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Abstract. In this study we present a numerical approach to solve steady-state heat conduction
problems in functionally graded materials (FGMs). Two different types of material gradations
are considered for spatially varying thermal conductivity of FGM: (1) Quadratic material
gradation; (2) Exponential material gradation. The proposed numerical procedure is based on
finite-difference method and is developed to solve the steady-state heat conduction equation
over a general two-dimensional (irregular) heat conducting body (FGM) with Dirichlet,
Neumann, and Robin boundary conditions. In addition to presenting an accurate heat
conduction equation solution considering an irregular shape and a variety of boundary
conditions, the other novel aspect of this study is to identify the constant parameters in the
material gradations accurately by an inverse analysis thereby determining the accurate form of
gradation. The novelty of the inverse analysis lies in proposing an accurate and efficient explicit
sensitivity analysis scheme. The main advantage of the sensitivity analysis scheme is that it is
not involved with an adjoint equation and all the sensitivity coefficients can be explicitly
computed in only one direct solution. The conjugate gradient method (CGM) is used to reduce
the mismatch between the computed temperature on part of the boundary and the simulated
measured temperature distribution. The accuracy, efficiency, and robustness of the proposed
numerical approach are demonstrated through presenting two test cases.
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1. Introduction

Functionally graded materials (FGMs), initially proposed to be a solution for structures
withstanding high surface temperatures in aerospace industry, are a relatively new class
of composite materials with attractive thermo-mechanical properties and extensive uses
in engineering applications subjected to, say, high temperature and high thermal stress
arising in aerospace, pressure vessel, and nuclear reactors, to name a few. These
materials are inhomogeneous composites which are composed of two or more
constituents phases. By gradually varying the volume fraction of constituent materials
of FGMs, their properties (such as thermal conductivity, modulus of elasticity, density,
etc) vary smoothly and continuously with position [1-3]. Due to the ever-increasing
importance of thermo-mechanical behavior of FGMs in engineering applications, these
materials have been subject of intensive research during past decades and many
analytical and computational methods are adopted to model and analyze such a

behavior under different thermo-mechanical loading conditions.

In [4], an exact analytical solution based on Ferrari’s method is derived for steady-state
heat transfer in functionally graded sandwich slabs under convective-radiative boundary
conditions. In [5] Green’s Functions and boundary integral analysis is employed to
obtain closed-form expressions for two and three-dimensional heat conduction equation
in FGMs considering an exponential thermal conductivity gradation. In [6], a boundary
element method is presented to solve transient heat conduction in FGMs with
quadratic, exponential, and trigonometric gradation of thermal conductivity and specific
heat. In [7], a numerical framework based on combination of generalized finite-difference
method and Krylov deferred correction is presented to solve 3D transient heat
conduction problems in FGMs. Four types of material gradations, namely, quadratic,
exponential, logarithmic, and trigonometric, are considered for thermal conductivity

gradation in the solid body.

Accurate determination of temperature distribution over heat conducting bodies requires
that the thermo-physical properties of material and associated boundary conditions are
precisely known. However, accurate knowledge of such quantities involves expensive
experiments with sophisticated instruments. Hence, inverse methods, as inexpensive

alternatives, may be employed to estimate the thermo-physical properties such as the
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thermal conductivity (constant, temperature-dependent, and spatially varying
parameter) and the convection heat transfer coefficient [8-38] , the heat flux [39-43], and
the boundary shape of bodies [44-48] using temperature measurement taken at some
points inside the body or on some part of the boundary. However, due to ill-posed
nature, Inverse Heat Transfer Problems (IHTPs) are mathematically challenging
problems because the ill-posed problems are inherently unstable and very sensitive to
noise and special methods are required to solve these problems [49-51]. Due to the power
of high-speed computers, the numerical treatment of IHTP in FGMs has also received
much attention among engineers and mathematicians. In [52], Cauchy problem for
steady-state heat conduction in two-dimensional anisotropic FGMs are addressed. The
method of fundamental solution is employed to solve this inverse problem and since the
obtained system of equations is ill-conditioned, the Tikhonov regularization method is
employed to solve it. In [53], an inverse method is used to estimate the unknown space-
dependent thermal conductivity of a functionally graded hollow cylinder. The method is
based on the conjugate gradient method and the discrepancy principle and the success
of the inverse method depends on the type of the boundary conditions. In [54], spatially
varying properties of solid material such as thermal conductivity is determined using
temperature measurement taken on the boundary of solid material. In [55], an inverse
method based on the conjugate gradient method and the discrepancy principle is
employed to simultaneously estimate the unknown time-dependent inner and outer
boundary heat fluxes in a functionally graded hollow circular cylinder from the
knowledge of temperature measurements taken within the cylinder. Then distribution of
temperature and thermal stresses in the hollow cylinder is determined. In [56], an
inverse analysis based on the conjugate gradient method and the discrepancy principle is
employed to estimate the time and spatially varying pressure and heat flux in
functionally graded cylindrical shells with finite length by using the measured
displacements and temperatures on their outer surfaces. The governing equations of the
direct, adjoint, and sensitivity problems under related boundary and initial conditions
are solved by using differential quadrature method (as a numerical tool to analyze

different problems of functionally graded shells).



In the literature, however, there still exist some limitations on the methods proposed by
different researchers to address spatially varying thermal conductivity. Some of these

limitations can be summarized as follows:

- The heat conduction problem is concerned with regular bodies only (inability to
address the irregular bodies) and the heat conduction equation is solved using the

traditional finite-difference method.

- Most of the boundary conditions in the literature are either a constant temperature
(Dirichlet boundary condition) or insulated case without addressing the Neumann, and

Robin types.

- Many of the proposed methods to address the spatially variation of thermal

conductivity are limited to one-dimensional problems.

Thus a general methodology for a general 2D domain and boundary conditions
considering a spatially varying thermal conductivity as a FGM property with a high
degree of accuracy is required. This paper deals with two-dimensional steady-state heat
conduction problems in FGMs in which the thermal conductivity of FGM varies
quadratically and exponentially with position in £ — and y— directions, that is,
k= f(z,y). In addition to presenting an accurate heat conduction equation solution
considering an irregular shape and a variety of boundary conditions, the other novel
aspect of this study is to identify the constant parameters in the thermal conductivity
gradations accurately by an inverse analysis thereby determining the accurate form of
the gradation. To do so, elliptic grid generation technique is used to generate a mesh
over the irregular body and then solve for the steady-state heat conduction equation by
transforming the body shape (physical domain), the governing equation and the
associated boundary conditions onto the computational domain. The discretization in
the computational domain is based on the finite-difference method, a method chosen for
its simplicity and ease of implementation. The most innovative aspect of the numerical
approach is its very efficient and accurate sensitivity analysis scheme in which explicit
expressions for the sensitivity coefficients are derived which allow for the computation of
all sensitivity coefficients in one single solve only. The conjugate gradient method is
employed to minimize the difference between the computed temperature on part of the
boundary and the simulated measured temperature.
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2. Governing equation

The mathematical representation of the steady-state heat conduction problem of

interest here can be expressed as below (see Fig. 1)

O )25y + 2 () 2

——) =0 in physical domain §? 1
ox ox dy 8y) PRy M

subject to the boundary conditions

3—T _4 on boundary surface Fl (2)
on
h
Z—T = —?(TF‘-TOO‘) on boundary surface I';, i = 2,3,4 (3)
n 2 12

Two different types are considered for the spatially varying thermal conductivity

(material gradation type) which will be considered separately:
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Fig. 1 Arbitrarily shaped two-dimensional heat-conducting body (physical domain) subjected to

convective heat transfer on surfaces I',,7 = 2,3,4 and heat flux ¢ on surface I', (a) and the

corresponding computational domain (b). The spatially varying thermal conductivity of the body is
k(@,y) .



Type 1. Quadratic material gradation: k = a (1 + (1230)2 1+ a3y)2

Type 2. Exponential material gradation: k = ale(lﬂﬂ)e(lﬂi‘y)
In this study, the discretization of the physical domain is performed by the elliptic grid
generation and the approximation of the derivatives of the field variable (temperature)
at grid nodes by algebraic ones is performed by using finite-difference method. In this
method, the irregular physical domain (Fig. 1a) is mapped from the z and y physical
plane onto the ¢ and 5 computational plane (Fig. 1b). Then the heat conduction
equation and the boundary conditions (Egs.(1) to (3)) are transformed from the z and
y physical plane to the ¢ and 5 computational plane [57]. Here since the thermal
conductivity is not constant and is a spatially varying parameter, we can expand Eq.
(1) as follows

Ok OT +k62T Ok OT | 0T _

+k
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by simplifying, we get
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by substituting for 7', T, T

ax?

and Tw using the transformation relationships and

finite-difference expressions [57], Eq. (4) will be

1

1
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where for type 1 (quadratic material gradation):

ki,j - al(l + a2xz‘,j)2(1 + agym)z (6)
ok, 2
kz}]'z - 8:1; - 2@1(12(1 + a’2xi7j)(]— + a3yi,j) (7)



ok _
ki’jy = —83/7] — 2a1a3 (1 + aQ:UZ_J)Z (1 + a3yi’j) (8)

and for type 2 (exponential material gradation):

k= ale(Ha?x”)e(H%y"’f) 9)
Ok, .
_ %) (1+a CL’“) (1+a yi,‘)
Tt (10)
k. . - .
— 0 g g o)) (11)

and

fg - %(j;-i-l,j - j;—l,j)

1
f;; = g(fi,j—i-l - fm‘—l)

ffg = j;?—l-l,j - sz',j + j;—l,j
j;m = ']L;Z,j-l-l - 2‘}2'7j + f';,j—l
!
fgn - Z(fi+1,1+1 - fz‘—l,j+1 o f;—i-l,j—l + fi—l,j—l) (12)

where f=uz,9,7. And
o=t
p= Tely + Yel,
V=g,

J = LY, =T, Y, (J acobian of transformation) (13)



are the coefficients obtained from the elliptic grid generation method [57, 58|. By

knowing the values for a,, I =1,2,3 as well as z, and Y. (nodal coordinates) from the

elliptic grid generation step, the values for e k“. , and k’l.j are also known. Eq. (5)
v ’.Z 7 (1/

may be solved using an algebraic solver such as Maple to obtain an expression for T”

in the body, as follows

1

T= k. (a+'y)(0 Bk, 0Ty =k 0Ty + 2 BT, =k 2T — kT, _kivJ}ny”?Tf

] i+1.7 i, 4,7+1 i,j—1

_|_k;i7].$Jy£Tn + ki»]'nyHTﬁ B k’hJ’nyéTn )> (14)

T
The term or at a boundary surface in the physical domain is related to aa—z and/or
n

oT

o at the corresponding transformed boundary surface in the computational domain.
n

At boundary surfaces I',, i =1,2,3,4, we have [57]

orT  —
at surface I, : — 5 7T ﬁT (15)
T
at surface I', : or _ L(fyTn - ﬂTg) (16)
an, J\/;
oT -1
at surface I'y : — = —=(aT, — 8T ) (17)
T A
at surface I, : or _ L(osz - 6Tn) (18)

on, J\/;

Thus, the boundary condition equation at the surface, say, I', for the quadratic

material gradation type is written as

qconduction |F2: qconvection F2 (19)



oT

—k——h(T -T ) (20)
n, 2
j\/7 fyT BT 2(TF2 —T%) (21)
at the surface I',, we have
1
Tg = 5( i+1,N i lN) (22)
1

I, = 5(3Ti,N — AT,y + T;',N—Z) (23)

Therefore, Eq. (21) becomes

3T .. — 4T +T T -T
. 1 - N iN—1 iN-2 3 i+1,N LN | h, (TZN —T ) (24)
Moy 2 2 7 2

where the coefficients J, v, and 3 defined in Eq. (13) are computed using finite-

difference coefficients associated with the surface I'y. Solving Eq. (24) for T, , gives the
temperature distribution on the boundary surface T, as follows

B o R R T L L

3k, 7 + 2hy

In a similar fashion, we can compute the temperature values on the surfaces I,

i=134.

3. The inverse analysis

3.1 Objective function

The main objective of the study is to identify the spatially varying thermal conductivity

of functionally graded materials. To do so, an inverse analysis is used to estimate the



1+a,z) (1+a.1
k= q )

thermal conductivity & =a (1 + aQ:z:)2 1+ a3y)2 and (using the

estimation of a,, a

,» and a, ) separately so that the square of the difference between the

computed temperature of the outer surface I', and the measured temperature of the

same surface is minimized. This can be mathematically expressed as

i : Eq.(1) in Q, BCs in Eqs.(2)-(3) (26)

min{ J ::C'HTr -T
( 2

k(z,y) in Q

where T is the vector of the measured temperature and C' is a positive constant and

can be considered as C =10",n =0,1,2,.... The aim of the inverse analysis is to
minimize the following objective function expression using optimization of the value of
a,, a,, and a,

M-1
F=03 (T T\ ) (27)
=2

3.2 Sensitivity analysis

In gradient-based optimization methods, the computation of derivative of the objective
function with respect to the unknown variables is required. Thus, in order to compute

the sensitivity of the objective function J defined by Eq. (27) to a;, I =1,2,3 we can

write

M- 1 oT
2 ~ Ty )C LN (28)
222 Ja,

8 M-1 6
c')_le = QCZ (TzN (z N), )
i=2

1

oT, y

where [ =1,2,3. In Eq. (28), C —— 5 Y (1=1,2,3) are called the sensitivity coefficients
a
1

and may be explicitly expressed by taking derivative of Eq. (25) with respect to the

variable  thermal conductivity —components a , =123 . For the case

k=a(1+ an)Q(l + agy)2 we can write Eq. (25) as
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B a,(1+ azxi,l\f)Q(l + a3yi,N>2(4ﬂ;,N—1 ATy + BTy = BTy ) + 20 J(T
3a,(1+ a,za:in)Q(l + agyin) v+ 2h2J\/;

— (29)

Tin
a

Now the sensitivity coefficients C (1=1,2,3) can be explicitly expressed by

l

differentiating the obtained expression for T n with respect to a;, 1 =1,2,3, as follows

or,

a

N
= 2}7’2‘]\/;(_4@2%,1\/@3%,1\/71 N2 T80, yagy, \ BT, + 8a,z, N“3y1 N’VTzN 1
1

2
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—|—4a§y; e N-1 37/2N7T¢,, +2a] 3Y; NﬂT + 8a,7, NVT N-1 2a2x.nyT. N-2 T 4a2xi,NﬂT§

2 2
+4a2xz N7TzN 1 a2$z,N7TzN 2 +2“2 zNﬁT +47T _VTz', +4a zN 3yzNﬁT§
+4a zN 31’/1 N”YTz',N—1 ay ?N a3y; N’YTZ; —|—2a zN 3y NﬂT 69T, ,B3Yin =377, a3yzN
—67Tm yT; - 3T agzr —127T , 0T N, N 691 , %%, agy?N—6’yT ag 2 N%Y N

—3T agfoa?)yQN) / (12a,a, , ysY, Y T+ 60,0, ZNagy,?Ny + 6a1a2x3Na3y.ny + 3a1a2xZNa§yZny

+6a,a,y, v + 3a1a3y;.7N7 + 6a,a,7, v + 3a,a N7 + 3a,y + 2h, J\f (30)

oT,

8a

= daz, hz‘]\/;(25Tg TV =Ty — 37Tm2 + 8a3y, YT, vy — 2039, VT, o

2 9 2
+4“3y¢,NﬁT§ + 4a3yz',N7TzN 17 3yi,N,yj—; N—2t 2a3yz NﬂTg + 4a2xz‘,N7TzN 1 %xi,NVTzN 2

2 2 2 2
+2a,, 'NﬁT - 2a2wi,Na3yz,N71;,N—2 + 4“2x¢,Na3yz,NﬁTg + da,m, N%%N’VTzN 1 z‘,N%yz,N’VTzN 2
+2a, x, a3y NﬁT€ +8a2xz.7Na3yi’nyTZN . 67Tw2a3y — 3T a3y N —37Tm2a2xz.7N
—6~T, , B tinsYin — 3T, , T2t zNai’Q;yzN)/(12ala2xz N%%,NV+6a1a2xi,Na§yi2,N7+6a1a§$z'2,Na3y¢,N7

—|—3a1a2 xi’NaSyLny + 6a1a3yi7ny + 3a1a§y2N7 4 6a1a2xl.’ny + 3ala§x2N7 + 3a,y + 277,2(]\/;)2 (31)
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oT
i,N
da, = 4“13‘/7:,Nh2‘]\/;(2ﬂT§ +4T =Ty — 37Tm2 +4a3y, Ty = 03U YTy s

+2a3yi,NﬁT§ + 8a2x¢N7TzN | — 20,7, N'YTzN o T 4a,, NﬂT + 46‘2“’} N'VTzN 1 zN'YTzN 2
+2&'§$2’2,NﬁT = 2a,7, yay, YTy +AayT; yagy, NBT + 4“ 7} inY YT vy a2$i2.Na3yi,N7TzN 2
+8a, T, N03Y; nyT N1 + 2a2:131 N%%NﬁT — 3fyTN a3y, Ny — 67Tw2a2x 3fyT aifo

—6~T , BNt — 3T, azz‘ULN%y N) / (12a,a, T, N4sY,; Y 1 60,0, 3%N’V + 66L1 uv%yz N

+3a1a2xi7Na3yzN7 + 6ala3yi7ny + 3a1a3yi7N7 + 6a1a2332.7N'y + 3a1a:2x2.7N7 + 3a,y + QhQJ\/;) (32)

For the case k = ale(lﬂ?x)e(H%y) we can write Eq. (25) as

(+ayz; ) (4agy, n)
e T Ty ATy BT~ BT ) + 2 T, G

i, N (Iagz; 5) (+agy; n)
3ae N TS 7N7+2h2J\/;

and the sensitivity coefficients C' Y (1= 1,2,3) can be written as
y

q
(2+ayz; y+aqy; x)
GT@N B 2e7 NN hz']\/;(‘l'YT@N—l - ’VTz',N—2 + ’BTZ'—H,N - ﬁTi—l,N - 3’YTN2) (34)
8(),1 (3a16(2+“2%,N+“3%,N),Y + ZhQJ\/;)z

(2+a' T, "+a‘ Yi 1 )
oT, 2a,1; ve sy hz‘]\/;(‘LVTZ—,Nq =Tyt 5Tq¢+1,N - 5Ti—1,N - 37Tw2)

i,N — (2402, v +ay. ) . (35)
) eI s
@+ 1N ;) )
OT, 2y, ye T IS T =T+ BT =BTy 39T (36)
803 (3@16(24—@1’1’1\,+a3yi’N)’Y N ZhQJ\/;)

N can be computed in only one single direct

8@1

Therefore, the sensitivity coefficients C

problem solution without the need for solving the adjoint equation. The sensitivity

matrix Ja can be explicitly written as
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9 Tz,N 9 Tz,N 0 szN
(9a1 8(12 8@3
8T3’N 8T3,N 6T3’N
Ja, =C1 9q Ja, =C| 0da, Ja, =C| Oa, (37)
1 2 . 3 .
8 T]\I—LN 8 T]\,[_LN 8 TJW—LN
Bal (M—2)x1 8(12 (M—2)x1 6a3 (M—2)x1

3.3 The Conjugate Gradient Method (CGM)

In this study, the inverse heat transfer problem is solved using the conjugate gradient

optimization method. The objective function given by Eq. (27) is minimized by

searching along the direction of descent d® using a search step length ﬁ(k) .
f(k+1) _ f(k) _ ﬂ(k)d(k) (38)

where f =a,,a,,a;,. The direction of descent of the current iteration is obtained as a
linear combination of the direction of descent of the previous iteration and the gradient

direction V](k). Therefore,
d® — Vj(k) + B (39)

The Polak-Ribiere formula [59] is employed to calculate the conjugation coefficient:

) [VJ(“)]T(V}(“)—V}““”) [v;“‘)r(v;z(k)—v;z““l))
7 = = (40)

1 V](k_l) ||2 [V](k—l)]T V}(k—l)

The search step length is given as follows [50]

k) ;(k)1T
- [Jaldg®] Tx =T, |

[Ja(k)d(k) ]T [Ja(k)d(k>]

3w (41)
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3.3.1 Optimization algorithm

The following algorithm represents the direct and inverse analysis steps used to estimate
the spatially varying thermal conductivity of functionally graded materials in steady-

state heat conduction problems:

1. Specify the physical domain, the boundary conditions, type of material gradation, and

the measured outer surface temperature.
2. Generate the boundary-fitted grid using the elliptic grid generation method.

3. Solve the direct problem of finding the temperature values at any grid points of the

physical domain using an initial variable thermal conductivity (initial guess for a;,a,,a,
).

4. Using Eq. (27), compute the objective function (™).

5. If value of the objective function obtained in step 4 is less than the specified stopping

criterion, the optimization is finished. Otherwise, go to step 6.

6. Compute the sensitivity matrix Jad1 from Eq. (37)
7. Compute the gradient direction VI® from Eq. (28).
“

8. Compute the conjugation coefficient y(k) from Eq. (40). For k =0, set 7(0) =0.

Ll

a

9. Compute the directions of descent d" from Eq. (39).
1

10. Compute the search step-length ﬁ((k) from Eq. (41).
gl

11. From Eq. (38), evaluate the new value for a .
12. With new value for a , repeat the steps 6 to 11 for a,,.

13. With new values for a and a,, repeat the steps 6 to 11 for a,.

14



14. Set the next iteration (k = k +1) and return to the step 2.

3.4 stopping criterion

Without measurement errors, the following criterion is used to terminate the

minimization process
g <& (42)

where € is a small specified number. In this study, for the case of no measurement

error, ¢ =10* and € =107 (depending on the value of C'). However, the measured
temperatures contain errors and the objective function value will not be zero at the end
of the iterative process. In this case, the Discrepancy Principle is used to stop the
iterative procedure. In the Discrepancy Principle, the solution is assumed to be
sufficiently accurate when the difference between computed and measured temperatures

is of the order of magnitude of the measurement errors, that is,

~ o (43)

computed measured

where o is the standard deviation of the measurement errors. In the present analysis, o
is assumed constant. By substituting Eq. (43) into Eq. (27) (objective function

definition) we can obtain the following value for ¢
e=C(M —2)0? (44)
Then the iterative procedure is stopped when the following criterion is satisfied [50]

g <& (45)

3.5 Identifiability condition

As given in the optimization algorithm, the parameters a , a,, and a, are estimated

separately and successively at each iteration. They can be estimated as long as the

identifiability condition is met. By considering Eq. (38), O = ) 3EgH) - where
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[ =a,a,,a,, it can be seen that if 3®qM = 0 where d = Vj(k) + ”y(k)d(k_l) then the

37
parameters a , a,, and a, cannot be updated. From the expression for the gradient of
the objective function with respect to the parameters a,, a,, and a,, Eq. (28),

9F _ 2/3a, J'IT, 1=1,2,3 (46)

3(11 LN a T(i’N)m ]7

as well as from the expression for the direction of descent, Eq. (39), it can be concluded

that if Ja, =0, then V3% =0 and hence d™ = 0. Thus we can write
1

[Ja9] =0 (47)

(M —2)x1

which is the so-called identifiability condition for the estimation of the parameters a,,

a,

,, and a;. A zero matrix is a matrix in which all entries are zero, that is, if Ja =0

then

Ja,, = Ja

11 271=Ja =...=Ja

5.1 1=0 (48)

By considering the sensitivity coefficients given by Eqgs. (30)-(32) for the quadratic
gradation type and Eqs. (34)-(36) for the exponential gradation type, we can see that
the only possibility to meet the conditions given in Eq. (48) is

h,=0 or a =0 (49)

Therefore the identifiability conditions for the parameter estimation problems given in

this study are as follows

h

, =0 and a =0 (50)

1

from  the  definitions given for the thermal conductivity gradations,
k=a(l+ an)Q(l + a3y)2 and k= ale(lﬂﬂ)e(lﬂﬂ )it is evident that if a, =0 then
k=0. If h, =0 and a;, =0, then the denominator of the expressions for the Jacobian

matrices entries become zero.
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Moreover, it can be noted that the denominator of the expression for ﬂ(k) should not be

zero. Thus if

[Ja(k)];rx(M—z)[Ja(k)](M—Q)xl =0 (51)
by expanding Eq. (51) we obtain
Jai, +Jaj, + Jag + ...+ Jay,_, =0 (52)
and the only possibility is that
Ja,, =Jay, =Jag, =...=Jay ,, =0 (53)
which again gives rise to the previous conditions of
hy=0 or a =0 (54)

Therefore, the parameters a,, a,, and a; cannot be simultaneously estimated using the

iterative procedure if h, =0 or a; = 0. Moreover, it can be seen that if z, , =0 (

1

aTz’N 8TzN
i=2.,M-1) and y , =0 (i=2..,M~1), then ——=0 and — =0,
: a a

2

respectively, and these parameters cannot be estimated.
3.6 Linearly independent sensitivity coefficients

In inverse problems, it is desirable to have linearly-independent sensitivity coefficients

with large magnitude. The sensitivity vectors Ja , Ja _, and Ja,Z are linearly
il p) 3

independent if the equation

clJaa1 + CQJaa2 + cgJaa3 =0 (55)
has no solution other than
¢, =c,=c, =0 (56)

where ¢, ¢,, and ¢, are scalars. Eq. (55) can be written as
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Ja Ja Ja

) “2(1,1) 311
Jaa Jaa2 Jaa
Cl 1.(2¢1) + CQ .(271) + 03 :‘.;(2’1) == 0
Jaa Jaa Jaa
L) 2(i,1) 3(i,1)
or
clJa + cha +c,Ja =0
[¢?
L) 211 31,1
c,Ja +c.Ja +c,Ja =0
Uhen T 2y “B2.1)
c,Ja +c Ja + c3Ja =0
a,. 2 ag. .
(i,1) (i,1) (i,1)
Eq. (58) can be written as
Ja Jaa Jaa
Ty 20y S
Ja Ja Ja 4 0
Lll (12 (l3
.(2v1) (271) (21) C2 == O
: : : . 0
Ja Jaa Jaa
Ay 2y B

(57)

(58)

(59)

If i =1 (only one sensor is used to measure the temperature), then Eq. (58) (or Eq. (59)

) becomes

clja

+ CQJaa

+cJa =0 (60)

1) 2(1,1) B

which has a solution given by

cljaal(l . + C3Jaa,3(1 .
C = C,C = — ’Ja ——,cy =0y (61)

7
21,0)

where ¢, and ¢; can be chosen arbitrarily and ¢, is dependent on ¢, and c,. Therefore,

the sensitivity coefficients Ja , Ja, ;and Ja,  are linearly dependent.
K8y R(8) RE8)
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If ¢ =2 (two sensors are used to measure the temperature), then Eq. (59) becomes

01‘]% + CQJaa + 03‘]% =0
fw %(1.0) 30.0) (62)
clja +c,Ja + c,Ja =0
a 2% 7. 3% "a
21 22.1) 32,1)

which has a solution given by

c(=Ja, Ja +Ja Ja, ) c,(Ja Ja —Ja Ja )

@ ag ag 1 13 Tay El ay 9y
6 —c o= (1,1) (2.1) ) @2 P w2 21 Ly

2 Ja Ja —Ja Ja 3 Ja Ja —Ja Ja

201 e 201 B 201 e 201 "

(63)

where ¢, can be chosen arbitrarily and c, and c; are dependent on ¢, . Therefore, the

sensitivity vectors Ja_, Jaaz, and Ja are linearly dependent.
g [3

If 4> 2 (more than two sensors are used to measure the temperature), then the solution

for Eq. (59), for the sensitivity coefficients obtained in this study, becomes
¢, =c¢,=c, =0 (64)

It means that when more than two sensors are used to measure the temperature, the
sensitivity vectors given by Eq. (37) become linearly independent. In this study,

(M —2) sensors, as simulated measurements, ( M is the number of nodes on the

boundary surface I',, as shown in Fig. 1b) are used which is much larger than two

SENSsors.

3.7 Sensor (simulated measurement) place inside the heat-conducting body

It can be shown that the spatially varying thermal conductivity (quadratic and
exponential material gradation forms) considered in this study cannot be estimated if
the sensor is placed inside the body. From Eq. (5) or Eq. (14) it can be seen that the

variable a, (assuming a, = 0) is common to all terms and hence can be factored out.
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Thus if the sensor is placed at the node (4,5) (i=2,....M —1; j=2,...,N —1) inside

the body to measure the temperature, then we obtain

b= (65)

which means that the estimation of the variable a; using the temperature data from a

sensor inside the body is not feasible. For the variables a, and a, we obtain

2
For the quadratic material gradation:

0T, _ TeT, —v,T)
Jda

(66)
2 (a + 7)(1 + CLQLEZ.J)2

oT . JaxzT —=x T
L2 A ( §Tn Ui f) . (67)
3&.3 (a + 7)(1 + agyi’]‘)

For the exponential material gradation:

o1, 05J(yT, —y,T,)

NS 68
da, (a+7) (68)
oT,, 0.5J(:L’£T” - qug) (69)
8a3 (a+7)

where all variables in the computational domain are calculated at the node (4,7) inside

the body.

However, for other forms of spatial variation of the thermal conductivity such as

ki,j =a, +ayr,  +agy,, or ki’j =a + )T, +agy, ey, (which are not considered

in this study) we can place the measurement sensor inside the body to estimate the

variables a,, a,, a,, and a,. For example, for the form k”. =a +ar,  +agy, , we

17

have
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oT,, _ O.5J(—a2y7T +ay T +ax, T, — a3$$T77)
da

(70)

1 (a, +ayr, , + agym)z(a +7)

8Tm:_0.5J( yTa3y +yCTa3y[j T azT + 1z aa:T yTsa —i—ych7 )

5,7 3" & i,7 3 (71)
8@2 ((l + aza:” + agy@j) (Oé + 7)
6Tm. _ 0.5J(—95nT5a1 + :B$T7a :U}Tgazav?’] + T 0o, — .7ja2ynT€ + yl.vjazyan) (72)
aa?) (CL + (lzfll'l Jj + agyi7j) ((k + 7)

3.8 Statistical analysis for parameter estimation
After the minimization of the ordinary least-squares norm given in Eq. (27) and the

estimation of the unknown parameters a

1 Gy, and a,, the accuracy of the estimated

values for the parameters can be evaluated using a statistical analysis. If the
measurement errors are additive, unbiased (having zero mean), uncorrelated and have
constant variance, then confidence intervals at the 99% confidence level for the

estimated parameters are obtained as [50, 60]

a, —2.5760, <a, <a, +2.5760 , =123 (73)

where o, , 0, , and o, are the standard deviations for the estimated paramecters a,,
1 2 3

a,, and a,, respectively, and are obtained from the covariance matrix, V', of the

estimated parameters as follows

7 = (74)

The covariance matrix, V', is given by [32, 50]
V =0%(Ja Ja)! (75)

where o is the standard deviation of the measurement errors and is assumed to be

constant (in this study, o = 0.5). For the sensitivity vectors Ja,, Ja_, and Ja_, the
1 2 3

covariance matrices are scalars and are given by
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V=0’(Ja'Ja) " = o*(Ja;, + Jai, + Jai, + ...+ Ja3, , )"

02

I 2 2 2 (76)
J(LL1 + JaQ’1 + Ja371 +...+ JaM_Z1

Thus from Eq. (74), the standard deviations for the estimated parameters can be

obtained as

i=1,2,3 (77)

O—(l,, pu— I/a pu— 2 2 2 ,
1 V (3 y y y
Ja + Ja
a. a, a.
11 91

4. Results

As the numerical procedure explained here is concerned with a general two-dimensional
body shape with different boundary conditions, we first validate the results of the heat
conduction equation solution with the ones from the finite element analysis software
COMSOL due to its capability to define analytical expression for the spatially varying
thermal conductivity easily. To do so, a grid independency study is initially performed
for both types of material gradation (quadratic and exponential) using four different
grid sizes of 40 x 30, 80x 60, 150 x 100, and 250 x 150. As shown in Fig. 2, the heat
conducting body (the physical domain) is the area enclosed by two semicircles: the small

semicircle (T} ) of radius 5m is centered at the point (0,0) m and the large semicircle (

I',) of radius 20m is centered at the point (5,0) m.
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heat conducting hody
(physical domain)

-10 0 10 20

Fig. 2 Heat conducting body (FGM) used in test cases.

The numerical values of the coefficients involved in these two test cases are listed in
Table 1 (for quadratic material gradation) and Table 2 (for exponential material
gradation). As illustrated in Fig. 1, the heat-conducting body shown in Fig. 2 is

subjected to convective heat transfer on surfaces I',i=2,3,4 and heat flux ¢ on

surface Fl .

Test case 1 (Quadratic material gradation):

LW W W W W T (o 1T (o 1T (C

(=) k(——) hy(——)  h(——)  h(——) WO T (0 T (0
m m.”C m-.°C m-.°C m-.°C

800  10(1+0.006z, )*(L+0.003y, )’ 4 4 4 30 30 30

Table 1 Data used for the test case involving quadratic material gradation.

Test case 2 (Exponential material gradation):

. W W W ALY w T ("C T (°C T (‘C

Q(_2) k( S ) hQ( 20 h3 2o h4 T) 002( ) OC3( ) 004( )
m m.”C m*.°C m-.°C m*.°C

1200 66(1+0.025zi’].)e(1+0.055yi’].) 3 3 3 20 20 20

Table 2 Data used for the test case involving exponential material gradation.
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The results of the proposed numerical method are shown in Fig. 3 (for quadratic
gradation type) and Fig. 6 (for exponential gradation type) and the results from the
solver COMSOL for the quadratic and exponential gradation types are depicted in Fig.
4 and Fig. 7, respectively. A comparison of the results from both numerical methods for
both material gradation types reveals an excellent agreement thereby confirming the
correctness of the implementation and the accuracy of the proposed method. Moreover,
the spatially varying thermal conductivity distribution over the body (FGM) for the

quadratic and exponential gradation types are shown in Fig. 5 and Fig. 8, respectively.

35 TC0) 35 :— T¢C)
- 450 5 450
30 e 400 30 I 400
o temperature distribution 350 - temperature distribution 350
N (grid size: 40*30) 300 N (grid size: 80*60) 300
25k T,,,=34.76395(°C) 250 25 T,,=34.05107(°C) 250
- Tru=471.2648(°C) 200 1 Tra=472.3552(°C) 200
[ 150 [ 150
0 0
> | > F
15 15
10F 10F
5F 5F
o - L | o M :
W NN NN NN PN FEWE NN RN Sy S N SN IS I WU NI S SR
-15 -10 -5 0 5 10 15 20 25 -15 -10 -5 0 5 10 15 20 25
X X
a) b)
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sr T(C) 35 2 T(C)
- 450 - 450
30 t ture distributi 400 30 T 400
- (e size: 150°100) 30 : lemperature distribution 30
[ Toin=33.70444(°C) 250 [ T,,.=33.5424(°C 250
SF Tow=472.5915(C) 200 SF T:'_';=472.639(8(‘%:) 200
- 150 - 150
2F % 20f 5
> F > f
15F 15F
1of 10F
5F 5F
ok L = ok , 7
b b b b b b b ol N NS NS NS FEEE NS N N
15 10 5 0 )5( 10 15 20 15 10 5 0 10 15 20 25

¢)

Fig. 3 Grid independency study of heat conduction equation

temperature distribution using four different grid sizes of 40x 30 (a), 80x 60 (b), 150x100 (c), and 250 x 150 (d).

2)

d)

solution for quadratic material gradation. The

Surface: Temperatire (degC)

Au72714

¥ 332052

Fig. 4 Solving the heat conduction equation using the finite element analysis solver COMSOL. The grid used (a) and
the temperature distribution (b).
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I~ thermal conductivity distribution, k(x,y) 11
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0

X
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Fig. 5 Quadratic gradation of thermal conductivity.
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5 t ture distributi 180 5 180
- lemperature distribution | istril i
sk (arid size: 150°100) 100 sk o gy ion 1
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Fig. 6 Grid independency study of heat conduction equation solution for exponential material gradation. The
temperature distribution using four different grid sizes of 40x30 (a), 80x60 (b), 150x100 (c), and 250x150 (d).

Surface: Temperature (degC) o
m F T T =
24l | & 203538
22 1
20 200
8 180
16
14 160
12
10 140
8
1z0
6
* 100
2
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= 4
4t ] 60
6E I L 1 I 4 ¥57.6971

-10 0 10 20 m

Fig. 7 Temperature distribution obtained by solving the heat conduction equation using the finite element analysis
solver COMSOL.
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351 K (W/m.’C)

160

30 150
- 140

thermal conductivity distribution, k(x,y)

Fig. 8 Exponential gradation of thermal conductivity.

Then the computed temperature distribution T, (i=2,...,M —1) is used as the

simulated measured temperatures to recover the initially used spatially varying thermal

conductivity through estimation of components of it, namely, ¢, [ =1,2,3. In other
words, the temperature distribution 7, . (1=2,...,M —1) obtained by solving the heat

conduction equation using the numerical values specified in Test cases 1 & 2 (Table 1

and Table 2) is wused to recover a =10 , a,=0.006 , and a, =0.003 in

k= 10(1 +0.006z, )’(1+0.003y, ) and ¢ =6 , a,=0025 , and ay=0.055 in

b — 6e<1+0'025%)e(HO'OSSy’*j)

matrix coefficients using the central finite-difference relations, the grid nodes (1, N) and

, respectively. To facilitate the computation of the sensitivity

(M,N)on corners of the outer surface I', are excluded from computing the temperature

distribution. In the inverse analysis, the square of the difference between the

temperature distribution of the outer surface I', (obtained from the solution the direct

problem at each iteration) and the simulated measured temperature distribution of the

same surface (I',) is to be minimized.

Test case 1: Using the problem data given in Table 1 (for quadratic gradation type),
the known (desired) values of @, =10.0, a, =0.006, and a; =0.003 are to be
d d d
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recovered by an inverse analysis using three different initial guesses to demonstrate the

robustness of the inverse analysis:

a =25.0, a, =0.05, a, = 0.001
initialy initialy initialy
o, =20, a —0.0001, a —0.1
initialy initialy initialy
a = 300.0, a =0.0, a4 =0.0
initialy initialy initialy
Initial guess 1: a, =250, a, = 0.05, a, = 0.001
initialy initialy initialy
sE T(C) sE T(C)
- 300 - 450
30 280 30 400
N 260 B 350
B 240 - 300
25 |- initial temperature distribution 220 25 250
s a0 s optimal temperature distribution a0
[ 160 = 100
20 20
> f 120 - f ”
B 100 -
15 80 15
N 60 L
N 40 N
= 10
5F 5F
0 :_ L _ | 4 0 :_ i % |
ol NS R SRR NS SRS RN R R N ol BN RS FEEEE RS NS RS RIS R N
-15  -10 -5 0 10 15 20 25 -15  -10 -5 0 5 10 15 20 25
X X
a) b)

Fig. 9 Initial (a) and optimal (b) temperature distribution.
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Fig. 10 Initial (a) and optimal (b) thermal conductivity distribution.
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Fig. 11 Estimation of a;, a,, a, (k=a/(l+ an)Q(l + a3y)2 ) (a-c) and objective function versus iteration number (d)

for initial thermal conductivity & ...
initialy

= 95(1+ 005z, (1 +0.001y, Y(——).
! 7 mee

100
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- o
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Fig. 12 Sensitivity coefficients given by Eq. (37).
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Initial guess 2: a =20, a, = 0.0001, a, =0.1
initialy initialy initialy
35 :— T(C) 35 :_ T(°C)
- 800 N 450
30k 750 30 400
s 700 N 350
. 650 - 300
25 o initial temperature distribution ggg 25 r ggg
- 500 N optimal temperature distribution 150
- 450 o 100
20 400 20 50
> f 350 N
- 300 L
15F 250 15F
B 200 N
[ 150 [
10F 100 10
| 50 |
5F 5F
ok L o
T TS SRS TR T T T T T B P T T T
-15  -10 -5 0 5 10 15 20 25 -15 -10 -5 0 5 10 15 20 25
X X
a) b)
Fig. 13 Initial (a) and optimal (b) temperature distribution.
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Fig. 14 Initial (a) and optimal (b) thermal conductivity distribution.
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Fig. 15 Estimation of a;, a,, a, (k=a,(1+ azyc)2 1+ agy)Q) (a-c) and objective function versus iteration number (d)

for initial thermal conductivity & . .
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Fig. 16 Sensitivity coefficients given by Eq. (37).
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Fig. 17 Initial (a) and optimal (b) temperature distribution.
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Fig. 18 Initial (a) and optimal (b) thermal conductivity distribution.
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Fig. 19 Estimation of a;, a,, a, (k=a,(1+ az.%)Q 1+ agy)Q) (a-c) and objective function versus iteration number (d)

for initial thermal conductivity kinitial3 = 300(1 + 0.0z, j)Q (1+0.0y, 7)2 (ﬂ) .
3. 3 m OC

25

20

Ja/C

>
L I L L L B O A |

I - |
20 0 20 40 60 80 100
measurement number

Fig. 20 Sensitivity coefficients given by Eq. (37).
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Initial guess 1 (with measurement error): a =25.0, a =0.05, a = (0.001

initialy initialy initialy

In this study, the measured temperature containing random errors, T'0™
(1=2,...,M —1), is generated by adding an error term wo to the exact temperature

Tz.el’\‘]act to give

T = T8 1 o (78)
where w is a random variable with normal distribution, zero mean, and unitary
standard deviation. Assuming 99% confidence for the measured temperature, w lies in
the range —2.576< w < 2.576 and it is randomly generated by using MATLAB. o is
the standard deviation of the measurement errors. In this study, for both test cases
0 =20.5 . The first initial guess, a =250, a, =0.05, a, =0.001 is

]'iuit ialy initialy initialy

considered to initiate the optimization process.
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Fig. 21 Optimal temperature distribution (a) and thermal conductivity (b).
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Fig. 22 BEstimation of @, a,, a; (k=a(1+ azm)'z(l + agy)z) (a~c) and objective function versus iteration number (d)

for initial thermal conductivity £. ...
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= 25(1 + 0.05z, ; Y1+ 0.001y, j)z (ﬂ) by considering measurement error
. 3 m.oc
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Fig. 23 Sensitivity coefficients given by Eq. (37).

Test case 2: Using the problem data given in Table 2 (for exponential gradation type),
=0.025, and a, =0.055 are to be

the known (desired) values of e, =6.0, a
d

4 2 3

d

recovered by an inverse analysis using three different initial guesses:

a = 3.0, a. =0.01, a, = 0.0001
initialy initialy initialy
o, =250, a,  =000001, a, = 0.00001
initialy initialy initialy
a =50.0, a = 0.0, a, =0.0
initia13 initia13 initialg
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Initial guess 1: a, =30, a =0.01, a = 0.0001
initialy initialy initialy
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Fig. 24 Initial (a) and optimal (b) temperature distribution.
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Fig. 25 Initial (a) and optimal (b) thermal conductivity distribution.
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Fig. 27 Sensitivity coefficients given by Eq. (37).
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Fig. 28 Initial (a) and optimal (b) temperature distribution.
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Fig. 29 Initial (a) and optimal (b) thermal conductivity distribution.
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Fig. 31 Sensitivity coefficients given by Eq. (37).
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Fig. 32 Initial (a) and optimal (b) temperature distribution.
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Fig. 33 Initial (a) and optimal (b) thermal conductivity distribution.
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Fig. 35 Sensitivity coefficients given by Eq. (37).
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Fig. 38 Sensitivity coefficients given by Eq. (37).

In these two test cases, we used three different initial guesses to examine the accuracy,
efficiency, and robustness of the inverse analysis. The initial and optimal temperature
distributions obtained by application of the initial and optimal thermal conductivities
are shown in Fig. 9a and Fig. 9b (Test case 1, initial guess 1), Fig. 13a and Fig. 13b,
(Test case 1, initial guess 2), Fig. 17a and Fig. 17b (Test case 1, initial guess 3), Fig.
24a and Fig. 24b, (Test case 2, initial guess 1), and Fig. 28a and Fig. 28b, (Test case 2,
initial guess 2), Fig. 32a and Fig. 32b (Test case 2, initial guess 3), respectively. The
initial and optimal thermal conductivity distributions are depicted in Fig. 10a and Fig.
10b (Test case 1, initial guess 1), Fig. 14a and Fig. 14b (Test case 1, initial guess 2),
Fig. 18a and Fig. 18b (Test case 1, initial guess 3), Fig. 25a and Fig. 25b (Test case 2,
initial guess 1), and Fig. 29a and Fig. 29b (Test case 2, initial guess 2), Fig. 33a and
Fig. 33b (Test case 2, initial guess 3), respectively. As can be seen, the distributions of
temperature and retrieved thermal conductivity in both test cases with different initial
guesses are in excellent agreement with the desired ones. In Test cases 1 and 2 with

initial guess 1, because the parameter a, is smaller than the parameter a

3 73
a, =0.05 and aqa =0.001 for Test case 1 and a, =0.01 and
initialy initialy initialy
a, = 0.0001 for Test case 2, the variation of the thermal conductivity in the y —
initialy

direction is smaller than the variation of the thermal conductivity in the z — direction
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(Fig. 10a and Fig. 25a). In Test case 1 with initial guess 2, however, the parameter a, 1s

a, =0.0001, a = 0.1, hence the variation of

initialy initialy

smaller than the parameter a,,

the thermal conductivity in the x — direction is negligible compared to the variation of
the thermal conductivity in the y — direction (Fig. 14a). As shown in Fig. 11, Fig. 15,
and Fig. 19 for Test case 1 and Fig. 26, Fig. 30, and Fig. 34 for Test case 2, a 100%
reduction in the objective function and complete recovering of the values for a , a,, and
a, (the variable thermal conductivity components) are achieved by starting the
optimization process from three different initial guesses which are numerically far from
the desired ones thereby demonstrating the robustness of the proposed numerical
approach. In view of the large number of iterations needed to recover the unknown
variables, the computation time reveals that the proposed method is very efficient. The

details of the results, including the initial and final values for @, a,, and a,, the initial

PR 3
and final values of the objective function, the computation time, the number of
iterations, and the percentage of the decrease in the objective function, are given in
Table 3 (for both cases of no measurement error and measurement error). In case of the
measurement error (o = 0.5), there is also an approximately 100% reduction in the
objective function. As shown in Table 3 as well as Fig. 22 (for Test case 1) and Fig. 37

(for Test case 2), the error in recovering the parameter a, , | =1,2,3 (constant

1
component of the variable thermal conductivity) is negligible and the distributions of
temperature and retrieved thermal conductivity in the presence of the measurement
error are also in very good agreement with the desired ones (Fig. 21 for Test case 1 and
Fig. 36 for Test case 2). Moreover, the effect of the mesh size on the inverse analysis is
explored using two more mesh sizes of 20 x 20 and 130 x 130 for Test case 1 using the
third initial guess. As shown in Fig. 39 to Fig. 43 (the initial temperature and thermal
conductivity distributions are not shown), the results are not affected by the mesh size
and the desired parameters are completely recovered. The sensitivity coefficients for all
test cases with all initial guesses (with and without the measurement error) are shown
in Fig. 12, Fig. 16, Fig. 20, Fig. 23, Fig. 27, Fig. 31, Fig. 35, Fig. 38, Fig. 41, and Fig.
44. Tt can be seen that, in all cases, the sensitivity coefficients with respect to the

parameters a,, a,, and a, are linearly independent (as expected; see Eq. (64)) and

therefore the estimation of these parameters are feasible. The results from a statistical
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analysis for the estimated parameters including the standard deviation of estimated
parameters and 99% confidence interval for each estimated parameter are given in Table
4. The results show that quite accurate estimates are obtained even for the

measurement error of o = 0.5.

The results are obtained by a FORTRAN compiler and computations are run on a PC
with Intel Core i5 and 6G RAM. A tolerance of 107" is used in iterative loops to

increase the accuracy of results.
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Fig. 39 Optimal temperature distribution (a) and thermal conductivity (b) using a grid size of 20x20. The third

a)

initial guess in Test case 1, k. ..
initialy
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Fig. 41 Sensitivity coefficients given by Eq. (37).
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Test case Desired Initial Final Temperature  Initial valuc Minimum Reduction
& value (guess) value measurement of § value of J in objective
Grid size value error function &
computation time
(i .t.lal 1 o =100 o = 25.0 ¢ =10.0 =0 102430.66  9.995x10°° (11010% )
1niel a, = 0.006 a, = 0.05 a, = 0.006 LI 228
2 2 2 (C =10) (0 =10)
80 % 60 a, = 0.003 a, = 0.001 a, = 0.003 (543 iterations)
— — — 00
( tl 12) ¢ =100 4 =20 4 =100 b0 60454.21 9.99 x10°° (126%. 469)
initia. — — — = min:46s
a,=0.006  a,=0.0001  a,=0.006 (© = 10) © =10) 4
0% 60 a, = 0.003 a, =0.1 a, = 0.003 (2267 iterations)
0,
( 11%1 3 a, =10.0 a, = 300.0 a, =10.0 L 053478.76 0.08 x 10-° (150;% "
initi _ - _ = min:44s
a,=0.006  a,=00 a, = 0.006 @ =1 N s
80 x 60 a, = 0.003 a, = 0.0 a, = 0.003 (5472 iterations)
’ ‘t'l . a, =10.0 a, = 300.0 a, =10.0 L 187533.03 0.99 x 10-° 30%)
initia. = 0.0l =0. = 0.00 - Smin
4 =0006 4, =00 , = 0006 (€ =100) (€ =100) o
20 % 20 a, = 0.003 a, =0.0 a, = 0.003 (15127 iterations)
— — — 00
. 't'la.l " a, =100 a; = 300.0 o = Uy Vo 15926988.92  9.99 x 10~ (128(()% in)
initi — L — 0. —0 = min
a,=0.006  a,=00 a, = 0.006 S A .
130 x 130 a3 =0.003 a, = 0.0 a, = 0.003 (24066 iterations)
~ 0,
1 a, =10.0 a, = 25.0 a, =10.003 s 104294.96 185.999 100%
(initial 1) a, = 0.006 a, = 0.05 (error=0.9%) 7= (C =10) (0 =10) (327 iterations)
a, = 0.003 a, = 0.001 a, = 0.0056
80 x 60 s 3 2
(error=6.7%)
a, = 0.0028
(error=6.7%)
( t2a1 7 4 =60 4 =30 4 =60 D 053060.30  9.999x 107 g)f “ 15
initi a, = 0.025 a, =0.01 a, = 0.025 - BTRE LI
005 6 — 0000l — 0.055 (€ =100) (€ = 100) (789 iterations)
80 % 60 L L L
2 a, = 6.0 a, =250 a,=6.0 . 250817.05 0.996 x 10-° (1;);)% .
initial 2 = 0.025 = 0.00001 =0.025 7= THIN:ASS
( ). S E ? (€ = 100) (€ =100) o
80 60 a, = 0.055 a, = 0.00001 a, = 0.055 (844 iterations)
— — 00
G 't?a.l 3 a = 6.0 a = 50.0 a =60 o—0 469652.50 9.999 x 107 3107%‘ 555)
initi = — — = min:55s
a,=0.02  a,=00 a, = 0.025 @ =1 (=) i
e a; = 0.055 a, =0.0 a, = 0.055 (865 iterations)
2 a, =6.0 a, =250 a, =6.02 _ 252072.98 1566 95 ~100%
(initial 2) 4 =0.025  a,=0.00001 (error=0.3%) =05 (317 iterations)
80X60 4 —0055 4 000001 a— 00245 (¢ =100) (¢ =100)
= UUo 3=V H =Y
(error=2.0%)
a, = 0.0548

(error=0.36%)

Table 3 A summary of results for the estimation of the spatially varying thermal conductivity components a, , a,,

and a, .
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Test casc Desired Initial Final Standard Standard Confidence Interval

& value for (guess) value for deviation of deviation of (Eq. (73))
grid size parameter value for parameter temperature estimated
parameter measurement parameter,
CITorsS (Eq. (77))
1 a, =10.0 a, =250 a, =10.003 o, =0.2220 9519 <a <10.667
s sase — [ 1
(initial 1) 4, = 0.006 a, =0.05 (error=0.9%) 7=05 g, =0.0010  0.0029 <a, <0.0082
2
S0 60 a, = 0.003 a, = 0.001 a, = 0.0056 0, =00007 00009 <ay <0.0047
(error=6.7%)
ag = 0.0028

(error=6.7%)

2 a, = 6.0 a, =250 a, = 6.02 o, =0.5503  4.60<a <7.44
o aps —05 1
(initial 2) 4, =0.025 a, = 0.00001 (error=0.3%) 7=05 o, =0.0060  0.0090 < a, <0.0400
80 % 60 a, = 0.055 a, = 0.00001 a, = 0.0245 o =00073  0.0359 <a, <0.0737
(error=2.0%) ’
a, = 0.0548

(error=0.36%)

Table 4 Statistical analysis results for the estimation of parameters a,, a,, and a,in the presence of measurement

1

error.

5. Other boundary surfaces as measurement place

In this study, the boundary surface I', (Fig. 1) is chosen as the place where the

simulated measurements are performed. In this section, the effect of considering other

boundary surfaces such as I', (the surface of the applied heat flux ¢) on the accuracy of
the estimated parameters will be investigated. Considering the boundary surface I}, we

can write the objective function as
M—1

] = CZ (T1;71 - Tim)m )2 (79)
=2

The derivative of the objective function with respect to the unknown variables can be

obtained as

Y M—1 oT,, M-1 oT.,
2L _9o¢ T —T — =9 T —-T. . )0— 80

o7



oT

where [ =1,2,3. The sensitivity coefficients C 5 ol (1=1,2,3) can be derived by
a
1

considering the boundary condition relating to the boundary surface T';. The associated

boundary condition can be written as

an,
i = k| ——(T, - BT,) (82)
IR I3
5o
at the surface I, we have
1
I, = E(TH-Ll 1) (83)
L .
T, = 13T, 4T, ~ T, (54)
Therefore, Eq. (82) becomes
. -1 _3Tzl,1 + 4Ti,2 - Tz‘,3 Tz‘+1,1 - Tz‘—1,1
q="F, v - (85)
P L z

where the coefficients J, v, and 3 defined in Eq. (13) are computed using finite-

difference coefficients associated with the surface I',. Solving Eq. (85) for T, gives the

temperature distribution on the boundary surface I'; as follows

2.
547 44T, —~T. ., — BT, + BT
Tn = 3 +.l 0,2 i,3 i+11 i—1,1 (86)
ki,l\/; 3 g

By considering the exponential material gradation (quadratic material gradation case

can be treated in a similar fashion), k =a eIt tasy) , Eq. (86) is written as
1

o8



2.
T = 3 il 4 1 ATy =T = BT, + 0T, (87)
1,1 ale(1+a2$i’1>e(l+agyi’l)\/; 3 ~y

T

Thus the sensitivity coefficients C (1=1,2,3) can be explicitly expressed by
a
1

differentiating the obtained expression for T, with respect to a,, I =1,2,3, as follows

oT, S 47e
7/71 — 3 (88)
da, 7“12
2 (—2—ayz;  —ayy, ;)
81—;71 g 117171QJ€ 27,1 37,1

=— (89)
da, \/;al

9 Tz 1 % yiqu{]e(_2_“2$¢41 —agY;1)

- (90)
day, \/;al

As can be seen in the above equations, the parameter a; should not be zero. In order to

evaluate the accuracy of the above sensitivity coefficients, Test case 2 with initial 2 (for
both cases of no measurement error and the measurement error of o = 0.5) is repeated.
The results are given in Table 5 and the statistical error analysis is given in Table 6. As
can be seen, the unknown parameters are again recovered accurately representing the

accuracy of the sensitivity coefficients at the boundary surface I', even in the presence

of a measurement error of o =0.5.

29



Test case Desired Initial Final Temperature  Initial valuc Minimum Reduction

& value (guess) value measurement of value of J in objective
Grid size value error function &
computation
time
2 @ =560 o =250 #y = 60 o s31004285.4  9.979x 1070 1007
s o= . .
(initial 2) a, = 0.025 a, = 0.00001 a, = 0.025 (© = 1000) (© = 1000) (4722 iterations)
a; = 0.055 a, = 0.00001 a, = 0.055
80 % 60 ;
(initial 2) 4, =0.025 @, =0.00001  (error=0.45%) 7= (1900 iterations)

€ =1000 ¢ =1000
8060 4 =0.055  a,=0.00001 a,=0.0253 ( b )

(error=1.2%)
a, = 0.0542
(error=1.45%)

Table 5 A summary of results for the estimation of the spatially varying thermal conductivity components a, , a,,

and a, by considering the boundary surface T', as the temperature measurement place.

Test case Desired Initial Final Standard Standard Confidence Interval
& value for (guess) value for deviation of deviation of (Eq. (73))
erid size parameter value for parameter temperature estimated
paramecter measurcment paramcter,
errors (Eq. (77))
2 a,=6.0 a, = 25.0 a, = 6.027 o, =02005  5511<a <6544
(initial 2) o, = 0.025 a, =0.00001  (error=0.45%) 7=05 o = 00090  0.0021<a, <0.0484
80 x 60 a, = 0.055 a, = 0.00001 a, = 0.0253 o: = 0.0099 0.0287 < a, < 0.0797
(error=1.2%) ’
a; = 0.0542

(error=1.45%)

Table 6 Statistical analysis results for the estimation of parameters a,, a,, and a,in the presence of measurement

error by considering the boundary surface T, as the temperature measurement place.

Test case 2 ([nitial guess 2: a, =25.0, a, = 0.00001, a, = 0.00001); the

initialy initialy initialy
boundary surface I', is the temperature measurement place. The results for the case of

no measurement error are shown in Fig. 45 to Fig. 47 and for the case of the

measurement error of ¢ = 0.5 are shown in Fig. 48 to Fig. 50.
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6. Conclusion

This study presented an accurate numerical approach to solve two-dimensional steady-
state heat conduction problems in functionally graded materials. The two-dimensional
irregular heat-conducting body was transformed into a regular computational domain to
perform all computations related to the direct and inverse heat conduction solution. The
discretization of the physical domain was performed by the elliptic grid generation and
the approximation of the derivatives of the field variable (temperature) at the grid
nodes by algebraic ones was performed by using the finite-difference method, a method
chosen for the ease of implementation. The proposed numerical method treats the heat
conduction equation with the spatially varying thermal conductivity over a general
irregular body shape with Dirichlet, Neumann, and Robin boundary conditions as long
as the irregular shape can be mapped onto a regular computational domain. Two
different types of material gradations are considered for spatially varying thermal
conductivity of functionally graded materials, namely, quadratic and exponential
material gradations. One of the novelties of this study is to identify the constant
parameters in the material gradations accurately by an inverse analysis thereby
determining the accurate form of gradation. The novelty of the inverse analysis lies in
proposing an accurate and efficient explicit sensitivity analysis scheme with an
advantage that it is not involved with an adjoint equation and all the sensitivity
coefficients can be computed in only one direct solution, without the need for the
solution of the adjoint equation. The conjugate gradient method was used to minimize
the objective function and recover the variable thermal conductivity accurately. The
accuracy, efficiency, and robustness of the proposed numerical approach were
demonstrated through presenting two test cases. Moreover, the results revealed that the
retrieved thermal conductivity was not too much affected by introduction of a

significant measurement error.

Acknowledgement

This research was supported by funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement
No 663830.

65



7. References

[1] H.S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells,
CRC Press, 2016.

[2] EI E, P. Demetris, G. Cristina, Mechanics Of Functionally Graded Material
Structures, World Scientific Publishing Company, 2015.

[3] V. Birman, L.W. Byrd, Modeling and analysis of functionally graded materials and
structures, Applied mechanics reviews, 60 (2007) 195-216.

[4] X. Wang, Z. Wang, T. Zeng, S. Cheng, F. Yang, Exact analytical solution for
steady-state heat transfer in functionally graded sandwich slabs with convective-
radiative boundary conditions, Composite Structures, 192 (2018) 379-386.

[5] L. Gray, T. Kaplan, J. Richardson, G.H. Paulino, Green’s functions and boundary
integral analysis for exponentially graded materials: heat conduction, Journal of Applied
Mechanics, 70 (2003) 543-549.

[6] A. Sutradhar, G.H. Paulino, The simple boundary element method for transient heat
conduction in functionally graded materials, Computer Methods in Applied Mechanics
and Engineering, 193 (2004) 4511-45309.

[71 W. Qu, C.-M. Fan, Y. Zhang, Analysis of three-dimensional heat conduction in
functionally graded materials by using a hybrid numerical method, International
Journal of Heat and Mass Transfer, 145 (2019) 118771.

[8] E. Artyukhin, Reconstruction of the thermal conductivity coefficient from the
solution of the nonlinear inverse problem, Journal of Engineering Physics and
Thermophysics, 41 (1981) 1054-1058.

[9] O.M. Alifanov, A.P. Tryanin, Determination of the coefficient of internal heat
exchange and the effective thermal conductivity of a porous solid on the basis of a
nonstationary experiment, Journal of Engineering Physics, 48 (1985) 356-365.

[10] L. Dantas, H. Orlande, A function estimation approach for determining
temperature-dependent thermophysical properties, Inverse Problems in Engineering, 3
(1996) 261-279.

[11] T. Jurkowski, Y. Jarny, D. Delaunay, Estimation of thermal conductivity of
thermoplastics under moulding conditions: an apparatus and an inverse algorithm,
International Journal of Heat and Mass Transfer, 40 (1997) 4169-4181.

[12] C.-y. Yang, A linear inverse model for the temperature-dependent thermal
conductivity determination in one-dimensional problems, Applied Mathematical
Modelling, 22 (1998) 1-9.

[13] B. Sawaf, M.N. Ogzisik, Y. Jarny, An inverse analysis to estimate linearly

temperature dependent thermal conductivity components and heat capacity of an

66



orthotropic medium, International Journal of Heat and Mass Transfer, 38 (1995) 3005-
3010.

[14] E. Divo, A.J. Kassab, J.S. Kapat, M.-K. Chyu, Retrieval of multidimensional heat
transfer coefficient distributions using an inverse BEM-based regularized algorithm:
numerical and experimental results, Engineering Analysis with Boundary Elements, 29
(2005) 150-160.

[15] J. Zhang, M.A. Delichatsios, Determination of the convective heat transfer
coefficient in three-dimensional inverse heat conduction problems, Fire Safety Journal,
44 (2009) 681-690.

[16] W.-L. Chen, Y.-C. Yang, H.-L. Lee, Inverse problem in determining convection heat
transfer coefficient of an annular fin, Energy Conversion and Management, 48 (2007)
1081-1088.

[17] M. Mierzwiczak, J.A. Kotodziej, The determination temperature-dependent thermal
conductivity as inverse steady heat conduction problem, International Journal of Heat
and Mass Transfer, 54 (2011) 790-796.

[18] B. Czél, G. Gréf, Inverse identification of temperature-dependent thermal
conductivity via genetic algorithm with cost function-based rearrangement of genes,
International Journal of Heat and Mass Transfer, 55 (2012) 4254-4263.

[19] C.-H. Huang, Y. Jan-Yuan, An inverse problem in simultaneously measuring
temperature-dependent thermal conductivity and heat capacity, International Journal of
Heat and Mass Transfer, 38 (1995) 3433-3441.

[20] F. Mohebbi, M. Sellier, Parameter estimation in heat conduction using a two-
dimensional inverse analysis, International Journal for Computational Methods in
Engineering Science and Mechanics, 17 (2016) 274-287.

[21] F. Mohebbi, M. Sellier, T. Rabczuk, Estimation of linearly temperature-dependent
thermal conductivity using an inverse analysis, International Journal of Thermal
Sciences, 117 (2017) 68-76.

[22] F. Mohebbi, M. Sellier, Identification of space- and temperature-dependent heat
transfer coefficient, International Journal of Thermal Sciences, 128 (2018) 28-37.

[23] F. Mohebbi, M. Sellier, Estimation of thermal conductivity, heat transfer
coefficient, and heat flux using a three dimensional inverse analysis, International
Journal of Thermal Sciences, 99 (2016) 258-270.

[24] P. Tervola, A method to determine the thermal conductivity from measured
temperature profiles, International Journal of Heat and Mass Transfer, 32 (1989) 1425-
1430.

[25] S. Kim, A simple direct estimation of temperature-dependent thermal conductivity
with kirchhoff transformation, International Communications in Heat and Mass
Transfer, 28 (2001) 537-544.

67



[26] J.-H. Lin, C.-K. Chen, Y.-T. Yang, Inverse method for estimating thermal
conductivity in one-dimensional heat conduction problems, Journal of Thermophysics
and Heat Transfer, 15 (2001) 34-41.

[27] S. Chantasiriwan, Steady-state determination of temperature-dependent thermal
conductivity, International Communications in Heat and Mass Transfer, 29 (2002) 811-
819.

[28] B. Sawaf, M.N. Ouzisik, Determining the constant thermal conductivities of
orthotropic materials by inverse analysis, International Communications in Heat and
Mass Transfer, 22 (1995) 201-211.

[29] T.T. Lam, W.K. Yeung, Inverse determination of thermal conductivity for one-
dimensional problems, Journal of Thermophysics and Heat Transfer, 9 (1995) 335-344.
[30] D. Lesnic, L. Elliott, D.B. Ingham, Identification of the thermal conductivity and
heat capacity in unsteady nonlinear heat conduction problems using the boundary
element method, Journal of Computational Physics, 126 (1996) 410-420.

[31] B. Konda Reddy, C. Balaji, Estimation of temperature dependent heat transfer
coefficient in a vertical rectangular fin using liquid crystal thermography, International
Journal of Heat and Mass Transfer, 55 (2012) 3686-3693.

[32] H.R. Orlande, O. Fudym, D. Maillet, R.M. Cotta, Thermal measurements and
inverse techniques, CRC Press, 2011.

[33] J. Taler, Determination of local heat transfer coefficient from the solution of the
inverse heat conduction problem, Forschung im Ingenieurwesen, 71 (2007) 69-78.

[34] J. Taler, Nonlinear steady-state inverse heat conduction problem with space-
variable boundary conditions, Journal of Heat Transfer (Transactions of the ASME
(American Society of Mechanical Engineers), Series C);(United States), 114 (1992).

[35] A.J. Kassab, E. Divo, A generalized boundary integral equation for isotropic heat
conduction with spatially varying thermal conductivity, Engineering Analysis with
Boundary Elements, 18 (1996) 273-286.

[36] G. Flach, M. Ozisik, Inverse heat conduction problem of simultaneously estimating
spatially varying thermal conductivity and heat capacity per unit volume, Numerical
Heat Transfer, 16 (1989) 249-266.

[37] S.R. Reddy, G.S. Dulikravich, S.J. Zeidi, Non-destructive estimation of spatially
varying thermal conductivity in 3D objects using boundary thermal measurements,
International Journal of Thermal Sciences, 118 (2017) 488-496.

[38] M.I.P. Hidayat, B.A. Wahjoedi, S. Parman, P.S.M. Yusoff, Meshless local B-spline-
FD method and its application for 2D heat conduction problems with spatially varying
thermal conductivity, Applied Mathematics and Computation, 242 (2014) 236-254.

[39] J.V. Beck, Surface heat flux determination using an integral method, Nuclear
Engineering and Design, 7 (1968) 170-178.

68



[40] C.H. Huang, S.P. Wang, A three-dimensional inverse heat conduction problem in
estimating surface heat flux by conjugate gradient method, International Journal of
Heat and Mass transfer, 42 (1999) 3387-3403.

[41] F. Mohebbi, B. Evans, A. Shaw, M. Sellier, An inverse analysis for determination of
space-dependent heat flux in heat conduction problems in the presence of variable
thermal conductivity, International Journal for Computational Methods in Engineering
Science and Mechanics, 20 (2019) 229-241.

[42] F. Mohebbi, B. Evans, Simultaneous estimation of heat flux and heat transfer
coefficient in irregular geometries made of functionally graded materials, International
Journal of Thermofluids, 1-2 (2020) 100009.

[43] F. Mohebbi, Function Estimation in Inverse Heat Transfer Problems Based on
Parameter Estimation Approach, Energies, 13 (2020) 4410.

[44] C.K. Hsieh, A.J. Kassab, A general method for the solution of inverse heat
conduction problems with partially unknown system geometries, International Journal
of Heat and Mass Transfer, 29 (1986) 47-58.

[45] F. Mohebbi, M. Sellier, Optimal shape design in heat transfer based on body-fitted
grid generation, International Journal for Computational Methods in Engineering
Science and Mechanics, 14 (2013) 227-243.

[46] F. Mohebbi, M. Sellier, Three-dimensional optimal shape design in heat transfer
based on body-fitted grid generation, International Journal for Computational Methods
in Engineering Science and Mechanics, 14 (2013) 473-490.

[47] F. Mohebbi, M. Sellier, T. Rabczuk, Inverse problem of simultaneously estimating
the thermal conductivity and boundary shape, International Journal for Computational
Methods in Engineering Science and Mechanics, (2017) 1-16.

[48] S.M.H. Sarvari, Optimal Geometry Design of Radiative Enclosures Using the
Genetic Algorithm, Numerical Heat Transfer, Part A: Applications, 52 (2007) 127-143.
[49] O.M. Alifanov, Inverse heat transfer problems, Springer-Verlag, 1994.

[50] M. Ozisik, H. Orlande, Inverse heat transfer: fundamentals and applications, Taylor
& Francis, 2000.

[51] J.V. Beck, B. Blackwell, C.R.S. Clair, Inverse Heat Conduction: Ill-Posed Problems,
Wiley, 1985.

[52] L. Marin, Numerical solution of the Cauchy problem for steady-state heat transfer
in two-dimensional functionally graded materials, International Journal of Solids and
Structures, 42 (2005) 4338-4351.

[53] W.-L. Chen, H.-M. Chou, Y.-C. Yang, An inverse problem in estimating the space-
dependent thermal conductivity of a functionally graded hollow cylinder, Composites
Part B: Engineering, 50 (2013) 112-119.

69



[54] G.S. Dulikravich, S.R. Reddy, M.A. Pasqualette, M.J. Colago, H.R. Orlande, J.
Coverston, Inverse determination of spatially varying material coefficients in solid
objects, Journal of Inverse and Ill-posed Problems, 24 (2016) 181-194.

[65] H.-L. Lee, W.-J. Chang, S.-H. Sun, Y.-C. Yang, Estimation of temperature
distributions and thermal stresses in a functionally graded hollow cylinder
simultaneously subjected to inner-and-outer boundary heat fluxes, Composites Part B:
Engineering, 43 (2012) 786-792.

[56] M.G. Haghighi, P. Malekzadeh, M. Afshari, Inverse estimation of heat flux and
pressure in functionally graded cylinders with finite length, Composite Structures, 121
(2015) 1-15.

[57] F. Mohebbi, Optimal shape design based on body-fitted grid generation, University
of Canterbury, (2014).

[58] M.N. Ozisik, H.R.B. Orlande, M.J. Colaco, R.M. Cotta, Finite Difference Methods
in Heat Transfer, CRC Press, 2017.

[59] E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées,
Revue Francaise d’Informatique et de Recherche Opérationnelle, 16 (1969) 35-43.

[60] J.V. Beck, K.J. Arnold, Parameter estimation in engineering and science, Wiley,
1977.

70



