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Abstract This work presents a review of high-order

hybridisable discontinuous Galerkin (HDG) methods in

the context of compressible flows. Moreover, an original

unified framework for the derivation of Riemann solvers

This work was partially supported by the Spanish Ministry
of Economy and Competitiveness (Grant number: DPI2017-
85139-C2-2-R). J.V.P. was supported by the Spanish Min-
istry of Economy and Competitiveness, through the Maŕıa
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in hybridised formulations is proposed. This framework

includes, for the first time in an HDG context, the

HLL and HLLEM Riemann solvers as well as the tra-

ditional Lax-Friedrichs and Roe solvers. HLL-type Rie-

mann solvers demonstrate their superiority with respect

to Roe in supersonic cases due to their positivity pre-

serving properties. In addition, HLLEM specifically out-

stands in the approximation of boundary layers because

of its shear preservation, which confers it an increased

accuracy with respect to HLL and Lax-Friedrichs. A

comprehensive set of relevant numerical benchmarks

of viscous and inviscid compressible flows is presented.

The test cases are used to evaluate the competitiveness

of the resulting high-order HDG scheme with the afore-

mentioned Riemann solvers and equipped with a shock

treatment technique based on artificial viscosity.
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compressible flows · Riemann solvers · HLL-type

numerical fluxes · high-order · numerical benchmarks
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1 Introduction

High-order methods have experienced a growing inter-

est within the computational fluid dynamics (CFD) com-

munity because of their increased accuracy when com-

pared to low-order methods [80, 135]. However, low-

order finite volume (FV) or stabilised finite element

(FE) methods are still the most employed strategies

in commercial, industrial and open source CFD solvers

[14,55,70,128]. Low-order FV and FE methods are ro-

bust, easy to implement and provide a competitive al-

ternative for the computation of steady state CFD solu-

tions. Nevertheless, the higher diffusion and dispersion
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errors introduced by such discretisations when com-

pared to high-order methods limit their performance

in problems involving transient effects [40,48,90]. This

has prompted the extension of FV and stabilised FE

schemes to high-order [13, 15, 123, 124]. The develop-

ment of high-order schemes is, thus, claimed necessary

in order to tackle a variety of complex flow phenomena

arising in many practical aerodynamic problems, such

as the resolution of shear layers or the propagation of

vortices over long distances and for long times [127,135].

In the context of high-order discretisations, discon-

tinuous Galerkin (DG) methods have become one of

the most adopted approaches within the computational

engineering community [2,5,30]. In particular, DG dis-

cretisations have been often seen as a methodology to

combine the advantages of both FV and FE schemes.

Contrary to FV methods, DG methods allow to define

high-order local approximations [5, 7, 31, 34]. In addi-

tion, in DG methods, the stabilisation term required for

solving convection dominated problems is easier to de-

fine when compared to traditional stabilised FE meth-

ods [13,124]. The DG framework allows to devise high-

order numerical methods that enforce element-by-element

conservation and provides a suitable discretisation on

unstructured meshes [30, 50]. In addition, it permits

an efficient exploitation of parallel computing architec-

tures [52, 111] and an easy implementation of adap-

tive strategies for non-uniform degree approximations

[?, 3, 10, 59, 65, 77]. However, the duplication of nodes

at the interface of neighbouring elements has limited

its application mostly to academic problems, see the

discussion in [57] and references therein.

Accordingly, hybrid discretisation methods, e.g. the

hybrid/hybridised DG method [43–45], the hybridis-

able discontinuous Galerkin (HDG) methods [25,28,29,

33] and the hybrid high-order (HHO) method [19, 37,

38], obtained from the hybridisation of traditional DG

schemes, have been devised as a significantly less expen-

sive alternative [67, 137]. The HDG approach reduces

the number of globally coupled degrees of freedom via

the introduction of a hybrid variable, namely the trace

of the unknown on the mesh faces, and appropriately

defined inter-element numerical fluxes. Recently, spe-

cial attention has been devoted to the HDG method

which relies on a mixed formulation for second-order

problems [25–27,29,58,59,94–97,108,125].

In the context of compressible flows, different hy-

brid methods, such as HDG [72,73,77,94,101,136], the

embedded DG (EDG) [100], the interior embedded DG

(IEDG) [92] or hybrid mixed methods [117–119], have

been devised for the formulation of the inviscid Euler

and the laminar compressible Navier-Stokes equations.

The HDG formulation has also been extended to tur-

bulent compressible flows, both solving the Reynolds-

averaged Navier-Stokes equations combined with the

Spalart-Allmaras [86, 88] or the κ− ω [138] turbulence

models, or by means of a large-eddy simulation ap-

proach [52]. It is worth noting that in the inviscid limit,

i.e. for the Euler equations, HDG methods based on pri-

mal and mixed formulations are equivalent.

A salient feature of the HDG method stemming

from [94, 101] is its associated optimal order of con-

vergence for the viscous stress and the heat flux. It fol-

lows that the HDG method provides an increased ac-

curacy in the computation of typical quantites of inter-

est in aerodynamic applications, such as lift and drag.

The optimal accuracy properties of the method in the

approximation of the stress and heat flux rely on the

equal-order approximation of the primal, mixed and hy-

brid variables. In addition, the resulting HDG discreti-

sation is robust in the incompressible limit, circumvent-

ing the Ladyzhenskaya-Babuška-Brezzi (LBB) [28]. In

this context, when the Cauchy stress tensor formulation

is employed for the momentum equation, the appro-

priate choice of the discretisation space for the mixed

variable is crucial to ensure the optimal convergence of

the method. This has been achieved by means of the

M -decomposition framework [20–24], the utilisation of

the reduced stabilisation [82,98,108] or the employment

of a pointwise symmetric formulation of the stress ten-

sor [56,58,122].

When convection phenomena are considered, e.g. in

the context of systems of conservation laws and non-

linear hyperbolic partial differential equations (PDEs),

the definition of the numerical fluxes has a seminal im-

portance in the accuracy and stability of the approx-

imate solution. For this reason, it has been object of

intensive study by means of Riemann solvers, both in

the context of traditional DG [34, 83, 106] and in low-

order FV methods, see for instance the monographs by

Toro [130], Leveque [110] and Hesthaven [66]. In con-

trast, the definition of approximate Riemann solvers for

HDG methods have received considerably less atten-

tion, and only the traditional Lax-Friedrichs and Roe

solvers have been considered [94,100,101].

This work presents a review of the high-order HDG

formulation of compressible flows, including both the

inviscid Euler and the viscous compressible Navier-Stokes

equations. Moreover, the study proposes a unified frame-

work for the derivation of Riemann solvers in hybridised

formulations. The framework includes the existing Lax-

Friedrichs and Roe solvers and formulates, for the first

time in the context of HDG, the HLL [64] and the

HLLEM [46, 47] Riemann solvers. The use of Riemann

solvers of the HLL family is especially important in the
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context of supersonic flows, where the Roe numerical

flux may fail to provide physically admissible solutions

because of a lack of dissipation [99, 109], whereas Lax-

Friedrichs produces over-dissipative approximations [89,

91]. On the contrary, HLL-type Riemann solvers pro-

vide a robust framework to compute accurate solutions

while guaranteeing positiveness of the approximate den-

sity and pressure fields [54,109]. Furthermore, the HLLEM

Riemann solver is also robust in the preservation of

shear and contact waves [41, 46, 47], likewise Roe, thus

improving the Lax-Friedrichs and HLL approximation

of such kind of waves.

Additionally, this work introduces a mixed formula-

tion of the compressible Navier-Stokes equations with

strongly enforced symmetry of the viscous stress ten-

sor. Such approach uses the same discrete spaces for

the primal and mixed variables and retrieves optimal

convergence properties of the stress tensor and the heat

flux, with reduced computational cost.

Finally, this study presents an exhaustive set of nu-

merical benchmarks, spanning from subsonic flows to

supersonic inviscid and viscous cases with shocks, that

allow to verify the capabilities of the HDG method

while examining the properties of the presented Rie-

mann solvers.

In this work, the main focus is in the HDG formu-

lation for compressible flows and the presentation of

a unified framework for the Riemann solvers in HDG.

To this end, the examples considered involve steady

state flows. When the steady state is computed using

a pseudo-time approach, the backward Euler scheme is

employed. For transient flows, the HDG method has

been combined with a variety of low and high-order

time integrators [52, 71–73, 77, 94]. Although less ex-

plored, there are also works where the HDG method

has been employed with explicit time-marching algo-

rithms [114,115].

The remainder of this paper is organised as fol-

lows. The compressible Navier-Stokes equations, gov-

erning compressible flows, are described in section 2.

In section 3, the HDG formulation of the compressible

Navier-Stokes equations is detailed. Section 4 presents

a unified description of the Riemann solvers in the con-

text of high-order HDG methods. Specifically, the HLL

and HLLEM Riemann solvers are proposed for hybrid

discretisations. In section 5, the solution strategy of the

HDG solver for the resulting nonlinear problem and the

numerical treatment of solutions with discontinuities

and sharp gradients is discussed. Section 6 examines

the optimal accuracy properties of the computational

method in a pair of convergence studies for inviscid and

viscous flows. A set of numerical benchmarks for a va-

riety of flow conditions is then presented in section 7 to

test the performance and robustness of the high-order

HDG solver. Finally, section 8 summarises the main re-

sults of this study.

2 Compressible flow equations

Let Ω ⊂ Rnsd be an open bounded domain with bound-

ary ∂Ω, being nsd the number of spatial dimensions,

and Tend > 0 the final time of interest. The Navier-

Stokes equations, governing unsteady viscous compress-

ible flows in absence of external body forces are ex-

pressed in nondimensional conservation form as

∂U

∂t
+∇· (F (U)−G(U ,∇U)) = 0, in Ω×(0,Tend],

(1)

where U ∈ Rnsd+2 is the vector of dimensionless con-

servative variables and F and G ∈ R(nsd+2)×nsd are the

advection and diffusion flux tensors, respectively, given

by

U =


ρ

ρv

ρE

, F (U) =

 ρvT

ρv ⊗ v + pInsd
(ρE + p)vT

,
G(U ,∇U) =

 0

σd

(σdv + q)T

 .
(2)

In these expressions, ρ denotes the density, v is the

velocity vector, E is the total specific energy, p is the

pressure, σd is the viscous stress tensor and q is the

heat flux.

The flow is assumed to obey the ideal gas law γp =

(γ − 1)ρT , where T is the temperature, and γ = cp/cv
is the ratio of specific heats at constant pressure, cp,

and constant volume, cv, and takes value γ = 1.4 for

air. Moreover, for a calorically perfect gas, it holds that

p = (γ − 1)ρ
(
E − ‖v‖2/2

)
.

Under Stokes’ hypothesis, the viscous stress tensor

is expressed as

σd =
µ

Re

(
2∇Sv − 2

3
(∇·v)Insd

)
, (3)

where ∇S := (∇+∇T )/2 is the symmetric part of the

gradient operator.

Remark 1 (Cauchy stress tensor) The Cauchy stress

tensor, σ, which assembles the mechanical stresses of

the fluid, is the combination of the viscous stress ten-

sor σd and the thermodynamical pressure p, that is

σ = σd − pInsd .
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In addition, the heat flux is modelled according to

Fourier’s law of heat conduction, that is

q =
µ

PrRe
∇T, (4)

and the nondimensional dynamic viscosity, µ, depends

on the temperature following Sutherland’s law, i.e.

µ =

(
T

T∞

)3/2
T∞ + S

T + S
, (5)

where the non-dimensional free-stream temperature and

the Sutherland constant are expressed, respectively, as

T∞ = 1/
(
(γ − 1)M2

∞
)

and S = S0/
(
(γ − 1)TrefM

2
∞
)
,

with S0 = 110K for a reference temperature of Tref =

273K.

The nondimensional description of the problem is

completed with the definition of the Reynolds, Prandtl

and Mach numbers, i.e., Re = ρ∞v∞L/µ∞, Pr = cpµ∞/κ

and M∞ = v∞/c∞, respectively, where c =
√
γp/ρ de-

notes the speed of sound, L is a characteristic length

and κ stands for the thermal conductivity. Such quan-

tities are expressed in terms of reference free-stream val-

ues, indicated by the subscript∞. The Prandtl number

is considered constant and equal to Pr = 0.71 for air.

The problem is closed with the prescription of initial

and boundary conditions, namely

U = U0 in Ω × {0},
B(U ,∇U) = 0 on ∂Ω × (0,Tend],

(6)

where U0 stands for an initial state and the vector B

describes a boundary condition operator, imposing in-

flow, outflow or wall conditions with isothermal, adia-

batic or symmetry properties as detailed in section 3.2.1.

Remark 2 (Compressible Euler equations) The compress-

ible Euler equations are recovered in the inviscid limit,

that is when Re → ∞. In such case, the set of con-

servation equations (1) becomes a system of first-order

hyperbolic PDEs, namely

∂U

∂t
+∇·F (U) = 0, in Ω × (0,Tend]. (7)

3 HDG formulation of the compressible

Navier-Stokes equations

Consider a partition of the domain Ω in nel disjoint

subdomains Ωe such that Ω =
⋃nel
e=1Ωe. Let Γ denote

the mesh skeleton or internal interface, namely

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (8)

In addition, the notation for the jump operator,

J}K = }+ + }−, is introduced, defining the sum of

the values in the elements Ω+ and Ω− at each side of

the internal interface Γ , respectively [85].

3.1 Mixed variables for the compressible Navier-Stokes

equations

One of the main features of the HDG mixed formula-

tion is the introduction of mixed variables for the ap-

proximation of derivative terms in second-order prob-

lems [18, 28, 29, 94]. In the case of the compressible

Navier-Stokes equations, the mixed variables are re-

sponsible for the description of the viscous stress ten-

sor σd and the heat flux q appearing in the viscous

fluxes (2).

Usual mixed formulations of the compressible Navier-

Stokes equations introduce the gradient of the primal

variable, ∇U , as mixed variable [52, 94, 101, 137]. The

advantage of using ∇U is its linear expression with re-

spect to the primal variable U . Then, (1) is rewritten as

a system of first-order PDEs with an additional linear

equation, that is
Q−∇U = 0,

∂U

∂t
+∇· (F (U)−G(U ,Q)) = 0,

(9)

where the viscous stress tensor and the heat flux ap-

pearing in G(U ,Q) (2) are given by

σd =
1

Re

µ

ρ

[
∇S(ρv)− 1

ρ
(ρv ⊗∇ρ+∇ρ⊗ ρv)

−2

3

(
∇· (ρv)− 1

ρ
∇ρ · ρv

)
Insd

]
,

(10a)

q =
γ

RePr

µ

ρ

[
∇(ρE)− ρE

ρ
∇ρ

−1

ρ

(
∇(ρv)T − 1

ρ
∇ρ⊗ ρv

)
ρv

]
.

(10b)

It is worth noticing that the viscous stresses and the

heat flux are linear with respect to the mixed variable.

However, their expression presents a number of non-

linearities with respect to the conservation variables.

An alternative formulation, inspired by the mechan-

ical description of the problem, employs the deviatoric

strain rate tensor

εd = 2∇Sv − 2

3
(∇·v)Insd , (11)

and the gradient of temperature φ =∇T as mixed vari-

ables for the HDG formulation. The resulting system of

first-order PDEs is given by
εd − 2∇Sv − 2

3
(∇·v)Insd = 0,

φ−∇T = 0,

∂U

∂t
+∇·

(
F (U)−G(U , εd,φ)

)
= 0,

(12)
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where the viscous stress tensor and the heat flux in

G(U , εd,φ) (2) can be expressed in a neat manner as

σd =
µ

Re
εd, q =

µ

RePr
φ. (13)

Note that, whereas such mixed variables are non-

linear with respect to the conservation variables, this

choice vastly reduces the number of nonlinearities and

simplifies the expression of the viscous fluxes, in con-

trast to (10).

Remark 3 Such choice for the mixed variables, which

resembles the mixed formulation proposed in [136], in-

volves a reduced number of degrees of freedom, when

compared to Q = ∇U , thus decreasing the computa-

tional cost of the local problems.

3.2 Strong form of the local and global problems

In this work, the deviatoric strain rate tensor εd and

the temperature gradient φ are considered as mixed

variables. The problem is then written as a system of

first-order PDEs, in mixed form, in the so-called broken

computational domain.

The HDG method solves the problem in two stages.

First, nel local problems, given by

εde −
(

2∇Sve −
2

3
(∇·ve)Insd

)
= 0

in Ωe × (0,Tend],

φe −∇Te = 0 in Ωe × (0,Tend],

∂Ue
∂t

+∇·
(
F (Ue)−G(Ue, ε

d
e ,φe)

)
= 0

in Ωe × (0,Tend],

Ue = U0 in Ωe × {0},

Ue = Û on ∂Ωe × (0,Tend],

(14)

for e = 1, . . . , nel, define the solution (Ue, ε
d
e ,φe) in each

element as a function of an independent variable Û ,

representing the trace of the solution on Γ ∪ ∂Ω.

Then, Û is computed as the solution of a global

problem imposing boundary conditions on ∂Ω and en-

forcing inter-element continuity of the solution and of

the normal fluxes on Γ via the so-called transmission

conditions, namely
B̂(U , Û , εd,φ) = 0, on ∂Ω × (0,Tend],

JU ⊗ nK = 0, on Γ × (0,Tend],

J
(
F (U)−G(U , εd,φ)

)
nK = 0, on Γ × (0,Tend],

(15)

where n is the outward unit normal vector and the

boundary trace operator B̂(U , Û , εd,φ) imposes the

boundary conditions along ∂Ω exploiting the hybrid

variable.

Note that the second equation in (15) is automati-

cally satisfied due to the Dirichlet boundary condition

Ue = Û imposed in the local problems (14) and by the

fact that the hybrid variable Û is unique on each face

of the mesh skeleton.

3.2.1 Boundary conditions

The global system (15) involves the boundary trace op-

erator B̂(U , Û , εd,φ), whose definition depends on the

type of boundary under analysis. Following the philoso-

phy of [52,83,94,101], different definitions of boundary

conditions that commonly arise in simulation of com-

pressible flow problems are presented in table 1.

To this effect, consider a partition of the boundary

∂Ω such that ∂Ω = Γ∞∪Γout∪Γad∪Γiso∪Γinv and the

subdomains Γ∞, Γout, Γad, Γiso and Γinv are disjoint by

pairs. Here, Γ∞ accounts for a far-field boundary type,

Γout denotes a subsonic outflow with imposed pressure,

Γad and Γiso refer to adiabatic and isothermal walls,

respectively, and Γinv stands for an inviscid wall with

slip conditions or a symmetry wall.

In the expressions in table 1, pout and Tw stand for

prescribed values of outflow pressure and wall temper-

ature, respectively, and τdρE = 1/
[
(γ − 1)M2

∞RePr
]

is a

diffusive stabilisation term for the heat flux [94,100].

Moreover, note that inflow and outflow boundary

conditions on Γ∞ are imposed in a characteristics-based

approach using the Jacobian matrix of the convective

flux in the normal direction to the boundary, namely

An(Û) := [∂F (Û)/∂Û ]·n. The spectral decomposition

of the matrix, An(Û) = RΛL is then computed, where

Λ, R and L denote the matrices of eigenvalues, right

eigenvectors and left eigenvectors, respectively. Finally,

the matrices A−n and A+
n are defined as A±n := (An ±

|An|)/2, where |An(Û)| := R|Λ|L and the matrix |Λ|
is a diagonal matrix containing the absolute value of

the eigenvalues in Λ. The expression of the matrices of

eigenvectors and eigenvalues,R, L and Λ, can be found

in [113].

3.3 Weak form of the local and global problems

Following the notation in [58,125], the following discrete

functional spaces

Wh(Ω) :={
w ∈ L2(Ω) : w|Ωe ∈ Pk(Ωe) ∀Ωe, e = 1, . . . , nel

}
,

(16a)
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Table 1 Definition of boundary conditions for compressible flow problems using a hybrid discretisation.

Boundary type Boundary condition operator

Γ∞ Far-field, subsonic inflow, supersonic
inflow/outflow

B̂ = A+
n (Û)(Ue − Û) +A−n (Û)(U∞ − Û),

Γout Subsonic outflow (pressure outflow) B̂ =
{
ρe − ρ̂, [ρve − ρ̂v]T , pout/(γ − 1) + ρe‖ve‖2/2− ρ̂E

}T
,

Γad Adiabatic wall B̂ =
{
ρe − ρ̂, ρ̂vT , (µ/RePr)φen− τdρE

(
ρEe − ρ̂E

)}T
,

Γiso Isothermal wall B̂ =
{
ρe − ρ̂, ρ̂vT , ρeTw/γ − ρ̂E

}T
,

Γinv Inviscid wall or symmetry surface B̂ =
{
ρe − ρ̂, [(Insd − n⊗ n)ρve − ρ̂v]T , ρEe − ρ̂E

}T
.

Ŵh(S) :={
ŵ ∈ L2(S) : ŵ|Γi ∈ Pk(Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω

}
,

(16b)

are introduced, where Pk(Ωe) and Pk(Γi) denote the

spaces of polynomial functions of complete degree at

most k in Ωe and on Γi, respectively. Moreover, let

Wh
t (Ω) := L2

(
(0,Tend];Wh(Ω)

)
, (17a)

Ŵh
t (S) := L2

(
(0,Tend]; Ŵh(S)

)
, (17b)

denote the spaces of square-integrable functions on the

time interval (0,Tend] with spatial approximation in

Wh(Ω) and Ŵh(S), respectively.

Henceforth, the classical notation for L2 inner prod-

ucts of vector and tensor-valued functions on a generic

subdomain D ⊂ Ω is considered, that is

(v,w)D :=

∫
D

v ·w dΩ, (V ,W )D :=

∫
D

V : W dΩ.

(18)

Analogously, the L2 inner products on a surface S ⊂
Γ ∪ ∂Ω are denoted by 〈·, ·〉S .

Remark 4 It is worth noticing that the mixed variable

εd requires the definition of an appropriate functional

space. In particular, εd ∈ [H(div;D);S], D ⊆ Ω, that

is, the space of L2(D) symmetric tensors S of order

nsd with L2(D) row-wise divergence. Accordingly, its

element-by-element approximation εde must be defined

in an appropriate discrete space for symmetric second-

order tensors of dimension nsd×nsd. Several approaches

have been proposed in the literature, see [22, 32, 107].

In this work, Voigt notation [53] is exploited to re-

arrange the diagonal and off-diagonal components of

the tensor into an msd-dimensional vector, being msd =

nsd(nsd+1)/2 the number of non-redundant terms. This

allows a simple construction of a pointwise symmetric

mixed variable with reduced computational cost, while

retrieving optimal convergence of the approximation,

see [56,122]. For a detailed derivation of such approach,

interested readers are referred to [58].

With the introduced notation, the discrete weak

form associated to the local problems (14) is: for ev-

ery element Ωe, e = 1, . . . , nel, find an approximation

(Ue, ε
d
e ,φe) ∈ [Wh

t (Ωe)]
nsd+2×[Wh

t (Ωe)]
msd×[Wh

t (Ωe)]
nsd ,

given Û ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2, such that(

ζ, εde
)
Ωe

+

(
∇·

(
2ζ − 2

3
tr(ζ)Insd

)
,ve

)
Ωe

−
〈(

2ζ − 2

3
tr(ζ)Insd

)
n, v̂

〉
∂Ωe

= 0,

(19a)

(ξ,φe)Ωe + (∇· ξ, Te)Ωe −
〈
ξ, T̂n

〉
∂Ωe

= 0, (19b)(
W ,

∂Ue
∂t

)
Ωe

−
(
∇W ,F (Ue)−G(Ue, ε

d
e ,φe)

)
Ωe

+
〈
W ,

(
F (Ue)−G(Ue, ε

d
e ,φe)

)
n
∧〉

∂Ωe
= 0,

(19c)

for all (W , ζ, ξ) ∈ [Wh
t (Ωe)]

nsd+2×[Wh
t (Ωe)]

msd×[Wh
t (Ωe)]

nsd .

Remark 5 Note that, rigorously, equation (19a) should

be derived under the assumption that εd belongs to

the functional space [H(div;D); S]. Nonetheless, in an

abuse of notation, εd has been substituted by its dis-

crete counterpart εde ∈ [Wh
t (Ωe)]

msd . For further details

on the functional spaces and the derivation of the dis-

crete forms, interested readers are referred to [58].

Similarly, the discrete weak formulation of the global

problem in equation (15) is: find Û ∈ [Ŵh
t (Γ∪∂Ω)]nsd+2

such that

nel∑
e=1

{〈
Ŵ ,

(
F (Ue)−G(Ue, ε

d
e ,φe)

)
n
∧〉

∂Ωe∩Γ

+
〈
Ŵ , B̂(Ue, Û , ε

d
e ,φe)

〉
∂Ωe∩∂Ω

}
= 0, (20)

for all Ŵ ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2.

Equations (19c) and (20) introduce the traces of the

numerical fluxes on the boundary,(
F (Ue)−G(Ue, ε

d
e ,φe)

)
n
∧

=

= F (Ue)n
∧

−G(Ue, ε
d
e ,φe)n
∧

, (21)
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where

F (Ue)n
∧

:= F (Û)n+ τ a(Û)(Ue − Û) and (22a)

G(Ue, ε
d
e ,φe)n
∧

:= G(Û , εde ,φe)n− τ d(Ue − Û) (22b)

stand for the convective and the diffusive numerical

fluxes, respectively, whose approximation is essential for

the quality and accuracy of the HDG method.

On the one hand, the diffusive numerical fluxes,

G(Ue, ε
d
e ,φe)n
∧

, involve the diffusive stabilisation term

τ d, selected as the diagonal matrix

τ d = Re−1 diag
(

0,1nsd ,
[
(γ − 1)M2

∞Pr
]−1

)
, (23)

being 1nsd a nsd-dimensional vector of ones. This ap-

proach follows the philosophy of [94, 100] owing to di-

mensional consistency but considers different amounts

of diffusive stabilisation for each of the three conser-

vation equations, i.e., mass, momentum and energy. In

particular, note that the continuity equation, which has

a purely convective nature, does not include any diffu-

sive stabilisation.

It is worth noting that the term G(Û , εd,φ)n contain-

ing the physical flux in (22b) can be approximated ei-

ther using the interior state Ue or the trace of the pri-

mal variable Û . In this work, the latter has been chosen,

following the classical formulation in HDG [94,100,101],

which exploits the presence of an intermediate state,

namely the trace of the conservation variables, Û .

Remark 6 Note that in the incompressible limit and us-

ing the current choice for mixed variables, both alter-

natives lead to the same numerical flux. Indeed, the

energy equation for which the tensor G depends on the

primal variable U , is decoupled from the system of con-

servation equations.

On the other hand, the convective numerical fluxes,

F (Ue)n
∧

, are approximated using Riemann solvers [130].

More precisely, they are introduced implicitly within

the numerical fluxes by means of the convective sta-

bilisation parameter, τ a. Different definitions of such

convective fluxes are detailed in section 4, where a uni-

fied framework, including the newly proposed HLL and

HLLEM Riemann solvers, is presented in the context

of HDG.

Remark 7 (Compressible Euler equations) The associ-

ated weak forms for the inviscid Euler equations reduce

to:

Local problems: given Û ∈ [Ŵh
t (Γ∪∂Ω)]nsd+2 and for

every elementΩe, e = 1, . . . , nel, findUe ∈ [Wh
t (Ωe)]

nsd+2

such that, for all W ∈ [Wh
t (Ωe)]

nsd+2,(
W ,

∂Ue
∂t

)
Ωe

− (∇W ,F (Ue))Ωe

+
〈
W ,F (Ue)n
∧〉

∂Ωe
= 0. (24)

Global problem: for all Ŵ ∈ [Ŵh
t (Γ ∪∂Ω)]nsd+2, find

Û ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2 such that

nel∑
e=1

{〈
Ŵ ,F (Ue)n
∧〉

∂Ωe∩Γ

+
〈
Ŵ , B̂(Ue, Û)

〉
∂Ωe∩∂Ω

}
= 0. (25)

4 A unified framework for Riemann solvers in

hybridised discontinuous Galerkin methods

As mentioned above, the choice of the convective nu-

merical fluxes F (Ue)n
∧

appearing in equations (19c)

and (20) —or in equations (24) and (25) for the Eu-

ler equations— has a critical influence on the accuracy

and stability of the numerical solution. More precisely,

such numerical fluxes are responsible for encapsulating

the information of the convective nature of the flow un-

der analysis. For this reason, the approximation of such

interface fluxes has received great attention in the con-

text of discontinuous Galerkin methods [34,89,106,130]

and, more recently, of HDG [94, 100, 101] by means of

Riemann solvers.

This section details the expression of numerical fluxes

arising in DG discretisations with some of the most

popular approximate Riemann solvers for compressible

flows, namely Lax-Friedrichs, Roe, HLL and HLLEM.

Then, a unified framework for the derivation of numeri-

cal fluxes in hybridised discretisations is presented. This

framework allows to extend the aforementioned numer-

ical fluxes to HDG, including the HLL and HLLEM

Riemann solvers, devised for the first time in the con-

text of hybridised formulations.

4.1 Riemann solvers in standard DG methods

Consider a pair of neighbouring elements, Ω+
e and Ω−e ,

with shared interface Γi = ∂Ω+
e ∩ ∂Ω−e ⊂ Γ . The

solution at each side of the interface is denoted by

U±e , whereas U?(U+
e ,U

−
e ) represents an intermediate

state between U+
e and U−e . Following the monograph

by Toro [130], the definition of Lax-Friedrichs, Roe,

HLL and HLLEM Riemann solvers is first recalled for

standard DG formulations.
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4.1.1 Lax-Friedrichs Riemann solver

The first option is represented by the Lax-Friedrichs

numerical flux. This Riemann solver is obtained as an

extrapolation of the result for a scalar convection equa-

tion [81] and defines the numerical flux as

F (Ue)n
±
∧

=

=
1

2

[
F (U+

e ) + F (U−e )
]
n± +

λ?max
2

(U±e −U
∓
e ), (26)

where λ?max := |v? ·n|+c? is the maximum eigenvalue of

the matrix An(U?) evaluated at the intermediate state

U?. It is well-known that the Lax-Friedrichs numerical

flux (26) is extremely robust but leads to over-diffusive

solutions.

4.1.2 Roe Riemann solver

The Roe Riemann solver [112] approximates the com-

plete wave structure of the Riemann problem [110,130]

by means of the matrix |An(U?)| that linearises the

convective fluxes F (U?). More precisely, the Roe nu-

merical flux is given by

F (Ue)n
±
∧

=

=
1

2

[
F (U+

e ) + F (U−e )
]
n±+

1

2
|An(U?)|(U±e −U

∓
e ),

(27)

where An(U?) and |An(U?)| are the matrices intro-

duced in section 3.2.1 evaluated at the intermediate

state U?.

Although more accurate than the Lax-Friedrichs flux,

the Roe Riemann solver is not positivity preserving and

it may produce nonphysical solutions in transonic and

supersonic cases due to the violation of entropy con-

ditions [104, 109]. In this context, the linearised Roe

solver is modified via a so-called entropy fix (EF) in or-

der to recover the entropy conditions. The entropy fix

by Harten and Hyman (HH) [63] proposes the following

modification of the Roe numerical flux

F (Ue)n
±
∧

=

=
1

2

[
F (U+

e ) + F (U−e )
]
n±+

1

2
|Aδ

n(U?)|(U±e −U
∓
e ),

(28)

where |Aδ
n(U?)| denotes a dissipation matrix. The HH-

EF dissipation matrix is defined as |Aδ
n(U?)| := RΦL,

being R and L the right and left eigenvector matrices

previously introduced and Φ a diagonal matrix such

that Φii = max (|λi|, δ), being λi the i-th eigenvalue of

the matrix An(U?) and δ > 0 a user-defined threshold

for the entropy fix.

Remark 8 In the expression of the dissipation matrix,

a user-defined threshold parameter δ > 0 needs to be

appropriately tuned to introduce the correct amount

of extra diffusion for the problem under analysis. Note

that, generally, δ � λmax. Nonetheless, this value is

problem-dependent and may require an empirical tun-

ing to provide the best performance of the Roe solver.

4.1.3 Harten-Lax-van Leer (HLL) Riemann solver

An alternative approach to remedy the entropy viola-

tion of the Roe solver is represented by the HLL Rie-

mann solver [64]. Such approach relies on a weighted av-

erage of the information in two neighbouring elements

Ω+
e and Ω−e and leads to the following numerical flux

F (Ue)n
±
∧

=

=

[
s+F (U+

e )− s−F (U−e )

s+ − s−

]
n±+

s+s−

s+ − s−
(U±e −U

∓
e ),

(29)

where, respectively, s+ := max (0,v? · n+ + c?) and s− :=

min (0,v? · n+ − c?) denote the estimates of the largest

and smallest wave speeds, with the corresponding signs.

4.1.4 HLLEM Riemann solver

Finally, the HLLEM Riemann solver [46, 47] is intro-

duced as a modification of the HLL Riemann solver

which approximates the complete wave structure of the

Riemann problem. More precisely, differently from the

HLL method, it introduces a special treatment for mid-

dle waves, ensuring an accurate description of contact

waves and shear layers [41]. In addition, HLLEM in-

herits the positivity-preserving properties of HLL-type

Riemann solvers, fulfilling entropy conditions without

the need of the user defined entropy fix required by the

Roe solver.

In particular, the HLLEM numerical flux is expressed

as

F (Ue)n
±
∧

=

=

[
s+F (U+

e )− s−F (U−e )

s+ − s−

]
n±

+
s+s−

s+ − s−
θ(U?)(U±e −U

∓
e ),

(30)

being s+ and s− the HLL estimates of the largest and

smallest wave speeds previously introduced. In addi-

tion, it holds that θ(U?) = RΘL, where Θ denotes

the diagonal matrix Θ = diag (1, θ?1nsd , 1) and θ? =

|v? · n|/(|v? · n| + c?) is placed in the position of the

eigenvalues corresponding to contact waves. For more
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details on such matrices, interested readers are referred

to [113].

Note that, in contrast to HLL, the HLLEM flux re-

duces the amount of numerical dissipation associated to

contact waves by means of the coefficient θ? < 1. More-

over, it maintains an analogous treatment for shock

waves and rarefactions, guarenteeing its entropy en-

forcement and positivity-preserving properties.

4.2 Riemann solvers in hybridised DG methods

In this section, a unified framework for the formula-

tion of the above introduced Riemann solvers in the

context of HDG methods is proposed. The framework

includes, for the first time, the formulation of the HLL

and HLLEM Riemann solvers within an HDG formula-

tion for compressible flows. This derivation stems from

the seminal work of Peraire and co-workers on linear

and nonlinear convection-diffusion equations [95,96] and

on compressible flows [94, 100, 101]. The topic has also

been studied in [9].

As described before, the general structure of the

trace of the HDG convective numerical flux for a non-

linear problem is

F (Ue)n
∧

= F (Û)n+ τ a(Û)(Ue − Û), (31)

where τ a is the convective stabilisation matrix which

encapsulates the information of the Riemann solvers. In

order to ease readability, the superindex in τ a to denote

the convective stabilisation term will be dropped in the

upcoming derivations along this section.

It is worth noting that in (31) the hybrid variable

Û defined on the interface Γi between two neighboring

elements Ω+
e and Ω−e is utilised as the intermediate

state U? introduced in section 4.1.

In order to derive the formulation of the Riemann

solvers in the context of HDG methods, the inter-element

continuity of the trace of the numerical fluxes is con-

sidered in the convective limit, namely JF (Ue)n
∧

K = 0.

It follows that the sum of the contributions F (Ue)n
∧

from two neighbouring elements is set to zero. Exploit-

ing definition (31) and observing that JF (Û)nK = 0

because of the uniqueness of Û on the internal faces,

the above transmission condition reduces pointwise to

(τ+ + τ−)Û = τ+U+
e + τ−U−e , (32)

where τ+ and τ− denote stabilisation matrices seen

from element Ω+
e and Ω−e , respectively. Under the as-

sumption of (τ+ + τ−) being invertible, the intermedi-

ate state Û is determined pointwise as

Û = (τ+ + τ−)−1
[
τ+U+

e + τ−U−e
]
. (33)

Hence, the convective numerical flux (31) is formu-

lated as an explicit function of the left and right states

U±e . From the framework above, two cases are anal-

ysed hereafter. On the one hand, a stabilisation matrix

continuous across the interface is obtained by setting

τ+ = τ−. On the other hand, a stabilisation matrix,

discontinuous across the interface, is considered when

τ+ 6= τ−.

4.2.1 Continuous stabilisation across the interface:

Lax-Friedrichs and Roe Riemann solvers

Consider a continuous definition of the stabilisation ma-

trix across the interface, that is τ+ = τ− = τ . It follows

Û =
U+
e +U−e

2
, (34a)

F (Ue)n
±
∧

= F

(
U+
e +U−e

2

)
n± +

1

2
τ (U±e −U

∓
e ).

(34b)

By considering Û as an intermediate state between

U+
e and U−e and under appropriate choices of the sta-

bilisation matrix τ , a formulation that mimicks Lax-

Friedrichs and Roe Riemann solvers for DG methods,

see (26) and (27), is retrieved for HDG methods [94,

100, 101]. More precisely, for each element Ωe, e =

1, . . . , nel, setting τ = λ̂maxInsd+2, with λ̂max := |v̂ ·n|+ĉ,
the Lax-Friedrichs numerical flux is retrieved for the

HDG method, namely

F (Ue)n
∧

= F (Û)n+ λ̂max(Ue − Û). (35)

Similarly, the intermediate state (34a) and the sta-

bilisation matrix τ = |An(Û)| lead to the formulation

of the Roe Riemann solver in the context of HDG meth-

ods, that is,

F (Ue)n
∧

= F (Û)n+ |An(Û)|(Ue − Û). (36)

Finally, the HH-EF variant of the Roe numerical flux is

given by τ = |Aδ
n(Û)|, according to the correction to

matrix An(Û) introduced in (28).

Remark 9 It is worth noting that the stabilisation ma-

trix introduced in (35) for the Lax-Friedrichs Riemann

solver is isotropic, whereas for the Roe numerical fluxes

in (36), different values of the stabilisation term are

introduced in the equations of conservation of mass,

momentum and energy.
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4.2.2 Discontinuous stabilisation across the interface:

HLL-type Riemann solvers

Consider a discontinuous stabilisation matrix across the

interface, defined as τ± = s±θ, with s+ 6= s− and θ a

positive-definite square matrix of dimension nsd + 2. It

follows

Û =
s+U+

e + s−U−e
s+ + s−

, (37a)

F (Ue)n
±
∧

= F

(
s+U+

e + s−U−e
s+ + s−

)
n±

+
s+s−

s+ + s−
θ(U±e −U

∓
e ).

(37b)

It is worth noting that the intermediate state in (37a)

is obtained as a weighted average of the states U+
e and

U−e . From this framework, HLL-type numerical fluxes,

mimicking the behaviour of HLL (29) and HLLEM (30)

for DG approaches, are devised for the first time in the

context of HDG methods. More precisely, the HLL Rie-

mann solver is given by

F (Ue)n
∧

= F (Û)n+
[
s+Insd+2

]
(Ue − Û), (38)

where s+ := max(0, v̂ · n+ ĉ).

Remark 10 A variant of the HLL Riemann solver in (38),

the so-called Harten-Lax-van Leer-Einfeldt (HLLE) nu-

merical flux [46], can be devised by simply modifying

the term s+ in the stabilisation parameter as

s+ := max(0, v̂ · n+ ĉ,v+ · n+ c+,v− · n+ c−), (39)

being }+ and }− the variables associated with the

states U+
e and U−e , respectively, at each side of the

interface under analysis. Numerical experiments have

shown that, in the context of high-order discretisations,

the practical difference between HLL and HLLE numer-

ical fluxes is not significant since the jumps across the

interface are very small. Henceforth, the former choice

is considered for simplicity.

Following the same rationale, the HLLEM numeri-

cal flux can be devised as

F (Ue)n
∧

= F (Û)n+
[
s+θ(Û)

]
(Ue − Û), (40)

where s+ := max(0, v̂ · n + ĉ) is the HLL estimate for

the largest wave speed and θ(Û) = RΘL, as defined

in (30). It is worth noticing that the intermediate state

is selected such that U? = Û . Therefore, Θ employs

θ? = θ̂ = |v̂ · n|/(|v̂ · n| + ĉ), where the hat quantities

are evaluated using the hybrid variable Û .

Remark 11 Because of the positive definition of the ma-

trix θ introduced here, the coefficient θ̂ is not allowed

to reach zero. This situation is experienced in flows that

are perfectly aligned with the faces of the mesh. From

a practical point of view, it may be useful to set a min-

imum threshold 0 < θ0 � 1 to guarantee that θ̂ > θ0
and avoid a null stabilisation.

5 Implementation details of the high-order

HDG solver

In this section, some details on the implementation of

the nonlinear solver in the high-order HDG method and

on the numerical treatment of solutions with disconti-

nuities and sharp gradients are provided.

5.1 Solution strategy

By introducing the numerical flux (21) and boundary

conditions (detailed in table 1) in the weak forms of the

local (19) and global (20) problems, the complete form

of the discrete problems is obtained.

It is worth recalling that the HDG solver features

two stages. First, the local problems are devised. De-

note byZe = (Ue, ε
d
e ,φe) ∈ [Wh

t (Ωe)]
nsd+2×[Wh

t (Ωe)]
msd×

[Wh
t (Ωe)]

nsd the vector of local unknowns, which in-

cludes the primal and mixed variables. By considering

an isoparametric approximation in space for the local,

Z, and hybrid, Û , variables, the semi-discrete system of

differential-algebraic equations resulting from the local

problem at element Ωe, e = 1, . . . , nel reads

Me
dZe
dt

+ Re(Ze, Û) = 0. (41)

where Ze and Û denote the vectors of nodal values of

the local and hybrid variables, respectively, and Me and

Re are the mass matrix and nonlinear residual vector

obtained from the spatial discretisation of the integral

terms of the local problem (19) in element Ωe.

In a similar fashion, from the global problem (20) it

follows

nel∑
e=1

R̂e(Û,Ze) = 0, (42)

where R̂e denotes the nonlinear residual vector involv-

ing the degrees of freedom associated with element Ωe.

Finally, upon temporal discretisation, the resulting

nonlinear system is solved using a Newton-Raphson it-

erative method at each time step. In particular, the lin-

ear system of equations arising at each time step and
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Newton-Raphson iteration for the local problems reads

Ae
ZZZe + Ae

ZÛ
Û = FeZ (43)

for e = 1, . . . , nel, where vectors Fe� and matrices Ae
�◦

are obtained from Newton-Raphson linearisation of the

system of equations (41). Similarly, the linear system

corresponding to the global problem (42) upon Newton-

Raphson linearisation can be expressed as

nel∑
e=1

{
Ae
ÛÛ

Û + Ae
ÛZ

Ze − Fe
Û

}
= 0. (44)

Note that, owing to the hybridisation procedure, the

elemental degrees of freedom of Ze can be rewritten in

terms of the globally coupled degrees of freedom of Û

via (43), namely

Ze = [Ae
ZZ ]
−1

FeZ − [Ae
ZZ ]
−1

Ae
ZÛ

Û, (45)

which just involves the inverse of matrix Ae
ZZ , of di-

mension ((nsd + 2 + msd + nsd)nen), for each element of

the mesh, being nen the number of element nodes of

Ωe. This computation can be effectively parallelised and

only involves the solution of small systems with limited

computing effort. Dimension of such local systems is

displayed in table 2 for different degrees of approxima-

tion k on simplexes and parallelepipeds in 2D and 3D.

Table 2 Dimension of the local problem.

Degree of
approximation, k

1 2 3 4 5 6

Simplexes

2D 27 54 90 135 189 252
3D 56 140 280 490 784 1,176

Parallelepipeds

2D 36 81 144 225 324 441
3D 112 378 896 1,750 3,024 4,802

The hybridisation precedure (45) permits to elimi-

nate Ze in equation (44), giving rise to a linear system

with a reduced number of degrees of freedom [18, 61].

This global system is the one to be solved at each

Newton-Raphson iteration and reads as

KÛ = F, (46)

where the global matrix K and the right-hand side vec-

tor F are obtained by assembling the elemental contri-

butions

Ke = Ae
ÛÛ
−Ae

ÛZ
[Ae

ZZ ]
−1

Ae
ZÛ
, (47a)

Fe = Fe
Û
−Ae

ÛZ
[Ae

ZZ ]
−1

FeZ . (47b)

As the main purpose of this work is the HDG formu-

lations of compressible flows, section 7 only considers

steady state problems. In this context, the temporal

discretisation in equation (41) is used as a relaxation

method to improve the convergence process in com-

plex numerical examples, e.g. in presence of shocks. To

this effect, the backward Euler method is considered in

the simulations. However, the proposed methodology is

applicable to other time discretisations, such as high-

order time integrators like backward difference formu-

las (BDF) or diagonally implicit Runge-Kutta (DIRK)

methods, especially suited for transient problems [72,

73,94].

5.2 Shock-capturing method

It is well-known that high-order methods experience

an oscillatory behaviour in the vicinity of shocks and

regions with sharp gradients, requiring an appropriate

shock-capturing technique [39,60]. For this purpose, an

artificial viscosity term is added to regularise the nu-

merical approximation of the problem.

Different approaches can be adopted to introduce

artificial dissipation. In this section, two different al-

ternatives are presented. First, a physics-based shock

capturing term, which is introduced within the viscous

flux G, is detailed [52]. Additionally, a Laplacian-based

approach [73], formulated in a discrete version to avoid

the introduction of mixed variables, is considered for

the Euler equations.

5.2.1 Physics-based shock capturing

In this approach, shock waves are stabilised by correct-

ing the diffusive flux in equation (1) using the physics-

based approach proposed in [51]. This methodology,

stemming from the work of Von Neumann and Richt-

myer [132] and later considered in [35, 75, 76], relies on

defining the diffusive flux as a combination of the phys-

ical flux G with an additional numerical contribution

G∗. The latter is thus based on an artificial bulk vis-

cosity β∗, namely

G∗ = β∗


0

(∇·v)Insd[
(∇·v)v + Pr−1

β φ
]T
 , (48)

where Prβ is an artificial Prandtl number.

First, a dilatation-based shock sensor [51,87], which

identifies the regions of high compression, is defined as

sβ = −h
k

∇·v
c̃

, (49)
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where h is the element size, k is the degree of polynomial

approximation and c̃ is a reference speed of sound for

non-dimensionalisation. Common choices for c̃ are the

critical speed of sound c?, the speed of sound at the

actual point c, or simply the reference free-stream value

c∞. In the simulations presented in section 7, the latter

option is employed.

The shock sensor sβ is thus utilised to define the

artificial bulk viscosity β∗ as

β∗ = Ψ

(
ε0

[
ρ∞

h

k
(v2∞ + c2∞)1/2

]
fβ(sβ)

)
, (50)

where Ψ denotes a smoothing operator consisting of a

C0 reconstruction, see [102], ε0 is a user-defined positive

constant and fβ(sβ) = min {smax,max{smin, sβ − s0}}.
Following [51] the values ε0 = 1.5, s0 = 0.01, smin = 0

and smax = 2/
√
γ2 − 1 and the artificial Prandtl num-

ber Prβ = 0.9 are employed in the numerical simula-

tions of section 7.

5.2.2 Laplacian-based shock capturing

The second alternative for the shock capturing detailed

in this section consists of a discretised Laplace oper-

ator, applied in HDG discretisations [71, 73] following

standard approaches in the context of DG and SUPG

methods [4, 12, 17, 124]. Given the artificial viscosity ε,

it relies on adding the term

(∇W , ε∇U)Ωe (51)

to the left-hand side of the local equation (19c), or (24)

for the Euler case. This approach is especially suited

for the inviscid case, where the second-order term G

vanishes and the mixed variables in (19a) and (19b)

are neglected.

The shock capturing technique is equipped with a

discontinuity sensor Se, introduced in [103] and ex-

pressed in terms of the density field according to [102],

namely

Se :=
(ρe − ρ̃e, ρe − ρ̃e)Ωe

(ρe, ρe)Ωe
. (52)

The smoothness indicator Se is utilised to detect the

regions with discontinuities. In (52), ρe denotes the

density in the element Ωe, computed using a polyno-

mial approximation of degree k, and ρ̃e is its trun-

cation of order k − 1. The sensor measures the regu-

larity of the approximate solution based on the rate

of decay of its Fourier coefficients. More precisely, if

Se > k−4, such approximation is expected to be at

most C0, whereas smooth functions are expected to de-

cay more rapidly [12].

Following [68, 121], the sensor (52) is implemented

using nodal basis functions. It follows that

Se =
ρTe V−TPV−1ρe
ρTe V−TV−1ρe

, (53)

where ρe is the vector containing the nodal values of the

density field in the element Ωe, V is the Vandermonde

matrix whose inverse maps the Lagrange basis onto the

orthonormal one and P is the orthogonal projection

matrix onto the space of monomials of degree k, namely

P := diag(

nL︷ ︸︸ ︷
0, . . . , 0,

nH︷ ︸︸ ︷
1, . . . , 1), (54)

being nL and nH the number of degrees of freedom for

monomials of degree k − 1 and k, respectively. In two

dimensions, it holds nL := k + 1 and nH := k(k + 1)/2.

The amount of artificial viscosity introduced in each

element is determined according to

εe =



0, if se < s0 − ξ,
ε0
2

(
1 + sin

(
π(se − s0)

2ξ

))
,

if s0 − ξ < se < s0 + ξ,

ε0, if se > s0 + ξ,

(55)

where se := log10 Se, ε0 ∼ h/k and s0 and ξ are se-

lected such that s0 + ξ = −4 log10 k and s0 − ξ is suffi-

ciently large to detect the regions in which mild shock

waves are present [68]. In particular, a value s0 − ξ =

−11 log10 k is considered in the numerical studies in sec-

tion 7. Finally, the smoothing operator Ψ is employed to

perform a C0 reconstruction of the elemental artificial

viscosity obtained in (55), that is ε = Ψ(εe).

6 Numerical convergence studies

The optimal convergence properties of the HDG method

are tested both in inviscid and viscous cases. The accu-

racy of the approximation is examined using the four

Riemann solvers presented in section 4 for different de-

grees of polynomial approximation.

6.1 Convergence analysis for inviscid flows: Ringleb

flow

The Ringleb flow problem is considered to verify the

optimal convergence of the HDG method for inviscid

flows. It consists of a smooth transonic 2D solution of

the Euler equations with analytical expression obtained

via the hodograph method [16]. For any given spatial

coordinates (x, y), the solution of the Ringleb flow can
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be computed by solving the following nonlinear implicit

equation in terms of the speed of sound c,(
x+

J

2

)2

+ y2 =
1

4ρ2V 4
, (56)

where the following relationships for density ρ, radial

velocity V and J hold

ρ = c2/(γ−1), V =

√
2(1− c2)

γ − 1
,

J =
1

c
+

1

3c3
+

1

5c5
− 1

2
log

(
1 + c

1− c

)
.

(57)

The exact velocity and pressure fields are

v =

(
−sgn (y)V sin θ

V cos θ

)
and p =

1

γ
c2γ/(γ−1), (58)

where sgn (·) is the sign operator, sin θ := ΨV and

Ψ :=

√
1

2V 2
+ ρ

(
x+

J

2

)
. (59)

Remark 12 (Computation of the Ringleb solution) It is

worth noting that the nonlinear equation driving the

analytical solution of the Ringleb problem (56) needs

to be solved iteratively upon a certain tolerance, thus

introducing an approximation error in the estimated

analytical solution. Further operations in order to com-

pute the rest of variables of the problem may be re-

sponsible for the propagation of such error, which may

become critical in high-order convergence tests. In these

cases, the error introduced in the exact solution may be

of similar level or even higher than the error of the ap-

proximate solution. Then, the computed approximation

error is no longer reliable, showing a stagnation in the

levels of accuracy.

Such numerical issues were circumvented in this study

by avoiding the computation of Ψ directly as in (59)

but using trigonometric identities and algebraic manip-

ulation of (56) to compute the direction of the flow,

namely

sin(2θ) = 2 sin θ cos θ = 2ΨV
√

1− Ψ2V 2 =

= 2

√
1

4
− ρ2V 4 (x+ J/2)

2
= 2ρV 2y. (60)

Remark 13 (Domain of the Ringleb solution) Classi-

caly, the Ringleb flow problem has been solved in a

curvilinear domain symbolising a channel around a sym-

metric blunt obstacle, bounded by two streamlines of

the flowfield, see [6, 42, 65, 133, 134]. In such domain,

the flow is transonic, displaying a large supersonic re-

gion near the nose of the blunt body. Alternatively, this

problem has also been studied in rectangular domains

located at different regions, thus avoiding the introduc-

tion of geometric errors in the approximation of the

curved boundaries. Numerical tests performed both in

regions of subsonic [94] or transonic [77] speeds have

been presented in the literature. It is worth mention-

ing that the numerical issues described in remark 12

may be more evident in those regions where the solu-

tion displays greater variations, namely those including

supersonic speeds.

In this work, the Ringleb problem is solved in the

domain of transonic flow Ω = [0, 1]2, such as in [77],

with a far-field boundary condition imposed on ∂Ω.

The computational domain is discretised using uniform

meshes of triangular elements. Figure 1 displays the

first two levels of refinement employed. The approxi-

mate solution of the Mach number distribution com-

puted on the mesh in figure 1a using polynomial degree

k = 1 and k = 2 is depicted in figure 2.

(a) Mesh 1 (b) Mesh 2

Fig. 1 Ringleb flow - Triangular meshes of Ω = [0, 1]2 for
the h-convergence analysis.

(a) k = 1 (b) k = 2

Fig. 2 Ringleb flow - Mach number distribution computed
using the HLL Riemann solver on the first level of mesh re-
finement with polynomial degree k = 1 and k = 2.

The results clearly display the gain in accuracy ob-

tained increasing the degree of the polynomial approx-
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(a) Density, ρ (b) Momentum, ρv (c) Energy, ρE

Fig. 3 Ringleb flow - Mesh convergence of the L2 error of (a) density, (b) momentum and (c) energy, using Lax-Friedrichs
(LF), Roe, HLL and HLLEM Riemann solvers and polynomial degree of approximation k = 1, . . . , 4.

imation, even in presence of extremely coarse meshes,

motivating the interest in high-order discretisations.

An h-convergence study is performed using a degree

of approximation ranging from k = 1 up to k = 4 and

for the four Riemann solvers presented in section 4. Fig-

ure 3 displays the error for the conserved variables, i.e.

ρ, ρv and ρE, measured in the L2(Ω) norm, as a func-

tion of the characteristic mesh size h. It can be observed

that the different Riemann solvers lead to an optimal

rate of convergence hk+1 and a comparable accuracy in

all cases.

It is worth mentioning that the level of accuracy

obtained in mesh 5 with a linear approximation k = 1

(49,664 DOFs) is comparable to the one achieved on
the coarsest mesh with polynomial degree of approxi-

mation k = 4 (560 DOFs). Hence, the results show the

superiority of high-order discretisations, which allow to

highly reduce the size of the HDG problem for a given

level of accuracy.

6.2 Convergence analysis for viscous laminar flows:

Couette flow

A compressible Couette flow with a source term [94,

119] is considered to numerically verify the accuracy

and convergence properties of the HDG method for the

compressible Navier-Stokes equations using the differ-

ent Riemann solvers presented in section 4.

The analytical expression of the solution, defined on the

square domain Ω = [0, 1]2, is

v =

{
y log(1 + y)

0

}
, p =

1

γM2
∞

T =
1

(γ − 1)M2
∞

[
αc + y(βc − αc)

+
(γ − 1)M2

∞Pr

2
y(1− y)

]
,

(61)

where αc = 0.8 and βc = 0.85 are positive constants.

The viscosity is assumed constant and the source term,

which is determined from the exact solution, is given

by S = {0, s2, 0, s4}T , with

s2 =
−1

Re

2 + y

(1 + y)2
,

s4 =
−1

Re

[
log2(1 + y) +

y log(1 + y)

1 + y

+
y(3 + 2y) log(1 + y)− 2y − 1

(1 + y)2

]
.

(62)

The exact solution is utilised to impose the bound-

ary conditions on ∂Ω and the nondimensional quan-

tities are set to M∞ = 0.15 and Re = 1 in order to

replicate the case presented in [94, 119], taking a char-

acteristic length L = 1.

The computational domain is discretised using the

uniform meshes of triangular elements employed in the

Ringleb example of section 6.1. Figure 4 displays the

approximate solution of the density field on the first

mesh refinement for polynomial degrees k = 1 and k =

2.

The evolution of the error of the primal (conserved)

and mixed variables measured in the L2(Ω) norm is

displayed in figure 5, as a function of the characteristic
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(a) k = 1 (b) k = 2

Fig. 4 Couette flow - Density distribution computed using
the HLLEM Riemann solver on the first level of mesh refine-
ment with polynomial degree k = 1 and k = 2.

element size h. The h-convergence study compares the

results of the Lax-Friedrichs, Roe, HLL and HLLEM

Riemann solvers, using polynomial degrees of approxi-

mation from k = 1 to k = 4. Optimal rates of conver-

gence and comparable levels of accuracy are obtained

for the approximation of the primal and mixed variables

using the different Riemann solvers.

Finally, the rates of convergence of the mixed vari-

ables in the last mesh refinement, r�, are examined with

respect to the Reynolds number. In particular, whereas

for Re = 1 the four Riemann solvers show similar rates

of convergence of k + 1, as displayed in figure 5, fig-

ure 6 illustrates the decreasing tendency of such conver-

gence rates as the problem turns convection-dominated.

HLLEM and Roe Riemann solvers display an increased

accuracy with respect to Lax-Friedrichs and HLL, keep-

ing optimal rates of convergence even for Re = 1000. On

the contrary, Lax-Friedrichs and HLL exhibit a steeper

drop in accuracy, experiencing a suboptimal behaviour

as the Reynolds number increases.

7 Numerical benchmarks

A set of numerical examples is presented in this sec-

tion to evaluate the performance and accuracy of the

different Riemann solvers for inviscid and viscous com-

pressible flows in the context of the high-order HDG

method. Different cases, listed in table 3, are consid-

ered, ranging from viscous laminar to inviscid flows,

both in subsonic, transonic and supersonic regimes.

7.1 Entropy production due to geometrical error:

subsonic flow past a circular cylinder

The subsonic flow around a circular cylinder at free-

stream Mach number M∞ = 0.3 is considered to assess

the numerical dissipation introduced by the different

Riemann solvers in the context of HDG methods.

Table 3 List of examples.

Inviscid examples

7.1 Subsonic flow past a circular cylinder
7.3 Transonic flow over a NACA 0012 aerofoil
7.4 Supersonic flow over a NACA 0012 aerofoil

Viscous examples

7.2 Subsonic laminar flow over a flat plate
7.5 Shock wave/boundary layer interaction
7.6 Supersonic flow over a compression corner

In particular, it is known that the geometrical error

introduced by low-order descriptions of curved bound-

aries is responsible for a substantial nonphysical en-

tropy production [6]. Possible solutions involve the mod-

ification of the wall boundary condition [79] or the in-

corporation of the exact boundary representation [120].

As mentioned earlier, isoparametric approximations are

considered in this work. Therefore, only approximations

of degree at least k = 2 are reported, preventing the

geometrical error from dominating over the dissipative

behaviour of the Riemann solvers under analysis.

Two meshes are considered for this example. The

coarsest mesh consists of 1, 104 triangles with 32 ele-

ments to discretise the circle, whereas the finest mesh

has 4, 635 elements and 64 subdivisions on the circle.

A detailed view of the corresponding meshes near the

cylinder is depicted in figure 7. The far-field boundary

is placed at 15 diameters from the circle and inviscid

wall conditions are set on the cylinder boundary.

For isentropic subsonic flows, entropy production

is a measure of the numerical dissipation introduced

by the spatial discretisation. The nonphysical entropy

production is computed via the so-called entropy error,

namely

εent =
p

p∞

(
ρ∞
ρ

)γ
− 1, (63)

measuring the relative error of the total pressure with

respect to the undisturbed flow in an isentropic process.

Figure 8 (left) shows the Mach number distribution

and isolines of the numerical solution computed on the

first mesh with k = 2, . . . , 4, using the HLL Riemann

solver. Although the computed distribution of the Mach

number is comparable in the three settings, the supe-

riority of high-order approximations becomes evident

when the corresponding entropy errors are compared

(figure 8, right). The results clearly display that, in-

creasing the polynomial degree of discretisation, the

numerical dissipation introduced by the method is lo-

calised in the vicinity of the cylinder and its overall

amount is reduced.
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(a) Density, ρ (b) Momentum, ρv (c) Energy, ρE

(d) Deviatoric strain rate, εd (e) Temperature gradient, φ

Fig. 5 Couette flow - Mesh convergence of the L2 error of the (a–c) primal and (d–e) mixed variables of the discretisation,
using Lax-Friedrichs (LF), Roe, HLL and HLLEM Riemann solvers and polynomial degree of approximation k = 1, . . . , 4.

(a) Deviatoric strain rate, εd (b) Temperature gradient, φ

Fig. 6 Couette flow - Rate of convergence of the mixed variables for different Reynolds numbers, using Lax-Friedrichs (LF),
Roe, HLL and HLLEM Riemann solvers and polynomial degree of approximation k = 1, . . . , 4.
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(a) Mesh 1 (b) Mesh 2

Fig. 7 Subsonic flow around a cylinder - Detail of the meshes
near the 2D cylinder, featuring (a) 32 and (b) 64 subdivisions
on the circular boundary.

(a) k = 2, Mach (b) k = 2, entropy error

(c) k = 3, Mach (d) k = 3, entropy error

(e) k = 4, Mach (f) k = 4, entropy error

Fig. 8 Subsonic flow around a cylinder - Mach number dis-
tribution and isolines (left) and entropy error in logarithmic
scale (right) computed on the first mesh using the HLL Rie-
mann solver with k = 2 (top), k = 3 (middle) and k = 4
(bottom).

To quantify the differences between the four Rie-

mann solvers, the nonphysical entropy production is

compared through the L2 norm of the entropy error,

measured on the surface of the cylinder. Figure 9 dis-

plays the quantity (63) as a function of the number of

degrees of freedom of the global problem, for the two

meshes under analysis and an increasing value of the

polynomial degree used to approximate the solution.

The results show that the entropy production of the

HLL Riemann solver is almost identical when compared

to the Lax-Friedrichs Riemann solver, whereas HLLEM

matches the entropy production by the Roe numerical

flux. Moreover, as expected for a subsonic flow, the en-

tropy production is slightly lower for the HLLEM and

Roe Riemann solvers.

Fig. 9 Subsonic flow around a cylinder - Entropy error on
the cylinder surface for different meshes and different degrees
of polynomial approximation.

It is worth noting that the differences among the

Riemann solvers are less important as the polynomial

degree of the approximation increases. This confirms

the observation above on the reduced amount of numer-

ical dissipation introduced by the method as the degree

of the discretisation increases and the consequent extra

accuracy provided by high-order approximations.

7.2 Boundary layer resolution: subsonic viscous

laminar flow over a flat plate

The next example consists of the subsonic laminar flow

over a flat plate at zero angle of attack. This classical

benchmark follows from the analytical study of bound-

ary layers by Blasius for incompressible flows [8] and

has been commonly used to test laminar flow solvers in

resolving boundary layers [116].

This problem is used to evaluate the numerical dif-

fusion introduced by the different Riemann solvers in

the approximation of shear layers and its effect over

the boundary layer description.



18 J. Vila-Pérez, M. Giacomini, R. Sevilla, A. Huerta

The example considers a nearly incompressible flow

(M∞ = 0.1) at a high Reynolds number (Re = 105)

while preserving a laminar behaviour of the solution

along the flat plate.

The computational domain consists of a flat plate of

length 5L, being L the characteristic length of the prob-

lem, embedded in a rectangular domain, as shown in fig-

ure 10. Adiabatic wall conditions are imposed along the

plate, whereas symmetry wall conditions are imposed

upstream of the leading edge. Subsonic inflow and out-

flow conditions are imposed at the outer boundaries.

The pressure at the outflow is set to p∞, forcing a zero

pressure drop.

Fig. 10 Laminar flow over a flat plate - Sketch of the geom-
etry and boundary conditions.

Uniform mesh refinement of the boundary layer is

performed in order to analyse the convergence of the so-

lution. Details of the refinement are reported in table 4.

Table 4 Laminar flow over a flat plate - Mesh refinement
details for the convergence study.

Refinement nlay ndiv h0/L r nel

1 4 10 8 ·10−4 4 501
2 8 20 4 ·10−4 2 1,154
3 16 40 2 ·10−4 1.4 3,512

In particular, for each level of refinement, the num-

ber of layers of elements in the boundary layer, nlay,

and the number of subdivisions along the flat plate,

ndiv, are doubled and the height h0 of the first layer is

halved. Additionally, h0 is chosen according to the re-

lation h0/k ∼ Re−0.75L. Finally, the geometric growth

rate of the boundary layer, r, is determined in order for

the height of the boundary layer mesh to be h/L = 0.1.

The three mesh refinements used for this study are

displayed in figure 11. Because of the explicit embed-

ding of the flat plate on the lower boundary of the do-

main, a singularity is introduced at the leading edge

[131]. To alleviate its numerical effects, the mesh is fur-

ther refined at this location.

The skin friction coefficient computed in the first

level of refinement using degree of approximation k = 1

and k = 3 is depicted in figure 12 for the different Rie-

(a) Mesh 1.

(b) Mesh 2.

(c) Mesh 3.

Fig. 11 Laminar flow over a flat plate - Meshes used for the
convergence study.

(a) Mesh 1, k = 1

(b) Mesh 1, k = 3

Fig. 12 Laminar flow over a flat plate - Friction coefficient
along the flat plate for different polynomial degrees of ap-
proximation in the coarsest mesh, using the Lax-Friedrichs
(LF), Roe, HLL and HLLEM Riemann solvers. The reference
solution is obtained using the HLLEM Riemann solver on the
third mesh, with k = 4.
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(a) Mesh 1, k = 1 (b) Mesh 2, k = 1 (c) Mesh 3, k = 1

(d) Mesh 1, k = 2 (e) Mesh 1, k = 3 (f) Mesh 1, k = 4

Fig. 13 Laminar flow over a flat plate - Velocity profiles along the flat plate and boundary layer thickness for the different
meshes and polynomial degrees of approximation, using an HLLEM Riemann solver.

mann solvers. The superiority of Roe and HLLEM Rie-

mann solvers with respect to classical Lax-Friedrichs

and HLL is clearly displayed in figure 12a: for low-order

approximations, HLLEM and Roe achieve a better ac-

curacy due to their ability to capture contact wave-type

phenomena and consequently, boundary layer effects by

introducing a lower amount of numerical dissipation.

Of course, such difference is reduced when high-order

approximations are considered, as the numerical dissi-

pation of the method decreases, see figure 12b.

In a similar fashion, velocity profiles along the flat

plate and detail of the boundary layer thickness are

sketched in figure 13 for different degrees of approxima-

tion in the different mesh refinements, computed with

the HLLEM Riemann solver. The solution is notice-

ably improved with mesh refinement (figure 13, top).

It is worth noting that accurate approximations are

achieved on the coarsest mesh using high-order poly-

nomial approximation (figure 13, bottom).

In order to quantify the effect of the numerical dis-

sipation introduced by the Riemann solver in the qual-

ity of the approximate solution, the L2 error of the

boundary layer thickness and of the friction coefficient

is measured along the flat plate. The convergence study,

shown in figure 14, reports the evolution of the error as a

function of the number of degrees of freedom, obtained

for each mesh by increasing the polynomial degree of

approximation from k = 1 up to k = 4.

The HLLEM solution on mesh 3 using fourth-order

polynomials is taken as reference solution for compar-

ison. The results display that Lax-Friedrichs and HLL

solutions introduce higher levels of error than HLLEM

and Roe. These differences are more remarkable in low

order approximations, being the choice of Riemann solver

(a) Boundary layer thickness, δ

(b) Friction coefficient, Cf

Fig. 14 Laminar flow over a flat plate - Convergence of the
relative L2 error of the (a) boundary layer thickness and (b)
friction coefficient, using Lax-Friedrichs (LF), Roe, HLL and
HLLEM Riemann solvers under k-refinement (k = 1, . . . , 4)
using three different meshes.
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(a) k = 1 (b) k = 2 (c) k = 3

Fig. 15 Laminar flow over a flat plate - Convergence of the drag coefficient, Cd, using Lax-Friedrichs (LF), Roe, HLL and
HLLEM Riemann solvers under h-refinement using three different polynomial degrees of approximation.

a critical issue for the accuracy of the computation.

Furthermore, it is worth noticing that high-order ap-

proximations on coarse meshes provide higher accuracy

than lower-order solutions with similar number of de-

grees of freedom, emphasising the interest for increasing

the polynomial degree of approximation.

Similarly, the convergence of the drag coefficient

is reported in figure 15. It is confirmed that HLLEM

and Roe Riemann solvers display an increased accuracy

with respect to Lax-Friedrichs and HLL, which is espe-

cially evident for k = 1. In this case, even in the coars-

est mesh, the drag coefficient computed with HLLEM

and Roe solutions lies within the admissible error of

five drag counts, contrary to HLL and Lax-Friedrichs.

As the degree of approximation increases, differences

among Riemann solvers are notably reduced, due to

the lower numerical dissipation introduced by HDG.

Hence, Roe and HLLEM Riemann solvers have proved

to be able to resolve the flow solutions in thin bound-

ary layers exhibiting an increased accuracy when low-

order approximations are constructed. More precisely,

the numerical diffusion introduced by Riemann solvers

misrepresenting middle waves (i.e. Lax-Friedrichs and

HLL) results critical for an accurate approximation of

the solution in the boundary layer and its derived quan-

tities. As the resolution increases, either by mesh refine-

ment or by increasing the polynomial order of approx-

imation, such numerical diffusion is reduced and the

differences among Riemann solvers become negligible.

Henceforth, and in order to fully exploit the advan-

tages of the presented HDG solver with the different

Riemann solvers, as proved in the previous examples,

only high-order approximations are considered.

7.3 Shock treatment in inviscid flows: transonic

inviscid flow over a NACA 0012 aerofoil

The transonic inviscid flow over a NACA 0012 aerofoil,

at free-stream conditions M∞ = 0.8 and angle of attack

α = 1.25◦, is presented to assess the performance of the

shock capturing method for inviscid flows. This exam-

ple is a classical benchmark used to verify numerical

inviscid codes and implementations of shock capturing

techniques, see for instance [124, 129, 140] or the test

case MTC2 in [80].

Fig. 16 Transonic flow over a NACA 0012 aerofoil - Mach
number distribution computed using HLL Riemann solver
with polynomial degree of approximation k = 4.

The steady state problem is solved via a relaxation

approach with a time step ∆t = 10−1 such that the

Courant number is C = 22. Convergence to the steady

state is achieved when the residual of the steady terms

of the continuity equation reaches 10−6 or is decreased

by three orders of magnitude from its maximum value.
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All Riemann solvers are equipped with the Laplacian-

based shock capturing technique described in section 5.2.2

and the value ε0 = 0.4 is selected. In the case under

analysis, no entropy fix is required by the Roe flux

since the artificial viscosity introduced by the shock

capturing strategy allows the Riemann solver to ful-

fill the entropy conditions. Nonetheless, it is worth re-

marking that the need of an entropy fix is not known a

priori and the value of the corresponding parameter δ

depends upon the problem and requires to be appropri-

ately tuned by the user. More details will be provided

in section 7.4 for the case of a supersonic flow over the

NACA 0012 aerofoil.

A mesh with 1, 877 triangular elements, without any

specific refinement in the shock region, is used and an

approximation degree k = 4 is considered. The far-field

boundary is placed 10 chord units away from the aero-

foil.

Figure 16 displays the Mach number distribution

computed using the HLL Riemann solver. An accurate

description of the flow around the aerofoil is obtained

and the shock is precisely captured with a coarse mesh,

owing to the high-order polynomial approximation con-

structed using the HDG framework and the shock cap-

turing term introduced. The resolution of the shock is

clearly related to the local mesh size and sharper rep-

resentations may be obtained by performing local mesh

refinement in the shock region, as described in [93].

Comparable results, not reported here for brevity, were

obtained by the proposed HDG method with Lax-Friedrichs,

Roe and HLLEM Riemann solvers.

The accuracy of the different numerical fluxes is thus

evaluated comparing the pressure coefficient, given by

Cp =
p− p∞

0.5ρ∞v2∞
, (64)

over the aerofoil profile.

A well resolved solution, in agreement with experi-

mental data from [140], is obtained using all Riemann

solvers. The results in figure 17 display that HLL and

HLLEM Riemann solvers provide an approximation with-

out oscillations and with accuracy similar to the one of

the Roe numerical flux near the upper, stronger shock.

It is worth noting that the jumps appearing at the ex-

trema of the shock region are due to the discontinuous

nature of the HDG approximation. The lower, weaker

shock, is reproduced less precisely by the four Riemann

solvers. In this case, HLL presents a behaviour closer to

the Lax-Friedrichs solution, whereas HLLEM and Roe

produce a similar approximation.

Accordingly, the lift and drag coefficients reported

in table 5 allow to quantify very little differences among

Riemann solvers.

Table 5 Transonic inviscid flow over a NACA 0012 aerofoil -
Lift and drag coefficients for different Riemann solvers using
a polynomial degree of approximation k = 4.

Lax-Friedrichs Roe HLL HLLEM

Cl 0.320 0.314 0.317 0.315

Cd 0.0193 0.0190 0.0192 0.0191

Fig. 17 Transonic flow over a NACA 0012 aerofoil - Pressure coefficient around the aerofoil surface computed using different
Riemann solvers with polynomial degree of approximation k = 4 and detailed views of the lower (left) and upper (right) shocks.



22 J. Vila-Pérez, M. Giacomini, R. Sevilla, A. Huerta

The obtained values lie between 25 and 35 lift and

drag counts with respect to typical reference values [129].

Note that the precision of the aerodynamic coefficients

is strongly dependent on the location of the far-field

boundary, as reported by Yano and Darmofal [135,139].

In particular, for such kind of comparisons, far-field

boundaries are tipically located at distances from 50

up to 104 chord lengths from the aerofoil [3, 49, 135,

137,139].

Finally, the entropy production is considered for this

non-isentropic case. In this context, such quantity al-

lows to estimate the numerical dissipation introduced

in the upstream region before the shock and the entropy

produced by the artificial viscosity.

On the one hand, the results in figure 18 show that

the regions of activation of the sensor are almost identi-

cal for the four Riemann solvers. On the other hand, the

different amount of numerical dissipation introduced by

the numerical fluxes is responsible for the production

(a) HLL, sensor activation (b) HLL, entropy production

(c) HLLEM, sensor activation (d) HLLEM, entropy production

(e) LF, sensor activation (f) LF, entropy production

(g) Roe, sensor activation (h) Roe, entropy production

Fig. 18 Transonic flow over a NACA 0012 aerofoil - Regions of activation of the shock sensor (left) and entropy production
in logarithmic scale (right) for HLL (a-b), HLLEM(c-d), Lax-Friedrichs (LF, e-f) and Roe (g-h) Riemann solvers using a
polynomial degree of approximation k = 4.
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of entropy. As observed in figure 17, HLL, HLLEM and

Roe Riemann solvers present a similar behaviour in the

vicinity of the upper, stronger shock, where comparable

approximations are achieved. On the contrary, the Lax-

Friedrichs numerical flux introduces the largest amount

of numerical dissipation in this region, as shown in fig-

ure 18f. In the vicinity of the weaker shock on the lower

part of the aerofoil, the four Riemann solvers show a

similar entropy production. Finally, Roe and HLLEM

solvers provide the most accurate results in the region

near the trailing edge, where the HLL and the Lax-

Friedrichs numerical fluxes introduce extra dissipation.

This example demonstrates an overall good perfor-

mance of the Laplacian-based shock capturing method

for inviscid compressible flows. Furthermore, no sig-

nificant differences are observed among the Riemann

solvers using a high-order approximation of order k = 4.

In particular, the four numerical fluxes lead to simi-

lar approximate solutions, as reported with the aerody-

namic measures of lift, drag and pressure coefficients,

while displaying an accurate and positively conservative

treatment of the shock waves.

7.4 Positivity-preserving properties in presence of

shocks: supersonic inviscid flow over a NACA 0012

aerofoil

The second example of inviscid flow around a NACA

0012 aerofoil consists of a supersonic flow at a free-

stream Mach number M∞ = 1.5 and zero angle of attack

[3, 103].

This supersonic test case challenges the performance

of the proposed Riemann solvers in HDG in capturing

solutions involving shocks and sharp gradients while en-

suring positivity-preserving properties using high-order

approximations. It is worth noticing that, in such case,

Riemann solvers may fail to provide physically admissi-

ble solutions, leading to a violation of the positiveness of

the approximate density and pressure fields [54,99,109].

The computational mesh described in the previous

case 7.3, consisting of 1,877 triangular elements and a

far-field boundary placed at 10 chord units away from

the aerofoil, is employed for the simulation. A time step

∆t = 8×10−2 is considered to advance in time and the

corresponding Courant number is C = 20. Convergence

to the steady state is achieved when the residual of the

steady terms of the continuity equation reaches 10−6

or is decreased by three orders of magnitude from its

maximum value. The shock treatment is handled by

means of the Laplacian-based technique discussed in

section 5.2.2, with a maximum value of artificial viscos-

ity ε0 = 1.

Fig. 19 Supersonic flow over a NACA 0012 aerofoil - Mach
number distribution computed using an HLL Riemann solver
with polynomial degree of approximation k = 4.

The Mach number distribution computed using the

HLL Riemann solver with a polynomial degree of ap-

proximation k = 4 is presented in figure 19. The method

is able to accurately capture the physics of the problem,

even on a coarse mesh, owing to the high-order func-

tional discretisation introduced by the HDG scheme.

This supersonic problem is especially challenging

since it features an abrupt shock in front of the aerofoil

and allows to test the positivity properties of the ap-

proximate solution. For this purpose, the performance

of the Roe Riemann solver is compared with those of

the HLL family. Figure 20 shows the minimum nodal

value of the pressure computed using the Roe numeri-

cal flux with different values of the HH entropy fix as

well as with HLL and HLLEM.

Fig. 20 Supersonic flow over a NACA 0012 aerofoil - Mini-
mum nodal value of the pressure computed using the differ-
ent Riemann solvers with polynomial degree of approximation
k = 4.

In the case with no entropy fix (δ = 0), the Roe

solver displays an insufficient numerical dissipation. Af-

ter few iterations, negative values of the pressure are

computed, leading to a nonphysical solution. This error

is amplified from one time step to the following ones and

rapidly leads to the divergence of the Newton-Raphson

algorithm employed to solve the nonlinear problem.
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(a) HLL, Mach (b) HLL, artificial viscosity

(c) Roe HH-EF δ = 0.1,
Mach

(d) Roe HH-EF δ = 0.1, arti-
ficial viscosity

Fig. 21 Supersonic flow over a NACA 0012 aerofoil - Detail
of the Mach number distribution (left) and corresponding ar-
tificial viscosity (right) in the front shock near the leading
edge computed using HLL (top) and Roe Riemann solver with
HH entropy fix with threshold parameter δ = 0.1 (bottom)
with polynomial degree of approximation k = 4.

To remedy this issue, inherent to the Roe Riemann

solver, an HH entropy fix with an empirically tuned

value of the threshold parameter δ is considered. It is

worth emphasising that the tuning of such parameter

is problem-dependent. With a setting of δ = 0.1, the

HDG method with Roe Riemann solver converges to

a steady state solution including some nonphysical un-

dershoots in the pressure and density fields, giving rise
to overshoots in the Mach distribution.

Precisely, the corresponding Mach number distribu-

tion computed using the Roe numerical flux with en-

tropy fix parameter δ = 0.1 is reported in figure 21 to

illustrate such spurious oscillations appearing in the re-

gion in front of the shock (Fig. 21c). Such oscillations

appear despite the artificial viscosity introduced in the

corresponding elements, as displayed in figure 21d. Hence,

this value of the HH entropy fix parameter leads to in-

sufficient stabilisation and a higher threshold needs to

be introduced.

Remark 14 It is worth noting that the colour scale of

figure 21 keeps the same gradation of colours of figure 19

for the interval M ∈ [0, 1.8] but extends up to M = 3.6

to visualise the peak values achieved by the overshoots

in the Roe solution.

Such numerical issues are fixed by increasing the

threshold value δ of the HH entropy fix. Numerical re-

sults showed that a value δ = 0.25 or larger allows the

high-order HDG solver to achieve a physically admissi-

ble solution with no overshoots, as reported in figure 20.

Nonetheless, in case of exceeding the threshold value of

the entropy fix, the associated numerical dissipation of

the Roe Riemann solver is increased, turning the solver

overdiffusive. In the limit, δ → λmax, the Lax-Friedrichs

Riemann solver is obtained. On the contrary, HLL and

HLLEM numerical fluxes provide a robust approxima-

tion with no oscillations without the need of any user-

defined entropy fix.

The entropy production is then examined for this

non-isentropic case. In this context, such quantity al-

lows to estimate the numerical dissipation introduced

in the upstream region before the shock and the entropy

produced by the artificial viscosity. The map of the en-

tropy production is reported in figure 22 for the HLL,

HLLEM and Lax-Friedrichs numerical fluxes. The re-

sults display that HLL-type Riemann solvers introduce

a limited amount of numerical dissipation in the vicinity

of the front shock. On the contrary, the Lax-Friedrichs

solver is responsible for a large entropy production in

the shock region, confirming its over-diffusive nature

also in supersonic problems.

Figure 22 also confirms that the shock-capturing

sensor is activated in the same regions independently

on the Riemann solver considered.

Finally, the accuracy of the approximate solutions

corresponding to the different Riemann solvers is quan-

titatively evaluated with respect to the error in the lift

coefficient. It is well-known that a symmetric aerofoil

subject to a flow at zero angle of attack produces no lift

force. Table 6 gathers the lift coefficient computed with

the different Riemann solvers. The HLL-type numerical

fluxes, i.e., HLL and HLLEM, are the most accurate in

such computation, with a lift coefficient laying at 5 and

6 lift counts from the reference value, respectively. Both

the lift coefficient computed by Roe with an entropy fix

δ = 0.25 and by Lax-Friedrichs (LF) feature a higher

error of 8 lift counts with respect to the reference value.

Table 6 Supersonic inviscid flow over a NACA 0012 aerofoil
- Lift coefficient for different Riemann solvers using a poly-
nomial degree of approximation k = 4.

Reference LF Roe
(δ = 0.25)

HLL HLLEM

Cl 0 −0.008 −0.008 −0.005 −0.006

This example involving a strong shock wave illus-

trates the ability of HLL-type Riemann solvers, such as

HLL and HLLEM, of guaranteeing positivity and thus

producing physically admissible solutions in a robust
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(a) HLL, sensor activation (b) HLLEM, sensor activation (c) LF, sensor activation

(d) HLL, entropy production (e) HLLEM, entropy production (f) LF, entropy production

Fig. 22 Supersonic flow over a NACA 0012 aerofoil - Regions of activation of the shock sensor (top) and entropy production in
logarithmic scale (bottom) for HLL (left), HLLEM (middle) and Lax-Friedrichs (LF, right) Riemann solvers using polynomial
degree of approximation k = 4.

and parameter-free strategy, in contrast with Roe Rie-

mann solver.

7.5 Shock wave/boundary layer interaction

The next example considers the strong interaction be-

tween a shock wave and a laminar boundary layer. Such

interaction is a basic phenomenon of viscous-inviscid in-

teraction that happens when a shock impinges on the

boundary layer producing separation in it. In such a

case, the shock, instead of reflecting off the wall, turns

into a combination of an expansion fan at the edge of

the boundary layer plus two compression waves around

the separation and reattachment points [62,74].

The setup of this test case replicates the one in-

troduced by Degrez et al. [36] and later reproduced

by Moro et al. [88] using a high-order HDG discreti-

sation with k = 3. It consists of a flat plate and a shock

generator mounted inside a stream at M∞ = 2.15 and

Re = 105. A sketch of the geometry for a characteris-

tic length of L = 1 and the corresponding boundary

conditions are detailed in figure 23.

Fig. 23 Shock wave/boundary layer interaction - Geometry
and boundary conditions.

As illustrated in figure 24, it is worth noticing that a

fillet is introduced at the leading edge in order to avoid

the singularity at this location.

The computational mesh, depicted in figure 25, is

composed of 3,379 triangular elements of degree k = 3.

The boundary layer mesh consists of nlay = 12 layers of

elements with a growing rate r = 1.4 and the first layer

located at a height of h0/L = 2.5 · 10−4. In addition,

the mesh is refined at the leading edge and ndiv = 80

divisions are defined along the plate.
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Fig. 24 Shock wave/boundary layer interaction - Detail of
the fillet at the leading edge.

Fig. 25 Shock wave/boundary layer interaction - Computa-
tional mesh.

The simulation is performed using the HLLEM Rie-

mann solver due to its positivity-preserving properties

in presence of shocks, contrary to Roe, and its supe-

riority with respect to HLL or Lax-Friedrichs in re-

solving boundary layers. The physics-based shock treat-

ment involving an artificial bulk viscosity described in

section 5.2.1 is employed. The resulting flowfield is de-

picted in figure 26. The presence of shocks generated

at different locations as well as the effect of the strong

shock wave/boundary layer interaction can be observed.

Detail of the impingement region showing the separa-

tion bubble induced by the interaction between the re-

flecting shock wave and the boundary layer is illustrated

in figure 27.

Fig. 26 Shock wave/boundary layer interaction - Mach num-
ber distribution obtained with the HLLEM Riemann solver
and polynomial degree of approximation k = 3.

Finally, figure 28 displays a comparison of the pres-

sure coefficient and the skin friction coefficient com-

puted using the HLLEM Riemann solver with bench-

mark results in [36,88].

Fig. 27 Shock wave/boundary layer interaction - Detail of
the Mach field around the shock-induced separation bubble.
Isolines of the Mach are drawn in white.

(a) Pressure coefficient

(b) Friction coefficient

Fig. 28 Shock wave/boundary layer interaction - Pressure
(a) and friction (b) coefficients along the flat plate using the
HLLEM Riemann solver and order of polynomial approxima-
tion k = 3.
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The computed pressure and skin friction coefficients

show excellent agreement with both the experimental

curve by Degrez et al. and the numerical solution by

Moro et al., whereas the numerical curve by Degrez et

al. deviates from the rest of results, especially down-

stream of the separation bubble. The HLLEM com-

puted solution lies on top of the reference results ex-

cept for the region of shock impingement, where the

highly anisotropic adapted meshes by Moro et al. out-

perform the presented results. It is worth recalling that

the HLLEM simulation in this study is performed on a

mesh with no a priori refinement except for the bound-

ary layer regions and the leading edge point.

This test case demonstrates a good behaviour of the

HLLEM Riemann solver not only in the resolution of

the boundary layer or in the treatment of shock waves

in high-order but also in the strong interaction of these

two flow features which challenges the performance of

Riemann solvers.

7.6 Supersonic flow over a compression corner

The last case presented in this study considers the M∞ =

3 supersonic flow over a 10◦ compression corner. This

example represents a classical benchmark for viscous

laminar compressible flow, first introduced by Carter [11]

and later reproduced by several authors, see for exam-

ple [1, 69,78,84,105,126].

The setup of this problem consists of a laminar flow

at Re = 16, 800 over an isothermal flat plate of length

L (the characteristic length of the problem) ended with

a 10◦ wedge. The isothermal surface is kept at the free-

stream stagnation temperature, namely

Tw = T∞,0 =
1

(γ − 1)M2
∞

(
1 +

γ − 1

2
M2
∞

)
. (65)

A sketch of the geometry and detail of the correspond-

ing boundary conditions is depicted in figure 29.

Fig. 29 Supersonic flow over a compression corner - Sketch
of the geometry and boundary conditions.

The computational domain is discretised with 2,773

triangular elements of degree k = 3, as illustrated in 30.

In contrast to the shock wave/boundary layer interac-

tion example, the leading edge of the flat plate is not

rounded by means of a fillet, thus introducing a singu-

larity. Such singular behaviour is alleviated by means of

further refinement and by reducing the order of polyno-

mial approximation to k = 2 in the elements surround-

ing the singularity, as depicted in red in 30b.

The boundary layer mesh consists of nlay = 12 lay-

ers of elements with the first layer located at a height

of h0/L = 5 · 10−4 and a growing rate of r = 1.4. The

isothermal wall is divided into ndiv = 72 elements.

(a)

(b)

Fig. 30 Supersonic flow over a compression corner - (a)
Computational mesh and (b) detail of the leading edge, show-
ing in red the elements employing a lower degree of approxi-
mation, k = 2.

The physics-based shock capturing based on arti-

ficial bulk viscosity described in 5.2.1 is employed for

the simulation. The resulting flowfield obtained with

the HLLEM Riemann solver is presented in figure 31.

The density field in figure 31a illustrates the regions of

high compression, namely the shock wave generated at

the leading edge and the compression fan induced by

the wedge.

Good resolution of the flow solution can be observed

in figure 32, where the separation bubble induced by the

corner is depicted.

A qualitative comparison of the obtained results

is carried out through the wall pressure and the skin

friction coefficient. Figure 33 compares such quanti-

ties with respect to the reference results by Carter [11]

and Hung and MacCormack [69], showing an excellent
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(a) Density

(b) Mach

Fig. 31 Supersonic flow over a compression corner - Density
(a) and Mach number (b) distributions using the HLLEM
Riemann solver with a combined polynomial degree of ap-
proximation k = 2 and k = 3.

Fig. 32 Supersonic flow over a compression corner - Detail
of the Mach number distribution around around the corner,
using the HLLEM Riemann solver with a combined polyno-
mial degree of approximation k = 2 and k = 3. Isolines of the
Mach are drawn in white.

agreement. Additional numerical results available in the

literature such as [1,78,84,105,126] are not included in

the comparison for the sake of readability because of

the similarity among them.

Finally, the position of the separation, xs, and reat-

tachment, xr, points, gathered in table 7, allows a quan-

titative assessment of the computed solution.

The obtained results show a strong consistency with

respect to those available in the literature, proving the

good performance of the high-order HDG solver.

8 Concluding remarks

This paper presents a review of the formulation of in-

viscid and viscous compressible flows, i.e. the Euler and

the compressible Navier-Stokes equations, in the con-

(a) Pressure

(b) Friction coefficient

Fig. 33 Supersonic flow over a compression corner - Pressure
(a) and friction coefficient (b) along the flat plate using the
HLLEM Riemann solver with a combined polynomial degree
of approximation k = 2 and k = 3.

Table 7 Supersonic flow over a compression corner - Position
of the separation, xs, and reattachment, xr, points around
the wall.

Reference xs/L xr/L

Present study 0.86 1.20

Carter [11] 0.84 1.22
Hung and MacCormack [69] 0.89 1.18
Shakib et al. [126] 0.88 1.17
Mittal and Yadav [84] 0.89 1.13
Kotteda and Mittal [84] 0.88 1.17
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text of high-order hybridised discontinuous Galerkin

methods. Moreover, it introduces a unified framework

for the derivation of traditional Riemann solvers, namely

Lax-Friedrichs and Roe, already formulated in HDG,

and HLL and HLLEM Riemann solvers, which are de-

vised for the first time for hybridised discretisations.

According to the HDG rationale, the intermediate state

utilised to evaluate the numerical fluxes is constructed

by means of the HDG hybrid variable and the informa-

tion of the Riemann solver itself is encapsulated in the

HDG stabilisation matrix. In addition, the present for-

mulation of the compressible Navier-Stokes equations

introduces a new choice for the mixed variables em-

ployed to describe the viscous flux tensor, namely the

deviatoric strain rate tensor and the temperature gradi-

ent. Such election for the mixed variables allows to im-

pose pointwise the symmetry of the stress tensor with

reduced computational cost, while retrieving optimal

accuracy.

Optimal convergence properties of the HDG dis-

cretisation have been verified using Lax-Friedrichs, Roe,

HLL and HLLEM Riemann solvers both for inviscid

and viscous cases and for a wide range of the Reynolds

number. HDG demonstrates its ability to approximate

the conserved quantities as well as the viscous stress

and the heat flux with optimal order of convergence,

k + 1. Whereas the role of the Riemann solver shows

little effect in the precision of the approximate primal

variables, significant differences are noticed in the preci-

sion of the approximated mixed variables. In particular,

HLLEM and Roe Riemann solvers yield a gain in accu-

racy in the approximation of the heat flux and viscous

stress, specially as the Reynolds number increases.

Then, a set of 2D numerical benchmarks has been

presented to show the advantages of high-order approxi-

mations for compressible flow problems and the capabil-

ities of the novel HLL and HLLEM Riemann solvers in

different flow regimes, from subsonic to supersonic, with

special attention to its comparison with well-established

Lax-Friedrichs and Roe Riemann solvers in the context

of HDG.

In particular, HLL-type Riemann solvers exhibit a

superior performance in supersonic cases, illustrating

their positivity preserving properties. This allows a ro-

bust and parameter-free strategy in the solution of su-

personic flows involving shock waves, contrary to Roe

Riemann solver, which may fail to produce physically

admissible solutions because of a lack of dissipation.

Furthermore, HLLEM Riemann solver demonstrates its

ability to preserve contact or shear layers, likewise Roe,

producing results that introduce less numerical dissi-

pation than HLL and Lax-Friedrichs, and displaying a

major advantage in the approximation of boundary lay-

ers.

Finally, a couple of benchmarks involving the in-

teraction of boundary layers and shock waves demon-

strate the overall good performance of the high-order

HDG method, equipped with a shock-capturing tech-

nique based on artificial viscosity and an HLLEM Rie-

mann solver, in the resolution of problems with such

combination of viscous and inviscid-type phenomena.
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