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SUMMARY 

The field of ecological epigenetics aims to understand the implications of epigenetic 

modifications in adaptation, inheritance and ultimately, evolution. Many questions 

remain open within ecological epigenetics, in particular, how epigenetic variation is 

influenced by genetic background, the extent of environmentally-induced epigenetic 

variants, as well as its degree of heritability. This thesis used the unique diversity of 

mating systems present in the killifish genus Kryptolebias to investigate how genetic 

and environmental variation shape epigenetic variation in animals. 

Genetic and epigenetic structure was investigated in natural populations of K. 

hermaphroditus in northeast Brazil, with the species being confirmed as the second 

example of mixed-mating system in vertebrates. Cytosine methylation was largely 

influenced by genetic background. However, within-populations, when individuals 

were more genetically similar, DNA methylation was mostly affected by parasites.  

Kryptolebias ocellatus, here confirmed as an outcrossing-only androdioecious species, 

showed deep genetic structure in southeast Brazil. Hybridisation between K. ocellatus 

and the predominantly selfing K. hermaphroditus was uncovered, representing the first 

example of hybridisation between species with different mating systems in vertebrates. 

Hybrids had intermediate patterns of cytosine methylation relatively to the parental 

species, with important biological processes being potentially misregulated. 

Environmental enrichment was shown to affect brain cytosine methylation patterns in 

two inbred strains of K. marmoratus, however genetic background had a stronger 

effect than environmental variation. Commonly-affected epialleles between genotypes 

predominantly showed a genotype-by-environment reaction norm, suggesting that 

exclusively environmentally-induced epialleles may be rare. Intergenerationally, 

parental activity affected offspring activity, and a limited number of putative 

intergenerational epialleles were identified. This is the first example of behavioural 

parental effects induced by environmental enrichment in fish. 

These findings show that genetic background has a prominent effect and must be take 

into account when evaluating the evolutionary potential of cytosine methylation 

variation. In addition, inheritance of environmentally-induced cytosine methylation 

epialleles may be limited, with other epigenetic mechanisms, such as microRNAs, 

being more likely to escape epigenetic reprogramming and transmit epigenetically-

induced parental effects. 
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I.I. Reviewing gene-based approach 

The astonishing diversity of phenotypes observed in nature - from the marvellous 

colour patterns on butterfly wings to the complex mating behaviours of birds of 

paradise - has been long thought to be exclusively generated and inherited by what is 

written in the "code of life”, namely the DNA sequence. The traditional view of DNA 

sequence as the sole unit of inheritance, also called “gene-centred” or “gene-based 

approach” (Bonduriansky and Day 2018; Sultan 2015), has deep and historical 

implications on the ways that the field of evolutionary biology has emerged and 

evolved, and also has other more complex cultural, historical and social legacies 

(Bonduriansky and Day 2018; Garver and Garver 1991; Kevles and Hood 1992). The 

following statements, for example, were made just after the announcement that the 

human genome had been sequenced in June 2000: 

"It represents an immense step forward for humanity in deciphering the make-up of 

life itself." (Former Japanese Prime Minister Yoshiro Mori) 

 “Today we are learning the language in which God created life.” (Former US 

President Bill Clinton) 

"We've now got to the point in human history where for the first time we are going to 

hold in our hands the set of instructions to make a human being." (Dr John Sulston, 

UK Sanger Centre) 

DNA sequence is undoubtably an important component of cellular machinery and key 

source of heritable information. However, mounting empirical evidence show 

genetically-identical individuals vary in phenotype across all levels of biological 

organization (e. g. gene expression, cellular differentiation, physiology, behaviour), 

both within (phenotypic plasticity) and across generations (known as transgenerational 
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phenotypic plasticity or parental effects) (Callahan et al. 1997; Des Marais et al. 2013; 

Fusco and Minelli 2010; Jablonka 2006; Scheiner et al. 2012; Sentis et al. 2018; Uller 

2008; Verhoeven and Preite 2014; West-Eberhard 2003), emphasising the role of 

developmental and environmental variation on shaping phenotypes. Therefore,  

information about DNA sequence itself may not be enough to decipher “the make-up 

of life”, or perhaps DNA alone does not possess all of the self-contained instructions 

on how to “make a human being” or any other organism. 

Evolutionary biologists are now been increasingly stimulated by the enormous body 

of evidence challenging the deeply engrained gene-based ideas (Badyaev 2005; 

Dickins and Rahman 2012; Pigliucci 2007). In face of these new challenges, some 

evolutionary biologists are calling for an review/expansion of the concepts and 

mechanisms included in the Modern Synthesis (MS) (Huxley 1942; Pigliucci and 

Muller 2010), a review which has been named as the “Extended Evolutionary 

Synthesis” (EES) (Bonduriansky and Day 2018; Dickins and Rahman 2012; Laland et 

al. 2015). The EES proposes to expand the scope of the MS in a more integrative view 

of phenotypic variation, heredity and evolution, with genomes being one component 

an of a complex regulatory system in which organisms affect and are affected by 

environmental variation, and environmental signals interacting with genomes through 

non-genetic mechanisms (Sultan 2015). Much discussion is currently undergoing 

about whether the mechanisms being proposed by EES, such as phenotypic plasticity, 

niche construction and inclusive inheritance, were already included in scope of the MS 

(Laland et al. 2014; Svensson 2018) or even if those are relevant to the basic long-term 

process driving evolutionary change (e.g. natural selection, genetic drift, 

recombination) or simply  represent “add-ons” mechanisms for generating variability 

(Charlesworth et al. 2017). This debate, together with the technological advances in 
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acquiring genomic data, have helped to redraw attention to molecular mechanisms 

underlying phenotypic plasticity, both with and among generations (Danchin et al. 

2019; Laland et al. 2015; Sultan 2015).  

Phenotypic plasticity has been shown to facilitate colonisation of new habitats (Yeh 

and Price 2004), allow rapid shifts between adaptive peaks (Agrawal et al. 1999), 

promote morphological diversity from pre-existing phenotypes (Levis et al. 2018) and 

influence population gene flow and ultimately speciation (Price et al. 2003). Parental 

effects, when parental phenotypes affect offspring phenotypes, are a transgenerational 

form of phenotypic plasticity also known to affect organism’s evolutionary trajectories 

(Burgess and Marshall 2014). Although within-generation phenotypic plasticity seems 

to be mostly mediated by chemical modifications in the molecular machinery 

regulating gene expression, parental effects can also be transmitted by other non-

genetic mechanisms. These include parental care, cultural transmission, intrauterine 

environments, which affect offspring fitness without being directly transmitted by the 

germline cells (Bonduriansky and Day 2009). Although phenotypically-plastic traits 

have been extensively reported across a wide range of taxa (West-Eberhard 2003), and 

the evidence for parental effects transmitted via germline cells have been increasingly 

reported (Chen et al. 2016; Illum et al. 2018; Posner et al. 2019; Rodgers et al. 2015; 

Rodriguez-Barreto et al. 2019), the knowledge about the molecular mechanisms in 

charge of generating and transmitting plastic phenotypes throughout generations is still 

incipient, as well as their stability and evolutionary role (Dickins and Rahman 2012; 

Duncan et al. 2014; Richards 2006). 

I.II. Ecological epigenetics 

The term ‘epigenetics’ (Greek prefix ‘epi’ meaning on top of/over) was first coined by 

Waddington (1942) referring to the interactions between genes and environments. 
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More recently however, the term has been narrowed to the individual level, referring 

to the chemical modifications of chromatin and/or transcribed DNA which affect gene 

activity and expression without modifying the underlying DNA sequence (Duncan et 

al. 2014; Jablonka and Raz 2009; Richards 2006).  

Epigenetic mechanisms are essential for vital biological processes, such as cell 

differentiation, regulation of cell-cycle, genomic imprinting and dosage-compensation 

(Reik 2007). Several epigenetic modifications, such as histone modifications, DNA 

acetylation and microRNAs have been described, however DNA methylation is by far 

the best characterised and mostly extensively studied (Lea et al. 2017). At the 

molecular scale, DNA methylation consists of the modification of a DNA base with 

the addition of a methyl group (CH3). In animals, it mostly occurs in CpG (i.e. cytosine 

followed by guanine) residues with the inclusion methyl group by methyltransferase 

enzymes to the fifth carbon of a cytosine (Jones 2012). This epigenetic modification 

affects the accessibility of transcription factors to DNA strand by the recruitment of 

methyl CpG binding proteins (Moore et al. 2013). The effect of DNA methylation on 

gene activity and expression levels varies across taxa and genomic contexts (Banta and 

Richards 2018; Best et al. 2018; Jones 2012; Moore et al. 2013). In mammals, DNA 

methylation on gene promoter is generally associated with silencing of gene 

expression (Jones 2012). Gene body methylation, however, has been shown to have 

multiple functions, such as repressing transcriptional noise (Horvath et al. 2019; Huh 

et al. 2013), and ensuring the inclusion of the first and last exons in a transcript (Sati 

et al. 2012). Recently, a conserved inverse correlation between first intron DNA 

methylation and gene expression was found across tissues and phylogenetically distant 

vertebrates (Anastasiadi et al. 2018). DNA methylation also interacts with other 
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epigenetic mechanisms, such as histone modifications and microRNAs, in a complex 

and integrative mode to regulate transcription levels (Moore et al. 2013). 

Epigenetic modifications can have profound effects on the ways we currently 

understand ecology and evolution (Bossdorf et al. 2008). Within an ecological 

perspective, given its more dynamic and reversible nature compared to genetic 

mutations (Bonduriansky and Day 2018; Schmitz et al. 2011), epigenetic 

modifications (either environmentally or stochastically-induced) will result in changes 

on gene expression, promoting phenotypic plasticity in an heterogeneous 

environments (Angers et al. 2010; Bossdorf et al. 2010; Leung et al. 2016; Massicotte 

et al. 2011). Epigenetic modifications can also represent an additional source of 

phenotypic variation that can be particularly important for organisms with reduced 

capacity of genetically-based adaptation, such as asexual organisms or highly inbred 

taxa (Castonguay and Angers 2012; Massicotte and Angers 2012; Schrey et al. 2012; 

Verhoeven and Preite 2014). From an evolutionary perspective, given the potential of 

epigenetic modifications to be transgenerationally-transmitted (Chen et al. 2016; 

Posner et al. 2019; Richards 2006), epigenetic inheritance imposes a challenge to the 

notion that molecular inheritance transmitted via germline cells resides solely on DNA 

sequences (Danchin et al. 2011; Dickins and Rahman 2012).  

The inherent implications of epigenetic modifications for ecology and evolution 

(Bossdorf et al. 2008), the recent advances in chromatin research (Allis and Jenuwein 

2016) and the increased availability of ‘omics’ technologies has led to a substantial 

development of epigenetics research over the last 20 years (Lea et al. 2017). More 

specifically, the field of ‘Ecological Epigenetics’ (EE) is trying to integrate epigenetic 

information into ecological and evolutionary framework, aiming to understand what 

factors drive the natural patterns of epigenetic variation and their eco-evolutionary 
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consequences (Richards et al. 2017; Schrey et al. 2013). Despite the recent advances, 

a substantial number of conceptual publications listed key questions that remain open 

in the field of EE, highlighting their theoretical implications and calling for urgent 

experimental research addressing those questions, especially beyond the scope of 

model organisms (Bossdorf et al. 2008; Duncan et al. 2014; Jablonka and Raz 2009; 

Jeremias et al. 2018; Richards et al. 2017; Richards et al. 2010; Verhoeven et al. 2016). 

On the following subsections, I will highlight the theorical premises of some of the 

questions analysed by this thesis, and how addressing those contributed to a better 

understanding of the ecological and evolutionary potential of epigenetic modifications. 

I.II.I. What is the interplay between genetic and epigenetic variation? 

Epigenetic variants which are strictly under genetic control (e. g. allele-specific 

methylation) simply represent downstream effects of genetic variants, not adding any 

additional evolutionary value to epigenetics which cannot be already explained by 

genetics (Verhoeven et al. 2016). Despite the recent advances with acquiring genome-

wide epigenetic data (Lea et al. 2017), the interplay between the genomes, epigenome 

and environmental changes remains poorly understood (Verhoeven et al. 2016). 

Richards (2006) proposed a classification of epialleles according to their degree of 

autonomy from the underlying genetic background, with most of epialleles being 

obligatory (fully dependent of genetic variation), followed by facilitated (partially 

dependent) and pure epialleles (autonomous) (Fig. I.1). While obligatory epialleles are 

downstream consequences a specific genetic allele, facilitated epialleles can act as 

potential intermediators between environmental conditions and genome responses, 

while the pure epialleles represent environmentally-driven responses (Schmitz et al. 

2013). The degree of autonomy of epialleles also brings implications for the study of 
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phenotypic plasticity, as epigenetically-regulated plastic phenotypes would show 

different reaction norms according to their degree of autonomy of its epialleles (Sultan 

2015). Obligatory epialleles should not show any response to environmental variation, 

while facilitated and pure epialleles would show genotype-by-environment (G x E) 

(direction of variation across environments changing in a genotypic-specific manners) 

and canalised plasticity (same direction of variation across environments regardless of 

the genotypes), respectively (Fig I.1). 

Associations between of genetic variants and DNA methylation variation (Bell et al. 

2011; Dubin et al. 2015; Gertz et al. 2011; Gutierrez-Arcelus et al. 2013) suggest that 

autonomous (pure) epialleles may be limited (Dubin et al. 2015). However, there is 

currently very little data on the genetic-epigenetics relationship beyond model 

organisms (Verhoeven et al. 2016), especially due to the lack of whole-genome and 

methylome data on non-model organisms (Richards et al. 2017). 

Genetic background is an important factor affecting not only specific epialleles but 

also at genome-wide DNA methylation levels, with associations between genotypes 

and epigenotypes being commonly found (Alonso et al. 2016; Herrera et al. 2016; 

Leung et al. 2016; Schrey et al. 2013). In addition, individual genetic heterozygosity 

levels also seem to influence global DNA methylation levels, with higher proportion 

of DNA methylation often reported for clonal and/or inbred individuals compared to 

their outcrossed counterparts (Richards et al. 2012; Schrey et al. 2012; Vergeer et al. 

2012). Given the general reduced potential for genetically-based adaptation of inbred 

organisms, these findings made some authors suggest that epigenetic variation may be 

particularly important for clonal or inbred organisms, potentially working as an non-

genetic mechanism for rapid phenotyic adjustment and adaptation (Castonguay and 

Angers 2012; Schrey et al. 2012; Sheldon et al. 2018; Verhoeven et al. 2010; 
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Verhoeven and Preite 2014). However, higher global DNA methylation levels 

commoly found of inbred individuals may be mediating inbreeding depression 

(Nakamura and Hosaka 2010). For example, phenotypic effects of inbreeding 

depression (i. e. reduced photosyntetic effiency, reduced biomass) disappeared after 

demethylation in inbred Arabidopsis thaliana (Vergeer et al. 2012). Additionally, 

gene-specific effects of inbreeding in controlled crosses of Chinook salmon 

(Oncorhynchus tshawytscha), suggests that methylation changes associated with 

inbreeding depression are targeted to specific genes, instead of genome-wide effects, 

in animals (Venney et al. 2016). 

Understanding the intimate relationship between genomic characteristics and 

epigenetic variation is a crucial step on evaluating the origin, drivers, as well as, the 

evolutionary potential of epigenetic variation (Richards et al. 2017; Sultan 2015). As 

highlighted above, genomic background and diversity seem to influence DNA 

methylation variation, both at the allele or at global levels. However, detangling 

genetic from epigenetic variation has proven especially challenging, given the high 

levels of genetic variability commonly found of sexually-reproducing organisms in 

natural populations (Verhoeven and Preite 2014). With this thesis, I aimed to address 

questions regarding on how DNA methylation is influenced by genetic background 

(Chapters 1, 3 and 4), as well as the distribution and degree of autonomy of epialleles 

(Chapter 4). 

I.II. II. How much epigenetic variation is environmentally-induced?  

DNA methylation varies widely across taxa and genomic contexts (e. g. promoters, 

gene bodies, transposable elements) (Duncan et al. 2014; Jones 2012), but also 

intraspecifically, both at global DNA methylation estimates (Alonso et al. 2016; 
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Schrey et al. 2013) or at the gene-specific levels (Venney et al. 2016). Intraspecific 

variation suggests that DNA methylation can be influenced by the environment 

(Richards et al. 2017), be under genetic control (Dubin et al. 2015) and/or be induced 

by stochastic errors in maintaining DNA methylation patterns by DNA 

methyltransferases, which can be enhanced in stressful environmental conditions 

(Leung et al. 2016; Schmitz et al. 2011; Verhoeven et al. 2010). These effects are 

complementary, and their consequences on gene expression may contribute on 

generating epigenetically-mediated phenotypic variation (Leung et al. 2016).  

One way to facilitate the study of environmentally-induced epialleles is to look for 

associations between epigenetic variation and environmental characteristics which are 

independent of the individuals genetic background (Verhoeven et al. 2016). Several 

studies have been using generically-uniform organisms to isolate the effect of genetic 

variants on epigenetic variation (Verhoeven and Preite 2014). DNA methylation 

patterns of clonal organisms are often associated with biotic and abiotic stressors, such 

as predation and parasites (Asselman et al. 2015; Verhoeven and van Gurp 2012; 

Verhoeven et al. 2010), salinity (Raj et al. 2011), water availability (Gao et al. 2010), 

pH (Massicotte and Angers 2012), among others (Verhoeven et al. 2010). Although 

suggestive, these studies cannot disentangle whether the putative environmentally 

induced epialleles were either inherited, repeatedly induced by the same environmental 

condition or emerged via stochastic epigenetic variation, given the high rate of 

epimutations (Schmitz et al. 2011). 

Both genetic and epigenetic variation determine phenotypic variation, which interacts 

with environment, creating raw material for natural selection (Fig. I.2). However, 

many of factors interconnected into this complex network remain understudied, 

especially in non-model organisms in natural conditions (Richards et al. 2017). With 



11 
 

this thesis, I aimed to address the role of parasite pressures and genetic background on 

DNA methylation variation in wild populations (Chapter 1).  

I.II.III. To what extent environmentally-induced epigenetic variation is 

transmitted to the offspring?  

While the transgenerational stability of some epigenetic markers is well established, 

the evidence for environmentally-induced transgenerational effects and the extent of 

its transmission remains incipient (Bossdorf et al. 2008; Chen et al. 2016; Richards et 

al. 2017). Some factors can facilitate the transmission of environmentally-induced 

transgenerational effects. For example, the reset of epigenetic modifications during 

early gametogenesis and embryogenesis, known as epigenetic reprogramming, is far 

from complete in some taxa, leaving a window for inheritance environmentally-

induced epialleles (Daxinger and Whitelaw 2012; Verhoeven et al. 2016).  

 Although transgenerational effects mediated by differential epigenetic modification 

in the germline have been reported, recent studies indicate that germline microRNAs 

modifications instead of DNA methylation as primary factors driving this type of 

parental effects in mammals (Chen et al. 2016). The cellular DNA methylation patterns 

in mammals are strongly affected by epigenetic reprogramming, with the few 

epialleles escaping it likely to be genetically-induced and stochastically rather than 

environmentally-induced (Shea et al. 2015), or not last in the subsequent generations 

(Radford et al. 2014). In fish, however, germline epigenetic reprogramming of DNA 

methylation seems to be less complete. For example, sperm DNA methylation patterns 

are used as a template for zebrafish (Danio rerio) embryos methylome (Jiang et al. 

2013). Additional evidence in Atlantic salmon (Salmo salar) has shown that few DNA 
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methylation epialleles induced by domestication escape epigenetic reprogramming 

and are maintained in the offspring (Rodriguez-Barreto et al. 2019). 

Within an evolutionary context, genetically-independent epigenetic modifications are 

particularly relevant if inherited by the offspring. Therefore, understanding the 

mechanisms of epigenetics modifications and to which extent those can be transmitted 

transgenerationally, is a crucial step to understand any potential additive role 

epigenetic modifications may have on heredity and evolution. With this thesis, I aimed 

to address questions regarding to which extent differentially DNA methylation 

patterns in the parents are transmitted to the offspring, both in natural (Chapter 3) and 

in lab-reared conditions (Chapter 5).  

Although ecological epigenetics is now an active field within evolutionary biology 

(Verhoeven et al. 2016), several questions about the origin, variation and evolutionary 

consequences of epigenetic modifications are still open. In particular, the relationships 

between genome, epigenome and environmental variation are better understood in 

plant than in animal systems (Richards et al. 2017). This relative gap in knowledge is 

partly caused by need of model systems on which is possible to have within-genotype 

homogeneity (to detangle genetic from epigenetic variation) simultaneously with 

genotype diversity (to test the effects of common environmental pressures on different 

epigenomes). Mixed-mating organisms (alternating self-fertilisation hermaphroditism 

with outcrossing, following the definition of mating system for hermaphrodites in 

Barrett (2014)) are perfectly suitable to test associations between genetic and 

epigenetic variation with environmental pressures, because individuals with 

contrasting levels of genetic diversity and different genetic backgrounds naturally 

coexist. However, mixed-mating systems are much more commonly found in plants 

than in animals (Jarne and Auld 2006). This thesis aimed to expand the knowledge 
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about the ecological and evolutionary implications of epigenetic modifications in 

animals, using the unique diverse of mating systems present in the mangrove killifish 

species from the genus Kryptolebias, as models. 

I.III. The genus Kryptolebias 

Kryptolebias is a killifish genus (family Rivulidae) composed of seven known species 

(Fricke 2019; Vermeulen and Hrbek 2005), although this classification is likely to 

change as some taxonomic debate is still undergoing (Huber 2017; Tatarenkov et al. 

2017). Phylogenetic analyses have indicated the presence of two distinct monophyletic 

clades within Kryptolebias, one composed of narrowly-distributed freshwater species 

living in temporary streams and pools in Central and South America (K. campelloi 

(Costa 1990), K. sepia Vermeulen & Hrbek 2005, K. gracilis Costa 2007, K. 

brasiliensis (Valenciennes 1821)). The other clade is composed of three species living 

on mangrove forests along the tropical and subtropical western Atlantic basin, ‘the 

mangrove killifishes clade’ (K. marmoratus (Poey 1880), K. hermaphroditus Costa 

2011, K. ocellatus (Hensel 1868)) (Costa et al. 2010; Murphy et al. 1999; Tatarenkov 

et al. 2009; Vermeulen and Hrbek 2005). 

 Most of the rivulids (among approximately 350 species (Costa 2011b)) are relatively 

small (e.g. max. 200 mm of standard length), living in freshwater habitats, dioicous 

(composed by males and females) and sexually dimorphic (Loureiro et al. 2018). 

However, some remarkable reproductive adaptations and life-history strategies have 

evolved within this family. Some species are capable of internal fertilisation (Costa et 

al. 2016), while several species have an annual life-cycle, with eggs evolving drought 

resistance and diapause (embryo development suspended within the egg) (Costa 

2011b). Perhaps more remarkably, in Kryptolebias, the ‘mangrove killifishes clade’ is 

composed by one of the few fish clades with androdioecious (males and 
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hermaphrodites; Weeks 2013) species: K. marmoratus, K. hermaphroditus and K. 

ocellatus, with the first two representing the only known vertebrate species capable of 

self-fertilisation (Avise and Tatarenkov 2015; Costa et al. 2010; Tatarenkov et al. 

2009). 

I.III. I. The mangrove killifishes  

I.III. I.I. Geographical distribution and phylogenetic patterns 

 Several factors, such as its broad geographical distribution (encompassing the entire 

tropical and subtropical eastern Atlantic, 29°N to 23°S), morphological and ecological 

similarities, and taxonomic misidentifications, have contributed to a complex scenario 

about the taxonomic status and geographical distribution of the mangrove killifish 

species (Avise and Tatarenkov 2015; Costa 2011a; Costa 2016; Tatarenkov et al. 

2017). Briefly, K. ocellatus was described first by Hensel (1868) using a single 

specimen from Rio de Janeiro, Brazil followed by K. marmoratus described by Poey 

(1880) using specimens from the USA or Cuba. Seegers (1984) suggested that in Rio 

de Janeiro there were two species, the hermaphroditic K. ocellatus, and a yet 

undescribed species, which he named K. caudomarginatus composed by males and 

hermaphrodites. Later, Costa (2011) established that K. ocellatus originally described 

by Hensel actually referred to the species with males, reclassifying K. 

caudomarginatus as a junior synonym of K. ocellatus, while the other syntopic species 

only composed of selfing hermaphrodites, actually represented an undescribed species, 

as supported by molecular data (Murphy et al. 1999; Tatarenkov et al. 2009), which 

was described as K. hermaphroditus. 

Although this morphologically-based classification have caused historical confusion 

about the systematics of the mangrove killifish clade, its species are readily 
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distinguishable using genetic data. Phylogenetic studies have supported K. ocellatus is 

very divergent genetically from the other species in the group (see Chapter 2) and is 

likely to be the sister-species of the of the clade containing the selfing species K. 

marmoratus and K. hermaphroditus) (Murphy et al. 1999; Tatarenkov et al. 2009; 

Vermeulen and Hrbek 2005). As all the other known Kryptolebias species are 

phylogenetic distant, dioecious and inhabit freshwater habitats, the phylogenetic 

mapping of reproductive conditions in Kryptolebias seems to suggested that 

synchronous hermaphroditism have emerged in the common ancestor of all mangrove 

killifish species (K. ocellatus, K. hermaphroditus and K. ocellatus) while the selfing 

capacity evolving later in the common ancestor between K. hermaphroditus and K. 

marmoratus (Avise and Tatarenkov 2015; Costa et al. 2010) (Fig. I.3). 

Regarding its geographical distribution, K. ocellatus is known to be endemic of 

mangrove forests of southeast Brazil, from Guanabara bay in Rio de Janeiro (22°S) 

(where is often syntopic with K. hermaphroditus, see Chapter 2) to Santa Catarina state 

(28ºS) (Costa 2016). Kryptolebias hermaphroditus until recently was only known by 

its type-locality, in Guaratiba, Rio de Janeiro (Costa 2011a). However, recent surveys 

have been expanding the geographical distribution of the species, as far as northeast 

Brazil and close to the Amazon river mouth (Guimarães-Costa et al. 2017; Lira et al. 

2015). Given the morphological similarities between K. hermaphroditus and K. 

marmoratus, and the major gaps in sampling, the geographical range of each species 

was uncertain. Tatarenkov et al. (2017) using extensive geographical sampling, found 

deep genetic structure at mtDNA and microsatellite data within the selfing mangrove 

killifishes, with three major clades: a ‘Northern’ clade in Florida, northern Cuba, 

Bahamas, Belize and Honduras corresponding to K. marmoratus; a ‘Southern’ clade 

composed by populations along the Brazilian coast and a ‘Central clade’ present in 
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Panama, the Dutch Caribbean, Puerto Rico, Turks and Caicos, and southern Cuba, 

which might (or not) represent a different species, and it is phylogenetically more 

closely related to K. hermaphroditus (1% genetic distance at cox1 mtDNA gene), 

despite its geographical proximity with K. marmoratus populations (3% genetic 

distance at cox1 mtDNA gene) (Fig. I.3). Tatarenkov et al. (2018), found evidence for 

an unlikely hybridisation between individuals of K. marmoratus and K. 

hermaphroditus (Central clade) in San Salvador, Bahamas, suggesting that divergent 

Kryptolebias lineages, with different rates of selfing/outcrossing rates can still 

interbreed (see Chapter 2). 

I.III. I. II. Ecology and behaviour 

The mangrove killifishes are the only example of exclusively mangrove-associated 

fish in the western Atlantic, having their entire life cycle within mangrove forests, 

inhabiting a wide range of microhabitats, such as interment pools, crab burrows, 

mangrove leaf litter and fallen logs (Berbel-Filho et al. 2016; Lira et al. 2015; Taylor 

2012) (Fig. I.4). Mangrove killifishes rarely share their microhabitats with other fish, 

particularly given the extreme environmental conditions of their preferred 

microhabitats (Taylor 2012). For example, K. marmoratus, the most extensively 

studied species, is known to tolerate extreme ranges of temperature and salinity 

(Taylor 2012), high levels of hydrogen sulphide (Cochrane et al. 2019), ammonia 

(Frick and Wright 2002) and hypoxic conditions (Regan et al. 2011). Kryptolebias 

species are usually predators from aquatic and terrestrial invertebrates (Taylor 2000), 

and selective (based on kinship) filial cannibalism has been reported in K. marmoratus 

(Wells and Wright 2017).  

Kryptolebias marmoratus (and possibly the other mangrove killifish species), is also 

known for its amphibious behaviour (Turko and Wright 2015). Within this species, 
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emersion behaviour (jumping and moving out of water) seems to be an adaptive 

mechanisms to cope with several biotic and abiotic environmental pressures, such as 

coping with adverse aquatic conditions (Cochrane et al. 2019), increasing ammonia 

excretion (Frick and Wright 2002), reducing intra-specific aggression (Taylor 1990), 

escaping stressful thermal conditions (Gibson et al. 2015), increasing embryo survival 

(by enhancing embryo development and reducing embryo predation by conspecific 

cannibalistic individuals) (Wells et al. 2015; Wells and Wright 2017)) and increasing 

dispersal capacities (Bressman et al. 2018).  

Behaviourally, K. marmoratus individuals are known to be more aggressive towards 

non-kin and non-familiar individuals (Edenbrow and Croft 2012). Different selfing 

lineages were already found to occupy the same microhabitats (e. g. crab burrow) 

(Ellison et al. 2012). As emersion can be used as a way to escape from intraspecific 

aggression, together with the highly-variable nature of mangrove microhabitats 

suggest a complex temporal, spatial and social scenario of population 

density/movement within mangroves, however not much information about its extent 

and how individual mangrove killifishes can cope with ever-changing complexity 

(temporal, spatial and social) scenarios is available (Taylor 2012). 

I.III.I.III. Mixed-mating system and evolutionary implications 

Since the discovery of self-fertilisation capacity in hermaphrodites of K. marmoratus 

by Harrington (1961), the species has been subjected to a wealthy amount of research, 

becoming an increasing common organism for evolutionary, ecological, physiological, 

ecotoxicological and medical research (Avise and Tatarenkov 2015; Earley et al. 2012; 

Lee et al. 2008; Taylor 2012; Wright 2012).  
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Another major breakthrough on the research of mangrove killifishes came with the 

discovery of mixed-mating system in the previously thought exclusively selfing 

species. Although males of K. marmoratus could be readily produced in the lab by 

incubating self-fertilised eggs at low temperatures (Harrington 1967) and their 

presence was known at rare frequency in nature, their ecological relevance was 

unclear, given the high levels homozygosity in the Floridian populations suggested 

that outcrossing in K. marmoratus was absent (Harrington and Kallman 1968). 

However, males have been subsequently uncovered in other populations, some with 

relatively high frequencies (e.g. >20% at Twin Cays, Belize (Davis et al. 1990)). Later, 

genetic analyses have confirmed male-mediated outcrossing events both in wild 

(Mackiewicz et al. 2006b; Taylor et al. 2001) and lab conditions (Mackiewicz et al. 

2006a), supporting a mixed-mating strategy in K. marmoratus (Mackiewicz et al. 

2006c). Despite the existence of outcrossing makes K. marmoratus by definition, a 

species with mixed-mating strategy, genetic data at the population level reveal that, 

save few exceptions, most of the populations of K. marmoratus are predominantly self-

fertilising (outcrossing rate ≤ 0.2  (Jarne and Auld 2006; Tatarenkov et al. 2015; 

Tatarenkov et al. 2012; Tatarenkov et al. 2017; Tatarenkov et al. 2009). 

The discovery of a mixed-mating system has made K. marmoratus an important 

vertebrate model to understand the environmental factors and molecular mechanisms 

in the evolution of mixed-mating systems. Both self-fertilisation and outcrossing have 

inherent benefits and costs. Selfing assures reproduction, propagates locally adapts 

genotypes and reduces the costs of biparental reproduction (i. e. finding a suitable 

mate, diluting genomic content) (Lively and Morran 2014), however over long-term 

creates inbred organisms, lacking the genetically-base adaptability to cope coevolving 

antagonists (e. g. parasites), which can be provided by occasional outcrossing (Lively 
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and Morran 2014; Morran et al. 2011). Ellison et al. (2011) found that K. marmoratus 

offspring originating from selfing harboured higher parasite load than its outcrossed 

counterparts, suggesting that outcrossing is an adaptive mechanism to cope with 

parasite pressure. The adaptive potential outcrossing as a generator of genetic diversity 

in K. marmoratus was later reinforced by the evidence that males prefer to associate 

with the most genetically-dissimilar hermaphrodites (Ellison et al. 2013). As 

outcrossing is likely to be male-mediated (Furness et al. 2015), and higher frequency 

of males has been associated with higher outcrossing rates at some populations 

(Mackiewicz et al. 2006b; Tatarenkov et al. 2015; Turner et al. 2006). The frequency 

of males seems to be caused by combinations of environmental (e.g. temperature) and 

genetic factors, with some selfing lines constantly showing higher proportion of males 

compared to others, even under similar environmental conditions (Turner et al. 2006). 

Ellison et al. (2015) found different DNA methylation patterns and gene expression 

levels between males and hermaphrodites in two genes related to temperature sex-

determination in K. marmoratus.  

In mixed-mating species, the balance between populational selfing/outcrossing affect 

populational genetic structure differently at different scales (Avise and Tatarenkov 

2015). Selfing drastically reduces effective population size (Ne), which facilitates the 

formation of population structure, given the stronger effects of genetic drift and/or 

selection when Ne is small (Charlesworth and Willis 2009). In mixed-mating systems, 

low levels of genetic diversity are expected within selfing lines, while high genetic 

differentiation is expected between selfing lines, which were potentially originated via 

occasional outcrossing events and/or de novo mutations and maintained in the long-

term via selfing. In K. marmoratus, several studies have been demonstrating this 

scenario, with low intraline genetic variation, but extensive interline genetic 
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differentiation, revealing strong population structure even at small spatial scales 

(Ellison et al. 2012; Tatarenkov et al. 2015; Tatarenkov et al. 2012; Tatarenkov et al. 

2007).  

Taken together, all this evidence suggests that in K. marmoratus, environmental 

factors (through epigenetic modifications) influence populational sex ratios, which p 

affects selfing/outcrossing rates, which has implications on offspring fitness and 

broader effects on populational genetic structure. However, save few exceptions, most 

of K. marmoratus populations seemed to be predominantly selfing with highly 

homozygous lines (Tatarenkov et al. 2017), suggesting that other non-genetic 

mechanisms, such as epigenetic modification may be contributing to fine-scales 

adjustments on gene expression to cope with environmental variability in absence of 

genetic variability. Fellous et al. (2018) found that K. marmoratus embryos have a 

longer epigenetic reprogramming period than other fish and mammals, with the 

authors that suggesting this could be a window for epigenetically-mediated phenotypic 

plasticity and epigenetic inheritance. However, the evolutionary potential of epigenetic 

variation and its potential inheritance is yet to be tested experimentally in this system. 

As highlighted above, a great deal of information about the ecology, behaviour, genetic 

structure and evolutionary history of K. marmoratus is now available. However, the 

other South American Kryptolebias, remain largely understudied (Berbel-Filho et al. 

2016; Costa et al. 2010; Lira et al. 2015). Until recently K. hermaphroditus was only 

known by extremely homozygous populations in Rio de Janeiro (Tatarenkov et al. 

2011; Tatarenkov et al. 2009). Histological examinations and aquarium observations 

confirming its hermaphroditism (Costa et al. 2010) and the low levels of genetic 

diversity made Costa (2011a) classify the species as only composed by self-fertilising 

hermaphrodites. However, recent sampling surveys have expanded its distribution to 
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north and northeast Brazil (Costa 2016; Guimarães-Costa et al. 2017; Lira et al. 2015; 

Sarmento-Soares et al. 2014) and few males have been described in some populations 

(Berbel-Filho et al. 2016; Costa 2016). However, the question of whether K. 

hermaphroditus is exclusively selfing or mixed-mating is still to be answered, as well 

as the environmental and evolutionary drivers of variation on selfing/outcrossing rates 

and the effects of those on its population structure (Chapter 1). Kryptolebias ocellatus 

is also poorly studied, with Costa et al. (2010) histologically describing its 

simultaneous hermaphroditism nature and Tatarenkov et al. (2009) based on the selfing 

rates of two populations suggesting the species is outcrossing-only androdioecious, 

not undergoing selfing. Despite other sampling reports (Costa 2016), further details 

about the genetic structure, the possibility of self-fertilisation in other populations, as 

well its interactions with K. hermaphroditus on its syntopic populations have never 

been investigated (Chapter 2).
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Figure I.1. Schematic representation of epiallele distribution according to its 

autonomy from the genetic background. Obligatory epialleles are fully dependent of 

its underlying genotype. Facilitated epialleles have their expression modulated by the 

interactions between genotypes and environments. Pure epialleles show similar 

direction of variation independently of its genetic background. Epiallele classification 

followed Richards (2006).
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Figure I.2. Schematic representation of factors affecting genetic and epigenetic 

variation as well its outcomes and evolutionary forces.
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Figure I.3. Phylogenetic tree for Kryptolebias, with mapping of the reproductive traits 

and its respective species based on Costa et al. (2010). Freshwater Kryptolebias are 

represented by K. gracilis Costa 2007. Pictures from K. marmoratus provided courtesy 

of Frans Vermeulen.
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Figure I.4. Estimated geographical distribution of the three mangrove killifish species 

based on recent sampling surveys by Sergio Lima (personal communication 

unpublished data on K. hermaphroditus) and published data (Costa 2016; Guimarães-

Costa et al. 2017; Tatarenkov et al. 2018; Tatarenkov et al. 2017).
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Figure I.5. (a) Temporary pools within mangrove forests, a typical habitat for 

mangrove killifishes. (b) Crab burrow within mangrove forests often used as 

microhabitats by mangrove killifishes. (c) Kryptolebias hermaphroditus individual 

sampled within a mangrove pool in Ceará-Mirim mangrove, northeast Brazil.
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II. THESIS AIMS AND OBJECTIVES 

 

The diversity of mating systems in the genus Kryptolebias, (predominantly selfing, 

mixed-mating, and obligately outcrossed, following mating systems definition by 

Barrett (2014)) especially within the mangrove killifishes clade (Costa 2016; Costa et 

al. 2010) represent unique opportunity among vertebrates to investigate the relative 

roles of genetic and epigenetic variation on ecology and evolutionary history of 

organisms. While there is evidence for the potential of epigenetic variation as an 

additional source of phenotypic diversity, several questions remain about the intricate 

relationship between genetic and epigenetic variation, especially how the former can 

interfere on the latter. The broad aim of this thesis was to investigate how genetic and 

environmental variation shape epigenetic variation in animals, using Kryptolebias 

species as model organisms. Using a combination of genetic, epigenetic, physiological 

and behavioural techniques in both laboratory-reared and wild Kryptolebias, this 

project aimed to understand several important questions on the relationships among 

genetic, epigenetic and environmental variation in the evolutionary history of 

organisms. Following are the main questions addressed on each chapter: 

1. What is the structure and which factors shape epigenetic variation in natural 

populations of Kryptolebias hermaphroditus? Chapter 1 used natural populations 

genotyped for microsatellite markers, amplified fragment length polymorphism 

(AFLP) and methylation sensitive amplified fragment length polymorphism (MS-

AFLP) to investigate the genetic and epigenetic structure of the predominantly selfing 

species K. hermaphroditus in northeast Brazil and how ecological pressures (parasites) 

and/or genetic variability (genotypes and heterozygosity) influence DNA methylation 
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levels. Results are discussed in terms of the relationship between genetic and 

epigenetic variation and how it could contribute or even speed up local adaptation. 

2. How are DNA methylation patterns transmitted to hybrids? Chapter 2 

investigates the genetic structure of Kryptolebias ocellatus across its known 

distribution in southeast Brazil using mitochondrial DNA (mtDNA) gene, 

microsatellites and single nucleotide polymorphisms (SNPs) and reports a remarkable 

case of hybridisation and introgression between the obligately outcrossed K. ocellatus 

with the predominantly selfing species K. hermaphroditus, representing the first case 

of hybridisation between species with different mating systems in vertebrates. This 

chapter further discusses the genetic structure patterns in K. ocellatus and the potential 

ecological causes and evolutionary consequences of the hybridisation between these 

two mangrove killifish species. Chapter 3 further analyses the DNA methylation 

patterns of hybrids relatively to the parental species to investigate what are the major 

patterns of DNA methylation inheritance of hybrids in natural populations. 

3. How autonomous are DNA methylation epialleles from the genetic 

background? Chapter 4 uses reduced representation bisulphite sequencing (RRBS) 

from two selfing lines of Kryptolebias marmoratus reared under two contrasting 

environmental conditions (environmental enrichment) to investigate the distribution 

of DNA methylation epialleles according to its degree of autonomy from its underlying 

genetic background. Results are discussed in terms of the evolutionary relevance of 

epigenetic variation and how it can mediate the plasticity of downstream 

epigenetically-mediated phenotypes. 

4. To what extent environmentally-induced epigenetic changes affect parental 

phenotypes and are inherited by the offspring? In Chapter 5, I analysed behavioural, 
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physiological (cortisol levels and metabolic rates) and epigenetic variation (RRBS 

data) of genetically-identical Kryptolebias marmoratus individuals reared in two 

contrasting environmental conditions. Using a fully-factorial experimental design, I 

evaluated the possibility of behavioural, physiological and epigenetic parental effects 

in the offspring and discussed its potential transmission mechanisms as well as its 

evolutionary implications.  
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CHAPTER 1: Genetic background and parasite load 

affect DNA methylation variation in a 

predominantly-self fertilising fish* 

 

 

* A version of this work has been published as: Berbel-Filho, W. M., C. G.de Leaniz, 

P. Móran, J. Cable, S. M. Q. Lima and S. Consuegra. 2019. Local parasite pressures 

and host genotype modulate epigenetic diversity in a mixed-mating fish. Ecology and 

Evolution 9:8736-8748. 
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1.1. Abstract  

 

Parasite‐mediated selection is one of the main drivers of genetic variation in natural 

populations. The persistence of long‐term self‐fertilization, however, challenges the 

notion that low genetic variation and inbreeding compromise the host's ability to 

respond to pathogens. DNA methylation represents a potential mechanism for 

generating additional adaptive variation under low genetic diversity. We compared 

genetic diversity (microsatellites and AFLPs), variation in DNA methylation (MS‐

AFLPs), and parasite loads in three populations of Kryptolebias hermaphroditus, a 

predominantly self‐fertilizing fish, to analyse the potential adaptive value of DNA 

methylation in relation to genetic diversity and parasite loads. I found evidence that K. 

hermaphroditus occasionally outcross, being confirmed as the second example of 

mixed-mating species in vertebrates. We found strong genetic population structuring, 

as well as differences in parasite loads and methylation levels among sampling sites 

and selfing lineages. Globally, the interaction between parasites and inbreeding with 

selfing lineages influenced DNA methylation. At the local scale, when individuals 

were more genetically-similar, parasite load seemed more important than genotypic 

background in determining methylation levels.
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1.2. Introduction 

Mixed-mating organisms (alternating between self-fertilisation and outcrossing) 

benefit from the advantages of both biparental and uniparental reproduction: 

outcrossing generates genetic variability and adaptability potential, while selfing 

ensures reproduction without partners (Jarne and Charlesworth 1993), and 

reproductive assurance gives self-reproducing individuals an advantage when 

colonising new environments (Baker 1955). Offspring originated from selfing, 

however, can have reduced fitness compared to their outcrossed counterparts, known 

as inbreeding depression (Charlesworth and Willis 2009). Theory argues that 

occasional outcrossing should be beneficial when inbreeding is likely to reduce 

offspring fitness (Damgaard et al. 1992; Maynard-Smith 1978). 

Among several theories for the origin and evolution of sex, the Red Queen hypothesis 

(RQH) (Bell 1982; van Valen 1973) is often invoked to explain the occurrence of 

sexual reproduction in face of the advantages of asexual reproduction (Blirt and Bell 

1987; Lively 1987; Morran et al. 2011). According to the RQH, the more genetically 

diverse offspring of sexually reproducing individuals provide a “moving target” to 

coevolving antagonists (e. g. parasites, predators), making it more difficult for them to 

adapt compared to the “more static” offspring of asexual/uniparental individuals 

(Hamilton 1980; Maynard-Smith 1978). While the RQH is substantially supported by 

empirical data (Lively et al. 1990; Lively and Morran 2014) and sexual reproduction 

is observed in the vast majority of organisms (e. g. approximately 99% in animals Bell 

(1982)), asexual and self-fertilising lineages sometimes persist in a wide range of 

environments (Zhang et al. 2010). Given the short and long-term implications of 

inbreeding, the persistence of populations with limited capacity for genetically-based 
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adaptation (e.g. asexual, long-term self-fertilization) remain an evolutionary paradox 

(Verhoeven and Preite 2014). 

Non-genetic mechanisms can represent an alternative source of phenotypic variation 

to genetically-depleted lineages deal with variable environments and coevolving 

antagonists (Angers et al. 2010; Castonguay and Angers 2012). Among non-genetic 

factors, epigenetic mechanisms (e.g. histone tail modifications, microRNAs, DNA 

methylation), can modulate changes in gene expression in response to environmental 

variation without involving changes in DNA sequence (Richards et al. 2017). DNA 

methylation is by far the best characterized epigenetic modification (Lea et al. 2017) 

2017), and has important roles on pre-transcriptional control in several biological 

processes, such as cell differentiation and genomic imprinting (Jones 2012). DNA 

methylation variation is not completely independent from the genomes, with epialleles 

having different degrees of autonomy from the genotype (Richards 2006) and 

sometimes arising stochastically by errors in the enzymatic machinery in charge 

toreproduce and maintain cellular methylation patterns (Leung et al. 2016; Schmitz et 

al. 2011). Studies in plants and animals have been showing that indivdiuals with low 

levels of heterozygosity display higher genome-wide DNA methylation variation 

(Liebl et al. 2013; Richards et al. 2012; Schrey et al. 2012), which made some authors 

suggest that DNA methylation variation could be particularly important for organisms 

with limited genetic diversity (Castonguay and Angers 2012; Douhovnikoff and Dodd 

2015; Verhoeven and Preite 2014). However, direct empirical evidence for the 

potential adaptive role of increased DNA methylation in inbred individuals has not 

been provided.  

Mixed-mating organisms represent ideal models to test the associations between 

genetic and epigenetic variation with pathogen pressures because selfed and 
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outcrossed offspring can naturally coexist, usually displaying very different levels of 

genetic diversity. The genus Kryptolebias contains the only selfing known vertebrate 

species (K. marmoratus and K. hermaphroditus). Kryptolebias marmoratus 

populations are characterised by variable rates of selfing and outcrossing, however the 

possibility of outcrossing in K. hermaphroditus is yet to be confirmed. Populations of 

both species consist mainly of self-fertilizing hermaphrodites and varying levels of 

males at low frequencies (Tatarenkov et al. 2017; Berbel-Filho et al. 2016), and exhibit 

high levels of homozygosity (Tatarenkov et al. 2009, 2017), suggesting that self-

fertilization is the most common mode of reproduction (Avise and Tatarenkov 2015). 

Negative associations between genetic diversity and parasite loads have been 

previously observed in K. marmoratus (Ellison et al. 2011). However, the relationship 

between epigenetic variation, parasites and mixed-mating species, has not been 

explored. Here, I evaluated the relationships between genetic background, 

heterozygosity, DNA methylation and parasite load in three natural populations of the 

mixed-mating mangrove killifish K. hermaphroditus distributed along the Brazilian 

coast (Tatarenkov et al. 2017). Based on the RQH, I predicted lower genetic diversity 

and higher parasite load in inbred compared to outbred individuals. Given the 

relationship between genetic background and DNA methylation reported in plants, I 

expected different DNA methylation profiles across selfing lines. I also predicted 

higher levels of DNA methylation in inbred individuals, which would be related to 

increased parasite loads, if DNA methylation played a role on host-pathogen 

interactions. 
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1.3. Material and Methods 

1.3.1. Field sampling and parasite screening  

Kryptolebias hermaphroditus is distributed along the Brazilian coast (Tatarenkov et 

al. 2017) and is typically found in shallow pools of high salinity levels (>30 ppt), clear 

waters and muddy substrates, where there are few other sympatric fish (Lira et al. 

2015; Berbel-Filho et al. 2016). A total of 128 specimens of K. hermaphroditus were 

collected using hand-nets from three sampling sites on isolated mangroves on the 

North-eastern coast of Brazil between January and September 2015: Ceará-Mirim 

river – Site 1; Curimataú river – Site 2; Ipojuca river - Site 3 (Fig. 1.1). All specimens 

displayed the common hermaphrodite phenotype (dark colour with well-defined 

ocellus on the caudal fin; Costa 2011). Fish were euthanized using an overdose of 

tricaine methane-sulfonate (MS-222) following UK Home Office Schedule 1 

(Hollands 1986), standard length was measured using a digital calliper (mm) and the 

whole fish were preserved in 95% ethanol at -20 ℃ for parasite screening and DNA 

extraction. 

In the laboratory, fish were dissected and screened for both external and internal 

parasite infections using a dissecting microscope following the methods of Ellison et 

al. (2011).  Macroscopic parasite analyses focused on the three most common types of 

parasites identified. To assess the reliability of parasite screening, a subsample of five 

fish was examined by a different observer and the agreement was 100%. I defined 

parasite load using a scaled measure of parasite abundance, where for each parasite 

morphotype (i), the number of parasites per individual (Ni) was divided by the 

maximum number found across all individuals (Nimax). The final value of the scaled 

parasite load represents the sum of scaled parasite loads across all parasite types. Given 

their uneven abundance (Table 1.1). This approach minimizes bias when parasite loads 
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are heavily influenced by a very abundant parasite type (in this case bacterial cysts) 

(Bolnick and Stutz 2017). 

1.3.2. DNA extraction, microsatellite amplification and genetic analysis  

Genomic DNA from all 128 fish was extracted from gill tissue using a Nexttec 

extraction kit for blood and tissue samples (Nexttec, Leverkusen, Germany). Gills are 

an important physical and immunological barrier to pathogens in fish (Press and 

Evensen 1999), and the organ where most parasites were found (Table 1.1). Twenty-

seven microsatellite loci (Mackiewicz et al. 2006; Tatarenkov et al. 2017) were 

genotyped as in Ellison et al. (2011) and screened using GeneMapper v. 4.0 (Applied 

Biosystems, Foster City, USA). Loci were tested for linkage disequilibrium and 

Hardy-Weinberg equilibrium using GENEPOP v. 4.5.1 (Rousset 2008). Mean number 

of alleles per locus (Nma), observed heterozygosity (Ho) and expected heterozygosity 

(He) were estimated using GenALEX v. 6.5 (Peakall and Smouse 2012). The 

inbreeding coefficient (FIS) was calculated in GENEPOP. Global heterozygosity for 

individual fish was estimated using the homozygosity by locus index (HL) 

implemented by Cernicalin v. 1.3 using the default parameters (Aparicio et al. 2006). 

I used the Bayesian clustering algorithm INSTRUCT (Gao et al. 2007) to estimate the 

optimal number of selfing lineages (K) given the expected deviation from Hardy-

Weinberg equilibrium caused by self-fertilisation. INTRUSCT was run four 

simultaneous chains of 2,000,000 MCMC runs, 10 as thinning, and 100,000 of burn-

in period, resulting in 100,000 interactions for each chain. The number of K tested 

ranged from 2 to 12. I used the individual q-values (the likelihood of membership to a 

particular genetic cluster or selfing lineage) from INSTRUCT to classify individuals as 

either selfed or outcrossed (Vähä and Primmer 2006). A threshold of q-value ≥0.9 was 
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used to classify selfed individuals, while <0.9 represented hybrids between two 

different selfing lineages, suggesting an outcrossing event (Ellison et al. 2011). 

Pairwise FST values among sampling sites and selfing lineages were estimated with 

Arlequin v. 3.5.2.2 (Excoffier and Lischer 2010) using 10,000 permutations. I used 

hierarchical analysis of molecular variance (AMOVA) to investigate population 

structuring among sampling sites and selfing lineages (according to individual q-

values) using 10,000 randomizations. Differences between selfed and outcrossed 

groups in the total number of parasites and homozygosity by locus (microsatellites) 

were analysed using median Mann-Whitney rank tests implemented in R v. 3.3 (R 

Core Team, 2018). 

1.3.3. Epigenetic analysis 

Methylation-Sensitive Amplified Fragment Length Polymorphisms (MS-AFLPs) was 

used to assess genome-wide DNA methylation patterns. DNA extracted from gill 

filament tissue of 115 fish (33 classified as outcrossed and 82 as selfed according to 

the INSTRUCT q-values; 62, 36 and 17 from samplings sites 1, 2 and 3, respectively) 

was used for the MS-AFLPs analysis following Rodríguez-López et al. (2012). 

Briefly, a DNA aliquot of 100 ng per individual was split for digestion with two 

enzyme combinations: EcoRI/HpaII and EcoRI/MspI. The digested DNA was ligated 

to adaptors and a selective PCR was conducted using the primers ECORI-ACT: 

GACTGCGTACCAATTCACT and HPA-TAG: GATGAGTCTAGAACGGTAG 

following Ellison et al. (2015). The HpaII primer was end-labelled with 6-FAM. 

Fragments were run on an ABI PRISM 3100 (Applied Biosystems) and the resultant 

profiles were analysed using GENEMAPPER v. 4.0 (Applied Biosystems). To ensure 

reproducibility the following settings were applied: analysis range was 100-500 bp; 
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minimum peak height was 100 relative fluorescence units; pass range for sizing 

quality: 0.75-1.0; maximum peak width: 1.5 bp. To confirm MS-AFLP reproducibility, 

24 individuals (~20% of the total; eight from each sampling site) were reanalysed and 

compared using the same protocols. 

The R package msap v. 1. 1. 9 (Pérez-Figueroa 2013) was used to analyse MS-AFLP 

data. To increase reproducibility of the genotyping, I used an error threshold of 5% as 

suggested by Herrera and Bazaga (2010). According to the binary band patterns, each 

locus was classified as either methylation susceptible loci (MSL; i.e. displaying a 

proportion of HPA+/MSP- and/or HPA-/MSP+ sites which exceed the error threshold 

(5%) across all samples) or non-methylated loci (NML; if the same patterns did not 

exceed the error threshold) (Pérez-Figueroa 2013). MSL were used to assess epigenetic 

variation, while NML were used as a measure of AFLP genetic variation. Average 

group methylation percentages for inbreeding status were calculated using the 

different binary band patterns (hemimethylated pattern (HPA+/MSP-) + internal 

cytosine methylation pattern (HPA-/MSP+)/unmethylated pattern (HPA+/MSP+) + 

hypermethylation/absence of target (HPA/MSP-) *100) (Vergeer et al. 2012). 

Epigenetic (MSL) and genetic at AFLPs (NML) differentiation among sampling sites, 

selfing lineages and between outcrossed and selfed groups, was assessed by AMOVA 

with 10,000 randomizations. Epigenetic (MSL) and genetic (AFLP and 

microsatellites) differentiation among sampling sites, selfing lineages and inbreeding 

status was visualized by principal coordinates analysis (PCoA). Mantel tests based on 

distance matrices (Mantel 1967) were used to test for potential correlations between 

epigenetic and genetic data for MSL, NML and microsatellites using GENALEX v. 

6.5 with and 10,000 permutations. To identify disproportionately differentiated 

methylation states, I used a FST outlier approach implemented in Bayescan 2.1 (Foll 
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and Gaggiotti 2008), with 2x106 iterations (thinning interval 20 after 20 pilot runs of 

104 iterations each) and a burnin of 5x105. I tested for outliers based on the MSL data 

generated on the comparisons among sampling sites, selfing lineages and between 

inbreeding status (inbred or outbred). 

1.3.4. Statistical analyses  

A Kruskal-Wallis test was used to examine the differences on scaled parasite load and 

bacterial cysts (the most prominent parasite) among selfing lineages. To test the 

relationship between genome-wide variation in global DNA methylation and parasite 

loads, the proportion of methylated loci per individual was calculated as the proportion 

of loci scored as methylated over the total number of loci observed per individual (“0” 

for unmethylated and “1” for methylated, excluding the missing data cells per 

individual). The proportion (or percentage) of methylated loci has been previously 

used to analyse differences in epigenetic profiles among groups (Groot et al. 2018; 

Vergeer et al. 2012). I then employed a generalized linear model with a binomial link 

to model proportion of methylated loci as a function of scaled parasite load, selfing 

lineage, sampling site and inbreeding status. To increase robustness, I repeated the 

analysis including only the most prominent parasite type (bacterial cysts). Model 

selection was conducted using the multi-model averaging approach implemented in 

the R package glmulti v 1.0.7 (Calcagno and de Mazancourt 2010). I chose the minimal 

adequate models based on the lowest AICc values (Akaike Information Criterion 

corrected for small sample size), Akaike weight (Wi) and evidence ratios (Burnham 

and Anderson 2004). Models (within 2 AIC units) were also reported.  

To disentangle potential confounding effects arising from the unequal distribution of 

selfing lineages among sampling sites (i.e. five lineages are exclusive to a particular 
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sampling site, Table S1.1), I repeated the analyses (AMOVA, Mantel test, PCoA and 

GLMs) for both genetic (microsatellites and AFLPs) and epigenetic (MSL) data using 

only individuals from Site 1 (68 individuals for microsatellites and 62 for MS-AFLPs), 

as this was the only site with more than two selfing lineages (Table S1.1). 

1.4. Results 

1.4.1. Parasite screening 

Bacterial cysts were present on the gills and consisted of white to yellow spherical 

cysts circumscribed by a capsule, which resulted in hypertrophied gill filaments. They 

were the most common type of pathogen appearing in 83.6% of the individuals 

screened, with a prevalence ranging from 1 to 19 (mean = 2.73, s.d. = ±2.99), and were 

most prevalent in Site 1 (mean = 3.16, s.d. =  ±3.16), followed by Site 2 (mean = 2.66, 

s.d. = ±3.10) and Site 3 (mean = 1.27, s.d.= ±0.80). The second most common 

macroscopic parasites were protozoan cysts, which consisted of small dark oval cysts 

over the gills arch and filaments. In total, 19.53% of the total number of individuals 

were infected with these cysts, ranging from 1 to 6 (mean = 0.54, s.d. = ±1.26). 

Protozoan cysts were absent in Site 1, but present in Site 2 (mean = 1.52, s.d. = ±1.6) 

and Site 3 (mean = 0.33, s.d. = ±1.37). Finally, adult nematodes were found in the gut 

of only eight individuals (6.25%), ranging from 1 to 3 (mean = 0.09, s.d. = ±0.40). 

Nematodes were only detected in Sites 1 (mean = 0.3, s.d. = ±1.37) and 2 (mean = 

0.02, s.d. = ±0.15) (Fig. S1.1; Tables 1.1; S1.1). Significant differences were found on 

scaled parasite loads (x2= 32.14, p = <0.001, df = 5) and bacterial cysts (Chi square = 

12.98, p = 0.01, df = 5) among selfing lineages. 
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1.4.2. Genetic diversity and population structuring based on microsatellites 

No linkage disequilibrium was detected between any pair of microsatellite loci. As 

expected from the high levels of self-fertilisation of the species, no loci were found to 

be in Hardy-Weinberg equilibrium, and all 27 microsatellite loci showed an excess of 

homozygotes. The global homozygosity index (HL) was very high (mean = 0.95), as 

well the estimated selfing rates (Table 1.1). At the individual level, 93 individuals 

(72.6%) were homozygous across all 27 microsatellite loci. However, 17 individuals 

(13.28%), displayed intermediate to high levels of heterozygosity (ranging from 0.13 

to 0.69).  

The clustering Bayesian algorithm INSTRUCT indicated that six was the most likely 

number of selfing lineages (K). Selfing lineage 6 was shared between two different 

mangroves (Site 1 with seven individuals and Site 2 with one individual), separated by 

approximately 100 km. The other five lineages were solely represented in one of the 

mangroves (lineage 1 with 14 individuals, lineage 2 with 25 individuals and lineage 4 

with 22 individuals in Site 1; lineage 3 with 41 individuals in Site 2; and lineage 5 with 

18 individuals in Site 3) (Figs. 1.1; 1.2; Table S1.1). High FST values were found both 

among sampling sites (mean = 0.28, s.d. = ±0.02) and selfing lineages (mean = 0.32, 

s.d. = ±0.05). All pairwise comparisons were highly significant (Table S1.2). 

Based on the resulting q-values from the INSTRUCT analysis, the fish were classified 

92 fish (71% of the total; 46 from Site 1, 30 from Site 2, 16 from Site 3) were classified 

as selfed (with q-values ≥ 0.9), while 36 (29% of the total; 22 from Site 1, 12 from Site 

2 and two in Site 3) as outcrossed (with q-values < 0.9) (Fig. 1.2; Table S1.1). The 

classification of individuals as selfed or outcrossed is based on the lineage 

composition, hence homozygote individuals can still be classified as originated from 
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outcrossing if they display alleles from different lineages, even if they appear in 

homozygosity after several generations of selfing. Overall, outcrossed individuals had 

significantly lower homozygosity by locus values (at microsatellites) and total parasite 

loads than selfed individuals (Table 1.2). 

AMOVA analyses using microsatellites indicated strong and significant differentiation 

among sampling sites (FST = 0.28, P = 0.001) and selfing lineages (FST = 0.32, P = 

0.001) (Table 1.3). Although significant, very low genetic differentiation was found 

between selfed and outcrossed individuals (FST = 0.01, P = 0.002) (Table 1.3; Fig. 

S1.2). These patterns were also seen on PCoA analysis, with individuals generally 

clustering by selfing lineages in the microsatellites data (25.84% of overall variation), 

with individuals from lineage 4 being the most differentiated from the other lineages 

on Site 1. In this site, substantial overlap was found among selfing lineages and 

between selfed and outcrossed, despite its significant differences (FST = 0.03, P = 

0.001) (Table S1.4; Fig. S1.3). 

1.4.3. Genetic and epigenetic variability and population structuring based on 

MS-AFLPs 

The epigenetic analysis identified 381 MS-AFLP loci, of which 267 (70.07%) were 

methylation-susceptible loci (MSL) and 106 (27.82%) non-methylated loci (NML). Of 

the MSL loci, 236 (88.3%) were polymorphic and therefore used for the variability 

analysis. Reproducibility comparisons between original and replicated genotypes for 

24 individuals revealed 238 loci with an average of 0.5% error rate (differences across 

individuals divided by the number of loci times number of replicates, as in Bonin et 

al. (2004)), which is within the normal reproducibility range for AFLPs genotyping 

(Bonin et al. 2004). AMOVA analysis for reproducibility also revealed no significant 
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differences between methylation and AFLP variation patterns between original and 

replicated set of individuals (Table S1.3). Averaged methylation ranged from 47.51% 

on lineage 2 to 38.17 % on lineage 5, and was 44.82% for inbred and 45.77% for 

outbred individuals.  

AMOVA revealed very low but significant differentiation among sampling sites, for 

both genetic (AFLPs: ɸST = 0.02, P = 0.001) and epigenetic loci (ɸST = 0.02, P < 0.001). 

Significant differentiation among selfing lineages was also found on genetic (AFLPs: 

ɸST = 0.02, P = 0.004) and epigenetic loci (ɸST = 0.02, P = 0.001). Overall, higher 

genetic and epigenetic variance was found within than between groups (Table 1.3). As 

with microsatellites, no clear genetic at AFLPs or epigenetic differentiation was found 

between selfed and outcrossed individuals (Fig. S1.2). There was, however, a 

significant positive association between epigenetic (MSL) and genetic diversity, both 

using AFLPs (Mantel test, r = 0.11; P = 0.002) and microsatellites (r =0.09; P= 0.001). 

No MSL epiloci were identified as an FST outlier in any of the comparisons. 

No significant differences among selfing lineages for individuals from Site 1 for 

AFLPs genetic data (selfing lineages: ɸST = 0.008, P = 0.12) or MSL epigenetic data 

(selfing lineages: ɸST = 0.006, P = 0.20) (Table S1.4). In the PCoA, substantial overlap 

was found among selfing lineages and between selfed and outcrossed individuals (Fig. 

S3). Mantel tests between genetic and epigenetic data indicated a significant positive 

association between AFLPs and MSL data (r = 0.21; P <0.001), but not between 

microsatellites and MSL (r = -0.005; P = 0.45). 

1.4.4. Parasite loads, genetic and epigenetic variation 

According to a multi-model testing approach, the most plausible model for the 

proportion of methylated DNA included selfing lineage, scaled parasite load, 
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inbreeding status and the interactions between selfing lineage and scaled parasite load 

and inbreeding. The proportion of methylated loci significantly varied among selfing 

lineages (estimate = 0.51, S. E.= 0.13, P < 0.001) and was affected by parasite loads 

and inbreeding status through its interactions with selfing lineage (parasite loads and 

selfing lineage: estimate = -0.55, S.E.=0.46, P = 0.005; inbreeding and selfing lineage 

interaction: estimate = -1.64, S.E.=0.14, P = 0.04) (Fig 1.3b-c; Tables 1.4 and S1.7). 

The second most likely model (ΔAICc=1.00) included only selfing lineage (estimate 

= -0.43, S. E. = 0.08, P < 0.001) and the interactions between inbreeding and selfing 

lineage (estimate = -1.10, S. E.=0.12, P = 0.04) as significant predictors. However, this 

model explained substantially less of the overall variation compared to the first model 

(weight: 0.17 vs. 0.28). and was 1.39 times less likely than the first one (Tables S1.5-

S1.6). 

Overall, the results of the single-taxa models (using number bacterial cysts) were very 

similar to those for scaled parasite loads. The best model to explain the proportion of 

methylated loci included selfing lineage, and the interactions between selfing lineage 

and bacterial cysts, and selfing lineage and inbreeding (Tables S1.7).  

In the models with individuals from Site 1 (to remove any potential confounding effect 

between sampling site and selfing lineages) the model with the proportion of 

methylated loci with the lowest AIC indicated that selfing lineage, inbreeding and the 

interactions between inbreeding and selfing lineage and inbreeding and scaled parasite 

loads were all significant predictors (Table S1.8). However, the second best-fitting 

model (ΔAICc = 0.02) explained the same amount of variation (weight=0.39) and the 

evidence ratio (1.50) suggested that it was more likely than the first model. This second 

model indicated that overall, the proportion of methylated DNA significantly increased 

with scaled parasite loads (estimate = 0.43, S. E.= 0.11, P = 0.03) and that DNA 
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methylation levels were also affected by the interaction between scaled parasite loads 

and inbreeding (estimate = -1.29, S. E.=0.38, P <0.001), with inbred individuals having 

increased methylation levels with increased parasite loads, while outbred individuals 

had decreased methylation levels with increased parasite loads (Fig. 1.3d; Table 1.4). 

1.5. Discussion 

DNA methylation could play an important role in organisms with limited potential for 

genetically-based adaptation, including asexual and self-fertilising species, potentially 

increasing their plasticity capacity to cope with environmental change (Verhoeven and 

Pretie 2014; Douhovnikoff and Dodd 2015). However, my results did not indicate 

significant differences in genome-wide DNA methylation variation between selfed and 

outcrossed individuals, and my models only identified inbreeding status (defined as 

originating from selfing or outcrossing) significantly related to DNA methylation via 

its interaction with selfing lineage (all sampling sites) and parasites (at the local scale 

in Site 1). Higher variation in DNA methylation has been reported for clonal and 

inbred individuals (Liebl et al. 2013; Massicotte and Angers 2012; Richards et al. 

2012), which has been suggested as a potential adaptive mechanism to surrogate 

genetic variation (Schrey et al. 2012), or alternatively, a consequence of inbreeding, 

representing a non-genetic mechanism contributing to inbreeding depression 

(Nakamura and Hosaka 2010; Vergeer et al. 2012). My results suggest that either 

inbreeding does not affect genome-wide DNA methylation variation or it does in a 

gene-specific manner (Venney et al. 2016). 

Overall, inbred individuals harboured higher parasite loads than their outcrossed 

counterparts, supporting the prediction that low heterozygosity due to self-fertilisation 

may reduce fitness (considering parasite load as a proxy for pathogen pressure), as for 

other mixed-mating species (Ellison et al. 2011; King et al. 2011). Long periods of 
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self-fertilisation may reduce offspring fitness due to the accumulation of deleterious 

alleles and inbreeding depression (Charlesworth et al. 1993). Species with mixed-

mating seem to overcome these problems through occasional outcrossing (Ellison et 

al. 2011; Morran et al. 2011), which can generate genetic diversity to face natural 

enemies, such as parasites (Lively 2014). Here, based on the high levels of individual 

heterozygosity observed in few individuals, I confirmed that outcrossing occasionally 

happens in K. hermaphroditus, making this species the second known vertebrate with 

mixed-mating system, together with its sister-species K. marmoratus. As shown in the 

latter, the relationship between parasites and inbreeding status (selfed or outcrossed) 

suggests that outcrossing might confer a fitness advantage, even when it occurs at very 

low frequencies (Ellison et al. 2011). However, despite the adaptive potential of 

outcrossing, the main reproductive strategy of K. hermaphroditus seems to be self-

fertilisation. This suggests that other evolutionary mechanisms may be balancing the 

harmful effects of parasite infections, or that parasite selection is of low (Lively and 

Morran 2014). Theory predicts that low selection levels imposed by natural enemies 

are consistent with the maintenance of asexual reproduction (Judson 1997). For 

example, in the mixed-mating Potamopyrgus snails, the oldest asexual lineages are 

restricted to populations where parasites are rare (Neiman et al. 2005). Thus, the low 

number of parasites found in K. hermaphroditus (i.e. mean of 3.38 parasites per 

individual compared to 22.41 of K. marmoratus in Belize; Ellison et al. 2011), may 

explain the high prevalence of selfing in K. hermaphroditus. 

I found that the different selfing lineages of Kryptolebias hermaphroditus distributed 

in three sampling sites of northeast Brazil differed significantly in parasite loads, 

genetic composition and DNA methylation patterns, which might indicate specific 

interactions between host genotypes, epigenotypes and parasites (Ebert 2008). 
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Previous studies on mangrove killifishes had identified extensive genetic structuring 

both between (Tatarenkov et al. 2015; Tatarenkov et al. 2017) and within mangrove 

systems even at close geographical proximity (Tatarenkov et al. 2012; Tatarenkov et 

al. 2007) (Tatarenkov et al. 2007; 2012; Ellison et al. 2012). I, here, also found strong 

evidence of genetic structuring between sampling sites and selfing lineages using 

microsatellites, but lower differentiation for AFLP genetic markers (likely due to the 

different mutation rate of the markers) and epigenetic markers (MS-AFLPs). As most 

of the selfing lineages were exclusive to specific sampling sites, I could not discard 

confounding effects between sampling sites and selfing lineages. Intriguing, however, 

are the differences revealed between selfing lineages within the same site. For 

example, lineage 2 is composed by nearly half outbred individuals, has the highest 

mean number of alleles, lowest inbreeding coefficient, homozygosity, selfing rate 

parasite loads among lineages from site 1. In contrast, lineage 6 is composed by only 

inbred individuals, has the lowest mean of alleles, highest inbreeding coefficient, 

heterozygosity, selfing rates among all sites, and it was also the mostly heavily 

parasitized. Site 1 was sampled in a relatively short period of time (January to March 

2015), focusing on particular mangrove pools in an area no bigger than 200 m2 in 

diameter (Lira et al. 2015 Berbel-Filho et al. 2016). Similarly, Ellison et al. (2012) 

found the highest genetic and ecological differences among K. marmoratus individuals 

from two sampling points only 150m distant to each other, suggesting that other factors 

than distance may be playing a role on the fine-scale genetic structure in mangrove 

killifishes. 

Recent studies indicate that DNA methylation is likely to interact with genotypes in a 

genotype-by-environment manner to generate plastic responses (Herman and Sultan 

2016). For example, Dubin and colleagues (2015) found strong influence of genetic 
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variants in DNA methylation levels in response to different temperature regimes in 

Arabidopsis thaliana. In humans, either the genotype alone or genotype-by-

environment interactions in the uterus explained the variation of over a thousand 

differentially methylated regions on the methylome of neonates (Teh et al. 2014). 

Using data from all sampling sites, I found that genome-wide DNA methylation was 

strongly influenced by selfing lineage, and only at a smaller scale by inbreeding 

through its interaction with selfing lineage. Strong epigenetic differences between 

selfing lines had been identified previously in K. marmoratus (see Ellison et al. 2015), 

indicating an important role of the genetic background in the epigenetic variation of 

these species. In addition, I also found a significant correlation between DNA 

methylation and genetic variation (at both AFLP and microsatellites data), suggesting 

that autonomous variation in DNA methylation may be limited (Dubin et al. 2015). 

Several abiotic and biotic factors, including parasites (Hu et al. 2018) as well as 

stochastic epimutations (Leung et al. 2016), are known to influence DNA methylation 

variation. My results showed that DNA methylation levels for all sampling sites were 

significantly influenced by parasite loads through the interaction with selfing lineage, 

suggesting a potential genotype-by-environment interaction on parasites responses. 

However, in Site 1, when selfing lineage were genetically more similar, genetic 

background did not have an effect on genome-wide DNA methylation, but parasites 

and their interaction with inbreeding status did. Overall, these findings suggest that 

genetic divergence have a major impact on DNA methylation profiles, however 

locally, when genetic differences are smaller, other environmental effects also effect 

genome-wide DNA methylation variation. 

Increasing evidence has been showing that DNA methylation is involved in the 

modulation of host-pathogen interactions (Gómez-Díaz et al. 2012). The bacterial 
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parasite Wolbachia, for example, alters host genome-wide DNA methylation patterns 

resulting in the feminisation of infected leafhoppers (Zyginidia pullulan) to increase 

its transmission (Negri et al. 2009). Experiments in plants with both hyper- and 

hypomethylated mutants indicate that genome-wide DNA demethylation enhances 

immune responses to both bacterial (Dowen et al. 2012; Yu et al. 2013) and fungal 

infections (Le et al. 2014). Although I found evidence of parasites affecting DNA 

methylation variation, the anonymous nature of the genetic and epigenetic markers is 

a limiting factor to infer the potential adaptive/functional role of the DNA methylation 

variation in response to parasites. Further analyses, ideally under controlled 

experimental conditions and using higher resolution sequencing methods (i.e. whole-

genome bisulphite sequencing, RNAseq), should help to clarify how DNA methylation 

may affect immune responses in mixed-mating Kryptolebias species. 

The relationship between parasite loads and outcrossing seems to be common to 

several mixed-mating species (Steets et al. 2007; Ellison et al. 2011; King et al. 2011) 

in addition to K. hermaphroditus, suggesting that the influence of parasites in the 

regulation of mixed-mating could be generalised. The extent of this relationship, 

however, may depend on the severity of the selection imposed by coevolving parasites 

(Lively and Morran 2014). My results indicate that genotype composition (and its 

interaction with inbreeding) is important in DNA methylation responses to 

environmental variation in natural populations, and that, if DNA methylation 

responded in a genotypic-specific manner to parasites pressures, it could contribute to 

local adaptation (Smith et al. 2016). The mangrove killifish, with its naturally inbred 

populations and marked methylation differences between populations and genotypes, 

represents an ideal model to analyse the relative roles of genetic and epigenetic 

diversity in modulating local adaptation.
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Table 1.1. Genetic diversity (at 27 microsatellite loci), mean parasite number (standard 

deviation in brackets) and parasite prevalence in Kryptolebias hermaphroditus at 

sampling sites in northeast Brazil. N = sampling size; Na = mean number of alleles; He 

= expected heterozygosity; Ho = observed heterozygosity; FIS = inbreeding coefficient; 

HL = homozygosity by locus; S = selfing rates. 

 

 

 Site 1 Site 2 Site 3 All sites 

Genetic diversity   

N 68 42 18 128 

Na 3.03 3.44 3.14 3.21 

He 0.28 0.26 0.33 0.295 

Ho 0.025 0.015 0.043 0.028 

FIS 0.91 0.94 0.87 0.93 

HL 0.95 0.97 0.93 0.95 

S 0.92 0.93 0.87 0.90 

Parasite loads     

Bacterial gills cysts 3.16 (3.16) 2.66 (3.10) 1.27 (0.80) 2.73 (2.99) 

Protozoan gills cysts 0 1.52 (1.60) 0.33 (1.37) 0.54 (1.26) 

Nematodes 0.16 (0.53) 0.02 (0.15) 0 0.09 (0.40) 

Total parasite load 3.33 (3.27) 4.21 (3.17) 1.61 (1.73) 3.38 (3.17) 

Parasite prevalence (% of fish with infection) 

Bacterial gills cysts 91.17 71.42 83.33 83.59 

Protozoan gills cysts 0 57.14 5.55 19.53 

Nematodes 10.29 2.38 0 6.25 
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Table 1.2. Comparison of homozygosity by locus (HL) (at 27 microsatellite loci), mean 

parasites loads (standard error in brackets) and parasite prevalence between 

Kryptolebias hermaphroditus classed as either selfed or outcrossed based on q-values 

from selfing lineages structure estimated using INSTRUCT. P and z-values extracted 

from a two median Mann-Whitney test. 

 

 

 

 

 Selfed Outcrossed z P value 

Genetic diversity     

N 92 36   

HL 0.98 0.88 -4.76 <0.001 

Parasite loads     

Bacterial gills cysts 3.25 (2.99) 1.69 (2.59)   

Protozoan gills cysts 0.57 (1.26) 0.47 (1.28)   

Nematodes 0.1 (0.4) 0.05 (0.42)   

Total parasite load 3.82 (3.47) 2.25 (1.94) -2.84 0.004 

Parasite prevalence (% of fish with  

infection) 

    

Bacterial gills cysts 89.13 69.44   

Protozoan gills cysts 18.47 22.22   

Nematodes 7.6 2.77   
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Table 1.3. Hierarchical analysis of molecular variance (AMOVA) for microsatellites and MS-AFLPs data among (a) sampling sites, (b) selfing 

lineages and (c) selfed and outcrossed individuals in Kryptolebias hermaphroditus. df= degrees of freedom; SSD= sum of squared deviations; Mol. 

var. (%) = molecular variance percentages from variance components sigma 2; ɸST = Phi statistics for population differentiation. P value derived 

from 10,000 permutations. 

 

 
Microsatellites NML MSL 

 
df 

Mol. var. 

(%) 
FST 

 P 

value 
df 

Mol. var. 

(%) 
ɸST 

P 

value 
df 

Mol. var. 

(%) 
ɸST P value 

(a) Sampling sites 

Among sites 2 28.46 0.28 0.001 2 2.20 0.02 0.001 2 2.96 0.02 <0.001 

Within sites 227 71.54   112 97.80   112 97.05   

(b) Selfing lineages 
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Among 

lineages 

5 32.40 0.32 0.001 5 2.00 0.02 0.004 5 2.15 0.02 0.001 

Within 

lineages 

250 67.60   109 98.00   109 97.85   

(c) Inbreeding status  

Between 

selfed and 

outcrossed 

 1.28 0.01 0.002 1 0.15 0.02 0.32 1 0.82 0.02 0.06 

Within 

selfed and 

outcrossed 

 98.72   113 99.85   113 99.18   
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Table 1.4. Results of the best-fitting generalized linear models for proportion of 

methylated loci (binomial distribution) in Kryptolebias hermaphroditus, using the 

multi-model averaging approach (see appendix for the full model comparisons). df= 

degrees of freedom; Coeff = mean coefficient estimates. 

 

 

 

 

 

Independent variable df Coeff z P-value 

Proportion of methylated loci     

Selfing lineage 5 -0.51 -4.50 <0.001 

Scaled parasite load 1 -0.02 -0.02 0.83 

Inbreeding 1 -0.50 1.73 0.15 

Selfing lineage x parasite scaled 5 -0.55 -3.90 0.005 

Selfing lineage x inbreeding 4 -1.64 -1.64 0.04 

Proportion of methylated loci for site 1     

Scaled parasite load 1 -0.23 -11.49 0.03 

Inbreeding 1 -0.31 -10.64 0.09 

Inbreeding x scaled parasite load 1 -1.87 -17.93 <0.001 
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Figure 1.1. Sampling locations for Kryptolebias hermaphroditus (picture of a live 

individual on top-right corner) in northeast Brazil. Site 1 = Ceará-Mirim river; Site 2 

= Curimataú river; Site 3 = Ipojuca river.
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Figure 1.2. Genetic assignment of Kryptolebias hermaphroditus to six selfing lineages 

using INSTRUCT. Each individual is represented by a bar, which represents the 

likelihood of the individual to belong to a specific genetic cluster (colour)



57 
 

 

Figure 1.3. Relationships between (a) scaled parasite load across selfing lineages and 

inbreeding status, (b) proportion of methylated loci across selfing lineage and 

inbreeding status (selfed or outcrossed), (c) Proportion of methylated loci and selfing 

lineages and scaled parasite loads and (d) proportion of methylated loci across 

inbreeding status for sampling site 1 individuals. Circles for selfed, triangles for 

outcrossed individuals. Red = selfing lineage 1 (Site 1); salmon = selfing lineage 2 

(Site 1); green = selfing lineage 3 (Site 2); brown = selfing lineage 4 (Site 1); yellow 

= selfing lineage 5 (Site 3); purple = selfing lineage 6 (Sites 1 and 2); orange = 

outcrossed individuals; blue = selfed individuals.



58 
 

CHAPTER 2: Hybridisation between species with 

different mating systems revealed by the genetic 

structure of the mangrove killifish Kryptolebias 

ocellatus 

_____________________________________________ 
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2.1 Abstract 

Mangrove forests are declining at an alarming rate. However, knowledge about the 

genetic structure of mangrove-associated organisms is still incipient. Kryptolebias 

ocellatus is an androdioecious (populations consisting only of males and 

hermaphrodites) mangrove killifish species inhabiting mangrove forests in 

southeastern Brazil. On its northernmost distribution, K. ocellatus is sympatric with 

the also androdioecious but predominantly selfing species K. hermaphroditus 

(composed of selfing hermaphrodites and very rare males). Here, I examined the 

genetic structure and phylogeographic patterns of K. ocellatus along its whole known 

distribution, using mitochondrial DNA, microsatellites and SNPs data. Specifically, I 

aimed to investigate whether K. ocellatus shows similar patterns of genetic structure 

along the southeastern Brazilian mangroves as its often-sympatric species K. 

hermaphroditus; and analyse any potential signal of hybridisation between K. 

ocellatus and K. hermaphroditus on areas where both species co-occur. Our results 

suggest absence of self-fertilisation in K. ocellatus, and a deeper genetic structuring 

within K. ocellatus in a much narrower range when compared to K. hermaphroditus, 

indicating older population establishment and/or lower dispersal capacity in K. 

ocellatus. I also found evidence of hybridization events in two of the three mangroves 

where both species are syntopic. Given the strong genetic divergence between the two 

species, the scarcity of males and the extremely low levels of outcrossing in K. 

hermaphroditus, the hybridisation between these two species is very unlikely and 

represents, the first example of hybridisation between species with different mating 

systems in vertebrates.  

 



60 
 

2.2. Introduction 

Human activities, such as deforestation, urbanisation, harvesting and pollution modify 

the environmental conditions, ecological interactions and evolutionary pressures 

which organisms are subjected to (Allendorf and Hard 2009; Bull and Maron 2016; 

Heino et al. 2015). In particular, some of the most species-rich habitats are losing 

biodiversity and area at an alarming rate (Pimm and Raven 2000). Among those, 

mangrove forests are declining at a faster rate than tropical rainforests and coral reefs, 

mainly threatened by the growing aquaculture industry, urbanisation and pollution 

(Duke et al. 2007; Valiela et al. 2001). Despite this eminent conservation issue, the 

knowledge about the population dynamics and genetic structure of mangrove forests 

and their associated organisms is relatively scarce (Sandilyan and Kathiresan 2012). 

Several fish species are known to inhabit or use mangroves during some period of their 

life cycle (e.g. foraging, breeding). However, very few are exclusively associated to 

mangroves (Taylor 2012). A rare example is the mangrove killifish clade from the 

genus Kryptolebias. The mangrove killifish clade is composed of the only known 

representatives among all rivulids (350+ species) living in brackish waters (Avise and 

Tatarenkov 2015; Costa 2011b; Costa et al. 2010), and perhaps more remarkably, the 

only two known examples of self-fertilising hermaphroditism among vertebrates (K. 

marmoratus and K. hermaphroditus, species that form the ‘K. marmoratus species 

complex’, see Tatarenkov et al. (2017)). A third species compose the mangrove 

killifish clade: K. ocellatus (Costa 2011a; Costa et al. 2010). The tight association 

between western Atlantic mangrove environments and mangrove killifish clade 

distribution suggests that the current phylogeographic patterns observed in the killifish 

were influenced by the dispersal and distribution of the Atlantic mangrove forests. 

Therefore, information on the population structure of mangrove killifishes can be 
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informative in a broader context, possibly reflecting their genetic structure and 

colonisation patterns to other mangrove-dwelling organisms composing the Atlantic 

mangrove ecosystem (Tatarenkov et al. 2017).  

Kryptolebias ocellatus (also known by its junior synonym Kryptolebias 

caudomarginatus, taxonomic nomenclature still under discussion (Costa 2011a; Huber 

2017)) is a mangrove-dwelling species endemic from intermittent mangrove 

microhabitats in south and southeast Brazil (Costa 2016). Its populations are composed 

of males and hermaphrodites occurring approximately in an equal sex ratio (Costa et 

al. 2016; Costa et al. 2010). Based on the lack of departures from Hardy-Weinberg 

equilibrium, Tatarenkov et al. (2009) suggested that the species does not undergo 

selfing, however only two populations were analysed. On its northernmost known 

distribution (Guanabara and Sepetiba Bays, 22° S), it is often syntopic with K. 

hermaphroditus (Costa et al. 2016; Costa 2011a), a species mostly composed of self-

fertilising hermaphrodites and extremely rare males (Berbel-Filho et al. 2016), which 

occasionally outcross but at very low frequencies (Berbel-Filho et al. 2019a). 

Extremely low levels of genetic diversity in K. hermaphroditus, especially in its 

southernmost distribution (where it is syntopic with K. ocellatus), suggest relatively 

recent dispersal and colonisation of this species in southeast Brazil (Tatarenkov et al. 

2009; 2011; 2017). Recently, Tatarenkov et al. (2018) found evidence of hybridisation 

between K. marmoratus and K. hermaphroditus (‘Central clade’) suggesting that 

divergent Kryptolebias lineages are able to interbreed when in sympatry. Although 

some studies have reported that K. ocellatus is usually more abundant than K. 

hermaphroditus in the mangrove microhabitats where both species are syntopic (Costa 

2016; Costa et al. 2010), further details about the ecological interactions between the 

two species remain unknown.  
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Considering that both species occupy shallow temporary pools in mangrove forests in 

southeast Brazil and show high similarities in general body shape and colour patterns 

(Costa 2016; Tatarenkov et al. 2017) (Fig.2.1), morphologically-based taxonomic 

classification of the two species has been historically confuse (Costa 2006; Costa 

2011a; Costa 2016). However, their morphological similarity does not seem to reflect 

shared evolutionary history. Phylogenetic studies revealed that K. ocellatus is 

genetically very divergent from K. hermaphroditus and is likely to be the sister-species 

of the clade containing the selfing species from K. marmoratus species complex (K. 

marmoratus and K. hermaphroditus) (Kanamori et al. 2016; Tatarenkov et al. 2017; 

Tatarenkov et al. 2009; Vermeulen and Hrbek 2005). All the other known Kryptolebias 

species are freshwater and dioecious, suggesting that hermaphroditism arose within 

the mangrove killifish clade with reduction of males and selfing later evolving in the 

K. marmoratus species complex (Avise and Tatarenkov 2015; Costa et al. 2010). 

The genus Kryptolebias has been of particular scientific interest due to its diversity of 

mating systems (dioecious, androdioecious, and mixed-mating species) (Avise and 

Tatarenkov 2015; Costa et al. 2010). Since the discovery of self-fertilisation in K. 

marmoratus (Harrington 1961), extensive information has been collected on the 

ecology, physiology and evolution of species within the K. marmoratus species 

complex (Kanamori et al. 2016; Tatarenkov et al. 2017; Tatarenkov et al. 2009; Taylor 

2012; Wright 2012). However, the other South American Kryptolebias, including 

species within the mangrove killifish clade, remain understudied (Berbel-Filho et al. 

2016; Costa et al. 2010; Lira et al. 2015). Therefore, I investigated the genetic structure 

and phylogeographic patterns of Kryptolebias ocellatus across its whole known 

distribution in southern and southeast Brazil using mitochondrial DNA, microsatellites 

and single-nucleotide polymorphisms (SNPs) data. More specifically, I aimed to: (1) 
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analyse the possibility of self-fertilisation in K. ocellatus; (2) investigate whether K. 

ocellatus shows similar patterns of genetic structure (low genetic structure and high 

gene flow) along the Brazilian mangroves as its often syntopic species K. 

hermaphroditus; (3) investigate any potential signal of hybridisation and introgression 

between K. ocellatus and K. hermaphroditus in populations where both species co-

occur.  

2.3. Material and Methods 

2.3.1. Samples 

I sampled K. ocellatus and K. hermaphroditus (on its syntopic populations) in south 

and southeast Brazil (Costa 2016), covering the entire known distribution of K. 

ocellatus between August and September 2017, using hand nets in mangrove 

microhabitats (e. g. mangrove temporary pools and crab burrows) (Fig. 2.1; Table 2.1). 

The sex of the fish (male or hermaphrodite) was inferred by body and fin coloration 

patterns as follows: in K. ocellatus, males were identified by a black spot on the dorsal 

part of the caudal fin, a distinguishable trait for males on this species (Costa 2016); in 

K. hermaphroditus, the presence of males was checked by the presence of a broad 

black margin along the whole caudal fin, bordered by a broad sub-marginal white zone 

as described in Costa (2016). Sampling work was carried out under license 

ICMBio/SISBIO 57145-1/2017. 

2.3.2. Microsatellites and mtDNA markers 

A subset of 16 microsatellites from (Mackiewicz et al. 2006a) were amplified and 

genotyped following protocols described in Tatarenkov et al. (2010). One 

mitochondrial gene, cox1 (cytochrome oxidase subunit I gene) was also used to 
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investigate the genetic structure and major lineages distribution. Microsatellite 

genotypes were obtained for 190 individuals and cox1 was sequenced in 129 

individuals of K. ocellatus. Iriri (IRI) mtDNA and part of Guaratiba (GUA) 

microsatellite data was retrieved from individuals sampled in Tatarenkov et al. (2009). 

Kryptolebias hermaphroditus from three locations in southeast Brazil (Table 2.1), two 

of which were syntopic with K. ocellatus, were genotyped for the same markers. 

A 618 bp region of the cox1 was amplified with FishCOI-F (5′-

TCAACYAATCAYAAAGACATYGGCAC-3′) and FishCOI-R (5′-

ACTTCYGGGTGTCCRAARAAYCA-3′) primers as in Tatarenkov et al. (2017). 

PCR amplification conditions were as follow: initial denaturation of 95°C for 5 min; 

30 cycles of denaturation at 95 °C for 40 s, annealing at 52 °C for 40 s and extension 

at 72 °C for 1 min; and a final extension step of 7 min at 72 °C. Both forward and 

reverse DNA strands were sequenced and assembled using Geneious v. 9.1.8 

(www.geneious.com).  

2.3.3. mtDNA phylogenetic and phylogeographic analysis  

A Bayesian coalescent reconstruction was carried out using BEAST v. 2.5.1 

(Bouckaert et al. 2019). The sequences dataset was reduced to the cox1 haplotypes 

found for the 129 K. ocellatus individuals and using the only haplotype found for K. 

hermaphroditus in southeast Brazil as an outgroup. The best fitting model of 

nucleotide substitution was selected according to the Akaike and Bayesian Criteria on 

jModelTest2 (Darriba et al. 2012). The substitution model selected was 3-paratemer 

model with unequal base frequencies (TPM1uf). To time-calibrate the phylogenetic 

reconstruction and allow for rate variation among lineages, a lognormal relaxed 

molecular clock of 0.009 substitutions per site per million years was used, based on 
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the cox1 Goodeidae fossil-calibrated molecular rate described in Webb et al. (2004). I 

performed three independent runs of 10,000,000 Markov Chain Monte Carlo (MCMC) 

runs, sampling every 1,000. I used Tracer v. 1.7.1 (Rambaut et al. 2018) to access 

convergence and effective sample sizes (≥ 200) among MCMC runs. I used the 

software TREEANNOTATOR v. 2.5.1 (Bouckaert et al. 2019) to discard the first 2000 

trees (20%) as burn-in, and to generate a consensus tree with posterior probability 

value for each clade. 

The number of haplotypes (H) and polymorphic sites (S), haplotype (h) and nucleotide 

diversities (π) for each sampling location and major clades were calculated using 

DNAsp v. 6.10.04 (Rozas et al. 2017). For performing neutrality tests and generating 

pairwise fixation indices (FST) among major clades and sampling locations, I used 

Arlequin v. 3.5.2.2 (Excoffier and Lischer 2010). I used Mega v. 7.0.26 (Kumar et al. 

2016) to calculate Kimura-2-Parameter (K2P) genetic distances among major clades 

and sampled populations. To visualise haplotypes distribution and divergence, I 

reconstructed a cox1 haplotype network using POPART (Leigh and Bryant 2015). 

I used analyses of molecular variance (AMOVAs) with 1,000 permutations in Arlequin 

v. 3.5.2.2 to test different hypothesis of partition: (1) major clades recovered by 

Bayesian phylogenetic reconstruction of cox1 (Northern/Parati/Southern), (2) major 

clades recovered by microsatellites analysis using Evanno’s method ΔK 

(Northern/Southern, see below), (3) paleorivers basins according to Thomaz et al. 

(2015) (IRI+FUN/GUA+PRT/PAR/SFR/FLO). 

2.3.4. Statistical analysis with microsatellite data 

Micro-checker v. 2.2 (van Oosterhout et al. 2004) was used to check for errors in the 

data and presence of null alleles. To assess overall differentiation at the population 
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level, I used FSTAT v. 2.9.3.2 (Goudet 1995) to calculate FST and conduct exact G -

tests based on 10,000 randomizations of alleles. FSTAT was also used to measure 

departures from Hardy–Weinberg equilibrium. P values for FIS for each locus were 

based on 2240 randomizations, and P values over all loci were calculated from a 

weighted average of the statistic obtained for each locus. To ensure the neutrality of 

the markers, I tested for linkage disequilibrium and deviation from Hardy–Weinberg 

equilibrium using GENEPOP v. 4.2 (Rousset 2008). Unbiased expected (HE) and 

observed heterozygosity (HO) were calculated using MSA v. 4.05 (Dieringer and 

Schlötterer 2003). 

2.3.5. Genetic structuring and clustering analysis with microsatellite data 

I tested the same hypotheses of genetic partition as for the cox1 haplotypes using 

microsatellites genotypes with AMOVA in Arlequin v. 3.5.2.2. The overall genotypic 

associations of individuals were visualized with a factorial correspondence analysis 

(FCA) using the procedure implemented in GENETIX v. 4.04 (Belkhir 2004). 

I applied three different methods to estimate the most likely number of genetic clusters 

(K) across K. ocellatus distribution. First, using only microsatellite data I ran 

STRUCTURE 2.3.4 (Pritchard et al. 2000) with the following parameters: 10 iterations 

per K, a total of 1,000,000 MCMC and 100,000 burn-in, admixture model, independent 

allele frequencies, and testing K ranging 1–10. To identify the uppermost hierarchical 

level of genetic structure, I chose the most likely K value using second-order rate of 

change of likelihood ΔK method (Evanno et al. 2005), implemented in Structure 

Harvester (Earl 2012). Independent STRUCTURE runs were aligned and plotted using 

CLUMPAK (Kopelman et al. 2015). 
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Given the uneven number of individuals on my sampling, I input the STRUCTURE 

runs into STRUCTURESELECTOR (Li and Liu 2018), which used four metrics of 

cluster estimates (median of means (MedMeaK), maximum of means (MaxMeaK), 

median of medians (MedMedK) and maximum of medians (MaxMedK)) implemented 

by Puechmaille (2016) to investigate the most likely number of genetic clusters. 

Finally, to integrate mtDNA, microsatellites data and spatial information, I used 

Geneland v. 4.0.8 (Guillot et al. 2008), which takes into account spatial information 

from each individual, also allowing for uncertainty in the positioning of sampled 

individuals. To first identify the spatial population distribution and then access 

individual assignment to the inferred most likely K value, I followed Guillot et al. 

(2005). First, I input individual mtDNA (129 individuals), geographical coordinates 

(geo-referenced according to the sampling points and allowing for uncertainty of ±0.05 

in both latitude and longitude) and genotype data for 190 individuals with K range 1-

10. Ten multiple runs were run with 10,000,000 MCMC iterations, sampled every 

1,000 iterations. Once the K value was inferred from the modal value across the 10 

multiple runs, I ran the MCMC again with other 10 multiple runs and K fixed to 

assigned value. These final 10 runs were postprocessed (with a burn-in of 20%) in 

order to obtain posterior probabilities of population membership for each individual. 

All Geneland analyses were performed using “geneland” R package (Guillot et al. 

2008). 

2.3.6. Hybridisation between K. ocellatus and K. hermaphroditus 

In order to investigate the possibility of hybridisation between K. ocellatus and K. 

hermaphroditus in their syntopic populations (IRI, FUN and GUA) (Fig. 2.1), I 

genotyped 67 K. hermaphroditus (identified using cox1) individuals from three 
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populations in southeast Brazil (FUN, GUA, PIC) for the same 16 microsatellites 

studied for K. ocellatus (Table 2.1). I repeated the STRUCTURE analysis including 

both species with the same parameters described previously. NEWHYBRIDS v. 1.1 

(Anderson and Thompson 2002) was used to estimate the posterior probability of each 

individual to belong to one of the six classes (parental species 1, parental species 2, 

F1, F2, backcross 1 (between parental species 1 and F1), and backcross 2 (between 

parental species 2 and F1) based on their allele frequencies. The analysis was run using 

the default genotype proportions, using the uniform prior option and a burn-in period 

of 50,000 iteration and 300,000 MCMC sweeps. 

2.3.7. Genotype-by sequencing library 

The genomes of a subset of 55 individuals (33 K. ocellatus and 22 K. hermaphroditus 

according to the cox1 mtDNA haplotypes; Table S2.1) were sequenced using a reduced 

representation, which follows the original genotype-by-sequencing (GBS) protocol 

described in Poland et al. (2012). Briefly, genomic DNA was digested using a rare 

cutter restriction enzyme (RE) EcoRI (cutsite: GAATTC) and RE HpaII (cutsite: 

CCGG). Then, digested DNA was ligated to barcoded adapters with a HpaII cut site 

overhang and the EcoRI Y adapter. The ligation products were individually cleaned to 

remove excess of adapters using Agencourt AMPure XP purification system 

(#A63880, Beckman Coulter, Brea, CA, USA) at a ratio of 0.85 as described by the 

manufacturer’s instructions. GBS libraries were produced by pooling 20ng of DNA 

from each sample. Each library was amplified in eight separate PCR reactions (25 µL 

each), containing 10 µL of library DNA, 5 µL of Q5 high fidelity buffer, 0.25 µL of 

Q5 high fidelity polymerase, and 1 µL of each Forward and Reverse common primer 

at 10 µM, 0.5 µL of 10 µM dNTP and 7.25 µL of pure sterile water. DNA fragments 
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were size-selected (range 200 – 350 bp) using Agencourt AMPure XP magnetic beads. 

Next, libraries were sequenced in an Illumina NextSeq500 sequencer platform (Cardiff 

University Genomics Research Hub, Cardiff, UK) to obtain 125 bp paired-end reads.  

2.3.7.1 Data analysis 

Paired-end reads were processed using a combination of packages in Linux bash shell 

environment. First, I used the software GBSX v 1.3 (Herten et al. 2015) to demultiplex 

the paired-end reads data allowing for one mismatch in the barcodes (-mb 1), no 

mismatch in the enzyme cut-site (-me 0), and ensuring that no common sequencing 

adapter was to be removed (-ca false). I then filtered (-qtrim r; -minlength 25) and 

merged the reads by individuals using BBmap tools (Bushnell 2014) (merging and 

filtering), mapped to Kryptolebias marmoratus reference genome  (Rhee et al. (2017), 

assembly size = 680.3Mb; number of scaffolds = 3,073; N50 = 2,229,659; GC content 

= 37.76%) using Bowtie 2 v. 2.2.3  using default parameters (Langmead and Salzberg 

2012) and used generated, filtered and indexed individual BAM files using samtools 

v. 1.9 (Li et al. 2009). 

To call genotypes, I used the package ANGSD v 0.9.2.9 (Korneliussen et al. 2014) 

with the following parameters: minimum mapping quality (-minMapQ 30), minimum 

base quality (-minQ 20), missing data (-minInd 95%), Global Depth (-setMaxDepth 

500X per individual), minimum genotype posterior probability (-postCutoff 0.95), 

single and double-tons were accordingly removed based on minimum minor allele 

frequencies (-MinMaf), anomalous reads (-remove_bads 1; SAM flag above 255), 

adjusted mapping quality for excessive mismatches (-C 50), performed BAQ 

computation (-baq 1), minimum coverage for genotype calling (-geno_minDepth 3), 

use of SAMtools genotype likelihood model (-GL 1), and estimated posterior genotype 

probabilities assuming an uniform prior (-doPost 2). In addition, I used the ANGSD 



70 
 

SNP calling method (-SNP_pval 1e-6), where a Likelihood Ratio Test is used to 

compare between the null (maf = 0) and alternative (estimated maf) hypotheses by 

using a X² distribution with one degree of freedom. 

2.3.7.2 Population genetics estimates 

For general population genetics estimates, I followed the instructions provided by 

ANGSD to compute the unfolded global estimate of the Site Frequency Spectrum 

(SFS) in order to calculate the observed proportion of heterozygous sites (PHt) per 

sample (Korneliussen et al. 2013). The observed fraction of heterozygous sites was 

calculated as the ratio between the number of heterozygotes and the total number of 

sites with information in percentage. 

In order to visualise the overall relationships among individuals based on the SNPs 

data, a pairwise genetic distances matrix was computed directly from the genotype 

likelihoods outputted by ANGSD using the software ngsDist v.1.0.2 (Vieira et al. 

2015). The matrix of genetic distances was used to conduct a Multidimensional 

Scaling (MDS) analysis using the R package cmdscale. 

To estimate the individual ancestries, I used the software ngsAdmix v. 3.2 (Skotte et 

al. 2013) ranging K between 2-10 in 100 replicates using default parameters, except 

for tolerance for convergence (-tol 1e-6), log likelihood difference in 50 iterations (-

tolLike50 1e-3), and a maximum number of EM iterations (-maxiter 10000). 

2.3.7.3 Individual ancestry and hybridisation analyses 

To investigate potential hybridisation between K. ocellatus and K. hermaphroditus 

with SNPs data, I subsampled the data containing only individuals from FUN and 

GUA for both species (39 individuals, 17 with K. ocellatus cox1 haplotype, 22 with K. 

hermaphroditus cox1 haplotype). I called SNPs with the same parameters described 
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above using the package ANGSD, with the only difference that I allowed for no 

missing data here. I selected SNPs with the highest pairwise FST values between 

species using ANGSD. I used the software ngsLD (Fox et al. 2019) based on genotype 

likelihoods using sites with 0.03 as minor allele frequency (--min_maf 0.03). I plotted 

the R² estimates using the fit_LDdecay.R script provided by ngsLD setting 500 kb as 

maximum distance between SNPs (--max_kb_dist 500), exhaustive fitting (--fit_level 

100) and a fitting bin size of 200 bp (--fit_bin_size 200). Pair of SNPs with significant 

(LD) were removed and randomly replaced with other SNPs until a dataset of 200 

SNPs (number limited by NEWHYBRIDS) with low-levels of LD and high FST 

values was reached. I then run NEWHYBRIDS with the same parameters described 

for the microsatellites to investigate the posterior probability of each individual to 

belong to one of the six hybrid classes. 

2.4. Results 

2.4.1. mtDNA phylogenetic and phylogeographic analysis 

Twenty-two cox1 haplotypes (618bp-long) were recovered from 129 K. ocellatus 

individuals sequenced. In contrast, only one cox1 haplotype was found for K. 

hermaphroditus across 61 samples (Table 2.2). A clear geographical pattern was found 

by the Bayesian reconstruction tree using cox1 haplotypes in K. ocellatus (Fig. 2.2). 

Three major lineages were found: a clade composed of haplotypes from sampling 

locations within Guanabara and Sepetiba’s Bays (IRI, FUN and GUA; hereafter called 

Northern clade), clustered with a clade containing haplotypes from the opposite side 

of Sepetiba Bay (PRT; hereafter called Parati clade), however the support for the 

grouping of Northern and Parati clades was low (PP: 0.66). The third clade was 

composed of haplotypes from sampling points in south Brazil (PAR, SFR, FLO; 
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hereafter called the Southern clade). Overall, the cox1 haplotype network and the 

distance-based tree using microsatellites data also supported the existence of these 

three major clades (Figs. 2.2; S2.1). 

Overall haplotype diversity was 0.895, being the highest in the SFR (Southern clade) 

and the lowest in GUA (Northern clade) populations. Nucleotide diversity was 

generally low (π=0.007), but also followed a similar pattern to the haplotype diversity, 

being the highest at PAR (Southern clade) and the lowest at GUA (0.0004). The same 

pattern of haplotype and nucleotide diversity was also seen when sampling locations 

were grouped according to the major mtDNA clades, with the Southern clade being 

the most diverse, followed by the Northern and Parati clades, respectively (Table 

S2.3). 

FST values were very high (mean= 0.72). All FST pairwise comparisons among 

sampling locations were significant, with the exception of the comparison between 

SFR and FLO (within the Southern clade). The highest FST value (0.92) was found in 

the comparison between FLO and PRT (Parati clade), while the lowest (0.14) was 

found between SFR and FLO (Table S2.4). All FST pairwise comparisons were 

significant when grouping sampling locations into the major mtDNA clades (mean = 

0.80).K2P genetic distances followed a similar pattern to the FST comparisons, with 

the highest values (1.4%) being observed between samples from the Southern and 

Parati clades, while the lowest (0.2%) between samples of the same mtDNA clade 

(Table S2.4). 

2.4.2. Microsatellite variation within populations 

On average, 22.4 K. ocellatus and 16.8 K. hermaphroditus individuals were genotyped 

at 16 microsatellite loci per sampling location, but sample size varied considerably 
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(from 5 to 51) (Table 2.2). Overall, there was high level of variation at microsatellite 

loci in K. ocellatus, but not in K. hermaphroditus. Excluding the hybrid individuals 

(see results below), the number of alleles varied from two at locus R28 to 35 at locus 

R38, with an average of 17.6 alleles per locus considering all sampling locations 

combined. Average intrapopulation allelic richness (AR) based on 5 individuals was 

4.21 for K. ocellatus and 1.38 for K. hermaphroditus. The mean expected 

heterozygosity (HE) was 0.56 (ranging from 0.47 to 0.60) for K. ocellatus and 0.07 

(ranging from 0.03 to 0.10) for K. hermaphroditus. The K. ocellatus Northern clade 

populations (IRI, FUN and GUA) showed a higher average HE (0.59) than Parati 

(0.53) and Southern clades (0.53). Two samples (IRI and GUA) had significant 

heterozygote deficiency, whereas SFR had a significant heterozygote excess (Table 

2.2). Examination of single-locus FIS values indicated that significant values of mean 

FIS in these populations were due to contribution of few loci (Table S2.5). Specifically, 

high FIS values in IRI were caused by heterozygote deficiencies at loci R30 and R92, 

while high FIS in GUA resulted from departures at locus R9, and significant 

heterozygote excess in SFR was caused by locus R34. Excluding these loci from 

analyses in respective populations rendered mean non-significant FIS values. The great 

majority of single-locus FIS were low and non-significant, and had approximately 

equal number of negative and positive values. Micro-Checker suggested that 

heterozygote deficiency at atypical loci mentioned above was probably a result of null 

alleles. Heterozygote excess at locus R34 in SFR may be a result of a locus duplication 

or an emergence of an additional priming site, that would make an appearance of 

additional ‘spurious’ alleles. Since mean FIS were non-significant after the atypical loci 

were excluded, I consider that all studied populations of K. ocellatus are in HWE and 

did not exclude any locus from further analyses (Table S2.5). 
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2.4.3. Genetic differentiation at microsatellite loci 

Genetic differentiation between populations in K. ocellatus was high and significant 

at many scales, either in global tests or in pairwise comparisons. For example, average 

FST among all comparisons was 0.25 (P < 0.001). In pairwise comparisons no 

difference was found between Guaratiba samples collected 10 years apart (FST = 0.00). 

FST in the remaining pairwise comparisons varied from 0.069 (between IRI and FUN; 

and SFR and FLO) to 0.386 (between IRI and PAR) (Table S2.6). The majority of 

pairwise FST were statistically significant after Bonferroni correction for multiple 

testing, with the exception of comparisons of FUN vs GUA-2017 (FST = 0.072), and 

FUN vs PAR (FST = 0.382), the latter most likely caused by small sample sizes in FUN 

and PAR (Table S2.6).  

Two loci showed evident pattern of regional geographic differentiation. Sampling 

points from the Southern clade (PAR, SFR, and FLO) were fixed for allele R18184, 

whereas Northern clade was nearly fixed for an alternative allele, R18172 (allele 

frequencies R18172 ranging from 95 to 98%). The Parati clade (geographically 

intermediate) had had both alleles, where 29 fish were homozygous at R18172 but two 

fish were heterozygotes R18172/184. Another locus with little overlap in allele 

distribution between Northern and Southern clades was R9. At this locus 91-100% of 

alleles in the Northern populations belonged to the class of ‘short’ alleles (alleles R994 

– R9226), whereas in the Southern populations 95-100% of alleles were in the class of 

‘long’ alleles (R9234 – R9294). The two groups of populations shared alleles R9230, R9234 

and R9118, but combined frequencies of these alleles in any single populations were 

9% at most.  
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2.4.4. Genetic partition and clustering analysis  

AMOVA results using cox1 haplotypes showed significant support for the division 

found among major mtDNA clades (78.5% of overall variation), followed by 

paleorivers configuration (62.74%), and major clades according to microsatellites 

genotypes (51.44%). Overall, variation within populations was low (<15%), while 

most of the variation (>51%) was found among groups (either major clades, 

paleorivers or geography), with most of the ΦCT values being highly significant. Three-

level AMOVA of microsatellite data partitioned according to the major mtDNA clades 

and microsatellite clusters indicated by Evanno’s method (see below) had significant 

variation at all levels, with the latter explaining slightly more of the variation among 

groups than the former (19.26 vs 19.54%). Genetic partition according to the 

paleorivers configuration was not significant at highest level (Table 2.3). 

Classification of individuals by the algorithm of STRUCTURE provided consistent 

results for each K across the 10 replicated runs. As expected in highly structured data, 

the most divergent groups separate into distinct clusters first. Evanno’s ΔK method 

indicated the uppermost level of genetic structure, with K = 2. This analysis indicated 

one genetic cluster encompassing fish from the Southern clade (FLO, SFR, and PAR) 

and another composed by fish of fish from the northernmost sampling sites (IRI, FUN, 

GUA and PRT, mtDNA Northern and Parati clades) (Fig. 2.3). Inspection of outcomes 

at higher Ks added additional details on individual clustering. At K = 3, PRT 

population appeared distinct (corresponds to mtDNA Parati clade) (Fig. 2.3). 

Outcomes of K = 5 (indicated as the most likely number of genetic clusters by all 

metrics in STRUCTURESELECTOR) assigned most of the fish from GUA as a 

different genetic cluster. Interestingly, at this K, a subset of six individuals form FUN 

(FUN 08,11,13, 41,47,48) and five from GUA (GUA 09, 17, 20, 24, 62) was assigned 
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to its own genetic cluster. At K = 6, PAR was assigned to a separate genetic cluster 

(Fig S2.5). Runs at higher K did not change this pattern (Fig S2.3).  

Geneland results incorporating mtDNA, microsatellites and spatial data generally 

agreed with those from STRUCTURE. Posterior distributions of the number of genetic 

clusters (K) showed a mode at K = 6 across all 10 replicated runs (Figs. 2.3; S2.2; 

S2.4). Spatially, cluster 1 was composed by individuals from IRI and a subset of 

individuals from FUN. Another subset of FUN individuals (composed of hybrids, see 

below) formed cluster 2. Individuals from GUA (including GUA hybrids), PRT and 

PAR composed each their own genetic cluster (clusters 3, 4 and 5 respectively). 

Cluster 6 was composed of the southernmost individuals from SFR and FLO (Fig. 

S2.4). 

Factorial Correspondence Analysis (FCA) confirmed the uppermost subdivisions 

detected by Evanno’s method (ΔK) from STRUCTURE (Fig 3). The plot along the 

two main axes showed that the major division was between the southern and the 

northern populations along axis 1, whereas six fish from FUN and five from GUA 

were separated from the rest along Axis 2. Another plot indicated that PRT and PAR 

fish were distinctive from other northern and southern populations along Axis 3 (Fig 

S2.5).  

2.4.5. Hybridisation between K. ocellatus and K. hermaphroditus 

Across all genetic clustering methods, strong evidence shows that FUN and GUA fish 

were subdivided into two groups: some had the same genetic background as other 

northern populations (IRI and GUA), while others showed an unique genetic 

composition, either being assigned to its own genetic cluster or not clustering with the 

other individuals from their respective population (Figs. 2.3; S2.3-S2.5). A closer 
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examination of individuals FUN 08, 11, 13, 41, 43, 47 and GUA 09, 17, 20, 24, 62) 

revealed that these fish had unique alleles at nine loci (B86183, R9194, R11107, R23300, 

R28152, R90242, R92212, R103127, and R112191), which were not present in any other K. 

ocellatus populations across its known distribution. In all cases, these unique alleles 

were found in heterozygous state, with the second allele being commonly found in K. 

ocellatus from the Northern clade. FUN41 carried unique alleles only at five loci. 

Furthermore, allele R28152 was found in a single fish from SFR population, so it is 

better characterized as ‘nearly unique’. Several of the unique alleles found in the 

unusual FUN and GUA fish corresponded to alleles fixed in all populations of K. 

hermaphroditus (alleles B86183, R9194, R11107, R28152, R92212, and R103127). This 

strongly suggests that the divergent FUN and GUA fish are produced by hybridisation 

between K. ocellatus and K. hermaphroditus. 

STRUCTURE analysis including K. ocellatus and K. hermaphroditus microsatellite 

data was consistent with the hybridisation hypothesis, with the eleven divergent fish 

appearing as admixture of two genetic pools (Fig 2.3). At K = 2 (most likely partition 

according to Evanno’s ΔK) all K. hermaphroditus individuals were assigned with 

nearly 100% probability to one cluster, and almost all K. ocellatus were similarly 

assigned to another cluster, with exception of the subset of divergent FUN and GUA 

fish, which appeared to have genetic backgrounds of both species. At K = 7 (the best 

configuration according to metrics in STRUCTURESELECTOR) K. hermaphroditus 

individuals continued to be assigned to its own cluster, while K. ocellatus showed 

structure similar to that found in the separate analysis of this species (Figs. 2.3; S2.5), 

and the subset of divergent FUN and GUA fish continued to show strong signal of 

admixture between K. ocellatus and K. hermaphroditus (Fig 2.3). 



78 
 

According to STRUCTURE at K = 2, most of the divergent FUN fish (FUN 08, 11, 

13, 47, 48) had about half of their genetic ancestry originated from K. hermaphroditus 

(average q-value for K. hermaphroditus cluster = 0.58, sd ± 0.01), with exception of 

FUN41, which had only 18% of K. hermaphroditus ancestry). In GUA, two individuals 

(GUA 09 and 62) also had approximately half of its ancestry coming from K. 

hermaphroditus (average q-value for K. hermaphroditus cluster = 0.51, sd ± 0.02), 

while the other three divergent individuals (GUA 17, 20, 24), showed approximately 

35% of K. hermaphroditus ancestry (average q-value for K. hermaphroditus cluster = 

0.35, sd ± 0.02). The NEWHYBRIDS classification using microsatellites data 

confirmed these patterns, with most of the individuals being classified as either “pure” 

K. ocellatus (179 individuals, average probability a posteriori = 0.99, sd ± 0.001) or 

“pure” K. hermaphroditus (67 individuals, average probability a posteriori = 0.99, sd 

± 0.000001), while seven individuals (FUN 08, 11, 13, 47, 48; GUA 09 and 62) were 

classified as F1 (originating from outcrossing between K. ocellatus and K. 

hermaphroditus, average probability a posteriori = 0.97, sd ± 0.05), and four (FUN 41; 

GUA 17, 20, 24) being classified as backcrosses between K. ocellatus and a F1 hybrid 

(average probability a posteriori = 0.99, sd ± 0.003). No individuals were classified as 

F2 or as backcross between K. hermaphroditus and a F1 hybrid with the microsatellites 

(Fig. 2.3). Individuals classified as hybrids had substantially higher heterozygosity 

than the parental species, and showed strong signal of heterozygote excess (Tables 2.2; 

S2.7). With regards to the direction of the crosses, it appears that the female function 

was mostly performed by K. ocellatus hermaphrodites x males K. hermaphroditus, 

because all hybrids have a cox1 haplotype of K. ocellatus (but see SNPs results below) 

(Fig 2.3). 
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Using genotype-by-sequencing, I produced two datasets using the same set of 

individuals using ANGSD-v.0.921 for specific analysis. Dataset 1 with 53 samples, 

597,733 sites, coverage between 12.0X and 346.5X (mean 145.2X), missing data 

ranging from 0% to 7.2% (mean 0.50%); Dataset 2 with the same 53 samples, 5,477 

SNPs, coverage between 12.4X and 382.6X (mean 152.9X), missing data ranging from 

0% to 4.9% (mean 0.34%). To check whether the GBS library was able to produce 

SNPs evenly distributed across the reference K. marmoratus genome, I performed a 

regression between the size of each the 3,073 scaffolds and the number of sites found 

in each scaffold. I found a strong correlation (R2 = 0.93, p < 0.001) indicating that the 

GBS protocol yielded genomic information uniformly-distributed throughout the 

reference genome. 

Admixture results based on Dataset 2 SNPs (Fig 2.4) were consistent with the genetic 

structure and hybridisation evidence found with the microsatellite data, with the major 

genetic clusters corresponding to species, with some individuals from FUN and GUA 

showing strong evidence of admixture. At K = 2, four individuals from Fundão with 

K. ocellatus cox1 haplotypes (FUN 08, 11, 43, 47) and two from Guaratiba (GUA 09, 

17) showed a mixture of K. ocellatus and K. hermaphroditus genome. Two other 

individuals from Fundão (FUN 13, 41) indicated as hybrids by the microsatellites data 

failed to produce enough reads for the GBS library (cut-off ≥ 500k reads). Three other 

individuals identified as hybrids by microsatellites in Guaratiba (GUA 20, 24, 62) were 

not included in initial library (Table S2.1). One individual from Fundão (FUN 26), 

which displayed no evidence of admixture with the microsatellites data, showed 

substantial indication of genetic admixture with the SNPs. At K = 3, K. ocellatus from 

the Northern (FUN and GUA) and Southern (SFR and FLO) clades were split in 

separate clusters, similar to the uppermost genetic structure suggested by the 
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microsatellites data. The MDS analysis also supported these results (Fig 4), with 

individuals with shared ancestry of K. ocellatus and K. hermaphroditus positioned in 

between two opposite clusters composed by K. ocellatus and K. hermaphroditus 

individuals in the first dimension of variation (35.30% of the variation). The second 

dimension of variation (1.95% of overall variation) separates Northern and Southern 

clades of K. ocellatus. These patterns were reinforced by the FST comparisons (without 

hybrids), with the lowest values (FST = 0.09) found within clades of K. ocellatus (and 

between FUN and GUA for K. hermaphroditus, FST = 0.06), followed by the FST in 

comparisons of populations from different clades of K. ocellatus (average FST = 0.45), 

and finally FST between K. ocellatus and K. hermaphroditus (average FST = 0.92) (Table 

S2.8). 

The NEWHYBRIDS analyses using a subset of 200 SNPs with high FST and low LD 

classified 11 individuals as “pure” K. ocellatus (probability a posteriori equals 1 in all 

individuals), 21 individuals as “pure” K. hermaphroditus (probability a posteriori 

equals 1 in all individuals), while five individuals (FUN 08, 11, 43, 47; GUA 09) were 

classified as F1 (probability a posteriori equals 1 in all individuals)and one individual 

(GUA 17) as a backcross between K. ocellatus and a F1 hybrid (probability a 

posteriori equals 1). All these classifications agree with the classifications found in the 

analyses of microsatellites data, with the exception of FUN 26, which was classified 

as “pure” K. hermaphroditus by microsatellites, but classified as a backcross between 

K. hermaphroditus and a F1 hybrid (probability posteriori equals 1) with the SNPs 

data. No individual was classified as F2. In terms of genetic diversity, individuals 

classified as hybrids (FUN 08, 11, 26, 43, 47; GUA 09, 17) had an average of 

proportion of heterozygous sites of 0.53, an approximately ten-fold increase from the 

values found in K. ocellatus (0.07) and K. hermaphroditus (0.03) (Fig 2.4). 
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2.5. Discussion 

The genetic analysis using mtDNA, microsatellites and SNPs data revealed strong 

genetic structuring throughout the whole known distribution of the androdioecious 

mangrove killifish K. ocellatus in southeast Brazil. Correspondence of the observed 

and expected heterozygosity (and, respectively, low inbreeding coefficients), indicated 

absence of self-fertilisation in K. ocellatus across its distribution, as previously 

suggested by Tatarenkov et al. (2009). In addition, I found evidence of hybridisation 

and introgression (backcrosses) between the outcrossing androdioecious K. ocellatus 

and the predominantly selfing K. hermaphroditus mangrove killifish species in two 

out of three mangrove systems where the two species are known to co-occur, 

representing, to my knowledge, the first case of hybridisation between species with 

different mating systems in vertebrates. 

2.5.1. Genetic structure in Kryptolebias ocellatus 

Character mapping for the mangrove killifishes clade suggests that synchronous 

hermaphroditism had evolved in the common ancestor of all mangrove killifish species 

(K. ocellatus, K. hermaphroditus and K. marmoratus), while selfing had arisen later in 

the common ancestor of K. hermaphroditus and K. marmoratus (Avise and Tatarenkov 

2015; Costa et al. 2010; Kanamori et al. 2016). Tatarenkov et al. (2009) genotyped 

two populations from Sepetiba Grande Bay (GUA) and Guanabara Bay (IRI) of K. 

ocellatus and based on low inbreeding coefficients, suggested that this species does 

not undergo selfing. The low FIS values throughout the whole known distribution of 

the species found here reinforce the hypothesis that selfing is unlikely to occur in K. 

ocellatus, further confirming it is likely to have evolved later (in the common ancestor 

K. hermaphroditus and K. marmoratus) within the mangrove killifish clade. 
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Extensive genetic structure has been revealed at various geographic scales (Berbel-

Filho et al. 2019a; Tatarenkov et al. 2015; Tatarenkov et al. 2007) and among selfing 

lines within the same mangrove system (Ellison et al. 2011; Ellison et al. 2012; Turko 

et al. 2018), in the selfing mangrove killifishes composing the K. marmoratus species 

complex. An exception to this general scenario of deep genetic structure seems to be 

the very low genetic differences found among K. hermaphroditus populations across 

the Brazilian coast (Tatarenkov et al. 2011). Tatarenkov et al. (2017) using mtDNA 

and microsatellite data found very little genetic differentiation in the populations K. 

hermaphroditus populations extending along 2500 km of the Brazilian coast, 

suggesting recent dispersal of the species into southeast Brazil, and challenging an 

earlier hypothesis that the selfing Kryptolebias species have originated in this region 

(based on the known distribution of the other Kryptolebias species) and have dispersed 

northwards (Costa et al. 2010; Murphy et al. 1999; Turner et al. 2006). I found here, 

that in much narrower geographic distribution (approximately 900 km along the coast 

from Magé/RJ to Florianópolis/SC), K. ocellatus showed a deeper genetic structure 

than K. hermaphroditus, being mostly divided in Northern and Southern genetic 

clades, but also showing genetic structure within these clades. 

The mtDNA analysis revealed a clear genetic distinction between Northern (IRI, FUN 

and GUA) and Southern populations (PAR, SFR, FLO), with the first possibly 

subdivided in two minor clades (Northern and Parati), a pattern which was generally 

corroborated by uppermost genetic clustering detected by STRUCTURE, as well as in 

the FCA and MDS analyses with microsatellites and SNPs data, respectively. 

However, several within clades groups was also observed using microsatellites. This 

pattern of differentiation, with most of locales having their own genetic cluster agrees 

with the patterns of genetic structure found in K. marmoratus in the Caribbean (Avise 
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and Tatarenkov 2015), with exception of the absence of genetic differentiation in K. 

hermaphroditus in the same area in southeast Brazil previously reported by Tatarenkov 

et al. (2017) and confirmed here. On this species, populations from opposite sides of 

Sepetiba Bay, namely GUA and PIC (Fig 2.1), had only one cox1 haplotype and were 

genetically homogeneous at microsatellites. In contrast, populations of K. ocellatus 

from opposite sides of Sepetiba Bay, GUA and PRT (only 80km distant from PIC 

through the coast line), belonged to different genetic lineages, with significant genetic 

differentiation between them. These findings, together with the extremely low levels 

of genetic diversity shown with mtDNA, microsatellites and SNPs in K. 

hermaphroditus, suggest that the morphologically similar and often syntopic 

mangrove killifishes species have different evolutionary history in southeast Brazil, 

with K. hermaphroditus being a recent coloniser of a mangrove area where K. ocellatus 

is likely to have settled much earlier and where it may have been originated. 

Mangrove killifishes are amphibious (Turko and Wright 2015; Wright 2012), being 

able to spend prolonged periods of time out of water, moving overland by flipping 

across temporary water bodies within mangrove systems (Taylor 2012). As for most 

of the rivulids, however, long-distance dispersal seems to be limited by poor 

swimming capacity (Gibb et al. 2013) suggesting that other mechanisms (e. g. egg 

carriage by birds and storms, drifting on floating debris) may have helped mangrove 

killifishes to disperse across mangrove systems (Avise and Tatarenkov 2015). Recent 

studies have been found that the past connections brought by paleorivers had facilitated 

dispersal and colonisation of Neotropical coastal fishes into new river systems, 

strongly influencing their genetic structure (Lima et al. 2017; Thomaz et al. 2015; 

Thomaz et al. 2017). However, until now, this has been only tested in primarily 

freshwater fishes, on which dispersal capacity is intrinsically related to the availability 
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of freshwater environments. The AMOVA analysis partitioning the populations 

according to their potential paleorivers’ connections (based on paleorivers in Thomaz 

et al. (2015)) showed a significant effect for cox1, but not with the microsatellites data. 

This incongruence is likely to be caused by the differences between mitochondrial and 

microsatellites markers, with the former mutating at a slower rate and being able to 

recover older historical connections, while the latter being likely to reveal more recent 

events of population dynamics given its faster mutation rate. 

Mangrove killifishes are the only rivulid species living in brackish waters (Costa et al. 

2010) and rarely share mangrove microhabitats with other fish species (Taylor 2012). 

Therefore, tracing parallels between the genetic structure of mangrove killifishes and 

other fish species is a challenging task. This scenario is even more challenging when 

comparing mangrove killifish genetic structure with that in other mangrove-dwelling 

organisms (e. g. crabs, shrimps), given their differences in life-cycle and dispersal 

capacities. Mangrove forests are composed of a polyphyletic group of plants which 

converged onto similar morphological and physiological adaptations to cope with 

tropical estuarine environments (Ball 1988). Mangrove plants release their propagules 

to be dispersed by the sea (Alleman and Hester 2011). For this reason, a multitude of 

studies using mangrove species from both Indo-West Pacific and Atlantic-East regions 

showed the direction of superficial ocean currents as the major factor influencing the 

genetic structure of mangrove plant species (Francisco et al. 2018; Yan et al. 2016). 

Studies using different mangrove tree species have shown weak genetic structure 

among estuaries in southeast Brazil, with a general north-south pattern of dispersal, 

guided by the Brazilian ocean current (Francisco et al. 2018; Mori et al. 2015; Pil et 

al. 2011). This panmixia scenario among different estuaries has also been observed in 

other mangrove-dwelling species in the same region which disperse through pelagic 



85 
 

larvae, such as crabs (Britto et al. 2018; Oliveira-Neto et al. 2007; Oliveira-Neto et al. 

2008). While the strong genetic structure mostly among Northern and Southern 

estuaries found in K. ocellatus in southwestern Atlantic contrasts with the general 

patterns observed in these sea-dispersed mangrove species, it generally agrees with the 

one found for the cold-water philopatric penaeid shrimp Farfantepenaeus paulensis in 

southeast Brazil (Gusmão et al. 2005), which has two major genetic stocks, one in Rio 

de Janeiro and Santos (North), and other in Lagoa do Patos (South), with the latter 

representing post-larvae produced by individuals breeding in Santa Catarina (where 

SFR and FLO K. ocellatus are). Further research is needed to investigate which 

environmental and evolutionary factors have shaped the major genetic breaks in the 

absence of apparent geographical barrier between Northern and Southern populations 

of K. ocellatus and other coastal species in southeast Brazil. 

2.5.2. Hybridisation and introgression between K. ocellatus and K. 

hermaphroditus 

Hybridisation was once thought to be a rare and transient event in animals, usually 

happening while species are beginning to diverge (Mallet 2005; Taylor and Larson 

2019). However, with the advance of new sequencing technologies, hybridisation 

reports have become increasingly common, being particularly high in groups such as 

plants (40%) (Mallet 2005; Whitney et al. 2010), insects and birds (10%) (Schwenk et 

al. 2008). The ubiquity of hybridisation reports revived the long-debated hypothesis 

that hybridisation is an adaptive mechanism, which can speed up adaptation by rapidly 

introducing locally-adapted alleles in large numbers at once (Lewontin and Birch 

1966; Mitchell et al. 2019; Oziolor et al. 2019). Hybridisation has also been linked to 

increased invasiveness or success during range expansion, given enhanced fitness 
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often observed in hybrids when compared to their parental species (Hovick and 

Whitney 2014).  

K. hermaphroditus was originally described in southeast Brazil (Guaratiba) as being 

exclusively composed of selfing hermaphrodites (Costa 2011a). The absence of males 

(and outcrossing) was substantiated by the extremely low levels of heterozygosity 

found in southern Brazil populations (Tatarenkov et al. 2011; Tatarenkov et al. 2009). 

However, recent sampling surveys have extensively expanded the known species 

distribution, as far as the mangroves surrounding the Amazon river estuary in northern 

Brazil (Guimarães-Costa et al. 2017; Lira et al. 2015), and the current genetic evidence 

suggests that the species has recently dispersed to southern Brazil from the north of 

South America or from the Caribbean (Tatarenkov et al. 2017). These recent surveys 

have also revealed the presence of rare males in some populations (Berbel-Filho et al. 

2016; Costa 2016). Berbel-Filho et al. (2019a) have found low observed 

heterozygosity levels and high selfing rates in a population (Ceará-Mirim) where one 

male was reported (Berbel-Filho et al. 2016), suggesting that outcrossing (likely to 

happen between males and hermaphrodites, see Furness et al. (2015)) occurs in K. 

hermaphroditus, but at very low frequencies. Recently, Tatarenkov et al. (2018) 

reported unexpected hybridisation between two substantially divergent (3% K2P 

distance at cox1) Kryptolebias lineages in San Salvador, Bahamas, with 

hermaphrodites from the ‘Central clade’ (clade in the Caribbean closely related to K. 

hermaphroditus, see Tatarenkov et al. (2017) for details) hybridising with males of K. 

marmoratus. Here, I found evidence for hybridisation between species which are even 

more genetically distinct (11% K2P distance at cox1), namely K. ocellatus 

(androdioecious and outcrossing) and K. hermaphroditus (androdioecious and 

predominantly selfing) in two populations (FUN and GUA) in southeast Brazil. Eleven 
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out of twelve hybrids had a K. ocellatus mtDNA haplotype, while only one had a 

mtDNA haplotype of K. hermaphroditus. Assuming matrilineal inheritance of the 

mitochondrial DNA (as for most eukaryotes (Birky 1995)), these findings suggest that 

most of hybridisation events have happened between hermaphrodites of K. ocellatus 

and the very rare males of K. hermaphroditus. In addition, five of those individuals 

were classified as backcrosses between a F1 hybrid and a parental species, suggesting 

the hybrids can produce viable offspring. The absence of F2 individuals seems to 

suggest that the hybrids between K. ocellatus and K. hermaphroditus mostly reproduce 

via outcrossing with a parental species, however further research is needed to 

investigate the possibility that those hybrids also mate to each other or undergo self-

fertilisation. 

As for other mixed-mating species, in mangrove killifishes species (K. marmoratus 

and K. hermaphroditus) the increased genetic variation generated via male-mediated 

outcrossing events seems to allow the species to cope with rapidly changing selective 

pressures, such as parasites, while selfing assures reproduction and enhances 

colonisation of new microhabitats (Berbel-Filho et al. 2019a; Ellison et al. 2011; 

Mackiewicz et al. 2006c). Reinforcing this hypothesis is the fact that K. marmoratus 

males tend to associate with the most genetically dissimilar hermaphrodites (Ellison et 

al. 2013). Hybrids were found only in two of the sampling sites, in one of which 

(Guaratiba) introgression between the species had not been previously detected 

(Tatarenkov et al. 2011; Tatarenkov et al. 2009), suggesting that hybridisation events 

could be are relatively recent. The Fundão population, containing both K. ocellatus 

and K. hermaphroditus was only recently discovered, being one out of the three 

populations where males of K. hermaphroditus were described (Costa et al. 2016). 

However, no K. hermaphroditus males were ever reported in Guaratiba, despite 
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extensive collections efforts in the area (Costa 2011a; Costa 2016). Although the 

possibility of cryptic males cannot be discarded (Marson et al. 2019), the genetic data 

seems to indicate that outcrossing between males and hermaphrodites of K. 

hermaphroditus in Guaratiba is very rare (Tatarenkov et al. 2011; Tatarenkov et al. 

2009).  

Given its cryptic and complex environment, virtually no information is available about 

the mating behaviour of mangrove killifish species in the wild. However, observations 

on lab-reared K. marmoratus demonstrated that males and hermaphrodites display 

some of the typical killifish courtship/spawning behaviours (males closely positioning 

themselves sideways to the female/hermaphrodites with intense vibration) (Taylor 

2012). Lomax et al. (2017), however, showed that K. marmoratus hermaphrodites 

rarely laid unfertilised eggs, regardless of whether they were accompanied by a male 

or another hermaphrodite. The asymmetrical direction of hybridisation found here may 

have been caused by the differences in the modes of reproduction of K. ocellatus and 

K. hermaphroditus hermaphrodites, as the former does not undergo selfing, suggesting 

that the hermaphrodites only lay unfertilised eggs, which may facilitate fertilisation by 

K. hermaphroditus males. The latter species, however, is predominantly selfing, 

suggesting that eggs laid by hermaphrodites are in its majority already fertilised, 

decreasing the likelihood of hybridisation between K. ocellatus males and K. 

hermaphroditus hermaphrodites. However, I cannot rule out that other mechanisms (e. 

g. spatial and temporal environmental fluctuations, different mating behaviours, 

differential survival of hybrids dependent on the direction of the crosses) may be 

driving the asymmetrical patterns of hybridisation found here. Further research is 

needed to investigate the behavioural and ecological interactions between K. ocellatus 

and K. hermaphroditus in syntopy. 
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Another question that remains unanswered is why the hybridisation seems to have 

happened in some populations (Fundão and Guaratiba), but not in others (Iriri). Fundão 

and Iriri (the latter in a less urbanised area) mangroves are situated in the Guanabara 

Bay, while Guaratiba is situated in the Sepetiba Bay. Both bays are known to be 

heavily impacted by human activities, such as intense deforestation of the mangrove 

forests (Farias et al. 2007) and in particular, pollution derived from industrial effluents, 

domestic sewage and agricultural run-offs (Carreira et al. 2004), resulting in high 

concentrations of heavy metals (Neto et al. 2006) and aromatic hydrocarbons 

(Figueiredo et al. 2008; Silva et al. 2007). Recently, Oziolor et al. (2019) found 

evidence that recent introgression between Gulf and Atlantic killifish (Fundulus 

grandis and F. heteroclitus, respectively) have conferred populations of the former 

species resistance to high levels of polycyclic aromatic hydrocarbons, suggesting that 

hybridisation may be a rapid mechanism to generate adaptive genetic variability to 

extreme environmental conditions. Further research should investigate if a similar 

scenario may be happening in the mangrove killifishes, as well as which are the 

environmental/evolutionary causes and consequences of the hybridisation between K. 

ocellatus and K. hermaphroditus in the polluted mangroves of southeast Brazil. 
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Table 2.1. Kryptolebias ocellatus and Kryptolebias hermaphroditus identified according cox1 haplotypes across sampling locations and their 

respective sampling sizes. PR = Paraná State; RJ = Rio de Janeiro State; SC = Santa Catarina State; SP = São Paulo State. Asterisks represents 

individuals which were sequenced for cox1 and/or genotyped in a different study (shown in Reference). 

Sample ID Location Latitude Longitude cox1 Msats Reference 

(a) Kryptolebias ocellatus 

1. IRI 
Iriri mangrove, Magé, 

RJ 
22°39'48.80"S 43°05'12.20"W 22* 51* 

Tatarenkov et 

al. (2009) * 

2. FUN 
Fundão mangrove, Rio 

de Janeiro, RJ 
22°52'2.50"S 43°13'27.50"W 11 11 This study 

3. GUA 
Piracão mangrove, 

Guaratiba, RJ 
23° 0'1.90"S 43°34'51.50"W 17 19/24* 

This study/ 

Tatarenkov et 

al. (2009) * 

4. PRT 
Parati mangrove, Parati, 

RJ 
23°11'58.80"S 44°43'26.20"W 39 31 This study 

5. PAR 
Paranaguá Bay, 

Paranaguá, PR 
25°31'7.60"S 48°39'30.90"W 5 5 This study 
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6. SFR 
Linguado channel, São 

Francisco do Sul, SC 
26°22'0.02"S 48°39'58.40"W 19 19 This study 

7. FLO 
 Rio Ratones estuary, 

Florianópolis, SC 
27°28'3.84"S 48°29'33.76"W 16 30 This study 

Total    129 190  

(b) Kryptolebias hermaphroditus 

2. FUN 
Fundão mangrove, Rio 

de Janeiro, RJ 
22°52'2.50"S 43°13'27.50"W 29 16 This study 

3. GUA 
Piracão mangrove, 

Guaratiba, RJ 
23° 0'1.90"S 43°34'51.50"W 30 16/10* 

This study/ 

Tatarenkov et 

al. (2011) * 

8. PIC 
Fazenda River, 

Picinguaba, SP 
23°22′01.0″S 044°50′13.4″W 2 25* 

Tatarenkov et 

al. (2011) * 

Total    61 67  
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Table 2.2. Descriptive statistics of genetic variation at microsatellite loci in (a) 179 

Kryptolebias ocellatus (excluding hybrids) and (b) 11 hybrids and (c) 67 K. 

hermaphroditus 67 K. hermaphroditus. GUA samples from different years are 

separated. N = sample size; L = number of loci; P99 = proportion of polymorphic loci 

(99% criterion); A = average number of alleles; AR = allelic richness based on 5 

individuals; HE = expected heterozygosity; HO = observed heterozygosity; FIS = 

coefficient of inbreeding. Asterisks represent significant departures from HWE. 
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Sampling 

location 

N L P99 A AR HE HO FIS 

(a) Kryptolebias ocellatus 

1. IRI 51 16 0.93 11.19 4.49 0.57 0.54 0.05* 

2. FUN 5 16 0.81 4.56 4.56 0.60 0.57 0.04 

3. GUA 2017 14 16 0.93 8.00 4.65 0.60 0.56 0.06* 

3. GUA 2007 24 16 0.93 8.19 4.42 0.60 0.53 0.11* 

4. PRT 31 16 0.87 7.88 3.88 0.53 0.51 0.04 

5. PAR 5 16 0.68 3.31 3.31 0.48 0.48 -0.02 

6. SFR 19 16 0.87 7.25 4.17 0.58 0.63 -0.10* 

7. FLO 30 16 0.81 9.87 4.27 0.54 0.52 0.03 

Mean 22.4  0.86 7.53 4.21 0.56 0.54 0.04 

(b) Hybrids         

2. FUN 6 16 0.88 4.25 3.89 0.62 0.81 -0.34* 

3. GUA 5 16 1.00 4.69 4.69 0.69 0.86 -0.30* 

Mean 5.5  0.94 4.47 4.29 0.66 0.84 -0.32* 

(c) Kryptolebias hermaphroditus 

2. FUN 16 15 0.13 1.33 1.16 0.03 0.00 0.73* 
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3. GUA 2017 16 14 0.13 1.73 1.48 0.09 0.01 0.87* 

3. GUA 2007 10 14 0.21 1.57 1.48 0.10 0.00 0.93* 

8. PIC 25 14 0.357 1.79 1.42 0.08 0.01 1.00* 

Mean 16.8  0.21 1.61 1.38 0.079 0.007 0.92* 
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Table 2.3. AMOVA results from different hypotheses for mtDNA cox1 gene and microsatellites in Kryptolebias ocellatus. Hybrids were 

excluded from the microsatellite analysis. 
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Source of variation cox1 mDNA Microsatellites 

 df Variance  

% of 

variation 

P-value 

F-

statistics 

df Variance  

% of 

variation 

P-value F-statistics 

Major clades according to mtDNA (3)  

Among groups 2 2.59 78.50 <0.001 0.78 2 1.21 19.26 0.01 0.19 

Among populations 

within groups 

11 0.26 7.88 <0.001 0.36 4 0.51 8.21 <0.001 0.10 

Among individuals 

within populations 

113 0.44 13.62 <0.001 0.86 172 0.24 3.93 <0.001 0.04 

Genes within 

individulas 

     179 4.32 68.61 <0.001 0.31 
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Major clades according to Evanno method (2)  

Among groups 1 1.93 51.44 <0.001 0.75 1 1.28 19.54 0.02 0.19 

Among populations 

within groups 

5 1.37 36.49 <0.001 0.87 5 0.73 11.35 <0.001 0.14 

Among individuals 

within populations 

120 0.4 12.07 0.02 0.51 172 0.19 3.74 <0.001 0.05 

Genes within 

individulas 

     179 4.45 65.37 <0.001 0.34 

Paleorives   

Among groups 4 1.89 62.74 <0.001 0.62 4 0.61 10.68 0.15 0.10 

Among populations 

within groups 

9 0.67 22.34 <0.001 0.59 2 0.82 14.04 <0.001 0.15 
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Within populations 113 0.44 14.92 <0.001 0.85 172 0.19 4.08 <0.001 0.05 

Genes within 

individulas 

     179 4.45 71.20 <0.001 0.28 
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Figure 2.1. Sampling locations for Kryptolebias ocellatus. Squares represent locations 

where K. ocellatus and K. hermaphroditus are syntopic, circles are for locations where 

only K. ocellatus is found, while triangle designates site where only K. hermaphroditus 

is found. Labels for locations are described on Table 2.1. 
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Figure 2.2. (a) Bayesian time-calibrated phylogenetic reconstruction for the 22 cox1 

haplotypes from 129 specimens of Kryptolebias ocellatus and one K. hermaphroditus 

specimen used as an outgroup. (b) cox1 haplotype network from 129 specimens of K. 

ocellatus. Each circle represents a haplotype and its size is proportional to the frequency 

of the haplotype. Ticks on branches connecting the haplotypes indicate nucleotide 

mutations. Asterisks represent haplotypes found in hybrid individuals (see results). 

Circles are coloured according to the different locations. 
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Figure 2.3. (a) Admixture plots showing the most likely genetic clusters (K) value for 

the microsatellites amplified in Kryptolebias ocellatus and K. hermaphroditus ran in 

Structure and determined by deltaK method in Evanno et al. (2005) and (b) 

STRUCTURESELECTOR results using the metrics defined in Puechmaille (2016) to 

account for unevenness on sampling sizes and hierarchical structure (c) NEWHYBRIDS 

individual classification using microsatellite data. (d-e) Factorial correspondence analysis 

for all K. ocellatus and K. hermaphroditus individuals coloured and shaped according to 

its sampling sites. Hybrid individuals (see results) are highlighted with their respective 

labels and coloured according to the hybrid class indicated by NEWHYBRIDS analysis. 

Asterisks represent sampling locations for K. hermaphroditus. 
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Figure 2.4. (a) Admixture plots showing the genetic clustering value for K= 2 and 3 for 

the 5,477 SNPs extracted from 53 individuals sequenced for the genotype-by-sequencing 

library and generated using ngsAdmix v. 3.2. Each individual is represented by a bar, and 

each colour represents a genetic cluster. (b) NEWHYBRIDS individual classification 

using a subset of 200 SNPs with low-levels of linkage-disequilibrium. (c) First two 

dimensions of the multidimensional Scaling (MDS) based on the genetic distances from 

5,477 SNPs. Hybrid individuals (see results) are highlighted with their respective labels. 

(d) Proportion of heterozygous sites between K. ocellatus, K. hermaphroditus and the 

hybrid individuals.
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CHAPTER 3: Intermediate patterns of epigenetic 

variation in hybrids of divergent mangrove killifish 

species in natural populations 
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3.1. Abstract 

Hybridisation is one major source of evolutionary innovation. It's alternative outcomes 

(i.e. hybrid vigour, hybrid incompatibility) may depend not only of the of interactions 

between parental genetic alleles but also how the regulatory mechanisms from the two 

parental genomes are inherited and interact to each other. Besides the increasing 

reports of hybridisation in a wide range of taxa, its effects on cytosine methylation 

patterns are largely unexplored, particularly in animals. Here, I investigated the 

cytosine methylation patterns of wild hybrids between Kryptolebias ocellatus and K. 

hermaphroditus in southeast Brazil. My results revealed that the parental species, even 

living sintopically in the same mangrove microhabitats, diverge markedly on their 

cytosine methylation patterns, and their hybrids showed a predominant intermediate 

pattern of cytosine methylation patterns. In addition, the backcross individuals, 

showed cytosine methylation patterns which are more similar to the parental species 

than to the F1 hybrids. 217 gene ontologies, some of them, crucial to development, 

were shown to be overrepresented in hybrids in comparison to the parental species. 

The strong intermediate effects observed in the methylation patterns between of K. 

ocellatus and K. hermaphroditus hybrids suggest an important effect of genetic 

background on cytosine methylation inheritance in hybrids, which can contribute to 

hybrid divergence, and ultimately speciation, even under similar environmental 

conditions. 

 



105 
 

3.2. Introduction 

Hybridisation is one of the major sources of evolutionary novelty, having important 

implications for phenotypic diversification, adaptation and speciation (Mitchell et al. 

2019). Hybridisation can have alternative outcomes, in some cases resulting in 

heterosis, when hybrids are fitter than parental species (Hovick and Whitney 2014), or 

hybrid incapability, when hybrids have reduced fitness compared to the parental 

species, usually caused by the combination of incompatible alleles in hybrids, leading 

to increased postzygotic reproductive isolation in parental species (Blevins et al. 2017; 

Michalak 2009). New sequencing techniques suggest that hybridisation may be more 

common than previously thought (Taylor and Larson 2019), but the molecular 

mechanisms underlying its varied outcomes remain poorly understood (Bell et al. 

2013; Lauss et al. 2018). 

The merging of two divergent genomes brought together by hybridisation often results 

in extensive changes in regulatory elements (Riddle and Birchler 2003), transposable 

elements activity (Ungerer et al. 2006), chromosomal rearrangements (Metcalfe et al. 

2007), DNA methylation (Blevins et al. 2017; Lauss et al. 2018; Salmon et al. 2005) 

and gene expression patterns (McGirr and Martin 2019; Michalak and Noor 2003; 

Moehring et al. 2007). In particular, divergent genetic alleles in parental species can 

be incompatible in hybrids (Dobzhansky-Muller incompatibilities), causing reduced 

fitness (Johnson 2000). This can be caused by misregulated gene expression patterns 

(McGirr and Martin 2019), which are consequence of the complex interactions 

between parental genomes and their regulatory factors (e. g. epigenetic mechanisms) 

(Michalak 2009). Therefore, the adaptive success of hybrid individuals may depend 

on the interactions resulting from merging two divergent genomes together with their 

fine-scaled tuned levels of gene expression regulated by epigenetic mechanisms. 
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Hybridisation can lead to the generation of all modes of gene action (e. g. additivity 

and non-additivity) (Swanson-Wagner et al. 2006). Previous research on the effects of 

hybridisation on gene expression inheritance has thus far shown mixed results. For 

example, hybrids between farmed and wild Atlantic Salmon, and recently-diverged 

pupfish species have shown mostly non-additive patterns (e. g. either over or under-

dominance) on the gene expression levels relatively to the parental species (McGirr 

and Martin 2019; Roberge et al. 2008), while predominately additive effects were 

found in hybrids of house mouse subspecies (Rottscheidt and Harr 2007) and 

Drosophila species (Hughes et al. 2006). Far less studied however, is the effects of 

hybridisation on epigenetic mechanisms, particularly in animals. Studies in plants have 

shown both additive (Radosavljević et al. 2019) and non-additive (Hegarty et al. 2011) 

effects of hybridisation on DNA methylation patterns in plants. As the effects of DNA 

methylation in gene expression are dependent of its location in the genome 

(Anastasiadi et al. 2018; Jones 2012), the use of anonymous markers on most of those 

studies made it difficult to investigate whether DNA methylation patterns in hybrids 

differed in a context-specific manner (e. g. promoters, gene bodies) relatively to its 

parental genomes. 

Understanding epigenomic changes brought by hybridisation may be crucial to 

understand the factors regulating hybrids gene misexpression, as well as its viability 

and fitness. Using wild-caught individuals of Kryptolebias ocellatus and K. 

hermaphroditus sampled simultaneously with their F1 hybrids and backcrosses, I 

aimed to investigate the patterns of DNA methylation in the hybrids compared to the 

parental species. Given the indication of genotype-by-environment effects observed in 

DNA methylation (Berbel-Filho et al. 2019b; Dubin et al. 2015; Richards 2006), I 

expected contrasting DNA methylation patterns in K. ocellatus and K. 
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hermaphroditus, even in the same mangrove microhabitats. I hypothesise that hybrids 

will inherit epigenetic patterns from both parental species, predominantly showing 

intermediate patterns of DNA methylation relatively to their parental species across all 

genomic contexts.  

 3.3. Material and methods  

3.3.1. Study populations 

To avoid tissue and/or sex-specific effect on cytosine methylation, only pectoral-fin 

samples from hermaphrodite individuals were included in the library, which were 

initially assigned to species by the pattern of scales in the flanks (Costa 2006). 

Morphological species identification was later confirmed by barcoding through the 

amplification of the mitochondrial gene cytochrome oxidase subunit I (cox1).  

To investigate the effect of hybridisation in DNA methylation patterns, I selected K. 

ocellatus and K. hermaphroditus individuals from two mangrove sites (GUA and FUN 

in Chapter 2) from the library amplified in Chapter 2, resulting in 39 individuals (11 

K. ocellatus, 21 K. hermaphroditus and seven hybrids; Table S3.1). Individuals were 

sampled using the same methods described in Chapter 2. All individuals included were 

sampled at the same time (GUA mangrove in 30/08/2017; FUN mangrove in 

31/08/201) minimising the effect temporal environmental variation on DNA 

methylation. Hybrids were classified into hybrid classes (F1, backcross 1: between K. 

ocellatus and F1, backcross 2: between K. hermaphroditus and F1) using 

NEWHYBRIDS v.1.1 (Anderson and Thompson 2002) based on SNP data (F1: FUN 

08, 11, 43 and 47; GUA 09; backcross 1: GUA 17; backcross 2: FUN 26). The details 

for library preparation and bioinformatic prepossessing of reads (e. g. demultiplexing, 

filtering, alignment, sorting and indexing) are fully described in Chapter 2. 
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3.3.2. Differentially methylated cytosines and hybrid cytosine methylation 

patterns  

Differentially methylated cytosines (DMC) were identified using a modification of the 

methylation-sensitive genotype-by-sequencing (ms-GBS) protocol (Kitimu et al. 

2015) with methylation-sensitive restriction enzyme HpaII, which activity is blocked 

by the presence of methylation on any cytosine on its recognition site (i.e., CCGG). 

DMCs were identified using the R package msgbsR (Mayne et al. 2018). With this 

package, individual restriction-digested reads aligned to the reference genome are 

filtered out for correct cut sites and possible outliers (e. g. low number of cut sites). 

The function diffMeth uses a bridge with the gene expression R package edgeR 

(Robinson et al. 2010) to split data according to comparisons, normalise read counts 

according to library size and identify DMCs. I performed three comparisons: (1) K. 

ocellatus vs K. hermaphroditus; (2) Hybrids vs K. ocellatus; and (3) Hybrids vs K. 

hermaphroditus. Only loci with more than 1 count per million (CPM) reads in at least 

“n” individuals in each compared group, with “n” being determined by the group with 

the lowest number of samples in each comparison (11 in K. ocellatus vs K. 

hermaphroditus; seven in the comparisons including hybrids). DMCs were then 

filtered by correcting for multiple testing using Benjamini-Hochberg method with a 

false discovery rate (FDR) of 0.01. The logFC (logarithm 2 of fold-change in counts 

per million reads) values of those DMCs was retrieved to evaluate the intensity and 

direction of methylation changes. This approach uses fold change values as a relative 

inverse proxy for methylation state, with higher methylation of a specific DMC site 

reducing the number of reads for that locus, consequently reducing its CPM reads 

number (Konate et al. 2018). For example, a specific DMC is considered 
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hypomethylated in group two compared to group one if its logFC value is above 1 in 

the comparison between group one vs group two.  

To identify the methylation patterns of hybrids relative to their parental species, I 

generated a list of common DMCs (FDR <0.01) present in the comparisons between 

hybrids vs K. ocellatus and hybrids vs K. hermaphroditus. The normalised counts of 

these DMCs across all individuals was used for the downstream analysis. To visualise 

overall variation in DMCs, I performed a multidimensional scale analysis (MDS) using 

Euclidean distance across all individuals. To compare DMCs profile across 

experimental groups using hierarchical clustering, normalised counts per DMC and 

individual were scaled as: 

%(𝑖, 𝑗) =
𝑁𝑟𝑒𝑎𝑑𝑠 (𝑖,𝑗)

𝑁𝑚𝑎𝑥𝑟𝑒𝑎𝑑𝑠(𝑗)
x 100; 

where i = individual; j = each DMC; Nreads = normalised counts for i in j; Nmaxreads 

= maximum number of normalised counts for j. 

To classify the patterns of DNA methylation inheritance in the hybrids compared to 

the parental species, I quantified the differences in normalised counts for each site. 

Inheritance was considered potentially additive if normalised counts of DMCs with 

significant differences between parental species were intermediate in the hybrids. 

Inheritance was considered potentially either r dominant in hybrids if normalised 

counts were higher or lower in hybrids respectively, compared to the counts on the 

parental species (e. g. using DMCs common to the comparisons between hybrids vs 

parental species) (Fig. S3.1). 
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3.3.3. Genomic context and gene ontology enrichment analysis  

Using  the annotated K. marmoratus reference genome (Rhee et al. (2017), I identified 

the genomic context (within gene body, promoter region (≤2 kb 5’-3’ upstream of the 

transcription start site (TSS)), or intergenic region (≥2kb upstream of TSS and/or 

downstream the gene bodies), for the 5,800 DMCs common to the two comparisons 

between hybrids and parental species. To identify any potential differences on DNA 

methylation patterns across hybrids and parental species across different genomic 

contexts, I rerun the MDS using DMCs present in gene promoters, gene bodies and 

intergenic regions, respectively. 

The annotated regions affected by these DMCs were used for the gene ontology 

enrichment analysis using zebrafish (Danio rerio) gene orthologs in PANTHER v. 11 

(Mi et al. 2016). I searched for enrichments across biological process ontologies 

curated for zebrafish. Only genes which matched with the genes names annotated for 

zebrafish were included in the gene ontology analysis. 

3.4. Results 

3.4.1. Methylation-sensitive genotype-by-sequencing library (ms-GBS) 

The ms-GBS library only including individuals in the current analysis yielded in 

average 6,422,972 reads per individual, with 85.21% uniquely mapping reads to K. 

marmoratus reference genome (ASM164957v1) (Table S3.1). Uniquely mapping 

reads generated sequencing data for a total of 830,905 loci. The proportion of reads 

mapping to the reference genome did differ between hybrids, K. ocellatus and K. 

hermaphroditus (ANOVA, p = 0.001) with higher proportion of reads uniquely 

mapping in K. hermaphroditus (mean = 0.80; SD ± 0.08) when compared to hybrids 
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(mean = 0.71; SD ± 0.06) and K. ocellatus (mean = 0.69; SD ± 0.03) (Fig. S3.2; Table 

S2.1), reflecting phylogenetic relatedness. 

3.4.2. Differentially-methylated cytosines among groups 

In total, 56,705 DMCs were found in the comparisons between K. ocellatus and K. 

hermaphroditus, of which 37,664 (66.48%) had a false discovery rate < 0.01. Smaller 

numbers of significantly different DMCs were found in the comparison between 

hybrids and parental species (hybrids vs K. ocellatus: 50,143 DMCs of which 10,620 

(21.17%) had FDR < 0.01; hybrids vs K. hermaphroditus: 56,390 DMCs of which 

13,905 (24.65%) had FDR < 0.01) (Fig. S3.3). Relatively to the hybrids, K. 

hermaphroditus showed higher number of DMCs than K. ocellatus. However, the 

overall methylation patterns were more similar between hybrids and K. 

hermaphroditus than between hybrids and K. ocellatus, with 50.45% of the DMCs 

hypermethylated in relation to the hybrids (and vice-versa in terms of hypomethylated 

DMCs), vs. 64.23% in K. ocellatus (Fig. 3.1a). The MDS analysis using DMCs 

between parental species positioned the hybrids in between two opposite clusters 

representing the parental species. These results were also supported by the MDS using 

all reads normalised by library size (830,905 sites) (Fig. S3.4). In both cases, 

individuals identified as backcrosses occupied eigen spaces closer to the non-hybrid 

parental species than F1 hybrids. 

5,800 DMCs were commonly differentially methylated in the comparisons between 

hybrids vs parental species, revealing a larger number of exclusively DMCs 

differences between hybrids and K. hermaphroditus than between hybrids and K. 

ocellatus (8,105 vs 4,820) (Fig. 3.1b). When comparing the common DMCs present 

in both comparisons among hybrids and parental species, K. ocellatus had 34.28% (vs. 
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65.19% in K. hermaphroditus) and 65.72% (vs. 34.81% in K. hermaphroditus) of 

hypermethylated and hypomethylated DMCs, respectively, relatively to the hybrids 

(Figs. 3.1c and S3.5). Again, the MDS analysis showed three distinct clusters, one 

composed by K. ocellatus individuals, another composed by K. hermaphroditus 

individuals, while an intermediate cluster containing the hybrids (both F1 and 

backcross individuals). As shown above, backcross individuals, GUA 17 and FUN 26 

occupied eigen spaces closer to the backcross non-hybrid parental species than F1 

hybrids. The contrasting methylation differences between parental species was 

reinforced and hierarchical clustering analysis, with the hybrids clearly showing 

intermediate levels of DNA methylation relatively to its parental species, with 

exception of the backcross individuals, GUA 17 and FUN 26, which clustered with 

their respective parental non-hybrid species, K. ocellatus and K. hermaphroditus, 

respectively (Fig. 3.2). 

Out of the 37,664 DMCs between K. ocellatus and K. hermaphroditus, 33,329 (88.5%) 

had intermediated normalised read counts in the hybrids compared to the parental 

species. This intermediated pattern of DNA methylation in the hybrids compared to 

the parental species was also confirmed by the used of the significantly different in the 

analysis of the 5,800 DMCs common in the comparisons between hybrids vs parental 

species, on which all had intermediate normalised counts values compared to K. 

ocellatus and K. hermaphroditus, with no site being either over or under dominated in 

hybrids. 

3.4.3. Genomic context 

Of the 5,800 DMCs shared between the comparisons of hybrids versus parental 

species, 254 (4.38%) were within 2kb upstream gene bodies, representing putative 
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promoters, 3435 (59.23%) were overlapping gene bodies, while 831 (14.33%) 

represented potential intergenic regions. Of these, 1280 (22.06%) were within 

unannotated regions and 2786 unique genes were affected by DMCs in putative 

promoters and/or gene bodies. 

The MDS analysis separating DMCs by its genomic context revealed a clear clustering 

between parental species across all genomic contexts (e. g. promoters, gene bodies, 

intergenic and unannotated regions), with the hybrids forming an intermediate cluster 

differentiated from the parental species clusters (Fig. S3.6). 

1,322 genes affected by the 5,800 DMCs common to the comparisons between hybrids 

vs. parental species mapped to orthologs in the zebrafish genome. Using those for the 

gene ontology enrichment analysis, I found 217 significantly overrepresented 

ontologies, which influenced a wide range of biological processes, from cellular 

regulation, to neurogenesis and organ development (Table S3.2). 

3.5. Discussion 

Hybridisation events are likely to not only cause genetic, but major epigenetic 

rearrangements. Given the extensive genetic differences between K. ocellatus and K. 

hermaphroditus found in Chapter 2, the intricate relationship between genomic 

background and DNA methylation patterns found in Chapter 4 and the potential 

inheritance of DNA methylation patterns found in Chapter 5, I hypothesised that DNA 

methylation patterns of hybrids would be intermediate between parental species. My 

results reveal a potential additive effect on DNA methylation patterns of the hybrids 

compared to the parental species in an ongoing hybridisation occurring between K. 

ocellatus and K. hermaphroditus in syntopic natural populations. 
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Heritable epigenetic variation usually co-exists with genetic variation and are 

regulated by those either by cis and or trans effects (Dubin et al. 2015; Richards 2006). 

K. ocellatus and K. hermaphroditus are very divergent genetically (Chapter 2), and 

also showed many differentially methylated cytosines despite being found inhabiting 

the same mangrove microhabitats. Although I cannot rule out that ecological 

differences at a very small spatial/temporal scale (e. g. diet, habitat use) between 

species may have influenced the DNA methylation profiles, the strict relationship 

between genetic alleles and DNA methylation epialleles together with the evidence 

that genome and methylomes respond together to environmental variation (Asselman 

et al. 2015; Berbel-Filho et al. 2019b), suggest that major cause of the DNA 

methylation differences found between K. ocellatus and K. hermaphroditus are likely 

to be primarily-driven by genomic differences between the species. 

Given the economic and agricultural interest on heterosis of crop hybrids, the study of 

the effects of hybridisation on DNA methylation inheritance has been largely explored 

in plants (Groszmann et al. 2013; Lauss et al. 2018; Michalak 2009), but it has lagged 

behind in animal systems. Most of the studies in plants have showed prominence of 

additive effects in DNA methylation patterns with typical Mendelian inheritance of 

DNA methylation (Hegarty et al. 2011; Moghaddam et al. 2011; Radosavljević et al. 

2019; Yu et al. 2011). However, others also show a small number of non-additive 

epialleles that can arise independently in hybrids (Cara et al. 2013; Sakthivel et al. 

2010). The inconsistent conclusions in these studies are likely due to the limited 

resolution of methylation-sensitive amplification fragment length (MS-AFLP) (He et 

al. 2013). Studies using high-throughput sequencing approaches have revealed many 

more non-additive DNA methylation states in crop hybrids (Greaves et al. 2012; He et 

al. 2010), with those differences generally altering gene expression levels and possibly 
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contributing to either hybrid heterosis or incompatibly (Chodavarapu et al. 2012). The 

strong intermediate effects observed in the methylation patterns between of K. 

ocellatus and K. hermaphroditus hybrids seem to reflect an important effect of genetic 

background on DNA methylation levels. This effect is reinforced by the patterns found 

in the backcross individuals, on which the patterns of DNA methylation are more 

similar to the parental species than to the F1 hybrids. To date, the few studies 

evaluating DNA methylation inheritance in hybrids in fishes found that in 

allopolyploid hybrids, the vast majority of DNA methylation levels is additive (Shao 

et al. 2018; Xiao et al. 2013). Given the evidence that DNA methylation levels affect 

gene expression levels and other RNA features (e.g. transcriptional noise) (Anastasiadi 

et al. 2018; Duncan et al. 2014; Huh et al. 2013), the intermediate effects found here 

contrast with the findings on gene expression inheritance in fish hybrids, which show 

predominant transgressive patterns of gene expression in F1 hybrids (McGirr and 

Martin 2019; Renaut et al. 2009; Roberge et al. 2008), and generally agree with the 

patterns of inheritance found in Drosophila and house mouse (Hughes et al. 2006; 

Rottscheidt and Harr 2007). 

The direction of hybridisation effects in DNA methylation inheritance seem to be 

affected by the initial degree of divergence of the parental lineages (He et al. 2013). 

Greaves et al. (2012) using inbred lines of Arabidopsis found that non-additive 

changes in DNA methylation in hybrids are likely to be more frequent where parental 

methylation levels are different. My findings show extensive intermediate levels of 

DNA methylation in hybrids at both differentially and non-differentially methylated 

sites, which could reflect in additive patterns of gene expression. Rottscheidt and Harr 

(2007) argued that additivity instead of non-additivity is actually expected in more 
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divergent taxa as divergent traits are regulated by more and more genes, provided that 

most of them do not show any pattern of dominance among each other. 

It is less clear how the differentially methylated cytosines between the parental species 

that show intermediate levels in hybrids could be related to hybrid fitness. I have 

shown that the 5,800 DMCs on which hybrids are different from their parental species 

could significantly affect a wide range of biological processes, many of them involved 

in important developmental process (i. e. central nervous system development, 

chordate embryonic development, eye development). Interspecific hybridisation can 

lead to increased fitness by phenotypic novelty in hybrids (Hovick and Whitney 2014). 

Alternatively, if the DMCs were causing misregulation, and therefore misexpression 

in hybrids, there is a possibility that those patterns of epigenetic inheritance may be 

causing hybrid incompatibility. However, the evidence that F1 hybrids are able to 

backcross (Chapter 2) indicates that the hybrids are reproductively viable, although I 

cannot rule out the they might already be showing non-lethal deleterious effects caused 

by gene misexpression. Another possibility that warrants further research is the effect 

of allele-specific compensatory effects in hybrids when stabilising selection favour an 

optimal level of gene expression by compensating the effect of one allele activity 

through cis and trans regulatory factors (Landry et al. 2007). Increasing research has 

been showing widespread compensatory effects in hybrids expression levels (Bell et 

al. 2013; McGirr and Martin 2019), however, the potential effect of compensatory 

effects in DNA methylation inheritance and the pattern of epiallele dominances is less 

understood (He et al. 2013). 

The ongoing hybridisation between K. ocellatus and K. hermaphroditus is rather 

unlikely given the reproductive and genomic divergence between the parental species 

(Chapter 2). Using methylation-sensitive sequencing, the present study was one of the 
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first to explore the DNA methylation inheritance patterns in hybrids in animal natural 

populations, showing that hybrids have intermediate, and thus potentially additive, 

patterns of DNA methylation compared to the parental species, possibly caused by the 

strong influence of the genetic background on DNA methylation patterns. The new 

combination of not only genomic, but epigenomic content merged together by 

hybridisation may provide a mechanistic explanation for the rapid molecular and 

phenotypic variation often observed in hybrids. 
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Figure 3.1. (a) Number of differentially methylated cytosines (DMCs) in K. ocellatus 

and K. hermaphroditus compared to their hybrids. Hypomethylated (logFC value > 1) 

and hypermethylated (logFC value < 1) DMCs in comparison to hybrids are shown in 

blue and red, respectively. (b) Number of DMCs of K. ocellatus and K. 

hermaphroditus in comparison with hybrids, and their overlap. (c) Percentage of 

DMCs either hypomethylated (blue) or hypermethylated (red) of the 5,800 DMCs 

common to the comparisons between hybrids vs parental species. (d) 

Multidimensional scaling analyses of the normalised counts for the 5,800 DMCs 

common to the comparisons between hybrids vs parental species. Squares represent K. 

ocellatus, circles represent K. hermaphroditus, and triangle represent hybrids. 

Backcrosses are represented by purple shapes according to their respective parental 

species.
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Figure 3.2. Hierarchical clustering of the scaled normalised counts for the 5,800 

differentially-methylated cytosines (DMCs) common to both comparisons between 

hybrids and parental species. Each cell represents an individual DMC, and each 

column represent an individual fish. Hypomethylated DMCs in blue and 

hypermethylated DMCs in red.
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CHAPTER 4: What does drive DNA methylation 

plasticity? Epigenetic responses of two inbred lines to 

different rearing environments* 

 

 

 

 

*A version of this work has been published as: Berbel-Filho, W. M., D. Rodríguez-

Barreto, N. Berry, C. Garcia de Leaniz, and S. Consuegra. 2019. Contrasting DNA 

methylation responses of inbred fish lines to different rearing environments. 

Epigenetics 14:939-948. 
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4.1 Abstract 

Epigenetic mechanisms generate plastic phenotypes that can become locally adapted 

across environments. Disentangling genomic from epigenomic variation is challenging 

in sexual species due to genetic variation among individuals, but it is easier in self-

fertilizing species. I analysed cytosine methylation patterns of two highly inbred 

strains of a naturally self-fertilizing fish reared in two contrasting environments to 

investigate the obligatory (genotype-dependent), facilitated (partially depend on the 

genotype) or pure (genotype-independent) nature of the epigenetic variation. I found 

higher methylation differentiation between genotypes than between environments. 

Most methylation differences between environments common to both strains followed 

a pattern where the two genotypes (inbred lines) responded to the same environmental 

context with contrasting DNA methylation levels (facilitated epialleles). My findings 

suggest that, at least in part, DNA methylation could depend on the dynamic 

interaction between the genotype and the environment, which could explain the 

plasticity of epigenetically mediated phenotypes. 
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4.2. Introduction 

Phenotypic plasticity is widespread phenomenon on nature, however its relative role 

on evolution is still a hotly debated topic in evolutionary biology (Des Marais et al. 

2013; Fusco and Minelli 2010; Pigliucci et al. 2006), as, given its implications for 

individual fitness and organisms’ differentiation, it has been considered by some 

authors as one of the major concepts currently missing into the framework of the 

modern evolutionary synthesis (Laland et al. 2014; Pigliucci 2007). 

The variety of phenotypes produced by the interaction between genotypes and 

environments can be described by reaction norms (Des Marais et al. 2013; Pigliucci et 

al. 2006). Among those, the evidence for genotype-by-environment (G x E) 

interactions is pervasive (Sambandan et al. 2008; Sultan 2015) and its importance have 

been specially studied on human disease context (Hunter 2005), and plant/animals 

breeding systems (Hassen et al. 2018; Streit et al. 2012). Although several genetic 

mechanisms have been used to explain G x E interactions such as antagonistic 

pleiotropy, mutation contingency, epistasis, differential sensitivity and conditional 

neutrality (reviewed in Des Marais et al. 2013), little is known about its effects on non-

genetic factors (i.e. epigenetics) (Herman and Sultan 2016). 

Epigenetic modifications represent rapid intracellular mechanisms for changes on the 

transcriptional machinery, which might be influenced by environmental changes 

(Richards 2006), and ultimately, influence phenotypic variation (Richards et al. 2017). 

In phenotypic plasticity studies, the genome and epigenome are often experimentally 

confounded (Sultan 2015) and an implicit assumption is made that they react to 

environmental variation following similar norms of reaction. However, this may not 

necessarily be the case as epialleles may have different degree of sensibility/respond 

to environmental change, thereby generating additional phenotypic variation different 
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from the one generated by genomic responses (Richards et al. 2017; Verhoeven et al. 

2016). 

To what extent epigenetic modifications act independently from genomic variation is 

key, but still unexplored question to understand the potential role of epigenetics in 

evolution (Duncan et al. 2015; Richards et al. 2017; Verhoeven et al. 2016), as 

epigenetic variation completely under genetic control would not contribute any 

additional adaptive value (Verhoeven et al. 2016). Richards (2006) classified 

epigenetic variation in obligatory, facilitated or pure epialleles, based on their degree 

of autonomy from the underlying genotype. Obligatory epialleles would be fully 

dependent on genetic variation and should show no variation across environmental 

change (Schmitz et al. 2013), whereas facilitated and pure epigenetic variation would 

differ in their degree of autonomy from the genotype (from partially depend to 

independent) (Schmitz et al. 2013), acting as potential intermediaries between 

environmental conditions and genome responses.  

Among the epigenetic modifications, DNA methylation is the best studied, and plays 

an important role in the pre-transcriptional control of several biological processes, such 

as cell differentiation and genomic imprinting (Koch et al. 2016; Moore et al. 2013). 

While the relationships between DNA methylation patterns, environmental conditions 

and phenotypic traits have been widely investigated (Baerwald et al. 2016; Keller et 

al. 2016) the plasticity of DNA methylation itself and its potential implications for 

downstream epigenetically-regulated phenotypes have rarely been considered 

(Herman and Sultan 2016; Teh et al. 2014). Here, I investigated the relative roles of 

the genotype and the rearing environment in the diversity of genome-wide cytosine 

methylation states in the brain of two genetically different and highly inbred self-

fertilising lines of Kryptolebias marmoratus reared in two contrasting environments 



124 
 

(poor and enriched). I hypothesised that if DNA methylation was mostly autonomous 

and shaped by environmental change, a higher number of different epialleles would be 

found between environments, regardless of the genetic background, than if DNA 

methylation was mostly under genetic control, where most of the epigenetic 

differences would be between genotypes.  

4.3. Material and methods 

The self-fertilising hermaphroditic mangrove killifish (Kryptolebias marmoratus) 

(Tatarenkov et al. 2017), has naturally inbred lines (Ellison et al. 2015) which inhabit 

mangroves that differ markedly in habitat complexity, ranging from temporary pools 

to mangrove leaf litter and crab burrows, all influenced by tidal variation (Ellison et 

al. 2012; Taylor 2012). I used two highly inbred strains (R and DAN), originally from 

Belize (Lins et al. 2017; Tatarenkov et al. 2010) and kept in the laboratory for at least 

20 selfing generations (Ellison et al. 2015).  

I compared brain methylation of fish reared under enriched and impoverished 

conditions, as previous studies had shown environmental enrichment can affect 

behavioural flexibility (Roberts et al. 2011), brain size and cognition (Kihslinger et al. 

2006), and induce epigenetic modifications during early development (Champagne 

2008). I used two different habitats with different levels of environmental enrichment: 

1) a physically enriched habitat, where fish were placed in contiguous rectangular 

tanks (9 cm depth x 12 cm width x 8 cm length) filled with 400ml of brackish with one 

perforated artificial log (3 cm depth x 4 cm width x 4 cm length) and three artificial 

plants to simulate a complex habitat (Fig. S4.1) and 2) a barren habitat (hereafter called 

poor) with the same tank conditions but without physical enrichment. For both strains, 

five initial hermaphrodite progenitors of similar size (mean=3.8 cm, sd= ±0.12) and 

age (mean = 417.3 days post hatchling, sd= ±13.4) were chosen. Eggs from these 
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progenitors were maintained individually in pots containing 100ml of brackish water 

and checked daily. Upon hatching, alevins were randomly distributed between the 

treatment tanks (enriched and poor). Given the difference in hatchlings per parent, the 

initial experimental set up consisted of 29 R fish (18 in enriched habitat, 11 in poor 

habitat) and 21 DAN fish (10 in enriched, 11 in poor). Fish were maintained under 

standard laboratory conditions (25-27 °C, 16-18‰ ppm salinity under a 12h light:12h 

dark photoperiod).  

4.3.1. Genome-wide DNA methylation data 

To minimise any potential age effect on methylation profiles, all fish sequenced were 

euthanized at 10 months old, using tricaine methane-sulfonate (MS-222) following 

Home Office Schedule 1. Individuals were dissected and their brains kept in molecular 

grade ethanol for DNA extraction. Given the effect of environmental enrichment on 

brain development and gene expression (Rampon et al. 2000; Salvanes et al. 2013), 

brain DNA was extracted from 22 individuals for epigenetic analysis (six DANs: three 

from poor, three from enriched environment; 16 Rs: six from poor, ten from enriched 

environment) using Qiagen DNeasy Blood and tissue kit (Qiagen®) following the 

manufacter protocol. This DNA was also used to amplify 23 microsatellites loci to 

confirm individuals’ genotypes and degree of genetic variation, following Ellison et 

al. (2011). 

Bisulphite converted genomic DNA libraries were prepared using Diagenode® 

Premium Reduced Representation Bisulphite Sequencing (RRBS) Kit according to 

manufacturer’s indications and sequenced on an Illumina® NextSeq 500 platform 

(Cardiff University, Genomics Research Hub) using a 1x75pb single-end run. PCR 
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fully methylated and unmethylated spike controls from the RRBS kit were added to 

monitor bisulphite conversion efficiency. 

4.3.2. Sequence quality check and alignment 

Initial quality assessment of the raw sequences was performed using was performed 

using FastQC (Andrews 2010). TrimGalore! (Krueger 2016) was used to trim low-

quality base calls, adapter contamination and positions filled in during end-repair. 

Trimmed reads were aligned to the Kryptolebias marmoratus reference genome 

(NCBI ASM164957v1; Rhee et al. (2017), assembly size = 680.3Mb; number of 

scaffolds = 3,073; N50 = 2,229,659; GC content = 37.76%; annotation date = 

22/11/2018) prior  bisulphite conversion using Bismark v0.17.0 (Krueger and 

Andrews 2011), which was also used for cytosine methylation calls. Non-CpG 

methylation levels were low in average (0.56% CHG and 0.49% CHH, Table S4.1), 

therefore I only considered methylation within CpG context for the analysis, as these 

are the most common methylation sites for vertebrates (Feng et al. 2010). To minimise 

potential biases due sequencing depth, I included only CpG sites with a minimum 

coverage of 10 reads in each sample across the 22 individuals sequenced (Shafi et al. 

2017) for differential methylation analysis. To account for biological variation, 

samples were grouped into experimental groups representing genotypes and 

environments: “DAN enriched”, “DAN poor”, “R enriched”, “R poor”. Mapped reads 

were processed using SeqMonk (Andrews 2007). 

4.3.3. Differentially methylated cytosines and regions 

To identify differentially methylated cytosines (DMCs) across experimental groups, I 

used logistic regression with p< 0.01 after multiple testing correction (Benjamini-
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Hochberg) and >20% minimal CpG methylation difference (|ΔM|), using R bridge in 

SeqMonk. I also performed t-tests across experimental group replicates using the same 

software, to generate a more conservative list of DMCs, only considering those shared 

by both statistical approaches. To identify differently methylated regions (DMRs), I 

performed a genome-wide unbiased DMR detection using tilling windows of 1000bp 

on windows with at least five CpGs with ≥10 reads across all individuals. 

I used the scores of methylation for DMCs and DMRs between genotypes and 

environments for principal component analysis (PCA) in R v. 3.4.3. To test for the 

effect of the genotype, environment and their interaction on the methylation scores, I 

used linear models with the scores for the first two PCA axis (>70% of the total 

variation) as a function of genotype, environment and their interaction. I then 

individually compared DMCs and DMRs between genotypes, followed by a 

comparison between environments using the same methods described before for 

DMCs and DMRs identification. Subsequently, a comparison within each genotype 

between environments was carried out to identify potential environment-dependent 

DMCs and DMRs. From these comparisons, I identified annotated DMCs and DMRs 

shared between genotypes, which should represent commonly affected DMCs 

regardless of the genetic background. 

4.3.4. Methylation patterns and epiallele classification 

Following the epiallele classification in Richards (2006), I classified the DMCs and 

DMRs shared across genotypes between environments as facilitated, when displaying 

different directions of variation (non-parallel) on methylation scores across genotypes 

in the same environment (i.e. hypermethylated in an environment for one genotype 

and hypomethylated in the other), or pure when displaying the same direction of 
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variation (parallel) across genotypes and environments (i. e. hypermethylated or 

hypomethylated for both genotypes in the same environment).  

4.3.5. Molecular network analysis and centrality metrics 

To identify potential functional implications of variation in DNA methylation for the 

annotated DMCs identified across genotypes between environments, I built a 

functional gene network using GeneMANIA (Warde-Farley et al. 2010). To identify 

central genes and retrieve centrality metrics (del Rio et al. 2009) within the molecular 

network, I used NetworkAnalyzer plugin into Cytoscape v. 3.7.1 (Assenov et al. 2008). 

Panther GO terms (Mi et al. 2016) was used to identify biological process and 

pathways for the most connected genes (>10 connections) within the network. 

4.4. Results 

After quality filtering, approximately 273 million reads were retained, averaging 12 

million reads per sample. Of those ~ 62.9 % were uniquely mapped reads to the 

reference genome. Overall bisulphite conversion was 99.6% (Table S4.1). Fish were 

genotyped for 23 microsatellites (Ellison et al. 2011). Genetic differences were 

identified between inbred lines (FST = 1.00, Table S4.2), but not within lines. 

In total, I identified 5.5 million cytosine sites, of which 139,908 CpG sites fulfilled the 

minimum coverage requirements (10 reads across all individuals), representing 1.2% 

of the total number of cytosines om the mangrove killifish genome. This result is 

similar to recent RRBS studies in other fish (1% in rainbow trout (Baerwald et al. 

2016); 1.5-2% in guppies (Hu et al. 2018)).  

The majority of the cytosines surveyed mapped gene bodies (71.32%) or intergenic 

regions (19.10%), while only 2.54% were located on putative promoters. Linear 
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models using the PCA scores for 1,064 DMCs and 194 DMRs identified between 

genotypes and environments revealed that although genotype, environment, and 

genotype x environment interactions were significantly related DNA methylation 

scores, genotypes explained more of the variance for axis one (54% of overall variation 

for both DMCs and DMRs) than environment (Fig. S4.2; Table S4.3) When predictors 

were analysed individually, differences between genotypes also corresponded to a 

higher number of DMCs (817 vs 594, four DMCs shared) and DMRs (43 vs 17, no 

DMR shared) than differences between environments (Figs. 4.1; S4.3). Within 

genotypes, 357 and 3,632 DMCs (25 and 373 DMRs) were identified between 

environments, for DAN and R, respectively (Figs. 4.1; S4.3). An additional analysis 

on three different subsets of six R individuals (to match the number of DAN 

individuals) identified similar numerical differences in DMCs between lines (Table 

S4.4). Unsupervised hierarchical clustering revealed distinctive methylation profiles 

between groups, except for comparisons between environments, where one and two 

individuals from the poor environment clustered with individuals from the enriched 

environment for DMCs and DMRs respectively (Figs. 4.1; S4.3). 

Twenty-five annotated DMCs and four DMRs between environments were shared 

across genotypes, potentially representing environmentally-affected DMCs, 

independently of genetic background. Of these, based on the direction of methylation 

across environments, 22 out 25 DMCs were classified as potentially facilitated, with 

methylation scores following a genotype-specific pattern under similar environments 

(Table 4.1). This pattern was supported by the PCA results based on the DMCs 

methylation scores, which indicated different methylation profiles between 

environments (PC1 explaining 55.83% of the variation), as well as the genotypes (PC2 

explaining 22.39% of the variation) (Fig. 4.2a). Linear model analysis indicated that 
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PC1 values were significantly influenced by the environment (t-value= 1.63, df= 1, 

p=0.003) and the interaction between genotype and environment (t-value= -11.25, df= 

1, p<0.001), while PC2 values were only significantly influenced by the genotype (t-

value=-1.64, df= 1, p<0.001) (Table 4.2a). Methylation differences (with a lower 

threshold of 20%) for the facilitated DMCs ranged from 20.25% to 48.57% (Table 

4.1). The facilitated DMCs were mostly hypermethylated on enriched environments 

with respect to poor environments for DAN fish while the opposite pattern was found 

for R fish (Table 4.1; Figs 4.2c; S4.4). The four DMRs between environments and 

shared by genotypes were also classified as facilitated, overall following the same 

methylation pattern found on the facilitated DMCs (Fig. S4.5; Table S4.5). 

Only three of the annotated DMCs within or neighbouring gene bodies were 

considered pure (Table 4.1; Fig. S4.6). Average methylation differences for pure 

DMCs ranged from 25.4% to 34.37% (Table 4.1). The PCA only using pure DMCs 

showed a different pattern from the facilitated DMCs, with the PC1 separating 

environments explaining 72.38% of the variation, and the PC2 partially differentiating 

genotypes explaining 18.85% of the variation (Fig. 4.2b). PC1 loadings were 

significantly affected by the environment (t =-2.81, df= 1, p<0.001) and the genotype 

(t =-2.28, df= 1, p=0.008), while PC2 loadings were only significantly influenced by 

genotype (t =0.29, df= 1, p=0.003) (Table 4.2b, Fig. 4.2d). 

Molecular network analysis revealed a highly connected network linked by genetic 

interactions and co-expression interactions, that was composed by 23 input annotated 

DMCs (the uncharacterised LOC108245430 and ubald1 with no identified connections 

were removed) and 20 neighbouring genes (Fig. S4.7). Centrality parameters, such as 

average degree (averaged number of connections per gene, mean=10.55; SD ± 5.89), 

closeness (average distance of the all the genes in the network to a certain gene; 
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mean=0.53 ± 0.06), and radiality (the easiness of reaching any gene from certain gene, 

0 to 1 index with 1 being the highest; mean=0.77 ± 0.06) (Table S4.6), suggested that 

any alteration of the expression of the genes contained in the network was likely to 

have major effects on genetic interactions and gene expression levels. 

Twelve of the 15 most connected genes within the network (>10 connections), were 

input genes (i.e. genes affected by DMCs between environments and shared by 

genotypes). Gene ontology analysis showed that some of these genes are involved on 

important cellular and metabolic processes in zebrafish, such as regulation of 

transcription by RNA polymerase and gene expression (myc), RNA modification 

(trit1), intracellular calcium content (ryr3), and lipid metabolism (sorcs2), as well as 

pathways related to angiogenesis and stress response (ryr3 and myc) (Table S4.7). 

4.5. Discussion 

A full comprehension of the evolutionary role of epigenetics in generating plastic 

phenotypes pass through the evaluation of the interplay between epigenetic variation, 

its genetic background and environmental changes (Richards et al. 2017; Sultan 2015). 

Given the important role of genetic background on DNA methylation (Dubin et al. 

2015; Eichten et al. 2013; Schmitz et al. 2013), the diversity of epigenetic states in 

natural populations can be difficult to disentangle due to the high genetic variability 

among individuals. By using two highly inbred strains of the mangrove killifish 

Kryptolebias marmoratus reared under controlled environmental conditions, I have 

been able to estimate significant differences on methylation profiles among genotypes 

and environments, as well as detect epigenetic states with different levels of autonomy 

from its genetic background. 
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Environmental enrichment in fish affects brain structures (Kihslinger et al. 2006; 

Näslund et al. 2012; von Krogh et al. 2010), however few studies have investigated 

which molecular mechanisms underlie these changes (Lema et al. 2005; Salvanes et 

al. 2013) and whether it varies across different genetic backgrounds. Kryptolebias 

marmoratus populations are composed by naturally inbred lines living in highly 

variable habitats, both temporally and spatially (Ellison et al. 2012; Taylor 2012). 

Several studies using K. marmoratus isogenic lines have identified phenotypic 

differences between lines (e.g. mate choice (Ellison et al. 2013), reproduction (Lin and 

Dunson 1995), cannibalistic behaviour (Wells and Wright 2017), sexual differentiation 

(Turner et al. 2006), gene expression in response to infection (Pawluk et al. 2018)) 

even when exposed to similar environmental conditions (Earley et al. 2012). These 

findings suggest a potential role of non-genetic mechanisms, including DNA 

methylation (Fellous et al. 2018), in mediating these plastic phenotypes. My results 

indicate that genotypes have an overriding influence on brain DNA methylation 

patterns, and that their effect is greater than that caused by environmental enrichment. 

I only found a few DMCs that can be considered facilitated or pure epialleles, 

supporting the idea that environmentally-induced autonomous DNA methylation may 

be limited (Dubin et al., 2015). Yet, the DNA methylation patterns of these putative 

independent epialleles indicated that DNA methylation outcomes could depend on 

specific combinations of the genotype and environmental conditions. 

Genotype-by-environment interactions are the most common reaction norms found on 

nature (Sultan 2015) being commonly observed from in behavioural or physiological 

traits to and intermediate phenotypes, such as gene expression (Herman and Sultan 

2016). Although several genetic mechanisms have been described to explain G x E 

interactions (Des Marais et al. 2013), the role of DNA methylation remains largely 
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unexplored. The pattern found here could represent either a cause or a phenotypic 

consequence of G x E interactions, as changes in DNA methylation at single 

nucleotides tend to occur at a much higher rate than mutations in nucleotide sequence 

(van der Graaf et al. 2015).Functionally, most of the DMCs were found in gene bodies 

and were shown to be highly integrated within a gene network of genetic interactions 

and co-expression. Recent evidence in plants (Horvath et al. 2019) and animals (Huh 

et al. 2013) indicated that gene body methylation has a role on reducing erroneous 

transcription. Indeed, some of the genes affected by the facilitated DMCs are related 

to the regulation of RNA polymerase activity and gene expression patterns (myc and 

trit1). The G x E pattern found here may be affecting transcripts variability between 

genotypes even under similar condition, however further research is needed to address 

this question. 

My results, suggest that, at least in part, cytosine methylation patterns are the result of 

a dynamic interaction between genotypes and the environment. Further research to 

investigate whether the patterns found here might influence transcription might 

provide a potential mechanistic explanation for the genotype by environment patterns 

often observed in phenotypically plastic responses (Des Marais et al. 2013; Sultan 

2015)
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Table 4.1. Methylation differences averaged (percentage) for differentially methylated cytosines (DMCs) between environments (poor, enriched), 

shared between genotypes (DAN, R) which overlap annotated genes (reference genome ASM164957v1). Epiallele classification (pure or 

facilitated) followed Richards (2006). Positive and negative values represent increased and decreased methylation in enriched and poor 

environments, respectively. Q-value is the p-value adjusted by False Discovery Rate (FDR=0.05). 

Gene symbol Entrez gene name Epiallele  

classification 

Meth diff 

DAN 

Q-value Meth 

diff R 

Q-value 

acvr2a activin A receptor type 2A P 34.37 0.007 29.17 <0.001 

col25a1 collagen type XXV alpha 1 chain F 43.61 0.005 -21.63 0.005 

dmap1 DNA methyltransferase 1 associated 

protein 1 
F 26.99 <0.001 -21.69 <0.001 

foxp4 forkhead box P4 F 22.50 <0.001 -37.56 <0.001 

gpc5 glypican 5 F 31.82 0.01 -32.06 <0.001 

mipol1 mirror-image polydactyly 1 F 35.85 <0.001 -30.59 <0.001 

necab2 N-terminal EF-hand calcium binding 

protein 2 
F 20.25 0.01 -23.56 <0.001 

neo1 neogenin 1 F 20.25 <0.001 -31.24 <0.001 

nudcd1 NudC domain containing 1 F 39.76 <0.001 -21.05 <0.001 

ramp3 receptor activity-modifying protein 

3-like 
P -27.12 0.037 -29.15 <0.001 

ryr3 ryanodine receptor 3 P -30.48 0.003 -25.4 <0.001 

sorcs2 sortilin-related VPS10 domain 

containing receptor 2 
F 36.81 0.008 -33.20 <0.001 

trit1 tRNA isopentenyltransferase 1 F 20.38 <0.001 -29.70 <0.001 

trmt44 tRNA methyltransferase 44 F 23.98 <0.001 -28.21 <0.001 

ubald1 UBA like domain containing 1 F 36.76 0.019 -31.02 0.004 
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zeb2 zinc finger E-box binding homeobox 

2 
F 31.83 <0.001 -28.35 <0.001 

znf516 zinc finger protein 516 F 31.51 <0.001 -31.60 <0.001 

zranb3 zinc finger RANBP2-type containing 

3 
F 41.41 <0.001 -33.79 <0.001 

LOC108234847 adhesion G protein-coupled receptor 

L3-like 
F 48.57 <0.001 -39.35 <0.001 

LOC108240988 non-muscle caldesmon-like F 32.49 0.005 -32.78 <0.001 

LOC108243470 protein-methionine sulfoxide oxidase 

mical2b-like 
F 33.35 <0.001 -25.70 <0.001 

LOC108243852 receptor-type tyrosine-protein 

phosphatase N2-like 
F 37.97 0.014 -30.28 <0.001 

LOC108245430 uncharacterized protein F 42.94 <0.001 -41.49 <0.001 

LOC108247402 spectrin beta chain, non-erythrocytic 

1-like 
F 40.73 0.006 -27.58 <0.001 

LOC108251479 transcriptional regulator Myc-B-like F 30.49 0.010 -25.13 <0.001 
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Table 4.2. Linear model of principal component scores for mangrove killifish 

epialleles shared between genotypes (R, DAN) and environments (poor, enriched).  

 

 

 

 

 t-values Prop. of variance (%)  df p-value 

(a) Facilitated epialleles     

PC1 scores 

Genotype 1.63 0.06 1 0.80 

Environment 1.58 12.41 1 0.003 

Genotype x Environment -11.25 68.08 1 <0.001 

PC2 scores 

Genotype -1.64 91.35 1 <0.001 

Environment 8.28 0.21 1 0.49 

Genotype x Environment 10.29 0.35 1 0.38 

(b) Pure epialleles     

PC1 scores     

Genotype 2.28 13.18 1 0.008 

Environment -2.81 59.28 1 <0.001 

Genotype x Environment 0.98 0.09 1 0.80 

PC2 scores   1  

Genotype 0.29 37.96 1 0.003 

Environment -1.82 1.14 1 0.56 

Genotype x Environment -2.97 0.67 1 0.65 
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Figure 4.1. Heat map illustrating percentage of methylation for all differentially 

methylated cytosines (DMCs) identified (a) between genotypes, (b) between 

environments, (c) between environments for DAN strain, and (d) between 

environments for R strain (logistic regression q< 0.01 and |ΔM|>20%, and t test p 

<0.01) using unsupervised hierarchical clustering. Rows represent a unique CpG site 

and columns individual fish. 
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Figure 4.2. Principal component analysis (PCA) and reaction norms of epialleles 

across genotypes and environments. PCAs were based on individual scores of 

methylation across either (a) facilitated or (b) pure annotated differentially-methylated 

cytosines (DMCs). Dark yellow for DAN individuals on enriched environments; light 

yellow for DAN genotype on poor environments; dark green for R individuals on 

enriched environments; light green for R genotype on poor environments. Each 

reaction norm represents the change on averaged methylation scores (in percentage) 

for (c) facilitated and (d) pure epialleles annotated DMCs across environments. 

Different colours represent the genotypes (yellow for DAN; green for R). Different 

shapes (d) represent different annotated DMCs. Epialleles were classified according 



139 
 

to Richards (2006). Detailed information for each annotated DMCs methylation score 

across genotypes is available at Table 4.1.
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CHAPTER 5: Environmental enrichment induces 

behavioural but limited epigenetic parental effects in 

a self-fertilising fish 
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5.1 Abstract 

Parental effects influence offspring phenotypes through pre- and post-natal routes but 

little is known about their molecular basis. Epigenetic modifications are influenced by 

the environment and could be involved in inter- and transgenerational parental effects.  

Taking advantage of the self-fertilising nature of the mangrove killifish Kryptolebias 

marmoratus, I investigated the effects of rearing environment on parents and offspring 

by comparing neophobia, metabolic rate and brain DNA methylation patterns of 

genetically-identical fish reared in enriched or barren environments. Parental fish 

reared in enriched environments had lower cortisol levels, lower metabolic rates and 

were more active and neophobic than those reared in barren environments. They also 

differed in 1854 methylated cytosines (DMCs). I also found evidence of limited but 

significant intergenerational effects on the DNA methylation patterns of the offspring. 

Offspring activity was influenced by the parental activity. Among the DMCs of the 

parents, 98 followed the same methylation patterns in the offspring, three of which 

were significantly influenced by parental environments irrespective of their own 

rearing environment. My results suggest that the environment experienced by the 

parents influences behaviour and brain cytosine methylation patterns of the offspring 

in an environment-specific manner. 

 

 

 

 

 

 

 



 

5.2. Introduction 

Parental effects occur when maternal, paternal or both parental phenotypes affect offspring 

phenotypes (Bonduriansky and Day 2018; Uller et al. 2013). Such effects occur in a wide range 

of taxa (Uller 2008) via different pre- and post-natal routes (e. g. microhabitat selection for 

eggs, reproductive investment, intrauterine environment, parental care). Parental experiences 

can affect offspring fitness (Burton and Metcalfe 2014), however knowledge about the 

molecular mechanisms of the pre-natal parental effects is still limited (Gluckman et al. 2005; 

Illum et al. 2018; Jensen et al. 2014). 

The transmission of some parental effects via germline has been related to genetic mechanisms, 

for example, the frequency of some deleterious mutations in sperm is associated with 

increasing male’s age, affecting offspring fitness (Wyrobek et al. 2006). However, it is likely 

that pre-natal non-genetic mechanisms also play a major role in parental-offspring information 

transfer (Danchin et al. 2011; English et al. 2015; Jablonka and Raz 2009), as genetic-based 

inheritance solely cannot fully explain the variation of offspring phenotypes (Danchin et al. 

2011). Epigenetic modifications, such as DNA methylation, histone modifications and 

microRNAs, mediate rapid changes in transcription influenced by environmental changes 

(Richards 2006) that can affect phenotypes (Richards et al. 2017; Verhoeven et al. 2016). 

Among the epigenetic mechanisms, cytosine methylation is the best characterized, being 

important on several biological processes, from genomic imprinting to cell differentiation 

(Jones 2012; Lea et al. 2017). In mammals, DNA methylation generally affects regulatory 

regions by supressing gene expression (Moore et al. 2013), whereas methylation in gene bodies 

can contribute to reduced transcriptional noise (Huh et al. 2013). Thus, differential methylation 

can affect gene expression and result in phenotypic plasticity (Herman and Sultan 2016). 

However, while the transmission of environmentally-induced epialleles via DNA methylation 
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from parents to offspring has been identified in plants, whether epigenetic mechanisms can 

provide a heritable memory of environmental influence in animals remains controversial 

(Heard and Martienssen 2014), as well as the potential adaptive value of this type of 

transmission (Perez and Lehner 2019). 

The parental rearing environment can induce phenotypic modifications during early 

development which can be long-lasting and potentially intergenerational (Burton and Metcalfe 

2014). A well-known example is the effect of structural environmental complexity (i.e. adding 

physical structures to a barren environment) on behaviour (Braithwaite and Salvanes 2005; 

Roberts et al. 2011), physiology (Näslund et al. 2013), cognitive capacity (Salvanes et al. 2013) 

and brain structure (Kihslinger et al. 2006) in fish. Physical structures are critical for most fish 

at different points of their life cycle (e. g. for spawning, sheltering, foraging), suggesting that 

structural complexity is an important ecological factor of their natural environment (Näslund 

and Johnsson 2016).  Captive fish reared in enriched environments have increased survival in 

the wild compared to those reared in impoverished environments (D'Anna et al. 2012; Roberts 

et al. 2014), as well as enhanced cognitive capacity and behavioural flexibility (Salvanes et al. 

2013; Spence et al. 2011; Strand et al. 2010). However, little is known about the molecular 

mechanisms underlying plastic responses to environmental enrichment, or whether these 

changes could be transmitted across generations (Näslund et al. 2012; Näslund and Johnsson 

2016). 

Kryptolebias marmoratus (Poey 1880) is a self-fertilising fish living in mangrove forests in 

North and Central America (Tatarenkov et al. 2017), occupying a wide range of mangrove 

fossorial microhabitats influenced by periodical tide variation (Ellison et al. 2012).  

Kryptolebias marmoratus displays aggression towards conspecifics (Taylor 2000) that vary 

depending on kinship relationship (Earley and Hsu 2008; Edenbrow and Croft 2012; Ellison et 

al. 2013). The species inhabits inherently heterogenous mangrove habitats, with multiple 
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genotypes being found in the same microhabitat (Ellison et al. 2012). Intraspecific aggression 

results in emersion (jumping out of water) and dispersal (Taylor 2000), suggesting that K. 

marmoratus environmental complexity plays an important role on their ecology and behaviour.  

I reared of genetically identical K. marmoratus parents and their offspring in matched-

mismatched environments with different levels of structural complexity to examine the 

influence of environmental enrichment on individual physiology and behaviour, and the 

potential role of epigenetic mechanisms (brain cytosine methylation) to mediate 

environmentally-induced parental effects. 

 

5.3. Material and methods 

5.3.1. Experimental design 

I used a highly inbred strain of K. marmoratus (R, Chapter 4) kept under standard laboratory 

conditions (25-27 °C, 16-18‰, 12h light: 12h dark photoperiod) for at least 20 selfing 

generations (Ellison et al. 2015). Eggs from five fish of similar size and age were reared 

individually until hatching, when larvae were transferred to tanks with either enriched 

environment (shelter and plants, n = 14) or poor environment (identical except no enrichment, 

n=13), where they were kept for 10 months as the parents (P) in the tanks described in detail 

in Chapter 4. 

To standardise potential age-related parental effects, eggs were only collected from P of similar 

age (7-10 months). The offspring (F1) of the first five parents which started laying eggs within 

7-10 months (three from enriched and two from poor environments) were set up following a 

factorial design with matched or mismatched parent-offspring environments (Fig. S5.1; Table 

S5.1). F1 consisted of 15 mismatched individuals (seven poor to enriched and eight enriched 
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to poor), and 13 matched individuals (eight enriched to enriched and five poor to poor). All 

experiments mentioned below were approved by Swansea University Ethics Committee 

(permit STU_BIOL_30484_110717192024_3). 

5.3.2. Metabolic rate and cortisol measurements 

I measured basal metabolic rate (oxygen consumption) of 55 adults (14 P enriched; 13 P poor, 

eight F1 from enriched parents reared in enriched environment; ten F1 from enriched parents 

reared in poor environment; five F1 from poor parents reared in poor environment; five F1 

from poor parents reared in enriched environment), 30 of which were also analysed for 

epigenetic variation using RRBS protocol (Table S5.1). Oxygen levels were calibrated in trials 

using saturated oxygenated water (100% dissolved oxygen) and anoxic water (2% dissolved 

oxygen). Fish were fastened for 48 hrs prior to acclimation for 20h. Oxygen consumption was 

measured once for each fish for 40 minutes after acclimation, with oxygen levels always above 

60%. Chambers were drained and cleaned between runs. Basal metabolic rate was calculated 

taking into account rate of decrease of oxygen in the chamber, mass of the individual, volume 

of water and time of measurement (mg O2 g-1 min-1). Averaged background respiration levels 

across runs was 12.34% (sd=±9.71). 

I used ultrasensitive graphene immunosensors (Barton et al. 2018) for measuring waterborne 

cortisol in a non-destructive way on parents reared in both enriched and poor environments. 

For this, 12 0ml of water were taken from the respirometer after each individual measurement 

of metabolic rate and kept at -80 °C until the analysis. A total of 10 ml was centrifuged at 1000 

rpm for 5 minutes, and 10 ul of the supernatant were pipetted onto the modified sensor surface. 

Electrochemical measurements were conducted with a potentiostat/galvanostat (Autolab), 

controlled with NOVA software as in Barton et al. (2018). 
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5.3.3. Behavioural analyses 

Neophobia was assessed for the same 55 individuals used in the metabolic rate analysis using 

a plastic test arena (7 cm depth x 7 cm width x 30 cm length) filled with 0.7 L of water. The 

arena was divided into six equally spaced zones: a covered acclimatisation section (zone 0) 

with a sliding opaque door, and five open test zones (5 cm each) without cover (zones 1, 2, 3, 

4 and 5) delineated by marks at the top margins of the arena walls. A coloured toy block (0.5 

cm depth x 0.5 cm width x 3.5 cm height) was glued at the middle of zone 3 to serve as a novel 

object (Fig. S5.2). Nine-month old fish were placed individually into zone 0 for 15 min 

acclimatisation, after which the removable gate was slowly lifted, and the fish behaviour 

recorded for 20 min with an overhead camera fixed 0.5m above the arena. After the test period, 

tanks were drained, rinsed with ethanol and distilled water and refilled. Videos were analysed 

by the same person using BORIS v. 7.1.4 (Friard and Gamba 2016) to ensure consistency. The 

following four behaviours were quantified for both P and F: (1) latency (s) to exit the 

acclimatisation zone, (2) number of inspections within 3 cm of the novel object (i. e. individual 

facing  towards the novel for more than three seconds), (3) number of contacts with the novel 

object, and (4) number of movements between zones (activity). 

5.3.4. Statistical analyses 

All statistical analysis was performed in R v. 3. 4. 3. Cortisol levels and basal metabolic rate 

were analysed for the P using a linear model with environment (poor vs enriched), and body 

weight as predictors. I used GLM with a quassipoisson link to account for overdispersion for 

the P behavioural count data (no. contacts, no. inspections and activity) and a Gaussian link for 

latency as a function of environment and body weight. One individual from poor environments 

(1st-PE-R03) had a much higher number of inspections (10) and contacts (14) than the average 
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(average for inspections: 1.23, s.d = 1.28; average for contacts: 1.38, s.d = 1.77), and was 

considered an outlier for those behaviours. 

To test for parental effects on the F1 phenotypes, I only analysed those phenotypes shown to 

be significantly different between parental environments, using the same model structure as 

described above but including also the parental values and environment as predictors. I used 

the multi-model approach implemented in the R package glmulti v 1.0.7 (Calcagno and de 

Mazancourt 2010) for model selection, and considered models within 2 AIC units as being 

equivalent. i used the multi-model approach implemented in the R package glmulti v 1.0.7 

(Calcagno and de Mazancourt 2010) for model selection, which tests all possible models and 

all interactions. To take into account the dependency of observations from individuals 

originated from the same parents, we selected the best-fit (highest Akaike weight) indicated by 

glmulti and ran generalized mixed-models including parents as a random factor using the R 

package mlmRev v.1.0-7 (Bates et al. 2019). Models were tested for overdispersion and 

individual observation (fish ID) was taken into account when models displayed overdispersion. 

5.3.5. Genome-wide DNA methylation data 

All individuals were analysed at the same age (10 months old). Fish were euthanized using an 

overdose of methane-sulfonate (MS-222) following UK Home Office Schedule 1, their brains 

were dissected and stored in molecular grade ethanol before DNA extraction using Qiagen 

DNeasy Blood and tissue kit using manufacter’ s protocol. 

Bisulphite converted genomic DNA libraries were prepared using Diagenode Premium 

Reduced Representation Bisulphite Sequencing (RRBS) Kit according manufacturer’s 

indications. For the 17 P individuals (11 from enriched, six from poor) were multiplexed into 

a single library, pooled samples were bisulphite-converted, amplified by enrichment PCR and 

their quality assessed using Agilent D1000 ScreenTape System. The library was then 
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sequenced on an Illumina NextSeq 500 platform using a 1x75pb single-end run (Cardiff 

University, Genomics Research Hub). PCR fully methylated and unmethylated spike controls 

from the original kit were used to monitor bisulphite conversion efficiency. 

A second library was created using fourteen individuals from the second generation (F1, five 

from enriched to enriched environments, three from enriched to poor, three from poor to poor, 

and three from poor to enriched). The library followed the same procedures and sequencing 

conditions as the first library.    

5.3.6. Sequence quality and alignment 

All analyses were conducted on a local server running NEBC Bio-Linux 8. I assessed the 

quality of the raw sequences using FastQC (Andrews 2010) and, after trimming of adaptors 

and low-quality reads was done using the RRBS default parameters (function: --rrbs) in 

TrimGalore!  (Krueger 2016) reads were aligned to the reference genome (Kryptolebias 

marmoratus, NCBI ASM164957v1, Rhee et al. (2017)), trimmed and methylation calls were 

performed following the same parameters described in Chapter 4. Individuals were grouped 

into generations (P and F1), environments (own and parental, Table S5.1). Mapped reads were 

processed and compared using the R package methylKit v. 1. 10. (Akalin et al. 2012).  Given 

its low number of reads into CpG context (16.9% vs mean 54.2%) and low bisulphite 

conversion efficacy of 70.2% (mean 99.5%), one P individual from enriched analysis was 

removed from downstream analysis. 

5.3.7. Differentially methylated cytosines and methylation patterns 

I first assessed differentially methylated cytosines (DMCs) between parental (P) environments 

(enriched vs poor), using logistic regression on quantitated normalised data with q-value < 0.01 

after multiple testing correction (Benjamini-Hochberg) and 20% minimal CpG methylation 
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difference, using methylKit. To test whether the number of DMCs found in the original 

grouping is higher or lower than expected by chance, I generated a randomisation test with 

4,000 random combinations of 16 parental individuals and tested for the number of DMCs for 

each combination following the same parameters as the ones described for the original 

grouping. 

I then analysed whether the DNA methylation patterns (hypomethylated or hypermethylated) 

in the parents were maintained in the offspring. For this, I classified DMCs in two categories 

(i) environmentally-induced (differences in methylation patterns between the parents changed 

in the offspring depending on the environment) and (ii) intergenerational (differences in 

methylation patterns between parental environments were maintained/or changed in the 

offspring regardless of their rearing environment) (Fig. S5.1). I set up a threshold of ± 10% 

average methylation change offspring relatively to its parents to consider whether an individual 

epiallele methylation pattern has maintained the parental methylation state or not. For DMCs 

classified as intergenerational I identified the genomic location (within gene body, promoter 

region (≤2 kb upstream of the transcription start site (TSS)), or intergenic region (≥2kb 

upstream of TSS or downstream the gene bodies). 

To test whether the methylation patterns of the offspring on the DMCs classified as potentially 

intergenerational were influenced by the parental environment, I analysed the methylation 

score of the offspring for each DMC (as a proportion index, ranging from 0 to 1) as a function 

of the parental environment (enriched or poor), the offspring environment and their interactions 

using a generalized linear model with a binomial link. A multiple correction testing was 

performed to correct for multiple comparisons. 
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5.4. Results  

5.4.1. Parental physiology and exploratory behaviour 

For the parental individuals (P), the multi-model selection approach indicated the multi-model 

selection approach identified two models within 2 ΔAIC, one of which cortisol levels were 

only affected by body weight (estimate: -3.39; t-value: 4.22, df = 1, p = 0.001) and a second 

model (ΔAICc = 1.87) included both body weight (estimate = -3.03; t-value: 2.86, df = 1, p < 

0.001) and environments (enriched or poor) (t-value: 7.38, df = 1, p = 0.03) as significant 

factors affecting cortisol levels, with individuals from enriched environments having lower 

cortisol levels (Fig. 5.1a-b; Table S5.3). Basal metabolic rate decreased with body weight 

(estimate: -2.40; t-value: -2.35, df = 1, p = 0.01) but was no affected by parental environment 

(Table S5.3b). A linear regression analysis showed strong correlation between cortisol levels 

and basal metabolic rate (adjusted R² = 0.41; F-value = 16.73, df = 1, p < 0.001) (Fig. 5.1c).  

Parental activity significantly decreased with body weight (estimate: -2.88; z-value: 31.58, df 

= 1, p = 0.01), was lower on individuals reared in poor environments (estimate: -0.25; z-value: 

34.98, df = 1, p < 0.001) and varied with environment and body weight interaction (estimate: 

2.45; z-value: 38.76, df = 1, p = 0.02) (Fig. 5.1d; Table S5.3). No other equivalent model was 

found for activity. Neither body weight (estimate: -2.82;  z-value: -0.51, df = 1; p = 0.89) and/or 

the environment (estimate: 0.05; z-value: 0.12; df = 1; p = 0.60)  affected  number of 

inspections, nor number of contacts (body weight: estimate: 0.39; z-value: 0.08; df = 1; p = 

0.93; environment: (estimate: 0.50; z-value: 1.33; df = 1; p = 0.18).  Parental latency to leave 

acclimatisation zone variation was also not affected by body weight (estimate: 0.50; z-value: 

1.33; df = 1; p = 0.18) or the environment (estimate: -1082; z-value: 0.81, df = 1, p = 0.42). 
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5.4.2. Parental-effect on offspring exploratory behaviour 

For the offspring (F1), after correcting for overdispersion indicated that offspring activity was 

only significantly influenced by parental activity, increasing with increased parental activity 

(estimate = 5.28, z-value: 2.61, df = 1, p = 0.009) (Table S5.4). No other equivalent model was 

found.  

5.4.3. Differentially methylated cytosines  

After quality filtering, approximately 378 million reads were retained, averaging 12.5 million 

reads per sample. Of those, approximately 61.1% were uniquely mapped reads to the reference 

genome. Overall bisulphite conversion efficiency was 99.5% (Table S5.1). 

In total, I identified 5.5 million cytosine sites, but only 39,205 CpG sites matched the minimum 

coverage requirements (minimum of 10 reads across all individuals). The majority of the 

cytosines surveyed mapped gene bodies (71.12%), followed by intergenic regions (12.51%), 

while only 2.61% were located on putative promoters.  

Parental methylation profiles differed in 1854 methylated cytosines (DMCs) between 

environments. Most of these DMCs were overlapping gene bodies (67.31%), followed by 

intergenic regions (7.76%) and putative promoters (3.23%).  The randomisation test revealed 

an average of 247.3 (s.d. ±158.5) DMCs across 4,000 combinations of 16 randomly assigned 

individuals between poor and enriched environments, revealing that the original grouping had 

approximately 10.3 times more DMCs than expected by chance. 

5.4.4. Methylation patterns for parents and offspring 

Of the 1854 DMCs identified between parental environments, 724 (39.05%) maintained the 

same methylation profile in the offspring reared in an environment matching their parent, but 
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changed in the offspring reared in a mismatching environment and were classified as 

environmentally-induced epialleles. Of the remaining 1130 DMCs (60.95% of the total), 98 

(5.28% of total) maintained the parental methylation patterns in the offspring regardless of their 

rearing environment, although only five (scaffold: NW_016094248.1, position: 1049469; 

scaffold: NW_016094269.1., position: 1135514; scaffold: NW_016094316.1, position: 

636543; scaffold: NW_016094324.1, position: 879262; scaffold: NW_016094376.1, position: 

917192)  within less than 10% change in methylation score across all experimental groups 

(classified as potentially intergenerational) (Table 5.1). When analysed separately by 

environment-specific context, 30 DMCs in the offspring originated from enriched 

environment, and 19 in the offspring originated from poor environment maintained their 

methylation score relatively to its parents regardless of the offspring environment within less 

than 10% change. The GLM models indicated that the three DMCs which maintained the 

parental methylation patterns on the offspring were significantly influenced by parental 

environment (Table 5.2; Fig. 5.3). 

5.5. Discussion 

The potential transmission of environmentally-induced epigenetic modifications to the 

offspring could have important implications for evolution (Richards et al. 2017; Verhoeven et 

al. 2016) but has proven challenging to study in natural populations, due to the confounding 

effects of genotype-by-environment interactions (Berbel-Filho et al. 2019b; Herman and Sultan 

2016) and also to the unequal paternal and maternal contributions to epigenetic states (Soubry 

et al. 2014). By rearing the self-fertilising mangrove killifish Kryptolebias marmoratus under 

controlled environmental conditions, I identified significant physiological (basal metabolic rate 

and cortisol levels) behavioural (activity) and epigenetic differences among parents reared 

between enriched and barren environments, some of which were influenced the offspring 

phenotypes.  
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5.5.1. Environmental enrichment influence on physiology and behaviour 

Extensive research has highlighted the consequences of the rearing environment on behaviour, 

physiology and performance in fishes (Jonsson and Jonsson 2014). Most fish exhibit 

association to physical structures during their life cycle, and consequently structural 

environmental enrichment has been deliberately used on captive fish as an attenuator of mal-

adaptive or aberrant traits (Näslund and Johnsson 2016; Roberts et al. 2011; Roberts et al. 

2014). Shelter-like structures (e. g. perforated logs, pipes) have generally been shown to have 

beneficial effects, such as decreased metabolic rates (Fischer 2000; Millidine et al. 2006) and 

reduced plasma cortisol levels (Barcellos et al. 2009; Näslund et al. 2013), particularly in 

aggressive species (Näslund et al. 2013). My results indicate that parental fish reared on 

enriched environments have lower basal metabolic rates and waterborne cortisol levels. They 

also show a negative relationship between cortisol levels (and potentially basal metabolic rate) 

and body mass, while metabolic rate was not related to the rearing environment of the parents, 

the tight correlation between waterborne cortisol levels and basal metabolic rates in parental 

fish, suggests that parental individuals reared in enriched environments were less stressed and 

spend less energy to maintain basal metabolic rate than individuals reared in barren 

environments.  

In fish, structural environmental enrichment tends to decrease activity, mainly due to increased 

sheltering (Moberg et al. 2011; Roberts et al. 2011; von Krogh et al. 2010), and exploratory 

activity and boldness tend to be positively correlated (Champneys et al. 2018; Mazué et al. 

2015). Here, parents reared on enriched environments were slightly more active than 

individuals reared in poor environments, but no significant differences were found between 

environments on neophobic behaviours (inspections and contacts), suggesting no clear 

boldness-exploratory relationship in response to environmental enrichment in K. marmoratus 

Edenbrow and Croft (2013) found that exploratory behaviour activity and boldness correlated 
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positively in response to conspecific presence and simulated predation risk in K. marmoratus, 

however these changes were not repeatable and were not necessarily correlated to aggression 

levels, suggesting plastic behavioural responses during the ontogeny of this species. 

Although behavioural effects of environmental enrichment on fishes are well known (Jonsson 

and Jonsson 2014; Näslund and Johnsson 2016), the understanding of their potential inter- or 

transgenerational effects is scarce. My results indicate that, offspring activity was influenced 

by the parental activity. In general, offspring from parents reared in enriched environments had 

higher activity levels, regardless of their own environment, suggesting a sustained parental 

effect on activity levels. Previous studies in this species found that life-history traits (offspring 

size) but not behaviour (exploration and aggression) were affected by the parental environment 

(Edenbrow and Croft 2013). However, in mammals there is ample evidence of parental effects 

caused by environmental enrichment, where the offspring from enriched environments tend to 

be more exploratory (Dell and Rose 1987; Mychasiuk et al. 2012), have increased learning 

capacity and memory formation (Bygren 2013), than those reared in non-enriched 

environments. While in fish, increased cognitive capacity due to environmental enrichment has 

already been shown (Roberts et al. 2011; Salvanes et al. 2013), however this is the first 

evidence of behavioural intergenerational (parental) effects. 

5.5.2. Environmental enrichment effect on DNA methylation 

My results revealed strong effect of environmental enrichment on brain DNA methylation 

patterns, with 1584 differentially methylated cytosines (DMCs) (neighbouring or on gene 

bodies of 728 unique genes) differentiating genetically uniform parents reared on enriched and 

poor environments. Several studies have reported effects of environmental enrichment on brain 

growth (Näslund et al. 2012), cell proliferation (von Krogh et al. 2010), cognitive capacity 

(Salvanes et al. 2013; Spence et al. 2011), and gene expression levels (Evans et al. 2015) in 
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fishes. Therefore, the differential methylation patterns between rearing environments found 

here could be related to differential transcription levels (or noise reduction, depending of the 

genetic context) (Evans et al. 2015) in pathways of the brain development that could be the 

basis of the physiological and behavioural differences observed between enriched and poor 

reared individuals. 

Due to epigenetic reprogramming during embryogenesis, only a small subset of epigenetic 

variants on the parents are likely to be transmitted to the offspring (Burggren 2016; Illum et al. 

2018). DNA methylation changes during embryogenesis in K. marmoratus has a longer and 

later DNA methylation reprogramming period when compared to other fish and mammals 

(Fellous et al. 2018), which might represent an epigenetic window for environmental 

sensibility. In the offspring, most of my results revealed a stronger effect of their own rearing 

environment than that of their parents on cytosine methylation patterns. Thus, although there 

were clear effects of environmental enrichment on the brain cytosine methylation patterns of 

the parents, these changes may not have happened to the same extent in the germline, 

suggesting limited potential for cytosine methylation-mediated parental effects being 

transmitted trans-generationally and/or scape epigenetic reprogramming. I cannot discard that 

the low sample size for some offspring groups together with the somewhat conservative depth 

requirements (≥10 reads in all individuals) might have contributed to miss some potential 

epigenetic variants which contributed for parental effects. Yet, three DMCs maintained the 

same methylation patterns in both parents and offspring (within 10% methylation score) while 

additional DMCs maintained the parental methylation patterns in the offspring in a more 

environment-specific manner. To my knowledge, although limited, this is the first evidence of 

parental effects on the offspring cytosine methylation patterns caused by environmental 

enrichment in fish, extending previous results in mice, which demonstrated that parental 

enrichment can affect offspring brain weight, global methylation levels (Mychasiuk et al. 2012) 



156 
 

and learning capacity (Arai and Feig 2011). It is important to highlight here, that although 

changes in methylation status at particular genomic regions (i. e. promoters, gene bodies, first 

intron, transposons) are known to have functional effects  (i.e. changes on gene expression, 

transcriptional noise, transcription factor binding) (Anastasiadi et al. 2018; Horvath et al. 2019; 

Huh et al. 2013; Morgan et al. 1999), the effects of changes in methylation at the single cytosine 

level, if any, are poorly known, particularly in animals (Gutierrez-Arcelus et al. 2013). 

In summary, my results reveal behavioural parental effects in the offspring caused by parental 

environmental enrichment in the self-fertilising mangrove killifish Kryptolebias marmoratus. 

Although I found that some DMCs significantly maintained their methylation status in the 

offspring, their limited numbers indicated that cytosine methylation is perhaps not the best 

candidate for epigenetically-mediated parental effects. Still, while most studies on fish focus 

on behavioural and physiological consequences of environmental enrichment within one 

generation (Näslund and Johnsson 2016), my results provide evidence that environmental 

enrichment not only affect parents but is also transmitted to the offspring in a specific manner, 

however its epigenetic mechanisms still remains to be explored. 
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Table 5.1.  Average methylation score differences (for parents) and for the offspring for methylated cytosines (DMCs) which maintained o 

methylation patterns (hyper or hypomethylated)  relatively to the parental patterns (within  ±10% change)  Positive and negative values on 

methylation differences represent hyper or hypomethylation in relation to the enriched environment. “G”,  and “U” refer to gene bodies and 

unnanotated regions, respectively. Q-value is the p-value adjusted for the False Discovery Rate (FDR=0.05). Asterisks represent DMCs 

significantly affected by parental environment. Asterisks represent DMCs which were significantly influenced by parental environment. 

 

Scaffold Position Genomic 

context 

Meth 

diff 1st 

(E-P) 

Q-

value 

Meth 

mean 

E>E 

Meth 

mean 

P>P 

Meth 

mean 

E>P 

Meth 

mean 

P>E 

NW_016094248.1 1049469 G 20.79 <0.001 94.89 84.46 91.57 86.59 

NW_016094269.1 1135514 G -22.81 <0.001 78.56 82.11 72.52 84.14 

NW_016094316.1* 636543 U -22.17 <0.001 29.96 47.85 32.13 48.86 

NW_016094324.1* 879262 G 26.35 <0.001 84.73 59.00 72.38 60.77 

NW_016094376.1* 917192 G -20.81 <0.001 22.36 34.30 29.18 38.27 
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Table 5.2. Results of most plausible binomial generalised models obtained by multi-

model averaging approach for offspring methylation scores for the DMCs which 

maintained the parental methylation score (within 10% difference) across all offspring 

groups. Models are ranked according to the corrected Akaike Information Criterion 

(AICc), the difference with the most plausible fitting model (ΔAICc), and the Akaike 

weight (Wi), which represents the ratio between the weights of the best and competing 

models. Only models within two AICc units are shown. 

 Df t-value P-value AICc Wi 

NW_016094316.1.636543 

Parental environment 1 2.70 0.002 -6.81 0.81 

NW_016094324.1.879262 

Parental environment 1 -1.83 0.01 2.66 0.68 

NW_016094376.1. 917192 

Parental environment 1 1.99 0.01 -10.78 0.72 
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Figure 5.1. Physiological and behavioural relationships between (a) cortisol levels, 

and environments (enriched, poor) and (b) cortisol levels and body weight (g); (c) basal 

metabolic rate and cortisol levels; (d) activity (number of crosses among zones) and 

environments for parental individuals. Green and orange represent parents reared in 

enriched and poor environments, respectively.  
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Figure 5.2. Relationships for behavioural metrics in the offspring. (a) Offspring 

activity (number of crosses among zones) and parental activity; (b) activity across 

experimental groups; Light green (parent reared on enriched) and orange (parent 

reared on poor) represent offspring which matched environment relative to their 

parents (green enriched, orange poor). Dark green (enriched) and dark orange (poor) 

represent individuals which mismatched environment relative to their parents. Dashed 

lines in (a) and solid coloured lines in (c) represent parental and offspring 

environments, respectively. 
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Figure 5.3. Average methylation scores for DMCs which maintained parental 

methylation patterns and score (within 10% change) across all offspring groups. Light-

coloured circles indicate the mean of individuals which mismatched environment 

relative to their parental environment. And dark-coloured circles indicate means of 

individuals which matched the environment of their parents.
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III. GENERAL DISCUSSION 
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Mixed-mating organisms, with their intermediate levels of selfing and outcrossing, 

represent a uniquely suitable opportunity to study the evolutionary implications of 

epigenetic variation. Its populations are composed by multiple divergent selfing 

isogenic lineages, allowing to test the effect of common environmental pressures on 

multiple epigenomes and the extent of its heritability, as well as the evolutionary 

implications of genetically-independent epialleles. The broad aim of this thesis was to 

evaluate the ecological and evolutionary implications of epigenetic variation in 

animals, using the unique diversity of mating systems of the killifish genus 

Kryptolebias. The results of the studies performed here have allowed to address several 

key questions about the relative contribution of genetic and epigenetic variation to the 

ecology and evolution of Kryptolebias species, and more broadly how those interact 

and respond to environmental pressures. 

Chapter 1 aimed to assess the level of genetic and epigenetic structure in natural 

populations of Kryptolebias hermaphroditus as well as the potential factors (parasites, 

genotype background, heterozygosity) that shape its DNA methylation variation. It 

was confirmed that K. hermaphroditus is able to outcross, making it the second 

example of mixed-mating organism in vertebrates (together with its sister-species, K. 

marmoratus). Individual levels of genetic diversity (measured with microsatellites 

markers) correlated with parasite loads. Although outcrossing was confirmed, selfing 

seems to be the major mode of reproduction in K. hermaphroditus, which could be 

related to the low extent of parasite pressures. Inter and intra-mangroves genetic 

structure was found, even at small spatial scales. Taking into account all the selfing 

linages and sampling sites, DNA methylation levels majorly correlated with the 

genetic background, and to a lower extent with parasite loads. However, at the local 

scale, where selfing lineages are genetically more similar, DNA methylation was 
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affected by parasite loads, and their interactions with the inbreeding status (selfed or 

outcrossed). These findings suggest an intricate relationship between genotypic 

diversity and DNA methylation, with the genetic background having a stronger effect 

in differentiating DNA methylation profiles than individual heterozygosity. Therefore, 

the combined genomic and epigenomic responses to similar ecological pressures 

(Chapter 4), and its potential inheritance (Chapters 3 and 5) could speed up local 

adaptation in natural population even at small spatial scale, which can be particularly 

relevant to mixed-mating organisms, given the limited capacity of selfing lines for 

genetically-based adaptation. Future studies focusing on specific parasite effects 

together with high resolution epigenetic markers would help to clarify the functional 

effects of DNA methylation variation in natural populations, as well as to which extent 

different genotypic backgrounds converge and/or diverge in DNA methylation in 

response to parasite pressures. 

To understand the effects of DNA methylation inheritance in natural populations, it is 

necessary first to assess the influence of the levels of genetic variation both within and 

between populations. Kryptolebias ocellatus is a mangrove killifish endemic to 

mangrove forests in southeast Brazil, for which mating-system, geographical 

distribution, population structure and interactions with the often sympatric selfing K. 

hermaphroditus were poorly known. In Chapter 2, I confirmed the outcrossing-only 

androdioecious nature of K. ocellatus and found deep genetic structure (using mtDNA, 

microsatellites and SNPs) across its whole known distribution. This finding contrasts 

with the extreme genetic homogeneity observed in K. hermaphroditus along the same 

area, corroborating the scenario of K. hermaphroditus as recent colonizer of a 

mangrove area (Tatarenkov et al. 2011; Tatarenkov et al. 2017) where K. ocellatus was 

already inhabiting. Despite the genetic and reproductive differences, I found evidence 
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of unlikely hybridisation and introgression events between the two species in two of 

the three mangrove areas where both species inhabit syntopically. This is the first case 

of hybridisation between species with different mating-systems in vertebrates. The 

ecological causes and evolutionary consequences of this unlikely hybridisation are still 

unknown, but the fact that the hybridisation seems to be ongoing in heavily polluted 

mangroves (Guaratiba and Fundão) and not in more pristine areas (Iriri) together with 

previous evidence of hybridisation-mediated pollution resistance in killifishes 

(Oziolor et al. 2019) suggest that this hybridisation may be mediating adaptation to 

environmental stress in those populations, although this warrants further research. 

Taking advantage of the natural hybridisation between K. ocellatus and K. 

hermaphroditus, I evaluated the patterns of DNA methylation inheritance between 

parental species and hybrids in Chapter 3. DNA methylation patterns between 

parental species, even if under similar environmental pressures, was extensively 

different, reinforcing the significant effect of genetic background on DNA methylation 

profiles, and suggesting that environmentally-induced epialleles may be limited. 

Hybrids showed a predominant intermediate pattern of DNA methylation relatively to 

the parental species. The epialleles which were differentially methylated between 

hybrids and parental species affected genes important to several key developmental 

process, on which misregulation could have substantial phenotypic effects, or 

alternatively, create phenotypic novelty that ultimately can increase hybrid vigour and 

contribute to hybrid speciation. Backcrosses were more similar to the parental species 

than to F1 hybrids, reinforcing the evidence for an important effect of DNA 

background on DNA methylation patterns. Future studies covering a bigger area within 

this hybrid zone, investigating the environmental differences driving hybridisation as 

well as comparing the gene expression patterns together with fitness measures (e.g. 
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size, reproductive output, survival) will help to evaluate the long-term consequences 

of the ongoing hybridisation between K. ocellatus and K. hermaphroditus. 

Given the tight association between genetic variants and DNA methylation epialleles, 

one of the most challenging tasks in ecological epigenetics is identifying the extent 

and potential evolutionary role genetically-independent epialleles. Using genetically-

identical individuals of K. marmoratus from two different genetic backgrounds under 

constating environmental conditions (e. g. environmental enrichment), I evaluated the 

effect of environmental variation on the distribution of DNA methylation epialleles in 

Chapter 4. DNA methylation differences were more prominent between genotypes 

than environments (genetically-dependent). In the few epialleles which were 

commonly affected in both genotypes, most of them showed a direction of variation 

between environments which were dependent of the underlying genotype (genotype-

by-environment interactions). These findings indicate that DNA methylation epialleles 

purely driven by environmental variation may be rare, and DNA methylation, as most 

of the other plastic traits, responds in a genotype-specific manner to environmental 

variation. Further studies, preferably using more genetic backgrounds and a more 

complete methylome coverage, are needed to analyse the potential downstream 

phenotypic consequences (i. e. gene expression, metabolic networks) of genotype-

specific DNA methylation responses to common environmental pressures, and to 

provide a wider picture of the molecular mechanism behind the ubiquity of genotype-

by-environment plasticity. 

At the long-term, the evolutionary relevance of epigenetically-mediated phenotypic 

variation depends on the extent of its heritability. From the results of Chapter 4 it was 

evident that environmental enrichment affects brain DNA methylation patterns, so 

Chapter 5 explored whether these epigenetic changes affected other phenotypes 
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(behaviour, physiology) and if those changes could be transmitted to the following 

generation though DNA methylation. I found evidence of environmental enrichment 

driving behavioural, physiological and DNA methylation differences in genetically-

identical K. marmoratus individuals. Parental effects were found in activity levels of 

the offspring. Some putative transgenerational and intergenerational epialleles in the 

offspring were significantly influenced by parental DNA methylation patterns. These 

findings suggest that the offspring phenotypes can be influenced by the parental 

environment, although the role of cytosine  methylation on its transmission may be 

limited, with other potential epigenetic mechanisms having higher chance to scape 

epigenetic reprogramming, such as microRNAs (Chen et al. 2016). being primary 

candidates for epigenetic inheritance. Further research investigating parental effects 

including other epigenetic mechanisms, their effects on gene expression as well as 

isolating inter from transgenerational effects would help to clarify the role of 

environmentally-induced epialleles on paternal effects. 

A crucial reason for the increased interest on epigenetics in evolutionary biology 

resides in its potential for generating heritable phenotypes, providing an alternative 

mechanism of heritability residing outside the classic model of DNA-based inheritance 

(Bonduriansky and Day 2009). Although strong evidence for epigenetically-mediated 

phenotypes and heritable transmission have already been provided (Chen et al. 2016; 

Cubas et al. 1999; Morgan et al. 1999; Wolff et al. 1998), research in ecological 

epigenetics has only recently being expanded beyond the scope of cell lines or model-

organisms in lab conditions (Richards et al. 2017; Verhoeven et al. 2016). This 

expansion has brought back important questions about the evolutionary implications 

of epigenetic variation, and the evidence that genetic features (e. g. genotype, 

heterozygosity) have a major influence on DNA methylation variability, particularly 
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in plants (Dubin et al. 2015), revived a crucial question regarding epigenetic variation: 

to which extent genetic background influence DNA methylation variation? 

Genetic variants influence DNA methylation levels either directly, by changing a 

cytosine to a “non-methylable” nucleotide, or passively by altering transcription 

factors binding (Gutierrez-Arcelus et al. 2013; Stadler et al. 2011). DNA methylation 

levels can in turn, modify genetic features by regulating the movement of transposable 

elements (Richards et al. 2017). In this thesis, I found direct evidence of a prominent 

effect of genetic background in DNA methylation variation, both in natural (Chapters 

1 and 3) and laboratory conditions (Chapter 4). These findings bring into 

reconsideration the role of DNA methylation as a primary epigenetic candidate to 

respond to environmental fluctuation independently of the genetic background. Given 

the evidence that differences between genotypes have overriding effect on DNA 

methylation levels driven by environmental pressures, ecological epigenetic studies 

should include the genetic background as an essential factor while evaluating DNA 

methylation variation, a conclusion that, while already highlighted in plants (Dubin et 

al. 2015; Herman and Sultan 2016), cell-lines and/or model organisms (Gutierrez-

Arcelus et al. 2013; Shea et al. 2015; Teh et al. 2014), had been seldomly explored in 

non-model organisms in natural conditions before this study (Leung et al. 2016; 

Richards et al. 2017). Depending on the effect of DNA methylation transcriptional 

activity and its transgenerational capacity, these genotype-specific DNA methylation 

responses can further extend phenotypic differences in locally-divergent genotypes, 

which in the long term could represent preliminary steps for population differentiation, 

and ultimately, speciation (Smith et al. 2016). 

In Chapter 3, I demonstrated intermediate, and potentially additive, patterns of DNA 

methylation when two divergent genomes are brought together by hybridisation 
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(Chapter 2), reinforcing an effect of genomic features driving methylation patterns 

under similar environmental conditions. The limited number of putative 

transgenerational epialleles identified in Chapter 5, corroborates the recent findings 

indicating that DNA methylation perhaps is not the primary epigenetic candidate for 

carrying parental environmentally-induced changes (Radford et al. 2014; Shea et al. 

2015), possibly caused by limited scape of germline de novo DNA methylation 

patterns during epigenetic reprogramming (Iqbal et al. 2015). Although DNA 

methylation is a key regulatory factor for several important biological process (Jones 

2012), the transmission of its genetically-independent epialleles may be limited, with 

other epigenetic markers, such as microRNAs, emerging as primary candidates on 

epigenetically-transmitted transgenerational effects (Chen et al. 2016; Posner et al. 

2019). 
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IV. CONCLUSIONS 

This thesis has provided direct empirical evidence for the determinants of cytosine 

methylation variation, taking advantage of the diversity of mating systems observed in 

the killifish genus Kryptolebias. Following are the main conclusions that can be 

derived from the findings of this thesis: 

1. Confirmation of the mixed-mating (predominantly selfing with occasional 

outcrossing) status K. hermaphroditus and the outcrossing-only androdioecy in K. 

ocellatus. 

2. Deep genetic structure at both small and large spatial scales in K. hermaphroditus 

and K. ocellatus, respectively, which may have important implications for 

conservation policies for those mangrove killifish species. 

3. Hybridisation and introgression between K. hermaphroditus and K. ocellatus in 

natural populations in southeast Brazil, representing the first case of hybridisation 

between species with different mating systems in vertebrates. Additionally, this system  

can provide a natural model for the ecological causes and evolutionary consequences 

of hybridisation in human-altered environments. 

4. Behavioural parental effects caused by environmental enrichment are likely to be 

transmitted to the offspring by other epigenetic mechanisms than cytosine methylation. 

5. Cytosine methylation variation was shown to be largely influenced by genetic 

features, suggesting that its implications in evolutionary biology should evaluated into 

a genotypic-specific framework. Further studies should particularly focus on whether 

the effects genotype-specific cytosine methylation responses converge or diverge in 

downstream phenotypes, the extent of its heritability and its contribution to individual 

fitness and long-term evolution. 
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V. APPENDIX I: SUPPLEMENTARY FIGURES 

AND TABLES 
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IV.I. Figures 

 

Supplementary figures for Chapter 1 - Genetic background and parasite 

load affect DNA methylation variation in a predominantly-self fertilising 

fish 

 

 

Figure S1.1. Parasites of Kryptolebias hermaphroditus from northeast Brazil: (a) 

bacterial gill cyst; (b) protozoan gill cysts; (c) nematodes from the gut.  
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Figure. S1.2. Principal coordinate analysis (PCoA) of genetic (microsatellites and 

AFLPs) and epigenetic (MSL) variation for sampling sites, selfing lineages identified by 

INSTRUCT and inbreeding status (selfed or outcrossed). Squares, circles and triangles 

represent Site 1, Site 2 and Site 3, respectively. Lineages are coloured in red (1), salmon 

(2), green (3), brown (4) and yellow (5). Lineage 6 (shared between Sites 1 and 2) was 

represented by purple pentagons. Blue and orange circles represented inbred and 

outcrossed individuals, respectively. 
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Figure S1.3. Principal coordinate analysis (PCoA) of genetic (microsatellites and AFLPs) 

and epigenetic (MSL) variation for selfing lineages identified by INSTRUCT and 

inbreeding status (selfed or outcrossed) for individuals in Site 1. Filled circles with 

different colours represent the different selfing lineages from Site 1 (red for lineage 1, 

salmon for lineage 2, brown for lineage 4, purple for lineage 6). Blue and orange circles 

represent inbred and outcrossed individuals, respectively.
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Supplementary figures for Chapter 2 - Hybridisation between species 

with different mating systems revealed by the genetic structure of the 

mangrove killifish Kryptolebias ocellatus 

 

Figure S2.1. Neighbour-Joining tree based on the DPS distances for the 179 K. 

ocellatus (excluding the hybrids) individuals amplified for 16 microsatellites loci and 

coloured according individuals sampling location and major clades. 
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Figure S2.2. Estimated number of genetic clusters (K) from different methods. (a) 

deltaK method in Evanno et al. (2005); (b)median of medians (MedMedK), medians 

of (c) means (MedMeanK); (d)maximum of medians (MaxMedK) and (e) maximum 

of the means (MaxMeaK) as implemented by Puechmaille (2016) to account for 

unevenness on sampling sizes and hierarchical structure; (f) Posterior density 

distribution of the number of clusters estimated from Geneland.
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Figure S2.3. Panel for the lowest likelihood run for each K value ran in STRUCTURE 

with genotypes for 16 microsatellites for all 190 individuals with K. ocellatus cox1 

haplotypes. 
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Figure S2.4. Maps of Geneland individual assignment to clusters for K = 6 with 

geographical coordinates. Different colours represent the different genetic clusters, 

while the highest membership values are in light yellow at the background. 
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Figure S2.5. (a) Panels showing the most likely genetic clusters (K) value for the 16 

microsatellites amplified in Kryptolebias ocellatus ran in Structure and determined by 

deltaK method in Evanno et al. (2005) and STRUCTURESELECTOR results using 

the metrics defined in Puechmaille (2016) to account for unevenness on sampling sizes 

and hierarchical structure. Geneland was also run to include spatial and mtDNA 

information. Each individual is represented by a bar, and each colour represents a 

genetic cluster. (b-c) Factorial correspondence analysis for all K. ocellatus individuals 

coloured and shaped according to its sampling sites. Hybrid individuals (see results) 

are highlighted with filled purple symbols and their respective labels.
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Supplementary figures for Chapter 3 - Intermediate patterns of 

epigenetic variation in hybrids of divergent mangrove killifish species in 

natural populations 

 

 

Figure S3.1. Schematic representation ot the classification of differentially methylated 

cytosines in either potentially additive, orverdominant or underdominant in the hybrids 

compared to the parental species. Asterisks represent signifcant differential 

methylation between groups. 
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Figure S3.2. Proportion of reads uniquely mapped to features (blue), unassigned due 

to multi-mapping (red), and unassigned (grey) due to no match with reference genome 

feature using Bowtie 2 aligner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



182 
 

 

 

Figure S3.3. Differentially methylated cytosines (DMCs) identified in the 

comparisons between (a) Kryptolebias ocellatus and Kryptolebias hermaphroditus, (b) 

hybrids and K. ocellatus, and (c) hybrids and K. hermaphroditus. Black circles for 

FDR values ≥ 0.01; red circles for FDR values < 0.01. 
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Figure S3.4. Multidimensional scaling analysis (MDS) of the normalised counts for 

(a) 830,950 sites with reads in the library and (b) the 37,774 DMCs between K. 

ocellatus and K. hermaphroditus. Squares represent K. ocellatus, circles represent K. 

hermaphroditus, and triangle represent hybrids. Backcrosses are represented by purple 

shapes according to their respective parental species. 
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Figure S3.5. The direction of changes of the common 5,800 DMCs in the comparisons 

among hybrids vs parental species. logFC (logarithm of the fold change) values 

represent the intensity of changes compared to the hybrid values. logFC > 1 indicates 

higher CPM read counts (hypomethylation) in the hybrids compared to one of the 

parental species. logFC < 1 lower CPM read counts (hypermethylation) in the hybrids 

compared to one of the parental species. Central circles represent the mean for each 

comparison. 
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Figure S3.6. Multidimensional scaling analysis (MDS) of the normalised counts for 

the 5,800 DMCs common to the comparisons between hybrids and parental species in 

(a) putative promoters (within 2kb upstream the transcription start site), (b) gene 

bodies (c) intergenic regions (≥2kb upstream of TSS or downstream the gene bodies 

(d) unannotated regions. Squares for K. ocellatus, circles for K. hermaphroditus, and 

triangle for hybrids. Backcrosses are represented by purple shapes according to their 

respective parental species. 
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Supplementary figures for Chapter 4 - What does drive DNA 

methylation plasticity? Epigenetic responses of two inbred lines to 

different rearing environments 

 

Figure S4.1. Pictures of the experimental tanks (9cm depth x 12cm width x 8cm 

length) filled with 400ml of brackish water with one perforated artificial log (3cm 

depth x 4 cm width x 4cm length) and three artificial plants to simulate a complex 

habitat in (a) lateral and (b) dorsal view. Poor environment tanks were identical except 

for the physical environmental enrichment (log and plants). (c) Circular plastic pots 

filled with 100ml of brackish water where eggs were maintained isolated until 

hatchling. 
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Figure S4.2. Principal component analysis (PCA) based on individual scores of 

methylation for (a) 1064 DMCs and (b) 194 DMRs found across genotypes and 

environments using logistic regression q< 0.01 and |ΔM|>20%, and ANOVA with 

alpha <0.01. Dark yellow for DAN individuals on enriched environments; light yellow 

for DAN genotype on poor environments; dark green for R individuals on enriched 

environments; light green for R genotype on poor environments. 
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Figure S4.3. Heat map illustrating percentage of methylation for all differentially 

methylated regions (DMRs) identified (a) between genotypes, (b) between 

environments, (c) between environments for DAN strain, and (d) between 

environments for R strain (logistic regression q< 0.01 and |ΔM|>20%, and t.test p 

<0.01) using unsupervised hierarchical clustering. Rows represent a unique windowed 

region (5 CpG sites covering coverage requirements in a 1000bp window) and columns 

individual fish. 
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Figure S4.4. Reaction norms for methylation patterns of annotated DMCs 

neighbouring or overlapping gene bodies for facilitated epialleles. Methylation scores 

(in percentage) for each annotated DMC on the y-axis across genotypes and 

environments. Yellow for DAN individuals; green for R individuals. 
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Figure S4.5. Reaction norms for methylation patterns of annotated DMRs 

neighbouring or overlapping gene bodies for DMRs commonly affected in both strains 

when compared between environments. Methylation scores (in percentage) for each 

annotated DMR on the y-axis across genotypes and environments. Yellow for DAN 

individuals; green for R individuals. 
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Figure S4.6. Reaction norms for methylation patterns of annotated DMCs 

neighbouring or overlapping gene bodies for pure epialleles. Methylation scores (in 

percentage) for each annotated DMC on the y-axis across genotypes and environments. 

Yellow for DAN individuals; green for R individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

 

 

 

Figure S4.7. GeneMANIA network analysis of DMCs between environments (rich 

and poor) and shared between genotypes (DAN, R). Input genes in dark grey. 

Neighbouring genes indicated as part of the network but not part of the input genes 

indicated in light grey. Node size is proportional to the number of connections. 
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Supplementary figures for Chapter 5 - Environmental enrichment 

induces epigenetic and behavioural parental effects in a self-fertilising fish 

 

Figure S1.1. Schematic representation of epialleles classification according to its 

methylation patterns compared between parents and offspring. Epialleles were 

classified as (a) “environmentally-induced” if differences in methylation patterns 

found the parents changed in the offspring depending on their rearing environment; 

(b) intergenerational with parental patterns if methylation patterns in the parents were 

maintained in the offspring regardless of their rearing environment. 
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Figure S5.2. Schematic representation of the test arena used to assess neophobia in 

Kryptolebias marmoratus from (a) top and (b) side view. The acclimatization zone 

(zone 0) was separated by an opaque removable gate removed after acclimatization 

period. Five equally spaced zones of five centimetres were delimited by lines drawn 

at the top edge of the arena walls. The novel object, a conspicuous plastic brick toy 

was glued to the centre of zone.
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IV.II. Tables 

Supplementary figures for Chapter 1 - Genetic background and parasite load affect DNA methylation variation in a 

predominantly-self fertilising fish 

Table S1.1. Genetic diversity (for 27 microsatellite loci), mean parasites number (standard deviation in brackets) and parasite prevalence in 

Kryptolebias hermaphroditus among selfing lineages identified by INTRUSCT in northeast Brazil. N= sampling size; Na = mean number of alleles 

of alleles; He = expected heterozygosity; Ho = observed heterozygosity; FIS = inbreeding coefficient; HL = homozygosity by locus; S = selfing 

rates. 
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 Lineage 1 Lineage 2 Lineage 3 Lineage 4 Lineage 5 Linage 6 

N 14 25 41 22 18 8 

Selfed/Outcrossed 7/7 17/8 29/12 15/7 16/2 8/0 

Sampling site 1 1 2 1 3 1 (7)and 2 (1) 

Genetic diversity        

Nma 2.14 2.29 3.44 2.22 3.14 1.59 

He 0.25 0.24 0.26 0.19 0.33 0.17 

Ho 0.01 0.03 0.01 0.02 0.04 0.00 

FIS 0.97 0.85 0.89 0.88 0.87 0.97 

HL 0.97 0.92 0.97 0.95 0.93 0.99 

S 0.87 0.91 0.91 0.92 0.92 0.93 

Parasite loads       

Bacterial gills cysts 2.92 (2.18) 2.24 (1.9) 2.53 (3.02) 3.13 (2.76) 1.27 (0.80) 7.12 (5.39) 

Protozoan gills cysts 0 0 1.56 (1.60) 0 0.33 (1.37) 0 

Nematodes 0.07 (0.25) 0.16 (0.46) 0.02 (0.15) 0.13 (0.62) 0 0.37 (0.69) 

Total parasite load 3.14 (2.03) 2.36 (1.85) 4.12 (3.15) 3.27 (3.01) 1.61 (1.73) 7.5 (5.54) 
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Parasite prevalence (% of 

fish with infection) 

      

Bacterial gills cysts 92.85 84.00 70.73 95.45 83.33 100.00 

Protozoan gills cysts 0 0 41.46 0 5.55 0 

Nematodes 7.14 16.00 2.43 4.54 0 25.00 
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Table S1.2. Pairwise FST values among sampling sites and selfing lineages (k) in 

Kryptolebias hermaphroditus. Asterisks represent significance levels (***P ≤0.001). 

 

 

 

 

 

 

 

 

 

Per sampling site 

 1 2 3    

1 -      

2 0.25*** -     

3 0.32*** 0.28*** -    

Per selfing lineage (K) 

 1 2 3 4 5 6 

1 -      

2 0.20*** -     

3 0.34*** 0.28*** -    

4 0.27*** 0.24*** 0.35*** -   

5 0.34*** 0.36*** 0.29*** 0.40*** -  

6 0.30*** 0.28*** 0.36*** 0.40*** 0.36*** - 
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Table S1.3. Hierarchical analysis of molecular variance partitioning (AMOVA) for 

MS-AFLPs data among original and replicated samples to test for reproducibility. df= 

degrees of freedom; SSD= sum of squared deviations; Mol. var. (%) = molecular 

variance percentages from variance components sigma 2; ɸST = Phi statistics for 

population differentiation. P value derived from 10,000 permutations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 df SSD Mol. var. (%) ɸST P 

value 

Epigenetic data (MSL)   

Between original and replicate 1 30.48 0.19 0.002 0.53 

Within original and replicate 46 1474 99.81   

AFLP genetic data (NML)   

Between original and replicate 1 1.35 1.00 0.01 0.94 

Within original and replicate 46 91.46 99.00   
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Table S1.4. Hierarchical analysis of molecular variance (AMOVA) for microsatellites 

and MS-AFLPs data a) among selfing lineages identified by INSTRUCT and b) 

between inbreeding status (selfed and outcrossed) in Kryptolebias hermaphroditus for 

Site 1 (Ceará-Mirim mangrove). df= degrees of freedom; Mol. var. (%) = molecular 

variance percentages from variance components sigma 2; P value derived from 10,000 

permutations. 
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 Microsatellites NML MSL 

 
df 

Mol. 

var. (%) 
FST 

P 

value 
df 

Mol. var. 

(%) 
ɸST 

P 

value 
df 

Mol. var. 

(%) 
ɸST 

P 

value 

a Selfing lineages 

Among 

lineages 
3 27.91 0.27 0.001 3 0.83 0.008 0.12 3 0.15 0.006 0.52 

Within 

lineages 
132 72.09   58 99.17   58 99.85   

b Inbreeding status  

Between 

selfed and 

outcrossed 

1 3.42 0.03 0.001 1 0.16 0.006 0.57 1 0.64 0.001 0.20 

Within 

selfed and 

outcrossed 

134 96.58   60 99.84   60 99.36   
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Table S1.5. Results of the best generalized linear models indicated by the multi-model 

averaging approach for the proportion of methylated loci in Kryptolebias 

hermaphroditus. Models are ranked according to their corrected Akaike Information 

Criterion (AICc), the distance between a given model and the best fitting model 

(ΔAICc), the Akaike weight (Wi), and the evidence ratio (ER), which represents the 

ratio between the weights of the best and competing models. Only the best-fitting 

models within two AICc units are shown. 

 

 

 

 

 

 

 

 

Independent variable df z-

value 

P-

value 

AICc ΔAI

Cc 

Wi ER 

Proportion of methylated loci  

Model 1    1065.5 0.00 0.28 1.00 

Selfing lineage 5 -4.50 <0.001     

Scaled parasite load 1 -0.02 0.83     

Inbreeding 1 1.73 0.15     

Selfing lineage x parasite 

scaled 
5 -3.90 0.005 

    

Selfing lineage x Inbreeding 4 -1.64 0.04     

Model 2    1066.5 1.00 0.17 1.39 

Selfing lineage 5 -6.48 <0.001     

Inbreeding 1 -2.53 0.15     

Selfing lineage x Inbreeding 4 -2.22 0.04     
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Table S1.6. Results of the best generalized linear models indicated by the multi-model 

averaging approach for the proportion of methylated loci in Kryptolebias 

hermaphroditus (including homozygosity index as independent variable). Models are 

ranked according to their corrected Akaike Information Criterion (AICc), the distance 

between a given model and the best fitting model (ΔAICc), the Akaike weight (Wi), 

and the evidence ratio (ER), which represents the ratio between the weights of the best 

and competing models. Only the best-fitting models within two AICc units are shown.  

 

 

 

 

Independent variable df z-value P-

value 

AICc ΔAIC

c 

Wi ER 

Proportion of methylated loci  

Model 1    1021.9 0.00 0.04 1.00 

Selfing lineage 5 -6.50 <0.001     

Scaled parasite load 1 -0.21 0.83     

Inbreeding 1 -1.19 0.05     

Homozygosity (HL) 1 -0.32 0.29     

Scaled parasite load x HL 1 3.17 0.28     

Inbreeding x HL 5 7.22 <0.001     

Selfing lineage xHL 1 12.13 <0.001     

Model 2    1023.2 1.30 0.02 3.19 

Selfing lineage 5 -5.70 <0.001     

Scaled parasite load 1 -0.37 0.83     

Inbreeding 1 -1.19 0.05     

Homozygosity (HL) 1 -0.35 0.29     

Scaled parasite load x HL 1 3.14 0.10     

Inbreeding x HL 5 6.52 <0.001     

Selfing lineage xHL 1 11.22 <0.001     

Selfing lineage x 

Inbreeding 
4 -3.10 0.01 
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Table S1.7. Results of the best generalized linear model indicated by the multi-model 

averaging approach for the proportion of methylated loci including the number of 

bacterial cysts as a predictor in Kryptolebias hermaphroditus. Models are ranked 

according to their corrected Akaike Information Criterion (AICc), the distance 

between a given model and the best fitting model (ΔAICc), the Akaike weight (Wi), 

and the evidence ratio (ER), which represents the ratio between the weights of the best 

and competing models. Only the best-fitting models within two AICc units are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Independent variable df z-

value 

P-

value 

AICc ΔAICc Wi ER 

Proportion of methylated loci (with number of bacterial cysts as a predictor) 

Model 1    1060.8 0.00 0.51 1.00 

Selfing lineage 5 -9.23 <0.001     

Bacterial cysts 1 -2.93 0.88     

Inbreeding 1 -1.17 0.15     

Selfing lineage x 

Bacterial cysts 
5 9.09 <0.001 

    

Selfing lineage x 

inbreeding 
4 -4.97 0.04 
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Table S1.8. Results of the best generalized linear modes indicated by the multi-model 

averaging approach for the proportion of methylated loci in Kryptolebias 

hermaphroditus sampled on sampling site 1. Models are ranked according to their 

corrected Akaike Information Criterion (AICc), the distance between a given model 

and the best fitting model (ΔAICc), the Akaike weight (Wi), and the evidence ratio 

(ER), which represents the ratio between the weights of the best and competing 

models. Only the best-fitting models within two AICc units are shown. 

 

Independent variable df z/t-

value 

P-

value 

AICc ΔAICc Wi ER 

Proportion of methylated loci 

Model 1    621.86 0.00 0.29 1.00 

Selfing lineage 3 -7.09 0.04     

Scaled parasite load 1 -5.02 0.31     

Inbreeding 1 -3.95 0.04     

Inbreeding x parasite 

scaled 
1 -10.43 0.01 

    

Selfing lineage x 

inbreeding 
2 -9.52 0.001 

    

Model 2    621.88 0.02 0.29 -0.66 

Scaled parasite load 1 -11.49 0.03     

Inbreeding 1 -10.64 0.09     

Inbreeding x scaled 

parasite load 
1 -17.93 <0.001 

    

Model 3    622.70 0.82 0.19 1.82 

Selfing lineage 3 -3.61 0.04     

Scaled parasite load 1 -3.81 0.31     

Inbreeding 1 -2.15 0.04     

Inbreeding x parasite 

scaled 
1 -7.04 0.01 

    

Selfing lineage x 

inbreeding 
2 -7.10 0.01 

    

Selfing lineage x parasite 

scaled 
3 -6.50 0.005 

    

Model 4    623.74 1.88 0.11 1.67 
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Selfing lineage 3 -10.72 0.04     

Scaled parasite load 1 -5.88 0.31     

Inbreeding 1 -4.08 0.04     

Inbreeding x parasite 

scaled 
1 -11.39 <0.001 
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Supplementary tables for Chapter 2 - Hybridisation between species with different mating systems revealed by the genetic 

structure of the mangrove killifish Kryptolebias ocellatus 

Table S2.1. Summary of 55 samples sequenced on genotype-by-sequencing library. Individuals in red failed to pass the filtering cut-off (≥500kb 

reads). Hybrids marked with asterisks. Parameters ‘proportion of heterozygous sites’ (for Dataset 1), ‘coverage and missing data’ (for Dataset 2) 

are described in methods. 

 

ID 

Species 

(identified using 

cox1) 

Sampling 

location 

cox1 

haplotype 

Number of 

reads 

Uniquely 

mapped (%) 

Coverage 

(X) 

Missing 

data (%) 

Proportion of 

Heterozygous 

sites 

GUA_27 K. hermaphroditus GUA 1 (Kher) 8,962,202 90.30 250.4 0.00 0.03 

GUA_28 K. hermaphroditus GUA 1 (Kher) 4,161,657 90.87 114.9 0.02 0.03 

GUA_29 K. hermaphroditus GUA 1 (Kher) 13,831,746 90.29 380.1 0.00 0.02 

GUA_30 K. hermaphroditus GUA 1 (Kher) 7,000,238 90.05 190.2 0.00 0.02 

GUA_31 K. hermaphroditus GUA 1 (Kher) 6,646,432 89.95 185.2 0.02 0.03 

GUA_37 K. hermaphroditus GUA 1 (Kher) 3,013,973 90.06 82.2 0.18 0.03 

GUA_39 K. hermaphroditus GUA 1 (Kher) 3,472,656 89.73 93.5 0.02 0.04 

GUA_40 K. hermaphroditus GUA 1 (Kher) 13,651,662 90.50 382.6 0.00 0.03 

GUA_41 K. hermaphroditus GUA 1 (Kher) 5,348,736 90.08 147.3 0.04 0.03 

GUA_42 K. hermaphroditus GUA 1 (Kher) 1,786,528 91.00 48.8 0.20 0.02 
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GUA_43 K. hermaphroditus GUA 1 (Kher) 7,269,128 89.39 197.0 0.00 0.03 

GUA_44 K. hermaphroditus GUA 1 (Kher) 7,937,202 89.92 216.6 0.00 0.02 

FUN_20 K. hermaphroditus FUN 1 (Kher) 8,493,250 89.83 229.9 0.00 0.02 

FUN_21 K. hermaphroditus FUN 1 (Kher) 4,140,936 90.70 113.3 0.00 0.03 

FUN_22 K. hermaphroditus FUN 1 (Kher) 4,990,777 90.96 138.7 0.00 0.03 

FUN_24 K. hermaphroditus FUN 1 (Kher) 3,520,363 89.86 98.6 0.02 0.03 

FUN_25 K. hermaphroditus FUN 1 (Kher) 4,421,739 90.34 120.7 0.04 0.03 

FUN_26* K. hermaphroditus FUN 1 (Kher) 1,361,947 69.56 24.9 0.84 0.32 

FUN_29 K. hermaphroditus FUN 1 (Kher) 7,611,704 89.30 208.2 0.00 0.02 

FUN_30 K. hermaphroditus FUN 1 (Kher) 2,892,977 88.63 77.2 0.00 0.03 

FUN_31 K. hermaphroditus FUN 1 (Kher) 9,160,363 89.53 251.5 0.00 0.03 

FUN_32 K. hermaphroditus FUN 1 (Kher) 2,322,888 88.84 62.4 0.02 0.02 

GUA_04 K. ocellatus GUA 8 5,033,372 77.40 102.4 0.15 0.08 

GUA_05 K. ocellatus GUA 9 11,979935 75.68 235.1 0.00 0.08 

GUA_06 K. ocellatus GUA 8 6,418,126 81.00 143.5 0.04 0.08 

GUA_09* K. ocellatus GUA 8 5,784,849 84.54 138.1 0.05 0.61 

GUA_10 K. ocellatus GUA 8 11,097,202 81.18 243.2 0.04 0.08 

GUA_11 K. ocellatus GUA 8 2,208,760 75.05 44.5 0.46 0.06 
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GUA_13 K. ocellatus GUA 8 11,446,137 77.19 230.1 0.00 0.09 

GUA_16 K. ocellatus GUA 8 14,282,577 80.18 313.2 0.00 0.11 

GUA_17* K. ocellatus GUA 8 4,522,779 72.17 91.6 0.00 0.50 

GUA_18 K. ocellatus GUA 8 7,266,866 79.34 149.5 0.05 0.08 

GUA_19 K. ocellatus GUA 8 8,150,733 81.55 177.2 0.09 0.07 

FUN_06 K. ocellatus FUN 6 5,098,517 81.78 111.7 0.26 0.06 

FUN_08* K. ocellatus FUN 4 9,433,950 86.75 234.2 0.00 0.60 

FUN_10 K. ocellatus FUN 1 6,856,002 81.10 145.5 0.02 0.14 

FUN_11* K. ocellatus FUN 6 7,773,860 86.68 199.0 0.00 0.62 

FUN_13 K. ocellatus FUN 6 2,645 NA NA NA NA 

FUN_41 K. ocellatus FUN 6 7,793 NA NA NA NA 

FUN_43* K. ocellatus FUN 6 578,575 83.31 13.8 4.14 0.48 

FUN_47* K. ocellatus FUN 7 564,546 78.82 12.4 4.16 0.50 

FLO_02 K. ocellatus FLO 14 13,605,858 81.73 301.5 0.04 0.05 

FLO_03 K. ocellatus FLO 14 2,439,264 70.34 48.0 0.38 0.06 

FLO_04 K. ocellatus FLO 21 2,167,505 79.99 46.8 0.40 0.06 

FLO_05 K. ocellatus FLO 14 2,517,261 81.12 53.6 0.66 0.06 

FLO_06 K. ocellatus FLO 14 4,609,454 78.83 96.2 0.11 0.06 
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FLO_07 K. ocellatus FLO 22 4,620,891 81.46 96.3 0.02 0.05 

FLO_08 K. ocellatus FLO 14 6,823,947 79.43 149.9 0.00 0.06 

SFR_01 K. ocellatus SFR 15 9,375,699 81.74 209.4 0.05 0.06 

SFR_02 K. ocellatus SFR 16 2,671,245 82.54 60.3 0.37 0.06 

SFR_03 K. ocellatus SFR 16 8,014,672 81.64 177.9 0.11 0.06 

SFR_04 K. ocellatus SFR 17 8,136,965 83.09 177.8 0.00 0.07 

SFR_06 K. ocellatus SFR 14 10,875,988 82.37 240.8 0.15 0.05 

SFR_07 K. ocellatus SFR 15 10,572775 82.07 235.7 0.05 0.06 

SFR_08 K. ocellatus SFR 19 684,671 77.07 14.5 4.93 0.05 

Total       337,622,523 83.90 152.98 0.34 0.11 
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Table S2.2. cox1 haplotype distribution across different locations found for Kryptolebias ocellatus and K. hermaphroditus. 

 

 K. ocellatus K. hermaphroditus 

Haplotype number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 (Kherm) 

1. IRI 17 1 2 1 1                   

2. FUN 1   3  6 1                29 

3. GUA        15 2              30 

4. PRT          6 1 2 30           

5. PAR          1    1 3         

6. SFR              1 4 5 1 1 6 1    

7. FLO              11       3 2  

8.PIC                       2 

Total 18 1 2 4 1 6 1 15 2 7 1 2 30 13 7 5 1 1 6 1 3 2 61 
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Table S2.3. Descriptive statistics of genetic variation at cox1 mitochondrial DNA 

(mtDNA) gene for clades and sampling locations of K. ocellatus. H = number of 

haplotypes; S = number of polymorphic sites; h = haplotype diversity; π = nucleotide 

diversity.  

 Population diversity indices 

 N H S h π  

Overall 129 22 26 0.895 0.007 

Major mtDNA clades  

Northern clade  50 9 10 0.775 0.002 

Parati 39 4 3 0.391 0.0007 

Southern clade 40 10 15 0.836 0.002 

Sampling location      

1.IRI 22 5 5 0.407 0.001 

2.FUN 11 4 6 0.673 0.002 

3.GUA 17 2 1 0.248 0.0004 

4.PRT 39 4 3 0.391 0.0007 

5.PAR 5 3 9 0.700 0.006 

6.SFR 19 7 4 0.819 0.002 

7.FLO 16 3 3 0.508 0.002 
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Table S2.4. Pairwise FST values (below diagonal), Kimura-2-parameter (K2P) genetic 

distance (in percentage above diagonal) and within group K2P distance for mtDNA 

cox1 gene among sampling locations for Kryptolebias ocellatus. Asterisks represent 

p-value ≤ 0.05.  

 1 2 3 4 5 6 7 

1. IRI 0.1 0.4 0.2 0.9 1.1 1.2 1.1 

2. FUN 0.55*  0.2 0.3 1.0 1.2 1.3 1.2 

3. GUA 0.58* 0.59* 0 0.7 0.9 1.1 0.9 

4. PRT 0.88* 0.91* 0.88* 0.1 1.1 1.4 1.3 

5. PAR 0.77* 0.79* 0.69* 0.85* 0.6 0.5 0.4 

6. SFR 0.83* 0.84* 0.80* 0.90* 0.14 0.3 0.3 

7. FLO 0.87* 0.90* 0.85* 0.92*  0.28* 0.30* 0.1 
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Table S2.5. FIS values per locus and population for 179 individuals of Kryptolebias 

ocellatus. Asterisks indicate significance (p<0.05) after correction for multiple testing. 

Hybrids excluded from analysis. GUA samples from different years are separated.  

 

 IRI FUN 
GUA 

2017 

GUA 

2007 
PRT PAR SFR FLO 

R9 -0.05 0.48 0.33* 0.59* 0.05 -0.17 -0.12 0.07 

R11 0.09 -0.08 0.06 0.13 0.25* -0.06 -0.10 -0.02 

R18 -0.01 0.00 -0.04 0.00 -0.01 NA NA NA 

R23 0.01 -0.05 -0.04 0.05 0.02 0.29 -0.04 0.17 

R27 0.03 0.17 -0.06 -0.00 -0.02 0.05 -0.06 0.04 

R28 NA NA NA NA NA NA 0.000 NA 

R30 0.26* 0.20 -0.15 -0.02 -0.13 0.03 -0.05 -0.01 

R33 0.05 0.05 0.05 0.00 0.07 -0.20 -0.18 NA 

R34 0.00 NA 0.00 -0.06 -0.01 NA -0.71* -0.09 

R37 -0.01 -0.08 0.11 0.04 0.01 -0.14 0.00 0.05 

R38 0.06 -0.08 0.26* 0.16 0.03 -0.11 -0.08 0.16 

B86 -0.09 0.27 -0.13 0.07 -0.19 -0.33 -0.05 -0.18 

R90 -0.01 NA -0.02 -0.07 0.17 0.17 -0.32 -0.10 

R92 0.42* 0.04 0.37 0.23 0.05 0.00 0.25 -0.05 

R103 -0.11 -0.14 -0.06 0.21 -0.05 NA -0.04 0.02 

R112 -0.14 -0.28 -0.23 0.06 NA NA NA 0.00 

All 0.05* 0.04 0.06* 0.11* 0.04 -0.02 -0.10* 0.03 
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Table S2.6. Pairwise FST values among Kryptolebias ocellatus populations based on 

16 microsatellite loci. Hybrids are excluded from analysis. Asterisks indicate 

significance (p<0.05) after Bonferroni correction. GUA samples from different years 

are separated. 

 

 IRI FUN 
GUA 

2017 

GUA 

2007 
PRT PAR SFR FLO 

1. IRI - * * * * * * * 

2. FUN 0.07 - NS * * NS * * 

3. GUA 2017 0.08 0.07 - NS * * * * 

3. GUA 2007 0.09 0.08 0 - * * * * 

4. PRT 0.20 0.21 0.18 0.19 - * * * 

5. PAR 0.38 0.38 0.36 0.36 0.36 - * * 

6.SFR 0.31 0.30 0.29 0.29 0.28 0.21 - * 

7. FLO 0.33 0.32 0.30 0.31 0.30 0.29 0.07 - 
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Table S2.7. Averaged descriptive statistics of genetic variation at microsatellite loci 

in 179 Kryptolebias ocellatus (excluding hybrids), 11 hybrids and 67 K. 

hermaphroditus. N = sample size; P99 = proportion of polymorphic loci (99% 

criterion); A = average number of alleles; AR = allelic richness based on 11 individuals; 

HE = expected heterozygosity; HO = observed heterozygosity; FIS = coefficient of 

inbreeding. Asterisks represent significant departures from HWE. 

 

 N P99 A AR HE HO FIS 

Kryptolebias ocellatus 179 0.85 7.53 5.28 0.56 0.54 0.04 

Hybrids 11 0.93 4.47 4.29 0.65 0.83 -0.31* 

K. hermaphroditus 67 0.21 1.61 1.38 0.07 0.00 0.92* 
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Table S8.2. Pairwise FST values (below diagonal) and number of sites used in the comparison (upper diagonal) based on genotypes for Kryptolebias 

ocellatus and K. hermaphroditus among sampling points. Hybrids are excluded from analysis.  

 

Species   K. ocellatus K. hermaphroditus 

 Clade  Northern Southern  

   FUN GUA SFR FLO FUN GUA 

K. ocellatus 

Northern 
FUN - 1,088,202 1,019,797 921,267 1,172,844 1,158,256 

GUA 0.09 - 932,151 849,947 829,800 838,426 

Southern 
SFR 0.47 0.42 - 861,114 806,433 809,800 

FLO 0.49 0.42 0.18 - 763,561 750,704 

K. hermaphroditus  
FUN 0.89 0.90 0.93 0.94 - 1,480,233 

GUA 0.91 0.91 0.94 0.94 0.06 - 
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Supplementary tables for Chapter 3 - Intermediate patterns of 

epigenetic variation in hybrids of divergent mangrove killifish species in 

natural populations 

 

Table S3.1. Summary of the 39 samples included on methylation-sensitive genotype-

by-sequencing analysis. Hybrids marked with asterisks.  



219 
 

 

 

 

ID 
Species 

(identified using cox1) 

Sampling 

location 

Number of 

reads 

Uniquely 

mapped (%) 

GUA_27 K. hermaphroditus GUA 8,962,202 90.30 

GUA_28 K. hermaphroditus GUA 4,161,657 90.87 

GUA_29 K. hermaphroditus GUA 13,831,746 90.29 

GUA_30 K. hermaphroditus GUA 7,000,238 90.05 

GUA_31 K. hermaphroditus GUA 6,646,432 89.95 

GUA_37 K. hermaphroditus GUA 3,013,973 90.06 

GUA_39 K. hermaphroditus GUA 3,472,656 89.73 

GUA_40 K. hermaphroditus GUA 13,651,662 90.50 

GUA_41 K. hermaphroditus GUA 5,348,736 90.08 

GUA_42 K. hermaphroditus GUA 1,786,528 91.00 

GUA_43 K. hermaphroditus GUA 7,269,128 89.39 

GUA_44 K. hermaphroditus GUA 7,937,202 89.92 

FUN_20 K. hermaphroditus FUN 8,493,250 89.83 

FUN_21 K. hermaphroditus FUN 4,140,936 90.70 

FUN_22 K. hermaphroditus FUN 4,990,777 90.96 

FUN_24 K. hermaphroditus FUN 3,520,363 89.86 

FUN_25 K. hermaphroditus FUN 4,421,739 90.34 

FUN_26* K. hermaphroditus FUN 1,361,947 69.56 

FUN_29 K. hermaphroditus FUN 7,611,704 89.30 

FUN_30 K. hermaphroditus FUN 2,892,977 88.63 

FUN_31 K. hermaphroditus FUN 9,160,363 89.53 

FUN_32 K. hermaphroditus FUN 2,322,888 88.84 

GUA_04 K. ocellatus GUA 5,033,372 77.40 

GUA_05 K. ocellatus GUA 11,979935 75.68 

GUA_06 K. ocellatus GUA 6,418,126 81.00 

GUA_09* K. ocellatus GUA 5,784,849 84.54 

GUA_10 K. ocellatus GUA 11,097,202 81.18 

GUA_11 K. ocellatus GUA 2,208,760 75.05 

GUA_13 K. ocellatus GUA 11,446,137 77.19 

GUA_16 K. ocellatus GUA 14,282,577 80.18 

GUA_17* K. ocellatus GUA 4,522,779 72.17 

GUA_18 K. ocellatus GUA 7,266,866 79.34 

GUA_19 K. ocellatus GUA 8,150,733 81.55 

FUN_06 K. ocellatus FUN 5,098,517 81.78 

FUN_08* K. ocellatus FUN 9,433,950 86.75 

FUN_10 K. ocellatus FUN 6,856,002 81.10 

FUN_11* K. ocellatus FUN 7,773,860 86.68 

FUN_43* K. ocellatus FUN 578,575 83.31 

FUN_47* K. ocellatus FUN 564,546 78.82 

Mean     6,422,972 85.21 
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Table S3.2. Summary of gene ontologies (GO) found for 1322 genes orthologous to 

zebrafish affected by 5,800 differentially methylated cytosines (DMCs) common to 

the comparisons between hybrids versus parental species. FDR = False discovery rate 

after Fisher test. 

 

GO term 
Number of 

genes 
FDR 

ameboidal-type cell migration (GO:0001667) 39 0.00 

anatomical structure development (GO:0048856) 382 0.00 

anatomical structure formation involved in 

morphogenesis (GO:0048646) 
75 0.00 

anatomical structure morphogenesis (GO:0009653) 209 0.00 

animal organ development (GO:0048513) 227 0.00 

animal organ morphogenesis (GO:0009887) 96 0.00 

anterior/posterior axon guidance (GO:0033564) 5 0.04 

axon development (GO:0061564) 51 0.00 

axon guidance (GO:0007411) 42 0.00 

axonogenesis (GO:0007409) 51 0.00 

biological adhesion (GO:0022610) 53 0.00 

biological regulation (GO:0065007) 609 0.00 

brain development (GO:0007420) 46 0.00 

camera-type eye morphogenesis (GO:0048593) 19 0.05 

cardiovascular system development (GO:0072358) 49 0.00 

cell adhesion (GO:0007155) 53 0.00 

cell communication (GO:0007154) 266 0.00 

cell development (GO:0048468) 133 0.00 

cell differentiation (GO:0030154) 218 0.00 

cell migration (GO:0016477) 69 0.00 

cell morphogenesis (GO:0000902) 76 0.00 

cell morphogenesis involved in differentiation 

(GO:0000904) 
63 0.00 

cell morphogenesis involved in neuron differentiation 

(GO:0048667) 
55 0.00 

cell motility (GO:0048870) 72 0.00 

cell part morphogenesis (GO:0032990) 61 0.00 

cell projection morphogenesis (GO:0048858) 60 0.00 

cell projection organization (GO:0030030) 84 0.00 

cell surface receptor signalling pathway (GO:0007166) 95 0.00 

cell surface receptor signalling pathway involved in 

cell-cell signalling (GO:1905114) 
20 0.05 

cell-cell signaling (GO:0007267) 50 0.00 

cellular component morphogenesis (GO:0032989) 84 0.00 

cellular component organization (GO:0016043) 261 0.00 

cellular component organization or biogenesis 

(GO:0071840) 
275 0.00 
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cellular developmental process (GO:0048869) 225 0.00 

cellular macromolecule biosynthetic process 

(GO:0034645) 
77 0.04 

cellular macromolecule metabolic process 

(GO:0044260) 
248 0.00 

cellular process (GO:0009987) 784 0.00 

cellular response to stimulus (GO:0051716) 278 0.03 

central nervous system development (GO:0007417) 63 0.00 

chemotaxis (GO:0006935) 50 0.00 

chordate embryonic development (GO:0043009) 55 0.00 

circulatory system development (GO:0072359) 93 0.00 

cranial skeletal system development (GO:1904888) 28 0.00 

developmental growth (GO:0048589) 29 0.03 

developmental growth involved in morphogenesis 

(GO:0060560) 
14 0.04 

developmental process (GO:0032502) 395 0.00 

embryo development (GO:0009790) 102 0.00 

embryo development ending in birth or egg hatching 

(GO:0009792) 
55 0.00 

embryonic cranial skeleton morphogenesis 

(GO:0048701) 
26 0.00 

embryonic epithelial tube formation (GO:0001838) 9 0.01 

embryonic morphogenesis (GO:0048598) 80 0.00 

embryonic organ development (GO:0048568) 56 0.00 

embryonic organ morphogenesis (GO:0048562) 48 0.00 

embryonic skeletal system development (GO:0048706) 28 0.00 

embryonic skeletal system morphogenesis 

(GO:0048704) 
27 0.00 

endocardial progenitor cell migration to the midline 

involved in heart field formation (GO:0003262) 
4 0.04 

epithelial cell differentiation (GO:0030855) 28 0.00 

epithelial tube morphogenesis (GO:0060562) 26 0.04 

epithelium development (GO:0060429) 87 0.00 

establishment of mitotic spindle localization 

(GO:0040001) 
8 0.00 

establishment of mitotic spindle orientation 

(GO:0000132) 
8 0.00 

establishment of spindle localization (GO:0051293) 9 0.00 

establishment of spindle orientation (GO:0051294) 9 0.00 

eye development (GO:0001654) 41 0.03 

eye morphogenesis (GO:0048592) 28 0.00 

gamma-aminobutyric acid signalling pathway 

(GO:0007214) 
6 0.03 

generation of neurons (GO:0048699) 112 0.00 

growth (GO:0040007) 29 0.03 

head development (GO:0060322) 46 0.01 
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heart development (GO:0007507) 51 0.00 

hindbrain development (GO:0030902) 17 0.03 

lateral line development (GO:0048882) 17 0.00 

lateral line system development (GO:0048925) 18 0.01 

localization (GO:0051179) 253 0.00 

localization of cell (GO:0051674) 72 0.00 

locomotion (GO:0040011) 103 0.00 

macromolecule biosynthetic process (GO:0009059) 77 0.04 

macromolecule metabolic process (GO:0043170) 295 0.03 

macromolecule modification (GO:0043412) 166 0.03 

mechanosensory lateral line system development 

(GO:0048881) 
13 0.03 

mesenchymal cell development (GO:0014031) 22 0.00 

mesenchymal cell differentiation (GO:0048762) 25 0.00 

mesenchyme development (GO:0060485) 31 0.00 

microtubule cytoskeleton organization involved in 

mitosis (GO:1902850) 
11 0.02 

mitotic cell cycle process (GO:1903047) 26 0.04 

modulation of chemical synaptic transmission 

(GO:0050804) 
21 0.00 

morphogenesis of an epithelium (GO:0002009) 42 0.02 

morphogenesis of embryonic epithelium 

(GO:0016331) 
11 0.02 

motor neuron migration (GO:0097475) 5 0.04 

movement of cell or subcellular component 

(GO:0006928) 
117 0.00 

multicellular organism development (GO:0007275) 354 0.00 

multicellular organismal process (GO:0032501) 391 0.00 

negative chemotaxis (GO:0050919) 9 0.05 

negative regulation of axon extension (GO:0030517) 9 0.05 

negative regulation of axonogenesis (GO:0050771) 9 0.05 

negative regulation of biological process 

(GO:0048519) 
147 0.02 

negative regulation of canonical Wnt signalling 

pathway (GO:0090090) 
11 0.02 

negative regulation of cell communication 

(GO:0010648) 
45 0.00 

negative regulation of cell growth (GO:0030308) 10 0.03 

negative regulation of cellular process (GO:0048523) 137 0.02 

negative regulation of developmental process 

(GO:0051093) 
24 0.03 

negative regulation of growth (GO:0045926) 10 0.05 

negative regulation of multicellular organismal process 

(GO:0051241) 
25 0.03 

negative regulation of response to stimulus 

(GO:0048585) 
50 0.00 
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negative regulation of signal transduction 

(GO:0009968) 
42 0.00 

negative regulation of signalling (GO:0023057) 45 0.00 

nervous system development (GO:0007399) 169 0.00 

neural crest cell development (GO:0014032) 22 0.00 

neural crest cell differentiation (GO:0014033) 23 0.00 

neural crest cell migration (GO:0001755) 20 0.00 

neural tube development (GO:0021915) 19 0.00 

neural tube formation (GO:0001841) 9 0.01 

neurogenesis (GO:0022008) 118 0.00 

neuron development (GO:0048666) 79 0.00 

neuron differentiation (GO:0030182) 92 0.00 

neuron migration (GO:0001764) 8 0.05 

neuron projection development (GO:0031175) 64 0.00 

neuron projection guidance (GO:0097485) 43 0.00 

neuron projection morphogenesis (GO:0048812) 60 0.00 

plasma membrane bounded cell projection 

morphogenesis (GO:0120039) 
60 0.00 

plasma membrane bounded cell projection organization 

(GO:0120036) 
81 0.00 

positive regulation of biological process (GO:0048518) 171 0.00 

positive regulation of cell migration (GO:0030335) 15 0.02 

positive regulation of cell motility (GO:2000147) 16 0.02 

positive regulation of cellular component movement 

(GO:0051272) 
17 0.01 

positive regulation of cellular process (GO:0048522) 155 0.00 

positive regulation of developmental process 

(GO:0051094) 
25 0.05 

positive regulation of locomotion (GO:0040017) 16 0.03 

positive regulation of nervous system development 

(GO:0051962) 
16 0.02 

posterior lateral line development (GO:0048916) 11 0.04 

posterior lateral line system development 

(GO:0048915) 
13 0.02 

primary neural tube formation (GO:0014020) 6 0.03 

regulation of anatomical structure morphogenesis 

(GO:0022603) 
49 0.00 

regulation of axon extension (GO:0030516) 15 0.00 

regulation of axon extension involved in axon guidance 

(GO:0048841) 
9 0.05 

regulation of axon guidance (GO:1902667) 10 0.05 

regulation of axonogenesis (GO:0050770) 20 0.00 

regulation of biological process (GO:0050789) 557 0.00 

regulation of biological quality (GO:0065008) 142 0.00 

regulation of biosynthetic process (GO:0009889) 156 0.00 

regulation of cell communication (GO:0010646) 131 0.00 
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regulation of cell development (GO:0060284) 35 0.01 

regulation of cell differentiation (GO:0045595) 46 0.02 

regulation of cell growth (GO:0001558) 18 0.00 

regulation of cell migration (GO:0030334) 25 0.04 

regulation of cell morphogenesis (GO:0022604) 26 0.00 

regulation of cell morphogenesis involved in 

differentiation (GO:0010769) 
21 0.00 

regulation of cell motility (GO:2000145) 26 0.04 

regulation of cell projection organization 

(GO:0031344) 
29 0.00 

regulation of cell size (GO:0008361) 18 0.00 

regulation of cellular biosynthetic process 

(GO:0031326) 
154 0.00 

regulation of cellular component movement 

(GO:0051270) 
30 0.01 

regulation of cellular component organization 

(GO:0051128) 
69 0.00 

regulation of cellular component size (GO:0032535) 26 0.02 

regulation of cellular macromolecule biosynthetic 

process (GO:2000112) 
150 0.00 

regulation of cellular metabolic process (GO:0031323) 219 0.00 

regulation of cellular process (GO:0050794) 528 0.00 

regulation of developmental growth (GO:0048638) 17 0.01 

regulation of developmental process (GO:0050793) 86 0.00 

regulation of extent of cell growth (GO:0061387) 16 0.00 

regulation of gene expression (GO:0010468) 167 0.00 

regulation of growth (GO:0040008) 19 0.02 

regulation of intracellular signal transduction 

(GO:1902531) 
63 0.00 

regulation of localization (GO:0032879) 73 0.00 

regulation of locomotion (GO:0040012) 29 0.03 

regulation of macromolecule biosynthetic process 

(GO:0010556) 
151 0.00 

regulation of macromolecule metabolic process 

(GO:0060255) 
218 0.00 

regulation of membrane potential (GO:0042391) 26 0.00 

regulation of metabolic process (GO:0019222) 234 0.00 

regulation of molecular function (GO:0065009) 67 0.01 

regulation of multicellular organismal development 

(GO:2000026) 
76 0.00 

regulation of multicellular organismal process 

(GO:0051239) 
88 0.00 

regulation of nervous system development 

(GO:0051960) 
42 0.00 

regulation of neurogenesis (GO:0050767) 34 0.00 

regulation of neuron differentiation (GO:0045664) 30 0.00 
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regulation of neuron projection development 

(GO:0010975) 
25 0.00 

regulation of nitrogen compound metabolic process 

(GO:0051171) 
208 0.00 

regulation of non-canonical Wnt signalling pathway 

(GO:2000050) 
5 0.05 

regulation of nucleic acid-templated transcription 

(GO:1903506) 
136 0.01 

regulation of nucleobase-containing compound 

metabolic process (GO:0019219) 
151 0.01 

regulation of plasma membrane bounded cell 

projection organization (GO:0120035) 
28 0.00 

regulation of primary metabolic process (GO:0080090) 210 0.00 

regulation of Ras protein signal transduction 

(GO:0046578) 
26 0.00 

regulation of response to stimulus (GO:0048583) 132 0.00 

regulation of Rho protein signal transduction 

(GO:0035023) 
21 0.01 

regulation of RNA biosynthetic process (GO:2001141) 136 0.01 

regulation of RNA metabolic process (GO:0051252) 147 0.01 

regulation of signal transduction (GO:0009966) 109 0.00 

regulation of signaling (GO:0023051) 132 0.00 

regulation of small GTPase mediated signal 

transduction (GO:0051056) 
28 0.00 

regulation of synaptic plasticity (GO:0048167) 10 0.01 

regulation of transcription, DNA-templated 

(GO:0006355) 
136 0.01 

regulation of trans-synaptic signalling (GO:0099177) 21 0.00 

response to chemical (GO:0042221) 107 0.04 

response to external stimulus (GO:0009605) 78 0.00 

response to stimulus (GO:0050896) 347 0.00 

semaphorin-plexin signalling pathway (GO:0071526) 10 0.04 

sensory organ development (GO:0007423) 57 0.00 

sensory organ morphogenesis (GO:0090596) 33 0.00 

sensory system development (GO:0048880) 56 0.00 

signal transduction (GO:0007165) 239 0.01 

signaling (GO:0023052) 265 0.00 

skeletal system development (GO:0001501) 39 0.00 

skeletal system morphogenesis (GO:0048705) 30 0.00 

spindle localization (GO:0051653) 9 0.00 

stem cell development (GO:0048864) 22 0.00 

stem cell differentiation (GO:0048863) 31 0.00 

synapse assembly (GO:0007416) 10 0.01 

synapse organization (GO:0050808) 14 0.03 

system development (GO:0048731) 325 0.00 

taxis (GO:0042330) 53 0.00 
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tissue development (GO:0009888) 147 0.00 

tissue morphogenesis (GO:0048729) 52 0.01 

tube development (GO:0035295) 75 0.00 

tube morphogenesis (GO:0035239) 55 0.00 

vasculature development (GO:0001944) 48 0.00 

visual system development (GO:0150063) 41 0.03 
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Supplementary tables for Chapter 4 - What does drive DNA 

methylation plasticity? Epigenetic responses of two inbred lines to 

different rearing environments 

Table S4.1. Individual genotype (line), rearing environment and read count 

information for Kryptolebias marmoratus individuals sequenced using Reduced 

Representation Bisulphite Sequencing (RRBS). 
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TABLE S1. Individual genotypes and treatments and read counts for individuals sequenced using Reduced representation bisulfite sequencing.

Sample ID Strain Environment

Total 

number of 

raw reads

Total number 

of raw reads 

per replicated 

group

Total 

number of 

clean reads

Total 

number of 

clean 

reads per 

replicated 

group

Bisulphite 

Conversion 

efficiency 

(%)

Mapping 

(%)

Multiple 

mapping 

(%)

Unique 

mapping 

(%)

CpG 

methylation  

(%)

CHG 

methylation  

(%)

CHH 

methylation  

(%)

PE-D03 DAN Poor 13100686 12905073 99.8 76.8 8.7 68.1 23.2 0.5 0.4

PE-D08 DAN Poor 12075916 11215314 99.7 73.9 7 66.9 16.8 0.5 0.4

PE-D11 DAN Poor 10350824 10226756 99.6 56.9 8.4 48.5 28.1 0.5 0.5

RE-D07 DAN Enriched 12750300 12625557 99.5 76.6 12.1 64.5 37.5 0.6 0.5

RE-D08 DAN Enriched 10126731 9911130 99.7 75.6 12.4 63.2 39.3 0.6 0.5

RE-D13 DAN Enriched 11575762 11527834 99.7 76.3 13 63.3 52.3 0.6 0.5

PE-R03 R Poor 8895336 8787003 99.7 74.5 11.9 62.6 50.6 0.5 0.5

PE-R04 R Poor 7979527 7783671 99.5 74.1 9.9 64.2 34.4 0.5 0.4

PE-R08 R Poor 9302968 9218192 99.5 63.3 10.6 52.7 45.90 0.6 0.5

PE-R09 R Poor 10897429 10870559 99.3 73.7 14.3 59.4 52 0.6 0.5

PE-R12 R Poor 15205376 15164433 99.4 74.2 14 60.2 58.2 0.7 0.6

PE-R14 R Poor 18386619 18177610 99.6 76.6 11.2 65.4 40 0.5 0.5

RE-R05 R Enriched 19117048 18973122 99.7 73 12.5 60.5 39.9 0.5 0.5

RE-R06 R Enriched 9625042 9602035 99.7 75.8 12.9 62.9 49 0.6 0.5

RE-R07 R Enriched 17031887 16832764 99.6 74.3 12.7 61.6 43.3 0.6 0.5

RE-R08 R Enriched 17731929 17373799 99.7 74.7 10.4 64.3 25.1 0.5 0.4

RE-R10 R Enriched 18721051 18356361 99.7 75.2 11.2 64 32.9 0.5 0.5

RE-R11 R Enriched 9478011 9464124 99.6 74.8 13.5 61.3 51.9 0.6 0.5

RE-R12 R Enriched 6929800 6872621 99.6 75.4 12.3 63.1 48.1 0.6 0.5

RE-R13 R Enriched 14934937 14894697 99.7 79.1 10.3 68.8 33.2 0.5 0.5

RE-R14 R Enriched 11706829 11634216 99.5 78.9 11.5 67.4 43.7 0.6 0.5

RE-R15 R Enriched 11381670 11299094 99.7 75.5 11.2 64.3 37.5 0.6 0.5

Total 277305678 277305678 273715965 273715965 99.6 74.05 11.45 62.6 40.13 0.56 0.49

136658204

70001468

135302833

35527426 34347143

34452793 34064521

70667255
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Table S4.2. Microsatellite genotypes (23 microsatellites) amplified according Ellison et al. (2011) for all individuals Kryptolebias marmoratus 

analysed using Reduced Representation Bisulphite Sequencing (RRBS). 

 

ID Strain Environment R3 R10 R1 R34 R93 R92 R4 R11 R25 R5 R37 R17 R35 R9 R23 R18 R19 R38 R22 R86 R103 R30 R112 

PE-D03 DAN Poor 
123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

PE-D08 DAN Poor 
123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

PE-D11 DAN Poor 
123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

RE-D13 DAN Enriched 
123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

RE-D07 DAN Enriched 
123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

RE-D08 DAN Enriched 
123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

123 239 246 146 169 195 255 187 122 287 332 259 142 226 258 177 139 222 197 217 141 165 217 

PE-R03 R Poor 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

PE-R04 R Poor 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

PE-R08 R Poor 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

PE-R09 R Poor 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

PE-R12 R Poor 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 
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PE-R14 R Poor 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R05 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R06 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R07 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R08 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R10 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R11 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R12 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R13 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R14 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

RE-R15 R Enriched 
123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 

123 215 250 146 154 193 247 183 106 311 328 283 142 226 258 177 139 194 189 215 141 161 203 
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Table S4.3. Linear model of principal components scores for mangrove killifish (a) 

1064 DMCs and (b) 194 DMRs found between environments (poor, enriched) and 

genotypes (R, DAN). 

 

 

 

 

 

 

 

 

 

 

 t-values Prop. of variance (%)  df p-value 

(a) 1064 DMCs     

PC1 scores 

Genotype 1.62 92.17 1 <0.001 

Environment -22.53 6.46 1 <0.001 

Genotype x Environment -24.09 0.28 1 0.04 

PC2 scores 

Genotype 5.25 6.65 1 <0.001 

Environment -3.32 73.59 1 <0.001 

Genotype x Environment -6.87 13.24 1 <0.001 

(b)194 DMRs     

PC1 scores 

Genotype 0.65 79.01 1 <0.001 

Environment 14.68 16.60 1 <0.001 

Genotype x Environment -13.03 2.22 1 <0.001 

PC2 scores 

Genotype -5.07 9.83 1 <0.001 

Environment 5.4 27.31 1 <0.001 

Genotype x Environment 11.19 9.49 1 <0.001 
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Table S4.4. Number of DMCs found in the comparisons between enriched and poor 

environments using three different subsets of six individuals (three on each 

environment) from R genotype (original subset with 16 individuals). DMCs were 

found using logistic regression q< 0.01 and |ΔM|>20%, and t.test p <0.01, with the 

final list of composed by the DMCs shared by both approaches. This analysis identified 

similar numerical differences in DMCs between lines, suggesting that the differences 

in numbers of DMCs on the original dataset were not due to differences in sample size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individuals Linear regression t-test Both 

Subset 1    

PE-R03, PE-R08, PE-R12, RE-

R05, RE-R06, RE-R07 
6183 5777 2977 

Subset 2    

PE-R04, PE-R09, PE-R14, RE-

R08, RE-R10, RE-R11 
4756 4930 2237 

Subset 3    

PE-R03, PE-R09, PE-R12, RE-

R11, RE-R12, RE-R13 
4007 4664 1920 
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Table S4.5. Methylation differences averaged (in percentage) for differentially 

methylated cytosines (DMRs) between environments (poor, enriched) and shared 

between genotypes (DAN, R) which overlap annotated genes (reference genome 

Kryptolebias marmoratus NCBI ASM164957v1). Epiallele classification (pure or 

facilitated) was defined following Richards (2006). Positive and negative values 

represent increased and decreased methylation towards enriched and poor 

environments, respectively Q-value is the p-value adjusted for the False Discovery 

Rate (FDR=0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene 

symbol 

Entrez gene name Epiallele  

 class 

Meth diff 

DAN 

Q-

value 

Meth 

diff R 

Q-

value 

nedd9 

neural precursor 

cell expressed, 

developmentally 

down-regulated 9 

F 23.99 <0.001 -21.19 <0.001 

nptn neuroplastin F 20.03 <0.001 -41.11 <0.001 

sorcs2 

sortilin-related 

VPS10 domain 

containing receptor 

2 

F 37.04 <0.001 -31.03 <0.001 

uhrf2 

ubiquitin like with 

PHD and ring 

finger domains 2 

F 42.24 <0.001 -33.13 <0.001 
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Table S4.6. Centrality measures to molecular network reconstructed using 23 DMCs 

between environments (enriched and poor) and shared between genotype (DAN, R) 

using NetworkAnalyzer. Origin represents whether the gene was on the input file or it 

was suggested by GeneMANIA as a neighbouring gene on the network. Degree 

represents the number of connections of a given gene. Closeness represent average 

distance of the all the genes in the network to a certain gene. Radiality represents the 

easiness of reaching any gene from certain gene.  

 

Gene symbol Origin Degree Closeness Radiality 

ACVR2A Input 17 0.58 0.82 

ADGRL3 Input 21 0.62 0.85 

CALD1 Input 15 0.57 0.81 

COL25A1 Input 19 0.62 0.85 

DMAP1 Input 3 0.40 0.62 

FOXP4 Input 5 0.46 0.71 

GPC5 Input 19 0.62 0.85 

MICAL2 Input 15 0.58 0.82 

MIPOL1 Input 3 0.44 0.68 

MYC Input 12 0.56 0.80 

NECAB2 Input 7 0.49 0.74 

NEO1 Input 5 0.48 0.73 

NUDCD1 Input 6 0.50 0.75 

PTPRN2 Input 5 0.49 0.74 

RAMP3 Input 3 0.44 0.68 

RYR3 Input 21 0.64 0.86 

SORCS2 Input 21 0.66 0.87 

SPTBN1 Input 11 0.54 0.79 

TRIT1 Input 14 0.56 0.80 

TRMT44 Input 4 0.44 0.68 

ZEB2 Input 15 0.60 0.83 

ZNF516 Input 9 0.51 0.76 

ZRANB3 Input 4 0.46 0.71 

ARNT2 Neighbouring 6 0.48 0.73 

C20orf194 Neighbouring 4 0.45 0.70 

INPP5A Neighbouring 5 0.48 0.73 

ITGA6 Neighbouring 8 0.53 0.77 

JAML Neighbouring 16 0.61 0.84 

LAMP5 Neighbouring 8 0.50 0.75 

MRPS33 Neighbouring 19 0.64 0.86 

NOVA1 Neighbouring 16 0.57 0.81 

NPEPL1 Neighbouring 8 0.53 0.78 

PDE8A Neighbouring 13 0.54 0.79 

POFUT2 Neighbouring 6 0.47 0.72 

RALGAPA2 Neighbouring 1 0.34 0.52 

RNF24 Neighbouring 7 0.50 0.75 

SLC12A6 Neighbouring 6 0.46 0.71 
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SORCS3 Neighbouring 10 0.52 0.77 

SULF1 Neighbouring 6 0.49 0.74 

SVIL Neighbouring 15 0.56 0.80 

TIAM1 Neighbouring 18 0.60 0.83 

TMTC2 Neighbouring 16 0.58 0.82 

VCAN Neighbouring 12 0.55 0.79 

Mean (SD)   10.55 ± 5.89 0.53 ± 0.06 0.77 ± 0.06 
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Table S4.7. Gene ontology (GO) terms for biological processes and pathways for the 

most connected (> 10 connections) DMCs between environments shared by genotypes 

within GeneMANIA network. Gene ortholog was compared with zebrafish (Danio 

rerio) using PANTHER (Mi et al., 2016). 

Major gene 

ontology terms level 

Specific functional level Genes involved 

(symbols) 

(a) Biological process 

Metabolic process 

(GO:008152) 

Transcription by RNA 

polymerase II 

(GO:006366) 

myc 

Lipid metabolic process 

(GO:006629) 
sorcs2 

tRNA modification 

(GO:0006400) 
trit1 

Localization 

(GO:0051179) 

Intracellular protein transport 

(GO:0006886) 
sorcs2 

Lipid transport (GO:0006869) sorcs2 

Receptor-mediated 

endocytosis (GO:0006898) 
sorcs2 

Sequestering of calcium ion 

(GO:0051208) 
ryr3 

Cellular process 

(GO:0009987) 
Cell cycle (GO:0007049) myc 

Biological 

regulation 

(GO:0065007) 

Regulation of transcription by 

RNA polymerase II 

(GO:006366) 

myc 

(b) Pathways 

 
Beta1 adrenergic receptor 

signalling pathway (P04377) 
ryr3 

 
Beta1 adrenergic receptor 

signalling pathway (P04378) 
ryr3 

 
CCKR signalling map 

(P06959) 
myc, ryr3 

 
Interleukin signalling pathway 

(P00036) 
myc 
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Oxidative stress response 

(P00046) 
myc 

 
PDGF signalling pathway 

(P00047) 
myc 

 
Wnt signalling pathway 

(P00057) 
myc 

 
p53 pathway feedback loops 2 

(P04398) 
Myc 
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Supplementary tables for Chapter 5 - Environmental enrichment induces epigenetic and behavioural parental effects in a 

self-fertilising fish 

Table S5.1.  Individuals used in the experiment. Asterisks represent individuals sequenced for methylation patterns using reduced representation 

bisulphite sequencing. 

ID Generation 
Parental 

Enviroment 

Current 

Environment 
Parent 

1ST-RE-R01 F0   Enriched  
1ST-RE-R02 F0  Enriched  
1ST-RE-R05* F0  Enriched  
1ST-RE-R06* F0  Enriched  
1ST-RE-R07* F0  Enriched  
1ST-RE-R08* F0  Enriched  
1ST-RE-R10* F0  Enriched  
1ST-RE-R11* F0  Enriched  
1ST-RE-R12* F0  Enriched  
1ST-RE-R13* F0  Enriched  
1ST-RE-R14* F0  Enriched  
1ST-RE-R15* F0  Enriched  
1ST-RE-R16 F0  Enriched  
1ST-RE-R17 F0  Enriched  
1ST-PE-R01 F0  Poor  
1ST-PE-R03* F0  Poor  



239 
 

1ST-PE-R04* F0  Poor  
1ST-PE-R05 F0  Poor  
1ST-PE-R07 F0  Poor  
1ST-PE-R08* F0  Poor  
1ST-PE-R09* F0  Poor  
1ST-PE-R10 F0  Poor  
1ST-PE-R11 F0  Poor  
1ST-PE-R12* F0  Poor  
1ST-PE-R13 F0  Poor  
1ST-PE-R14* F0  Poor  
1ST-PE-R15 F0  Poor  
2nd-RE-R02* F1 Enriched Enriched 1st-RE-R11 

2nd-RE-R03* F1 Enriched Enriched 1st-RE-R07 

2nd-RE-R04* F1 Enriched Enriched 1st-RE-R14 

2nd-RE-R07 F1 Enriched Enriched 1st-RE-R09 

2nd-RE-R09 F1 Enriched Enriched 1st-RE-R13 

2nd-RE-R11* F1 Enriched Enriched 1st-RE-R11 

2nd-RE-R13* F1 Enriched Enriched 1st-RE-R07 

2nd-RE-R16 F1 Enriched Enriched 1st-RE-R07 

2nd-PE-R03* F1 Poor Poor 1st-PE-R03 

2nd-PE-R05* F1 Poor Poor 1st-PE-R08 

2nd-PE-R08 F1 Poor Poor 1st-PE-R03 

2nd-PE-R12 F1 Poor Poor 1st-PE-R01 

2nd-PE-R15* F1 Poor Poor 1st-PE-R03 

2nd-PE-R01 F1 Enriched Poor 1st-RE-R09 

2nd-PE-R02* F1 Enriched Poor 1st-RE-R11 

2nd-PE-R04* F1 Enriched Poor 1st-RE-R11 
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2nd-PE-R06 F1 Enriched Poor 1st-RE-R13 

2nd-PE-R07* F1 Enriched Poor 1st-RE-R11 

2nd-PE-R09 F1 Enriched Poor 1st-RE-R14 

2nd-PE-R10 F1 Enriched Poor 1st-RE-R12 

2nd-PE-R11 F1 Enriched Poor 1st-RE-R12 

2nd-PE-R13 F1 Enriched Poor 1st-RE-R07 

2nd-PE-R16 F1 Enriched Poor 1st-RE-R07 

2nd-RE-R05 F1 Poor Enriched 1st-PE-R01 

2nd-RE-R08 F1 Poor Enriched 1st-PE-R03 

2nd-RE-R12* F1 Poor Enriched 1st-PE-R03 

2nd-RE-R14* F1 Poor Enriched 1st-PE-R08 

2nd-RE-R15* F1 Poor Enriched 1st-PE-R03 
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Table S5.2. Read counts, proportions of bisulphite conversion, mapping and methylation contexts for the different experimental groups (1st 

generation = F0, 2nd generation = F1) sequenced using reduced representation bisulphite sequencing. 

 

Sample ID Generation Parent
 Previous 

Environment

 Current 

Environment

Total number 

of raw reads

Total number 

of clean reads

Bisulphite 

Conversion 

efficiency 

(%)

Mapping 

(%)

Multiple 

mapping 

(%)

Unique 

mapping 

(%)

CpG 

methylation  

(%)

CHG 

methylation  

(%)

CHH 

methylation  

(%)

1st-PE-R03 1st NA NA Poor 8895336 8787003 99.7 74.5 11.9 62.6 50.6 0.5 0.5

1st-PE-R04 1st NA NA Poor 7979527 7783671 99.5 74.1 9.9 64.2 34.4 0.5 0.4

1st-PE-R08 1st NA NA Poor 9302968 9218192 99.5 63.3 10.6 52.7 45.90 0.6 0.5

1st-PE-R09 1st NA NA Poor 10897429 10870559 99.3 73.7 14.3 59.4 52 0.6 0.5

1st-PE-R12 1st NA NA Poor 15205376 15164433 99.4 74.2 14 60.2 58.2 0.7 0.6

1st-PE-R14 1st NA NA Poor 18386619 18177610 99.6 76.6 11.2 65.4 40 0.5 0.5

1st-RE-R05 1st NA NA Enriched 19117048 18973122 99.7 73 12.5 60.5 39.9 0.5 0.5

1st-RE-R06 1st NA NA Enriched 9625042 9602035 99.7 75.8 12.9 62.9 49 0.6 0.5

1st-RE-R07 1st NA NA Enriched 17031887 16832764 99.6 74.3 12.7 61.6 43.3 0.6 0.5

1st-RE-R08 1st NA NA Enriched 17731929 17373799 99.7 74.7 10.4 64.3 25.1 0.5 0.4

1st-RE-R10 1st NA NA Enriched 18721051 18356361 99.7 75.2 11.2 64 32.9 0.5 0.5

1st-RE-R11 1st NA NA Enriched 9478011 9464124 99.6 74.8 13.5 61.3 51.9 0.6 0.5

1st-RE-R12 1st NA NA Enriched 6929800 6872621 99.6 75.4 12.3 63.1 48.1 0.6 0.5

1st-RE-R13 1st NA NA Enriched 14934937 14894697 99.7 79.1 10.3 68.8 33.2 0.5 0.5

1st-RE-R14 1st NA NA Enriched 11706829 11634216 99.5 78.9 11.5 67.4 43.7 0.6 0.5

1st-RE-R15 1st NA NA Enriched 11381670 11299094 99.7 75.5 11.2 64.3 37.50 0.6 0.5

2nd-PE-R03 2nd 1st-PE-R03 Poor Poor 9436612 9434347 99.2 72.3 14 58.3 60.7 0.7 0.6

2nd-PE-R05 2nd 1st-PE-R08 Poor Poor 14169788 14165283 99.1 73.9 15.8 58.1 65.6 0.7 0.6

2nd-PE-R15 2nd 1st-PE-R03 Poor Poor 8264728 8262148 99.7 74.4 15.6 58.8 58.5 0.7 0.6

2nd-PE-R02 2nd 1st-RE-R11 Enriched Poor 25246913 25236032 99.7 73.6 13.8 59.8 56.9 0.6 0.5

2nd-PE-R04 2nd 1st-RE-R11 Enriched Poor 9598838 9595582 99.5 74 16.7 57.3 56.7 0.7 0.6

2nd-PE-R07 2nd 1st-RE-R11 Enriched Poor 10307222 10300566 99.6 72.4 16.2 56.2 65.7 0.7 0.5

2nd-RE-R02 2nd 1st-RE-R11 Enriched Enriched 9884878 9880493 99.4 74.2 13.1 61.1 67.2 0.7 0.5

2nd-RE-R03 2nd 1st-RE-R07 Enriched Enriched 11806281 11798600 99.4 72.6 16.3 56.3 57.5 0.6 0.5

2nd-RE-R04 2nd 1st-RE-R14 Enriched Enriched 10681971 10677008 99.2 72.7 12.9 59.8 63.9 0.7 0.6

2nd-RE-R11 2nd 1st-RE-R11 Enriched Enriched 16291112 16267064 99.5 71.5 15.6 55.9 55 0.6 0.6

2nd-RE-R13 2nd 1st-RE-R07 Enriched Enriched 7866499 8739487 99.8 72.2 16.6 55.6 58 0.7 0.6

2nd-RE-R12 2nd 1st-PE-R03 Poor Enriched 15937636 15912236 99.7 75.9 12.1 63.8 43.1 0.5 0.5

2nd-RE-R14 2nd 1st-PE-R08 Poor Enriched 6851691 6848684 99.3 72.8 15 57.8 59.9 0.7 0.7

2nd-RE-R15 2nd 1st-PE-R03 Poor Enriched 14676322 14667955 99.1 79.1 7.7 71.4 37.6 0.4 0.4

Total 378345950 377089786 99.5 74.2 13.1 61.1 54.2 0.6 0.6
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Table S5.3. Results of the most plausible linear models using a multi-model averaging 

approach for (a) cortisol levels (pg/ml) and (b) basal metabolic rates (mg O2 g
-1 min-1) 

and (c-e) behavioural metrics for the parental individuals (F0). Models are ranked 

according to their corrected Akaike Information Criterion (AICc), the difference with 

the best fitting model (ΔAICc) and the Akaike weight (Wi), which represents the ratio 

between the weights of the best and competing models. Only models within two AICc 

units are shown.  

 df z/t-

value 

P-value AICc ΔAICc Wi 

(a) Cortisol levels 

Model 1    -24.60 0.00 0.66 

Body weight 1 4.22 0.001    

Model 2    -22.73     1.87 0.26 

Body weight 1 2.86  <0.001    

Environment 1 7.38 0.03    

(b) Basal metabolic rate  

Model 1      -16.51 0.00 0.58 

Cortisol levels 1 9.85 <0.001    

(c) Activity  

Model 1    2184.97 0.00 0.74 

Body weight 1 31.58 0.01    

Environment 1 34.98 <0.001    

Body weight x 

Environment 
1 38.76 0.02    
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Table S5.4. Results of the most plausible generalized linear models (quasipoisson for 

count data and Gaussian for continuous data) indicated by multi-model averaging for 

activity and number of contacts in the offspring (F1). Models are ranked according to 

the corrected Akaike Information Criterion (AICc), the difference with the best fitting 

model (ΔAICc), and the Akaike weight (Wi) which represents the ratio between the 

weights of the best and competing models. Only models within two AICc units are 

shown. 

 Df z-value P-value AICc ΔAICc Wi 

Activity (number of crosses among zones) 

Model 1     871.59 0.00 0.50 

Parental environment 1 -1.22 0.22    

Offsrping environment 1 0.703 0.48    

Parental activity 1 2.61 0.009    

Body weight 1 -1.32 0.18    

Offspring environment x 

Parental activity 
1 0.38 0.70    

Parental activity x Body 

weight 
1 1.18 0.18    
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V.I. APPENDIX II: RELEVANT PUBLISHED 

MANUSCRIPTS 

 

I either leaded or collaborated during the period of PhD candidature (October 2015 to 

October 2019) which are not part but directly relevant to the overall topics addressed 

in the current thesis. Briefly, Berbel-Filho et al. (2016) represents the first report of a 

male of Kryptolebias hermaphroditus, despite the species being described as 

composed only of selfing hermaphrodites. Tatarenkov et al. (2017) revealed deep 

genetic structure across the wide geographical distribution (29°N to 23°S) of the “K. 

marmoratus species complex”, revealed a previously unknown genetic clade in the 

Caribbean, that despite its geographical proximity with K. marmoratus, it is 

phylogenetically more related to K. hermaphroditus. 

 

1) Berbel-Filho, W. M., H. M. V. Espirito-Santo, and S. M. Q. Lima. 2016. First 

record of a male of Kryptolebias hermaphroditus Costa, 2011 (Cyprinodontiformes: 

Cynolebiidae). Neotropical Ichthyology 14:e160024. 

 

2) Tatarenkov, A., S. M. Q. Lima, R. L. Earley, W. M. Berbel-Filho, F. B. M. 

Vermeulen, D. S. Taylor, K. Marson et al. 2017. Deep and concordant subdivisions in 

the self-fertilizing mangrove killifishes (Kryptolebias) revealed by nuclear and 

mtDNA markers. Biological Journal of the Linnean Society 122:558-578. 
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Berbel-Filho et al. (2016): 
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Tatarenkov et al. (2017): 
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