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We propose the use of Monte Carlo histogram reweighting to extrapolate predictions of machine
learning methods. In our approach, we treat the output from a convolutional neural network as an
observable in a statistical system, enabling its extrapolation over continuous ranges in parameter
space. We demonstrate our proposal using the phase transition in the two-dimensional Ising model.
By interpreting the output of the neural network as an order parameter, we explore connections with
known observables in the system and investigate its scaling behaviour. A finite size scaling analysis
is conducted based on quantities derived from the neural network that yields accurate estimates for
the critical exponents and the critical temperature. The method improves the prospects of acquiring
precision measurements from machine learning in physical systems without an order parameter and
those where direct sampling in regions of parameter space might not be possible.

I. INTRODUCTION

Machine learning has recently emerged as an om-
nipresent tool across a vast number of research fields.
A major milestone towards its wide success has been
the unprecedented capability of deep neural networks to
automatically extract hierarchical structures in data [1].
Historical implementations of machine learning revolved
around problems in image recognition and natural lan-
guage processing but recent advances have encompassed
the physical sciences [2]. For a short review of machine
learning for quantum matter see Ref. [3].

On the forefront of modern approaches, there have
been significant contributions in the realm of compu-
tational physics. Notably, machine learning was em-
ployed to study phase transitions in classical and quan-
tum many-body systems [4, 5]. The aim is typically the
separation of phases in a system by relying on supervised,
unsupervised or semi-supervised learning of its configu-
rations. Neural networks [6–19], support vector machines
[20–23], principal component analysis [24–28] and a va-
riety of algorithms [29–33], have been implemented to
achieve this goal. Within these approaches, the Ising
model, due to its simplicity, analytical solution [34], and
non-trivial phase structure, frequently acts as a proto-
typical testing ground to demonstrate results.

In addition, efficient Monte Carlo sampling was real-
ized through the construction of effective Hamiltonians
in physical systems [35–37]. Among these approaches,
the self-learning Monte Carlo method was extended to
continuous-time, quantum and hybrid Monte Carlo [38–
48]. Deep reinforcement learning was utilized to gen-
erate ground states through the training of a machine
learning agent, neural autoregressive models have been
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applied within variational settings, and Boltzmann gen-
erators have been introduced to produce unbiased equi-
librium samples in condensed-matter and protein systems
[49–52]. In lattice field theories generative and regressive
neural networks have been implemented [53], and sam-
pling with flow-based methods has led to reduced auto-
correlation times [54, 55].

Along these lines, there is an increasing need for tools
that improve computational efficiency and simultane-
ously enable the extraction of more information from
available machine learning predictions. Traditionally, in
statistical mechanics, such pursuits are achieved with
the use of Monte Carlo histogram reweighting techniques
[56, 57]. It is then possible to acquire increased knowl-
edge of observables by estimating them based on mea-
surements from already conducted simulations. Further-
more, one can extrapolate in parameter space to glimpse
into the behaviour of more complicated Hamiltonians.
A proof of principle demonstration concerns reweighting
from a zero external magnetic field to a non-zero value
in the Ising model [56].

In this article, we introduce histogram reweighting to
supervised machine learning. In particular, we explore
if the output from a neural network in a classification
problem can be treated as an observable in a statistical
system and consequently be extrapolated to continuous
ranges - providing a tool for further exploration without
acquiring additional data and potentially even when di-
rect sampling is not possible. We further interpret the
output of the neural network as an effective order param-
eter within the context of a phase identification task, and
propose reweighting as a means to explore connections
with standard thermodynamic observables of the system
under consideration. Finally, we search for scaling be-
haviour in quantities derived from the machine learning
algorithm with an aim to study the infinite-volume limit
of the statistical system.

To establish the method, we apply it to the two-
dimensional Ising model, a system that undergoes a
second-order phase transition from a broken-symmetry
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FIG. 1. The architecture of the convolutional neural network (see App. B). Importance-sampled configurations are presented
as input to the neural network and are further processed through a series of transformations. The values of the output vector
denote the probability that a configuration belongs in an associated phase. The probabilities are used as observables to be
reweighted.

to a symmetric phase. Using our developments, we
present an accurate calculation of the critical point and
the critical exponents by relying exclusively on quanti-
ties derived from the machine learning implementation
and their reweighted extrapolations.

II. HISTOGRAM REWEIGHTING

We consider a generic statistical system described by
an action (or Hamiltonian) S =

∑
k g

(k)S(k), which sep-

arates in terms of a set of parameters {g(k)}. During a
Markov chain Monte Carlo simulation of the system we
sample a representative subset of states σ1, . . . , σN based
on a Boltzmann probability distribution:

pσi =
exp[−

∑
k g

(k)S
(k)
σi ]∑

σ exp[−
∑
k g

(k)S
(k)
σ ]

, (1)

where Z =
∑
σ exp[−

∑
k g

(k)S
(k)
σ ] is the partition func-

tion and the sum is over all possible states σ in the sys-
tem. The expectation value of an arbitrary observable O
is then given by:

〈O〉 =

∑N
i=1Oσi p̃

−1
σi exp[−

∑
k g

(k)S
(k)
σi ]∑N

i=1 p̃
−1
σi exp[−

∑
k g

(k)S
(k)
σi ]

, (2)

where p̃σi are the probabilities used to sample configura-
tions from the equilibrium distribution. We now consider

the probabilities for a set of parameter values {g(k)0 } that

are sufficiently adjacent to {g(k)} in parameter space,
given by:

p(0)σi =
exp[−

∑
k g

(k)
0 S

(k)
σi ]∑

σ exp[−
∑
k g

(k)
0 S

(k)
σ ]

. (3)

After substituting p̃σi with p
(0)
σi in Eq. (2), we arrive at

reweighting equation:

〈O〉{g(k)} =

∑N
i=1Oσi exp [−

∑
k(g(k) − g(k)0 )S

(k)
σi ]∑N

i=1 exp [−
∑
k(g(k) − g(k)0 )S

(k)
σi ]

. (4)

Given a series of Markov chain Monte Carlo measure-
ments Oσi for a set of parameters {g(k)0 }, Eq. (4) enables
the calculation of expectation values for extrapolated sets
of {g(k)}. Successful extrapolations of observables should
lie within adjacent parameter ranges where the associ-
ated action histograms have markedly large values (e.g.
see Ref. [58]).

III. REWEIGHTING OF MACHINE LEARNING
OUTPUT

We employ reweighting techniques to study the phase
transition in the two-dimensional Ising model (see
App. A) by formulating the phase identification task as
a classification problem. We create the datasets using
Markov chain Monte Carlo simulations with the Wolff al-
gorithm [59]. The training data are comprised of a set of
1000 uncorrelated configurations at each training point,
with 100 configurations chosen as a cross-validation set.
The range of inverse temperatures chosen to gener-
ate configurations used for training is 0.32, . . . , 0.41 in
the symmetric phase and 0.47, . . . , 0.56 in the broken-
symmetry phase with a step of 0.01. The ranges are
chosen to be distant from the critical inverse tempera-
ture βc ≈ 0.440687. We train the convolutional neural
network (CNN) for lattice sizes L = 128, . . . , 760. We
implement the neural network architecture (see App. B)
with TensorFlow and the Keras library [60, 61]. The pres-
ence of a phase transition makes the convolutional neural
network a well suited choice to learn spatial dependencies
across configurations in different phases.

After training is completed, we present a configura-
tion to the convolutional neural network to predict its
associated classification label. The values of the output
vector in the classification task sum up to one and are
interpreted as the probability Pσi that a configuration σi
belongs in the corresponding phase. When referring ex-
plicitly to the probabilities associated with the symmetric
and the broken-symmetry phase we will denote them as

P
(s)
σi and P

(b)
σi , respectively, with P

(s)
σi + P

(b)
σi = 1.
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FIG. 2. Reweighting for the neural network output probability versus the inverse temperature of the 2D Ising model with
lattice size L = 128. The reweighted extrapolations are depicted by the line. The filled point corresponds to the parameter
choice β0 = 0.438 (left) and β0 = 0.44 (right) used to conduct reweighting. Empty points are actual predictions from the neural
network on Monte Carlo datasets, added for comparison. The dashed lines, only visible in the insets, indicate the statistical
uncertainty. The training was conducted for β ≤ 0.41 and β ≥ 0.47.

In accordance with the sampling procedure which is
carried through a Markov chain Monte Carlo simulation,
each configuration appears in the chain of states as dic-
tated by an associated Boltzmann weight. As depicted
in Fig. 1, the mathematical operation of convolution acts
on an importance-sampled configuration and a series of
additional transformations imposed by the neural net-
work lead to the calculation of the probability Pσi . We
therefore interpret P as an observable of the system:

〈P 〉 =
∑
σ

Pσpσ =

∑
σ Pσ exp[−

∑
k g

(k)S
(k)
σ ]∑

σ exp[−
∑
k g

(k)S
(k)
σ ]

. (5)

In this framework, the probability P can be extrap-
olated with histogram reweighting over wide ranges of
parameter values {g(k)}. Specifically for the case of the
Ising model, reweighting in terms of inverse temperatures
reduces Eq. (4) to:

〈P 〉β =

∑N
i=1 Pσi exp [−(β − β0)Eσi)]∑N
i=1 exp [−(β − β0)Eσi ]

. (6)

In Fig. 2, we show the expectation value 〈P (b)〉 as
a function of β for the Ising model with lattice size
L = 128. The values over this large span of inverse tem-
peratures, depicted by the line, have been obtained by
exclusively extrapolating the probabilities from config-
urations of one Monte Carlo dataset. To demonstrate
that reweighting is generally applicable we consider two
cases where the Monte Carlo dataset is simulated at
β0 = 0.438 in the symmetric phase or β0 = 0.44 in
the broken-symmetry phase. The reweighting results are
compared with actual calculations of the average prob-
ability, which are obtained from predictions of the con-
volutional neural network on independent Monte Carlo
datasets. The reweighted extrapolations overlap within
statistical errors with the values from actual calculations
(see App. C), demonstrating that the method is accurate.
In addition we note, by comparing the results of the two

FIG. 3. Neural network output probability for the ensemble
defined by configurations from inverse temperatures β = 0.41
and β = 0.42, versus inverse temperature β. Reweighting is
depicted by the line in the inset, where statistical errors are
visible. The filled point corresponds to the parameter choice
β = 0.38 used to conduct reweighting. Empty points are
predictions of the CNN on independent Monte Carlo datasets,
added for comparison. The training was conducted for β =
0.31, 0.32 (labelled as 0) and β = 0.41, 0.42 (labelled as 1).

cases, that the statistical errors of extrapolations increase
with the distance from the reweighting point.

We observe that the average probability resembles an
order parameter, with values that are consistent with
zero and one at different phases. In addition this effec-
tive order parameter has emerged by features learned on
configurations for sets of inverse temperatures which lie
beyond a fixed distance from the critical point βc. The
neural network has then fully reconstructed an effective
order parameter based on incomplete information and
representation of the studied system.

We emphasize that the reweighting of machine learning
devised observables is not inherently connected with the
reconstruction of an effective order parameter in a statis-
tical system and that it is generally applicable to learned
neural network functions. As an example, we train a neu-
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FIG. 4. Reweighted extrapolations of the neural network out-
put probability versus inverse temperature for various lattice
sizes.

ral network to learn a function that acts as measure of
the similarity between ensembles of configurations which
reside exclusively within one phase of the system. One
ensemble is comprised of configurations drawn from in-
verse temperatures β = 0.31 and β = 0.32, where the
configurations are labeled as zero, and the second ensem-
ble is comprised of configurations drawn from β = 0.41
and β = 0.42, labeled as one.

We apply the learned function to configurations of in-
termediate inverse temperatures to predict their associ-
ated label. The results are presented in Fig. 3, where
the probability of a configuration belonging in the en-
semble defined by β = 0.41 and β = 0.42 is depicted.
Reweighting results are compared with calculations from
independent Monte Carlo datasets, demonstrating that
reweighting is accurate within statistical errors. The re-
sults evidence that reweighting is generally applicable to
functions learned by a neural network in statistical sys-
tems.

IV. FINITE SIZE SCALING ON CNN-DERIVED
OBSERVABLES

To further investigate the construction of an effective
order parameter from a neural network trained for inverse
temperatures β ≤ 0.41 and β ≥ 0.43 (see Fig. 2), we em-
ploy reweighting to draw the output probability 〈P (b)〉
for a range of lattice sizes. Previous research (e.g. in
Refs. [4, 21]) has evidenced that decision making of a
neural network seems to rely on some form of devised
magnetization function. In Fig. 4 we note that the prob-
abilities for increasing lattice sizes become sharper near
the critical point in a way that mimics the behaviour
of the magnetization. We recall that near a continu-
ous phase transition and on a lattice of a finite size L,
fluctuations such as the magnetic susceptibility χ have a
maximum value. A pseudo-critical point βχc (L) is then
associated with the maxima of the fluctuations which in
the thermodynamic limit converges to the inverse critical

FIG. 5. Fluctuations of the neural network output probabil-
ity, Eq. (8), for various lattice sizes. The vertical line corre-
sponds to the known critical temperature βc ≈ 0.440687 of
the two-dimensional Ising model.

temperature:

lim
L→∞

βχc = βc. (7)

Considering that the neural network output probabil-
ity manifests behaviour which is reminiscent to that of an
effective order parameter, we proceed by investigating its
fluctuations, weighed by the inverse temperature, which
are defined as:

δP = βV (〈P 2〉 − 〈P 〉2). (8)

Since reweighting has been formulated in terms of an
arbitrary observable, we use Eq. (4) to estimate the ex-
pectation values of both observables 〈P 2〉, 〈P 〉 and hence
calculate the fluctuations of the probability which are de-
picted in Fig. 5, without including statistical errors. We
note that the inverse temperatures where the maximum
values of the fluctuations δP are located evidence a scal-
ing behaviour with increasing lattice sizes. As discussed
above, such scaling behaviour of the fluctuations is an-
ticipated for a quantity that acts as an effective order
parameter, and it tentatively indicates a convergence to-
wards the known inverse critical temperature of the Ising
model βc ≈ 0.440687, which is depicted by the vertical
line. We therefore associate pseudo-critical points βPc (L)
for the values of the maxima δPmax to investigate their
convergence in the thermodynamic limit (see Eq. (7)),
and to calculate multiple critical exponents in our subse-
quent quantitative analysis.

In order to estimate the correlation length exponent ν
and the inverse critical temperature βc we note that, due
to the divergence of the correlation length in the pseudo-
critical region, the reduced temperature can be expressed
as:

|t| =
∣∣∣βc − βc(L)

βc

∣∣∣ ∼ ξ− 1
ν ∼ L− 1

ν . (9)

Consequently, without presuming any knowledge
about the values of the inverse critical temperature and
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FIG. 6. Inverse pseudo-critical temperature versus inverse
lattice size.

the correlation length exponent, we can calculate them
simultaneously using Eq. (9).

In addition, we investigate if the fluctuations of the
neural network output probability, which resembles an
effective order parameter, are governed by the same crit-
ical exponent as the fluctuations of the conventional or-
der parameter, which is the magnetization. We therefore
perform a calculation for the magnetic susceptibility ex-
ponent γ using the maximum values of the probability
fluctuations:

δP ∼ L
γ
ν . (10)

As visible in Figs. 6 and 7, we fit the data (see Tab. I)
for the pseudo-critical points and the maxima of the
probability fluctuations using Eqs. (9) and (10), respec-
tively. The results of the finite size scaling analysis are
given in Tab. II. We note that the obtained estimates
for the critical exponents (ν = 0.95(9), γ/ν = 1.78(4))
and the inverse critical temperature (βc = 0.440749(68))
of the Ising model are within statistical errors of the
known values from Onsager’s analytical solution (ν = 1,

γ/ν = 7/4, βc = ln(1+
√

2)/2). In the error analysis only
statistical errors from predictions of the neural network
on a finite Monte Carlo dataset were considered.

TABLE I. Pseudo-critical points βP
c (L) and maxima of the

probability fluctuations δPmax for various lattice sizes L of
the Ising model.

L βP
c (L) δPmax

128 0.438857(33) 1409(6)
200 0.439536(24) 3308(14)
256 0.439889(18) 5233(24)
360 0.440088(13) 9910(49)
440 0.440261(12) 13138(71)
512 0.440292(10) 18912(99)
640 0.440403(10) 25215(218)
760 0.440465(8) 30841(206)

FIG. 7. Probability fluctuations versus lattice size on double
logarithmic scale.

V. CONCLUSIONS

In this article we introduced histogram reweighting to
supervised machine learning. By treating the output of
a neural network in a phase identification task as an ob-
servable in the two-dimensional Ising model, we utilized
reweighting to extrapolate it over continuous ranges in
parameter space. We further interpreted the output as
an effective order parameter and investigated its scaling
behaviour. This resulted in a calculation of the corre-
lation length and magnetic susceptibility critical expo-
nents, as well as the inverse critical temperature, based
on a finite size scaling analysis conducted on quantities
derived from the neural network.

The extension of histogram reweighting to neural net-
works enables quantitative studies of phase transitions
based on a synergistic relation between machine learn-
ing and statistical mechanics. Generalizing to multiple
histogram reweighting is straightforward. The effective
order parameter learned by the neural network on the
spatial structure of configurations, where no explicit in-
formation about the symmetries of the Hamiltonian is
introduced, can be studied with high precision using
reweighting and could prove useful when a conventional
order parameter is absent or unknown [4]. Examples
are phenomena that are currently under active investi-
gation, such as topological superconductivity [62], and
the finite-temperature phase transition in quantum chro-
modynamics [63, 64]. Finally, through multi-parameter
reweighting, one could explore the extrapolation of ma-

TABLE II. Critical exponents ν,γ/ν and critical inverse tem-
perature βc of the Ising model acquired by reweighting quan-
tities of the neural network implementation and comparison
with exact values from Onsager’s analytical solution.

βc ν γ/ν
CNN+Reweighting 0.440749(68) 0.95(9) 1.78(4)

Exact ln(1 +
√

2)/2 1 7/4
≈ 0.440687 =1.75
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chine learning predictions in regions of parameter space
where direct sampling with Monte Carlo might not be
possible. Such cases potentially include systems with a
numerical sign problem [65].
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Appendix A: Ising Model

We consider the Ising model on a hypercubic two-
dimensional square lattice with Hamiltonian:

E = −J
∑
〈ij〉

sisj − h
∑
i

si, (A1)

where 〈ij〉 denotes a sum over nearest neighbors, J is the
coupling constant which is set to one, and h the external
magnetic field which is set to zero.

The system is invariant under a reflection symmetry
{si} → {−si} that can be spontaneously broken. We
define in the vicinity of a continuous phase transition, a
dimensionless parameter called the reduced inverse tem-
perature:

t =
βc − β
βc

, (A2)

where βc is the critical temperature. The divergence of
the correlation length for a system in the thermodynamic
limit ξ = ξ(β, L =∞) is given by:

ξ ∼ |t|−ν , (A3)

with ν the correlation length critical exponent. Another
observable of interest is the normalized magnetization:

m =
1

V

∣∣∣∣∑
i

si

∣∣∣∣, (A4)

where V is the volume of the system. The magnetic
susceptibility is then defined as the fluctuations of the
magnetization:

χ = βV (〈m2〉 − 〈m〉2), (A5)

and has an associated critical exponent γ, defined via:

χ ∼ |t|−γ . (A6)

The sets of critical exponents determine a universality
class. Knowledge of two exponents is sufficient for the
calculation of the remaining ones through the use of scal-
ing relations (e.g. see Ref. [58]). The exact results for
the two-dimensional Ising model are:

ν = 1, (A7)

γ/ν = 7/4, (A8)

βc = 1
2 ln(1 +

√
2) ≈ 0.440687. (A9)

Appendix B: CNN Architecture

The neural network architecture (see Fig. 1) consists of
a 2D convolutional layer with 64 filters of size 2× 2 and
a stride of 2, supplemented with a rectified linear unit
(ReLU) activation function. The result is then passed
to a 2× 2 max-pooling layer and subsequently to a fully
connected layer with 64 ReLU units. The output layer
consists of two units with a softmax activation function,
with values between [0, 1]. Configurations in the symmet-
ric phase are labeled as (1, 0) and in the broken-symmetry
phase as (0, 1). We train the CNN until convergence us-
ing the Adam algorithm and a mini-batch size of 12. To
speed up the learning in small lattices of L ≤ 256, we
choose a learning rate of 10−4 and reduce it by a factor
of 10 for the remaining sizes.

The architecture is selected using an empirical ap-
proach. Initially, the CNN is trained for lattice size
L = 128 where its training and validation loss, as well as
their difference, are monitored to be minimal. This certi-
fies that the CNN accurately separates phases of the 2D
Ising model based on the presented training data and can
generalize well to unseen data. The approach is then ex-
tended successfully to larger lattice sizes, up to L = 760,
covering the complete range of sizes used for the finite
size scaling with the same CNN architecture. Architec-
tures for more complicated systems can be derived using
the same approach. When testing a different architec-
ture, an increase or decrease in the number of trainable
parameters might lead to overfitting or underfitting of
data. The occurrence of underfitting or overfitting can
be monitored based on the effect on the values of the
validation loss.

Appendix C: Bootstrap Analysis

The calculation of errors has been conducted with
a boostrap analysis [58]. This enables the elimination
of any potential bias associated with the finite Monte
Carlo generated sample. In particular, each Monte Carlo
dataset, comprised of uncorrelated configurations, has
been resampled a 1000 times for each lattice size. For
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each resampled dataset, reweighted extrapolations of the
output probability and its fluctuations are acquired in a
wide range of temperatures. The error for the extrapo-
lated probability P at each inverse temperature β is given
by equation:

σ =

√
P 2 − P 2

, (C1)

where the averages are performed over the bootstrap
replicas.
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