𝜏 = 0.2 𝜏 = 0.25 

𝜏 = 0.3 𝜏 = 0.35 𝜏 = 0.4 𝜏 = 0.45 

𝜏 = 0.55 𝜏 = 0.6 𝜏 = 0.65 𝜏 = 0.7 

𝜏 = 0.75 𝜏 = 0.8 𝜏 = 0.85 𝜏 = 0.9 
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Figure 3 - QPACFs for the DAX 30 at various quantile levels 

This figure shows the sample quantile partial autocorrelation function (QPACF) values for the DAX 30 

return series at τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 ,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. 

In each plot, the horizontal axis lists the lag orders, and the vertical axis lists the values of the sample 

QPACF, denoted by ∅̃𝑘𝑘,𝜏. The dashed lines correspond to 95% confidence bounds. The sample period 

is from March 2000 to March 2013. 

  

𝜏 = 0.1 𝜏 = 0.15 𝜏 = 0.2 𝜏 = 0.25 

𝜏 = 0.3 𝜏 = 0.35 𝜏 = 0.4 𝜏 = 0.45 

𝜏 = 0.55 𝜏 = 0.6 𝜏 = 0.65 𝜏 = 0.7 

𝜏 = 0.75 𝜏 = 0.8 𝜏 = 0.85 𝜏 = 0.9 
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Figure 4 – QPACFs for the FTSE 100 at various quantile levels 

This figure shows the sample quantile partial autocorrelation function (QPACF) values for the FTSE 100 

return series at τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 ,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. 

In each plot, the horizontal axis lists the lag orders, and the vertical axis lists the values of the sample 

QPACF, denoted by ∅̃𝑘𝑘,𝜏. The dashed lines correspond to 95% confidence bounds. The sample period 

is from March 2000 to March 2013. 

 

𝜏 = 0.1 𝜏 = 0.15 𝜏 = 0.2 𝜏 = 0.25 

𝜏 = 0.3 𝜏 = 0.35 𝜏 = 0.4 𝜏 = 0.45 

𝜏 = 0.55 𝜏 = 0.6 𝜏 = 0.65 𝜏 = 0.7 

𝜏 = 0.75 𝜏 = 0.8 𝜏 = 0.85 𝜏 = 0.9 
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Figure 5 - QPACFs for the Nikkei 225 at various quantile levels 

This figure shows the sample quantile partial autocorrelation function (QPACF) values for of the NIKKEI 

225 return series at τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 ,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 

0.9. In each plot, the horizontal axis lists the lag orders, and the vertical axis lists the values of the sample 

QPACF, denoted by ∅̃𝑘𝑘,𝜏. The dashed lines correspond to 95% confidence bounds. The sample period 

is from March 2000 to March 2013. 

 

𝜏 = 0.1 𝜏 = 0.15 𝜏 = 0.2 𝜏 = 0.25 

𝜏 = 0.3 𝜏 = 0.35 𝜏 = 0.4 𝜏 = 0.45 

𝜏 = 0.55 𝜏 = 0.6 𝜏 = 0.65 𝜏 = 0.7 

𝜏 = 0.75 𝜏 = 0.8 𝜏 = 0.85 𝜏 = 0.9 
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Figure 6 – QPACFs for the S&P 500 at various quantile levels 

This figure shows the sample quantile partial autocorrelation function (QPACF) values for the S&P500 

return series at τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 ,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. 

In each plot, the horizontal axis lists the lag orders, and the vertical axis lists the values of the sample 

QPACF, denoted by ∅̃𝑘𝑘,𝜏. The dashed lines correspond to 95% confidence bounds. The sample period 

is from March 2000 to March 2013. 

 

 

 

𝜏 = 0.1 𝜏 = 0.15 𝜏 = 0.2 𝜏 = 0.25 

𝜏 = 0.3 𝜏 = 0.35 𝜏 = 0.4 𝜏 = 0.45 

𝜏 = 0.55 𝜏 = 0.6 𝜏 = 0.65 𝜏 = 0.7 

𝜏 = 0.75 𝜏 = 0.8 𝜏 = 0.85 𝜏 = 0.9 
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Figure 7 “Leverage effects" of conditional volatility 

This figure shows the “leverage effects” of conditional volatility brought out by using quantile regression. 

In each plot, for illustration purposes, we use two curves (blue and red) to represent the distribution of 

stock returns for a financial market, where the blue density curve has a greater variance than the red one, 

but both curves have area τ. There are two possible scenarios with respect to the future direction of stock 

returns, i.e. increasing or decreasing stock returns. Based on the model in Table 2, we know that the 

coefficients have a positive effect on the fitted conditional quantiles in the left tail, while they have a 

negative effect in the right tail. In the left tail in plot (a), when there is an increase in stock returns in the 

future, i.e. yt−1
(1)

< yt−1
(2)

, there will be a corresponding increase in quantiles, i.e. Qyt,τ

(1)
< Qyt,τ

(2)
.  To the 

contrary, owing to the negative autoregressive dependence present, there will be a decrease in fitted 

quantiles, i.e. Qyt,τ

(1)
> Qyt,τ

(2)
, in the right tail resulting in a contraction in the distribution of stock returns. 

Whereas, in the left tail in plot (b), when there is a decrease in future stock return, i.e. yt−1
(1)

> yt−1
(2)

, there 

will be a corresponding decrease in the fitted quantiles in the left tail, i.e. Qyt,τ

(1)
> Qyt,τ

(2)
. In the right tail, 

however, there will be an increase in the fitted quantiles, i.e. Qyt,τ

(1)
< Qyt,τ

(2)
, leading to the stretching of 

the distribution of stock returns.  

 

  

(a) Volatility decreased when returns increased (b) Volatility increased when returns decreased 
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Appendix 1: The estimation of the sample QPACF 

 

The estimation of ∅𝑘𝑘,𝜏 is given by: 

 ∅̃𝑘𝑘,𝜏 =
1

√(𝜏 − 𝜏2)�̃�𝑦|𝒛
2

∙
1

𝑛
∑ 𝜓𝜏

𝑛

𝑡=𝑘+1

(𝑦𝑡 − �̃�2,𝜏 − 𝛽′2,𝜏𝒛𝑡,𝑘−1)𝑦𝑡−𝑘, 

where: 

�̃�𝑦|𝒛
2 =

1

𝑛
∙ ∑ (𝑦𝑡−𝑘 − �̃�1 − 𝛽1

′𝒛𝑡,𝑘−1)
2

𝑛

𝑡=𝑘+1

, 

(�̃�1, 𝛽1
′) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽 ∑ (𝑦𝑡−𝑘 − 𝛼 − 𝛽′𝒛𝑡,𝑘−1)2

𝑛

𝑡=𝑘+1

, 

(�̃�2,𝜏, 𝛽2,𝜏
′ ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽 ∑ 𝜌𝜏(𝑦𝑡 − 𝛼 − 𝛽′𝒛𝑡,𝑘−1)

𝑛

𝑡=𝑘+1

. 

In traditional time series analyses, the first-order partial autocorrelation (PACF) is 

defined to be equal to the first-order autocorrelation. A similar approach is adopted in 

Li et al. (2015). Thus, the first-order quantile partial autocorrelation equals the first- 

order quantile autocorrelation, i.e. ∅11,𝜏 =  𝑞𝑐𝑜𝑟𝜏{𝑦𝑡, 𝑦𝑡−1}.  Then, based on the 

definition of a quantile autocorrelation, we obtain:  

∅̃11,𝜏 =
1

√(𝜏 − 𝜏2)𝜎𝑦𝑡−1
2

∙
1

𝑛
∙  ∑ 𝜓𝜏(𝑦𝑡 − 𝑄𝜏,𝑦𝑡

)(𝑦𝑡−1 − 𝐸(𝑦𝑡−1))

𝑛

𝑡=2

, 

where  𝑄𝜏,𝑦𝑡
  is the 𝜏𝑡ℎ  unconditional quantile of 𝑦𝑡 , i.e. 𝐹(𝑄𝜏,𝑦𝑡

) = 𝜏,  and 𝐹(∙) 

is the cumulative distribution function of 𝑦𝑡.  

Next, we calculate the confidence bound for ∅𝑘𝑘,𝜏. As shown in Li et al (2015), for a 

given 𝜏 ∈ (0, 1), √𝑛∅̃𝑘𝑘,𝜏 →𝑑 𝑁(0, 𝛺3(𝜏, 𝜏)).  Thus, the confidence bound for ∅̂𝑘𝑘,𝜏 

is ±1.96√Ω̂3/𝑛,  

where 

 �̂�3 =
𝐸[𝜓𝜏(𝑒𝑡𝜏)𝜓(𝑒𝑡𝜏)] ∑ (𝜏, 𝜏)32

√(𝜏 − 𝜏2)(𝜏 − 𝜏2)𝐸(𝑦𝑡−𝑘 − 𝛼1 − 𝛽1
′𝑧𝑡,𝑘−1)2

, 

and 

𝑒𝑡𝜏 = 𝑦𝑡 − 𝜙0(𝜏) − 𝜙1(𝜏)𝑦𝑡−1 − ⋯ − 𝜙𝑘(𝜏)𝑦𝑡−𝑘, 

𝐸[𝜓𝜏(𝑒𝑡𝜏)𝜓(𝑒𝑡𝜏)] =
1

𝑛
∙ ∑ 𝜓𝜏(𝑒𝑡𝜏)

𝑛

𝑡=𝑘+1

𝜓𝜏(𝑒𝑡𝜏), 
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𝐸(𝑦𝑡−𝑘 − 𝛼1 − 𝛽1
′𝑧𝑡,𝑘−1)2 = �̃�𝑦|𝒛

2 =
1

𝑛
∙ ∑ (𝑦𝑡−𝑘 − �̃�1 − 𝛽1

′𝒛𝑡,𝑘−1)
2

𝑛

𝑡=𝑘+1

, 

∑ (𝜏, 𝜏)32 = 𝐸(𝑦𝑡
2) − 2𝐴1

′ (𝜏) ∑ (𝜏)𝐴0 + 𝐴1
′ (𝜏) ∑ (𝜏)−1

31
−1
31 𝛴30 ∑ (𝜏)−1

31 𝐴1(𝜏).  

In calculating the above equation for ∑ (𝜏, 𝜏)32 , as suggested by Li et al. (2015), we 

use the sample average to approximate 𝐸(𝑦𝑡
2), 𝐴0, 𝐴1(𝜏), 𝛴30, and  ∑ (𝜏)31 . Hence, 

𝐸(𝑦𝑡
2) =

1

𝑛
∙ ∑ 𝑦𝑡

2𝑛
𝑡=𝑘+1 , 

𝐴0 = 𝐸(𝑦𝑡−𝑘𝒛𝑡,𝑘−1
∗ ) =

1

𝑛
∙ ∑ 𝑦𝑡−𝑘 ∙𝑛

𝑡=𝑘+1 (1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)′, 

where 

𝒛𝑡,𝑘−1
∗ = (1, 𝑧𝑡,𝑘−1

′ )′ = (1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)′, 

and  

𝐴1(𝜏) = 𝐸[𝑓𝑡−1(0)𝑦𝑡−𝑘𝒛𝑡,𝑘−1
∗ ] =

1

𝑛
∙ ∑ ∙ 𝑓𝑡−1(0)𝑛

𝑡=𝑘+1 ∙ 𝑦𝑡−𝑘 ∙ (1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)′, 

𝛴30 = 𝐸[𝑧𝑡,𝑘−1
∗ 𝑧𝑡,𝑘−1

∗′ ] =
1

𝑛
∙ ∑ (1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)(1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)′𝑛

𝑡=𝑘+1 , 

∑ (𝜏)31 =  𝐸[𝑓𝑡−1(0)𝑧𝑡,𝑘−1
∗ 𝑧𝑡,𝑘−1

∗′ ]  

              =  
1

𝑛
∙ ∑ ∙ 𝑓𝑡−1(0) ∙ (1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)(1, 𝑦𝑡−1, … , 𝑦𝑡−𝑘+1)′𝑛

𝑡=𝑘+1 . 

To evaluate 𝑓𝑡−1(0)  in the above equations, we adopt the method originally 

proposed by Hendricks and Koenker (1992), which is suggested by Li et al. (2015). 

That is, we let  

𝑓𝑡−1(0) =
2ℎ

�̃�𝜏+ℎ(𝑦𝑡|𝐹𝑡−1) − �̃�𝜏−ℎ(𝑦𝑡|𝐹𝑡−1)
, 

where ℎ  is referred to as the bandwidth, and �̃�𝜏(𝑦𝑡|𝐹𝑡−1) = �̃�0(𝜏) + �̃�1(𝜏)𝑦𝑡−1 +

⋯ + �̃�𝑘(𝜏)𝑦𝑡−𝑘  is the estimated 𝜏𝑡ℎ  quantile of 𝑦𝑡 . With respect to selecting the 

bandwidth, ℎ, we let  

ℎ = 𝑛−
1
3𝑧𝛼

2
3{1.5∅2(𝛷−1(𝜏))/(2(𝛷−1(𝜏))2 + 1)}1/3, 

as suggested by Hall and Sheather (1988). Here, ∅(∙)  is the 𝑁(0,1)  probability 

density function, 𝛷(∙)  is the 𝑁(0,1)  cumulative distribution function,   and  𝑧𝛼 =

 𝛷−1 (1 −
𝛼

2
). In order to construct the 95% confidence intervals, we set 𝛼 = 0.05 in 

our study.  
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Appendix 2: Robustness Check  

Forecast evaluation based on the Diebold-Mariano Test for 500 out-of-sample observations 

Model CAC40 

CAC40 

DAX30 

DAX30 

FTSE100 

FTSE100 

NIKKEI225 

NIKKEI225 

S&P500 

S&P500 QAR Model 1.648   1.776  

 

1.070  

 

1.875  

 

1.115 

      

MS-GARCH(1,1)-N 1.737  2.058  1.096  2.151  0.867  

 (***) (***) (***) (***)  

MS-GARCH(1,1)-ST 1.720  1.756  1.101  2.206  1.121  

 (***)  (***) (***)  

MS-GARCH(1,1)-SST 2.013  1.768  0.962  2.332  2.213  

 (***)   (***) (***) 

MS-GJRGARCH(1,1)-N 1.594  1.343  0.787  2.006  1.103  

    (***)  

MS-GJRGARCH(1,1)-ST 1.643  1.621  0.766  1.946  1.173  

    (***) (***) 

MS-GJRGARCH(1,1)-SST 1.843  2.306  0.983  2.123  2.119  

 (***) (***)  (***) (***) 

Taylor 98 2.051  2.238  1.377  2.328  1.436  

 (***) (***) (***) (***) (***) 

Taylor 95 2.034  2.230  1.369  2.315  1.427  

 (***) (***) (***) (***) (***) 

Taylor 90 2.022  2.218  1.361  2.306  1.414  

 (***) (***) (***) (***) (***) 

Huang SD 2.009  2.203  1.350  2.295  1.406  

 (***) (***) (***) (***) (***) 

Huang WSD 1.990  2.184  1.334  2.281  1.389  

 (***) (***) (***) (***) (***) 

Huang MSD 2.002  2.200  1.346  2.294  1.404  

 (***) (***) (***) (***) (***) 

Forecast evaluation based on the Diebold-Mariano Test for 1,000 out-of-sample observations 

 CAC40 

CAC40 

DAX30 

DAX30 

FTSE100 

FTSE100 

NIKKEI225 

NIKKEI225 

S&P500 

S&P500 QAR Model 1.693 1.800 1.076 1.899 1.177 

      

MS-GARCH(1,1)-N 1.680  2.300  1.186  2.356  1.116  

  (***) (***) (***)  

MS-GARCH(1,1)-ST 2.047  2.563  1.033  2.245  1.203  

 (***) (***)  (***) (***) 

MS-GARCH(1,1)-SST 2.496  2.852  1.062  2.179  2.629  

 (***) (***)  (***) (***) 

MS-GJRGARCH(1,1)-N 1.429  1.355  0.835  1.969  1.197  

    (***) (**) 

MS-GJRGARCH(1,1)-ST 1.483  1.854  0.797  1.933  2.237  

  (***)  (***) (***) 

MS-GJRGARCH(1,1)-SST 1.849  2.343  0.970  2.107  2.925  

 (***) (***)  (***) (***) 

Taylor 98 2.113  2.296  1.410  2.358  1.534  

 (***) (***) (***) (***) (***) 

Taylor 95 2.106  2.290  1.405  2.352  1.525  

 (***) (***) (***) (***) (***) 

Taylor 90 2.098  2.281  1.400  2.346  1.512  
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 (***) (***) (***) (***) (***) 

Huang SD 2.091  2.270  1.390  2.339  1.504  

 (***) (***) (***) (***) (***) 

Huang WSD 2.078  2.255  1.376  2.332  1.485  

 (***) (***) (***) (***) (***) 

Huang MSD 2.087  2.268  1.386  2.339  1.501  

 (***) (***) (***) (***) (***) 

Forecast evaluation based on the Diebold-Mariano Test for 2,000 out-of-sample observations 

Model CAC40 

CAC40 

DAX30 

DAX30 

FTSE100 

FTSE100 

NIKKEI225 

NIKKEI225 

S&P500 

S&P500 QAR Model 1.792   1.925  

 

1.218  

 

1.997  

 

1.354  

       

MS-GARCH(1,1)-N 2.103  3.038  1.387  2.450  1.412  

 (***) (***) (***) (***) (***) 

MS-GARCH(1,1)-ST 2.070  2.114  1.361  2.304  1.442  

 (***) (***) (***) (***) (***) 

MS-GARCH(1,1)-SST 2.805  3.368  1.149  2.045  2.105  

 (***) (***)  (***) (***) 

MS-GJRGARCH(1,1)-N 1.435  1.833  0.804  1.970  0.936  

      

MS-GJRGARCH(1,1)-ST 1.936  1.786  1.128  1.949  0.924  

 (***)     

MS-GJRGARCH(1,1)-SST 2.487  2.183  1.681  2.193  2.985  

 (***) (***) (***) (***) (***) 

Taylor 98 2.245  2.451  1.589  2.469  1.720  

 (***) (***) (***) (***) (***) 

Taylor 95 2.236  2.439  1.583  2.457  1.709  

 (***) (***) (***) (***) (***) 

Taylor 90 2.228  2.430  1.576  2.450  1.693  

 (***) (***) (***) (***) (***) 

Huang SD 2.218  2.413  1.561  2.443  1.680  

 (***) (***) (***) (***) (***) 

Huang WSD 2.204  2.396  1.537  2.437  1.653  

 (***) (***) (***) (***) (***) 

Huang MSD 2.213  2.408  1.553  2.442  1.675  

 (***) (***) (***) (***) (***) 
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Appendix 3: In-sample estimation for the S&P 500 return series  

This table reports the results of the quantile regression estimates over the full range of quantile levels for the S&P 500 return series 

for the sample period from 1 March 2000 to 13 March 2013 using 3,268 observations. Each panel table reports the estimation 

results over a different range of quantile levels based on different lags for the AR terms. Note: The symbols ** and * indicate 

statistical significance at the 5% and 10% significance levels, respectively. 

 

Panel (a): Estimated parameters for 𝜏 ∈ (0.01,0.15) 

τ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 

Inter

cept 

-

3.86

6**  

-

2.99

1**  

-

2.62

6**  

-

2.31

7**  

-

2.09

3**  

-

1.89

1**  

-

1.76

1**  

-

1.62

0**  

-

1.54

1**  

-

1.43

9**  

-

1.34
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-

1.25

9**  

-

1.18
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-
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-

1.05

4**  
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0   (0.0

92) 

(0.0

97) 

(0.0

52) 

(0.0

74) 

(0.0

51) 

(0.0

58) 

(0.0

51) 

(0.0

41) 

(0.0

35) 

(0.0

30) 

(0.0

30) 

(0.0

29) 

(0.0

32) 

(0.0

36) 

(0.0

37) SRLA

G2 

0.12

9  

0.12

9**  

0.11

1**  

0.08

2*  

0.08

2**  

0.08

2**  

0.08

2*  

0.08

2*  

0.08

1*  

0.07

8*  

0.07

8**  

0.07

8**  

0.07

0**  

0.07

0**  

0.07

0**   (0.1

02) 

(0.0

61) 

(0.0

41) 

(0.0

49) 

(0.0

35) 

(0.0

41) 

(0.0

43) 

(0.0

44) 

(0.0

42) 

(0.0

40) 

(0.0

38) 

(0.0

35) 

(0.0

32) 

(0.0

31) 

(0.0

31) SRLA

G3 

0.15

5**  

0.15

3**  

0.13

6**  

0.13

6**  

0.11

5**  

0.11

5**  

0.11

1**  

0.11

1**  

0.11

0**  

0.11

0**  

0.10

9**  

0.10

9**  

0.10

9**  

0.10

9**  

0.10

9**   (0.0

79) 

(0.0

69) 

(0.0

48) 

(0.0

39) 

(0.0

40) 

(0.0

47) 

(0.0

41) 

(0.0

31) 

(0.0

29) 

(0.0

32) 

(0.0

35) 

(0.0

36) 

(0.0

38) 

(0.0

38) 

(0.0

37) SRLA

G4 

0.15

3  

0.11

3**  

0.11

3**  

0.11

3*  

0.11

3**  

0.11

1**  

0.10

9**  

0.09

6**  

0.09

1**  

0.09

1**  

0.09

1**  

0.09

1**  

0.09

1**  

0.08

5**  

0.07

9**   (0.1

02) 

(0.0

49) 

(0.0

28) 

(0.0

60) 

(0.0

40) 

(0.0

38) 

(0.0

37) 

(0.0

33) 

(0.0

30) 

(0.0

30) 

(0.0

30) 

(0.0

30) 

(0.0

31) 

(0.0

30) 

(0.0

27) SRLA

G5 

0.01

9  

0.01

9  

0.01

9  

0.01

9  

0.01

9  

0.03

8  

0.04

4  

0.04

4  

0.04

4  

0.05

1*  

0.05

1*  

0.05

1*  

0.05

1  

0.05

1  

0.05

1   (0.0

74) 

(0.0

44) 

(0.0

55) 

(0.0

70) 

(0.0

48) 

(0.0

48) 

(0.0

48) 

(0.0

39) 

(0.0

33) 

(0.0

28) 

(0.0

28) 

(0.0

30) 

(0.0

33) 

(0.0

34) 

(0.0

34) Panel (b): Estimated parameters for 𝜏 ∈ (0.16,0.25) 
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Panel (c): Estimated parameters for 𝜏 ∈ (0.26,0.54) 
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Panel (d): Estimated parameters for 𝜏 ∈ (0.55,0.75) 
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Panel (e): Estimated parameters for 𝜏 ∈ (0.76,0.84) 
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Panel (f): Estimated parameters for 𝜏 ∈ (0.85, 0.99) 
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