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Abstract

The steady-state response of a nonlinear piezoelectric energy harvester subjected to external and parametric
excitation is investigated based on the Mathieu-Du�ng nonlinear oscillator model. The parametric excitation
is introduced to amplify the external harmonic excitation and extend the capabilities of the nonlinear piezo-
electric energy harvester device. To obtain the approximated solution of the nonlinear periodic responses
for displacement and electrical voltage of the energy harvester, the incremental harmonic balance method
in combination with the path-following technique is adopted. It is assumed that the proposed nonlinear
model consists of cubic and quadratic nonlinearity, where parametric ampli�cation appears in the form of
a trigonometric function. The frequency is tuned as one-to-one and the one-to-two ratio between external
and parametric excitation. The e�ects of quadratic and cubic nonlinearity as well as parametric ampli�-
cation are studied in detail, and their incredible properties to extend harvester application performance is
illustrated. It is explicitly demonstrated that for some particular combination of the system parameters,
vibration amplitudes and harvested power can be ampli�ed up to three or �ve times in comparison to the
classical broadband nonlinear energy harvester based on the forced Du�ng oscillator. This extraordinary
ampli�cation shown to be a key motivation to realize the proposed concept in practice. The presence of
combined quadratic and cubic nonlinearities resulted in both hardening and softening spring behavior and
leading to the appearance of coexisting periodic solutions in the amplitude-frequency responses. Periodic
orbits obtained by the proposed methodology are veri�ed with the results from direct numerical integration
and �ne agreement is demonstrated. Moreover, a signi�cant in�uence of the parametric ampli�cation on the
instantaneous power is revealed in time response diagrams, thus showing better performance of the proposed
energy harvester system.

Keywords: Energy harvester, Parametric ampli�cation, Nonlinear response, Mathieu-Du�ng oscillator,
Incremental harmonic balance method.

1. Introduction

The process of capturing small amounts of energy from one or more naturally occurring environmental
energy sources such as thermal, solar, electromagnetic, and mechanical is known as energy harvesting. The
energy harvester (EH) developed for capturing the ambient vibration energy by converting the mechanical
strain energy into the electric current or voltage, using the piezoelectric e�ect, are usually called piezoelectric
energy harvesters [1]. The self-powering capabilities of piezoelectric structures allow electronic devices as
wireless sensors to exclude energy storage components and retains promise for direct driving of energy
from the environmental mechanical resources by powering small electronics and MEMS/NEMS devices [2].
Understanding the general dynamic behaviour of such electromechanical systems is of prime importance for
design procedures and practical applications of EH devices. Therefore, this study aims at demonstrating a
better performance of the nonlinear EH model with parametric ampli�cation leading to higher values of the
harvested power. The basic approach used in design of EH devices is tuning of the mechanical part in order
to vibrate with the resonant frequency [3]. When a system is subjected to a single frequency excitation,
the resonant harvesting device needs to be tuned to the excitation frequency. One of the possibilities to
extend the capability of linear EH is based on multiple connected structures as shown in [4], where the
mechanical part of the EH can resonate in a wide spectrum of frequencies. The main drawback of linear
EH devices is in the fact that they are e�cient only in the case when excitation frequency is close to one
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of the resonance frequencies. Therefore, most of the linear energy harvesting devices are designed based
on the assumption that the ambient excitation has some known form, typically single frequency harmonic
excitation. The e�ciency of linear EH devices reduces drastically when the system is out of resonance. The
potential solution to this kind of problem in the design of EH devices is the application of broadband EH
devices [5] based on nonlinear properties [6], which is not critically sensitive to the particular environmental
conditions such as frequency or amplitude of excitation. The main sources of nonlinearity that appear
in these types of EH systems can be from the material, geometrical or inertia properties. Nonlinear EH
systems relies on the use of a double [7] and higher-order potential well functions to obtain two or more
equilibrium positions. The main advantage of a double potential well for energy harvesting is achieved
particularly in the system with internal excitation. The simplest equation of motion with a double potential
well is related to the well-known Du�ng oscillator with the cubic nonlinear term, which has been extensively
studied in the literature [8, 9]. This type of nonlinearity belongs to the group of geometric nonlinearities
[10]. Dynamic behaviour of such complex systems is characterized by either existing periodic and multiple
periodic solutions or chaotic responses [11]. The base excited cantilever beam has been demonstrated as a
practical design concept in EH devices, especially the models that exploit geometrically nonlinear behaviour
as given in [12]. Other interesting phenomena in nonlinear EH systems are the internal resonance mechanism
[13, 14] and auto-parametric resonance [15].

Recently, special attention has been paid to the multi-stable EH devices, where the researchers observe an
interesting dynamical behaviour of such nonlinear systems [16, 17]. The main advantage of such models with
multiple stable potential wells is the generation of higher energy outputs over a wide range of frequencies.
Zhou et al. [18] investigated a base excited nonlinear piezoelectric energy harvester with a triple-well potential
induced by a magnetic �eld. The authors experimentally identi�ed the equivalent nonlinear restoring force
of the tri-stable oscillator as a high order polynomial and determined key system parameters of through the
optimization process. Panyam and Daqaq [19] studied the lumped-parameter electromechanical model of a
tri-stable vibratory EH that includes a restoring force with cubic and quintic nonlinearities by introducing the
multiple scale technique with experimental validation. They constructed an analytical solution describing the
amplitudes and stability of the intra- and inter-well dynamics of EH. Moreover, they investigated the critical
bifurcation points in the frequency responses and used them to de�ne an e�ective frequency bandwidth of
the nonlinear EH. In [20], the nonlinear dynamic e�ect of asymmetry of EH potential wells and improvement
of the energy harvesting capabilities for di�erent types of excitation forces were investigated by using the
harmonic balance method. Multi-stable nonlinear EH model proposed as biomorph cantilever nonlinear
Euler�Bernoulli beam with soft magnetic tip and two externally �xed permanent magnets arranged in series
was analysed in [21]. It was shown that for the magnetic �eld induced by the external magnets, the proposed
nonlinear EH model can possess multi-stable potential functions in a wide spectrum ranging from mono-
stable to penta-stable functions. Based on numerical simulations, it was further illustrated that such system
exhibits interesting nonlinear phenomena, where transitions between these multi-stable states occurs through
complicated bifurcation phenomena.

The parametric ampli�cation phenomenon relies on the ampli�cation of amplitudes of a nonlinear har-
monically excited oscillator by using the parametric pumping through a single parametric excitation term
[22, 23]. This phenomenon can be exploited in various electrical and mechanical engineering systems [24]. In
the scienti�c literature, special attention is devoted to the application of parametric ampli�cation in design
of MEMS/NEMS devices [25, 26] based on nonlinear models with quadratic, cubic or quintic nonlinearity or
their combinations. In [27], the authors used the forced Mathieu-Du�ng equation including the quadratic
nonlinear term as a model with parametric excitation. By introducing the method of varying amplitudes,
the approximate analytical steady-state solutions and corresponding stabilities are obtained and validated
by the numerical integration. It is shown that by combining nonlinearity (in the form of quadratic and cubic
terms) with parametric excitation could lead to di�erent amplitude-frequency solutions, where jumps and
bi-stability phenomena might appear. In [28], the authors have analysed the cantilever microbeam model
with base excitation using the mathematical model based on the Mathieu-Du�ng equation with frequency
tuned parametric ampli�ers. Moreover, by applying the method of varying amplitudes it is found that some
amplitude-frequency curves collapsed in the case of detuned super-threshold parametric ampli�cation. The
theoretical predictions are validated by numerical integration and experimental testing. Sorokin [29] inves-
tigated the dynamical behaviour of a nonlinear parametric ampli�er for a wide range of system parameters,
especially beyond resonance. The modi�ed method of direct separation of motion is introduced to study
the steady-state amplitude, where the nonlinear parametric ampli�er response reach high values, even for
small amplitudes of external excitation. Dolev and Bucher [30] analysed one and two degrees of freedom
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nonlinear model based on a weak Du�ng nonlinearity and parametric excitation term. By introducing the
multiple scales method, they determined the steady-state amplitude in the case when parametric excitation
contains two frequencies whose combination leads to larger response amplitudes. The multi-degree of free-
dom mechanical system with two frequency parametric ampli�cation and electronically tunable topology is
investigated in [31]. It is shown that for speci�c positions of the parametric excitation force and real-time
topology modi�cation it is possible to amplify speci�c inputs in a three degree of freedom system. Coupling
between the quadratic and cubic nonlinearities with the dual-frequency parametric ampli�cation model of
the Du�ng oscillator was studied in [32]. Moreover, in [33] a combination of two piezoelectric cantilever
beams with magnetic tip masses having direct and parametric excitation is introduced as a model of the EH
device. Two beams are coupled through the magnetic force that reduces the necessary threshold excitation
level. Introducing the time delay feedback into the Mathieu�van der Pol�Du�ng oscillator based on EH, it
is possible to increase harvested power at some speci�c frequency ranges [34]. However, the practical appli-
cation of parametric excitation in the design of energy harvesting devices is provided in a series of papers
proposed by Jia and co-authors [35, 36].

Until this study, a detailed investigation of the parametric ampli�cation phenomena in EH systems with
mixed nonlinearities had not been undertaken. In two similar studies, the authors employed the parametric
excitation in the linear model of EH system [37] and the Du�ng oscillator based EH [38]. The main di�erence
between the present and aforementioned studies lies in the investigation of the ampli�cation e�ect emerging in
the harmonically excited EH system with quadratic and cubic nonlinearities that is induced by the parametric
excitation.

In this context, we have assessed the current state-of-the-art and found that investigation of frequency
responses and stability of the nonlinear EH with parametric ampli�cation based on incremental harmonic
balance method (IHBM) in conjunction with the path-following and Floquet theory has not been reported
in the literature up to now. Therefore, the main purpose of this paper is to investigate the nonlinear
periodic response of the parametrically ampli�ed piezoelectric EH based on the model given in the form
of forced Mathieu-Du�ng equation with two types of parametric excitation. The adopted nonlinearity is
a combination of quadratic and cubic nonlinearities. The resulting performance of the combined e�ect
of these nonlinearities can be found in many interesting real-world physical examples such as buckling,
initial curvatures, or nonlinear foundations. Here, the main focus is put on the generalized model of a
nonlinear piezoelectric EH given as MEMS device. The frequency of parametric excitation is tuned as one-
to-one and one-to-two ratio of frequencies of external and parametric harmonic excitation for sine and cosine
functions, respectively. Such combinations of excitation forces can interact, where the parametric excitation
can amplify the signal from external direct excitation. Sine and cosine parametric excitations can cause
e�ective ampli�cation of the signal from direct harmonic excitation. However, in [35] it was demonstrated
that the the system excited by sine parametric excitation with the frequency tuned by one-to-one ratio
displays signi�cant ampli�cation of the response amplitude without satisfying the parametric resonance
condition. Such ampli�cation e�ect mostly occurs in systems with mixed nonlinearities, where quadratic
nonlinearity plays a signi�cant role. Applying the IHBM and path-following methods, the series of periodic
responses are given in the form of frequency response curves. Both branches of periodic responses, stable and
unstable, are determined by adopting the Floquet stability theory and Hsu procedure. Important aim of the
proposed analyses is to reveal the level of ampli�cation of the response amplitude and voltage. Moreover,
response amplitudes of the displacement and instantaneous power in time are given to compare the results
for di�erent values of the parametric ampli�cation parameter.

2. Problem formulation

Here, the model of a nonlinear energy harvester based on the Mathieu-Du�ng oscillator connected with
piezoelectric element is given in Fig.1. More precisely, the lumped-parameter model consists of the oscillating
mass coupled with the �xed base through a linear spring (sti�ness k), linear dash-pot element (damping b),
a nonlinear spring of quadratic and cubic nonlinearity type and a piezoelectric element (connected to the
corresponding electric circuit and denoted as PZT in Fig.1). Moreover, we assume that the mass is excited
by a combination of the external harmonic F (t) and parametric p(Ωt) excitation. The main reason for
introducing the parametric excitation term is to amplify the signal from the external harmonic excitation.
The parametric excitation term is expressed in a trigonometric form. Similar nonlinear mechanical models
can represent di�erent macro/micro-mechanical systems including base excited macro-beams [27], MEMS
[39, 40], NEMS [41, 42] and atomic force microscopes (AFM) [43, 44].
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The governing equation of the piezoelectric energy harvester can be expressed in the dimensionless form
as

ẍ+ δẋ+ ω2
0x+ ξx2 + γx3 + hp(Ωt)x− χv = f cos(Ωt), (1)

v̇ + λv + k̃ẋ = 0, (2)

where time derivative ˙(·) is used to represent d(·)/dt. The dimensionless parameters are: x = x(t) is
the relative displacement of the point mass m, v(t) is the generated voltage across the load resistance,
δ is the mechanical damping, ω0 is the linear natural frequency parameter, ξ is the quadratic nonlinear
sti�ness parameter, γ is the cubic nonlinear sti�ness parameter, χ is the piezoelectric coupling term in the
mechanical displacement equation, k̃ is the piezoelectric coupling term in the electrical circuit, h is the
magnitude of parametric excitation, λ is the reciprocal of time constant of the electrical circuit, f and Ω
are the amplitude and frequency of external excitation, respectively. The parametric excitation term p(Ωt)
can take the following two forms sin(Ωt) and cos(2Ωt). Many authors have studied nonlinear oscillators

Figure 1: The lumped-parameter model of a nonlinear energy harvester with the parametric and harmonic excitation forces.

with quadratic and cubic nonlinearities investigating how to exploit and improve capabilities of EH devices.
The sources of quadratic and cubic nonlinearities usually appear in the nonlinear mechanical models of
cable, beam and plate structures [10, 45]. As stated in [10], quadratic and cubic nonlinearities can be
derived from the nonlinear governing partial di�erential equations of motion of a vibrating cable using the
Galerkin discretisation. By varying the sti�ness parameters of the quadratic and cubic nonlinearity terms,
which depend on the material and geometrical parameters of a cable, one can control the in�uence of the
nonlinearity on structural vibration. In the literature, a special attention is devoted to the analysis of the
in�uence of quadratic nonlinearity in structural mechanical models considering slightly curved and axially
loaded beams, as well as consequences of the Taylor expansion solution for beam, plate, and shell structures
about buckled states of static equilibrium [45]. Also, Du�ng-type nonlinearity can be used in structural
mechanical models to represent mid-plane stretching and large rotations. The aforementioned nonlinear
structural models can be very useful in design of nonlinear EH devices. In this work, we adopted the
lumped-mass model as a generalization of the nonlinear EH model with direct and parametric excitation
causing the appearance of parametric ampli�cation phenomenon.

3. Nonlinear periodic response

3.1. The incremental harmonic balance method

The incremental harmonic balance method (IHBM) is based on the Fourier series expansion and Newton-
Raphson iterative procedure proposed in [46]. This method has been subsequently reformulated by [47] to
analyse higher-order periodic solutions and their bifurcations. The authors performed a case study, where
bifurcation and route-to-chaos for Mathieu-Du�ng oscillators were investigated by using the sub-harmonic
terms in the Fourier series. Huang et al. [48] analysed the nonlinear vibrations of a curved beam subjected
to uniform base harmonic excitation with two types of nonlinearities. By using the Galerkin approach and
IHBM they solved the partial di�erential equation of motion and obtained amplitude-frequency responses.
In [49], the authors suggested the incremental harmonic balance and pseudo-arc continuation technique to
predict the steady-state response behaviour of a pinned-pinned beam on a nonlinear viscoelastic foundation
when subjected to harmonic loads. Recently, IHBM proved to be immensely useful in determination of
periodic responses and stability of highly nonlinear systems with equivalent piece-wise linearisation [50]. The
main concept of the IHBM is based on few simple steps where the solution of the nonlinear system can be

5



determined as the sum of the sine and cosine functions. First, introducing the dimensionless time parameter
in the form of τ = Ωt into the ordinary di�erential equation, and then assuming the generalized coordinates
in an incremental form. The IHBM requires that the solution can be approximated by the Fourier series
and application of Galerkin procedure. By applying IHBM on the system of equations Eq.(1) and Eq.(2),
we obtain iterative relationships in the form of frequency increments to analyse the frequency response of
the nonlinear energy harvester. One of the most important features of IHBM is simple implementation of
the path-following method for evaluating the system responses corresponding to di�erent parameters of the
model. Now, by introducing the new time scale τ = Ωt, new forms of equations Eq.(1) and Eq.(2) can be
obtained as

Ω2ẍ+ Ωδẋ+ ω2
0x+ ξx2 + γx3 + hp(τ)x− χv = f cos(τ), (3)

Ωv̇ + λv + Ωkẋ = 0, (4)

where the time derivative ˙(·) is used to represent d(·)/dτ . The second step is to introduce the incremental
relation for generalized coordinates x(τ) and v(τ) as well as excitation frequency Ω in order to linearise the
above nonlinear system. Inserting initial dynamic state of the generalized coordinates x0(τ), v0(τ), excitation
frequency Ω0 and corresponding increments ∆x, ∆v and ∆Ω in their neighbourhood yields

x = x0 + ∆x, v = v0 + ∆v, Ω = Ω0 + ∆Ω. (5)

Assuming that the nonlinear system is subjected to external and parametric excitation, the solutions for x0

and v0 and their increments are approximated in the form of truncated Fourier series as:

x0(τ) = a10 +
M∑
n=1

[a1n cos(nτ) + b1n sin(nτ)] = CA1, (6)

v0(τ) = a20 +

M∑
n=1

[a2n cos(nτ) + b2n sin(nτ)] = CA2,

where
C = [1 cos(τ) cos(2τ) . . . cos(nτ) sin(τ) sin(2τ) . . . sin(nτ)] ,

As = [as0 as1 as2 . . . asn bs1 bs2 . . . bsn]T , (s = 1, 2).

∆x = C∆A1, ∆v = C∆A2, (7)

where
∆As = [∆as0 ∆as1 ∆as2 . . . ∆asn ∆bs1 ∆bs2 . . . ∆bsn]T , (s = 1, 2).

Now, by inserting relations Eq.(5) and Eq.(6) into Eq.(3) and Eq.(4) and applying the Galerkin procedure
to eliminate the time parameter τ through the orthogonality conditions yields

< g(τ), f(τ) >=
1

2π

∫ 2π

0
f(τ)g(τ)dτ = 0, (8)

where by neglecting the higher order terms we can obtain the following system of algebraic equations as[
K11 K12

K21 K22

]{
∆A1

∆A2

}
=

{
R1

R2

}
+

{
V1

V2

}
∆Ω, (9)

where Kij ,Rij and Vij are the matrices and Fi are the vectors de�ned as

(10)K11 =

∫ 2π

0

{
Ω2

0C
T C̈+ Ω0δC

T Ċ+
(
ω2

0 + 2ξx0 + 3γx2
0 + hp(τ)

)
CTC

}
dτ,

K12 = −
∫ 2π

0

{
χCTC

}
dτ, K21 =

∫ 2π

0

{
kΩ0C

T Ċ
}
dτ,

K22 =

∫ 2π

0

{
Ω0C

T Ċ+ λCTC
}
dτ,

R1 = −
∫ 2π

0

{
Ω2

0C
T C̈+ Ω0δC

T Ċ+
(
ω2

0 + ξx0 + γx2
0 + hp(τ)

)
CTC

}
dτA1+
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+

∫ 2π

0

{
χCTC

}
dτA2 + f

∫ 2π

0

{
CT cos(τ)

}
dτ,

R2 = −
∫ 2π

0

{
kΩ0C

T Ċ
}
dτA1 −

∫ 2π

0

{
Ω0C

T Ċ+ λCTC
}
dτA2,

V1 = −
∫ 2π

0

{
2Ω0C

T C̈+ δCT Ċ
}
dτA1,

V2 = −
∫ 2π

0

{
kCT Ċ

}
dτA1 −

∫ 2π

0

{
CT Ċ

}
dτA2.

Eq.(9) can be written in a simpli�ed form as

K∆A = R+V∆Ω. (11)

To determine one periodic solution for a speci�c value of the frequency parameter, we set ∆Ω = 0 into the
system of linear algebraic equations (Eq.(11)). Then, by using the Newton-Raphson iterative procedure,
where solution process starts with the initialization of the coe�cients A in such a manner that the tangent
sti�ness matrix [K] is not a singular matrix. By using the iterative procedure we can �nd the solution of
∆A iteratively by solving the following equations

∆A = [K]−1R −→ Ai+1 = Ai + ∆Ai+1, (12)

where iterations are performed until the residue Euclidean norm ‖R‖ is smaller than a preset tolerance
10−12, such that the corrective vector term R tends to zero when the values of coordinates tend to exact
solutions. The next periodic solution can be determined by adding the small value ∆Ω to the frequency
parameter and using the Newton-Raphson iterative procedure, where the previous frequency step is used as
the initial guess to obtain the solution for the current frequency. This type of the path-following method i.e.
the continuation method is known as the "natural parameter continuation". However, using this type of the
path-following method for tracing the frequency response, the periodic solution can be found in the vicinity
of some bifurcation point (turning point), for which the tangent sti�ens matrix K becomes singular. In
order to eliminate failures in the frequency response due to bifurcation points, the numerical path-following
method is employed in a manner similar to [48, 49]. In general, this method is based on the predictor-
corrector procedures that trace the periodic solution branches i.e. amplitude-frequency response curves of
the proposed nonlinear system. By using the continuation method in combination with the Floquet stability
theory, the stable and unstable branches of periodic responses, as well as bifurcation points, are determined
by using the methodology described in the following subsections.

3.2. The path-following method

The initialization of the continuation process begins with the determination of the periodic responses from
an arbitrary initial state, mostly distant from the resonant state, where the response amplitudes are small.
After �nding the initial periodic solutions of the nonlinear system, the predictor-corrector procedure is used
to perform point-to-point calculation to obtain the corresponding branches of frequency responses as shown
in [48�50]. The pseudo-arc-length is one of the most used parametrisation approaches in the path-following,
which allows one to trace the solutions across limit points and loops. By introducing the parameter η, the
augmented equation is given as

g(X)− η = 0, (13)

where X = [A,Ω]T and g(X) = XTX. The slope is de�ned in terms of the two previous points Xk−1 and
Xk−2 on the response curves, which is given as

X′ =
Xk−1 −Xk−2

‖Xk−1 −Xk−2‖
. (14)

where the �rst predicted solution is calculated based on the �rst two periodic solutions obtained from IHBM

Xu = Xk−1 + ∆ηX′. (15)

To obtain the periodic solution, one need to extend the tangent sti�ness matrix by introducing the aug-
mented equation and then applying the Newton-Raphson iterative procedure for the corrected solution.
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The augmented equation is based on Taylor's expansion from Eq.(13). Further, by extending Eq.(11) with
augmented equation, the tangent sti�ness matrix and residual vector can be written as[

K V
∂g

∂A
∂g
∂Ω

]{
∆A
∆Ω

}
=

{
R

∆η − g

}
. (16)

The initialization of the path-following method is starting from the relation given in Eq.(11), where
the two periodic solutions are determined. Then, by using the extended Jacobian matrix with augmented
equation and the predictor-corrector methodology tracing of the frequency response curves becomes a trivial
task. The parameter ∆η is adopted as the arc increment having a small value. For higher accuracy of periodic
solutions the introduction of the value of tolerance can vary in the range from 10−10 to 10−12. Setting small
tolerances leads to tracing of the amplitude-frequency curves without breaks. For more details please refer
to the following literature [49, 50].

4. Stability analysis

Once the periodic solution is determined in the form of Fourier series Eq.(6) for a particular value of Ω,
we can investigate the local stability of such a solution by using the method based on the Floquet theory
[47, 48]. Here, the methodology based on the Floquet theory developed in [51] is used for the approximation
of the transition matrix during one period. The local stability analysis starting from the linearised equations
Eq.(3) and Eq.(4) can be expressed in a general form as

W (ÿ, ẏ,y,Ω, τ) = 0, (17)

where
y = [y1 (τ) , y2 (τ) , . . . yN (τ)],

is the N - dimensional displacement vector. Inserting small perturbations ∆y (τ) in a neighbourhood of the
previously determined periodic solution y0 (τ) as follows

y = y0 + ∆y (τ) , (18)

the local stability of periodic solutions can be analysed like the system with variable coe�cients in terms of
small perturbations ∆y (τ). By inserting Eq.(18) into the system of equations Eq.(17) and after linearisation
one can obtain the system of linear di�erential equations with time-periodic coe�cients as(

∂W

∂ÿ

)
0

∆ÿ (τ) +

(
∂W

∂ẏ

)
0

∆ẏ (τ) +

(
∂W

∂y

)
0

∆y (τ) = 0, (19)

in which y0 (τ) = [x(τ), v(τ)]T are the previously obtained periodic solutions. To determine the stability
of the obtained periodic solutions by using the multi-variable Floquet theory, the transformation of Eq.(19)
into the state-space form should be performed as

dY

dτ
= P (τ)Y, (20)

where Y (τ) = [∆y,∆ẏ]T and P (τ) denotes the periodic matrix with the period T . The stability criteria
based on the Floquet theory is used for determination of the local stability of periodic solutions and it is
related to determination of the Floquet multipliers as given in [51]. The Floquet multipliers are represented
by the eigenvalues of the monodromy matrix. By solving the corresponding eigenvalue problem, for the case
when all Floquet multipliers are located inside the unit circle centred at the origin of the complex plane,
determined periodic solutions are stable or asymptotically stable. Otherwise, when the values of Floquet
multipliers are outside of the unit circle, the periodic solutions are unstable [47]. Depending on where the
Floquet multipliers or a pair of complex conjugate multipliers crosses the complex plane unit circle, di�erent
bifurcation points can be detected.

Introduction of the Hsu procedures for numerical approximation of the transition matrix during one
period leads to numerical determination of Floquet multipliers as a solution of the corresponding eigenvalue
problem [47]. It is assumed that the period T = 2π of the periodic solution y0 (τ) is divided into Nk sub-
intervals, where the k-th interval is equal to ∆k = τk − τk−1 for τk = kT/Nk. Furthermore, P (τ) is the
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continuous periodic matrix with respect to τ and period T , where in the k-th interval it can be replaced by
the constant matrix provided in the case when Nk is chosen to be su�ciently large, where

Pk =
1

∆k

∫ τk

τk−1

P (τ) dτ. (21)

The monodromy (transition) matrix can be written in the following form

M =

Nk∏
i=1

ePi∆i =

Nk∏
i=1

I+

Nj∑
j=1

(Pi∆i)
j

j!

 , (22)

where Nj denotes the number of terms in Taylor series for approximation of the constant matrix Pk. From
the monodromy matrix M one can obtain Floquet multipliers as eigenvalues of Eq.(22) in the form

det (M− σ I) = 0. (23)

For the system given in Eq.(3) and Eq.(4), the periodic matrix P (τ) can be obtained in the following
form

P(τ) =

 0 1 0

H(τ) − δ
Ω

χ
Ω2

0 −k − λ
Ω

 , (24)

where

H(τ) = − 1

Ω2

(
ω2

0 + 2ξx0 + 3x2
0γ + hp(τ)

)
.

In this study, for approximation of the monodromy matrix the next values of Nk = 5000 and Nj = 5 are
adopted.

5. Numerical results

The combination of the IHB and the path-following methods are introduced to trace the branches of
periodic solutions of the nonlinear model of parametrically ampli�ed piezoelectric EH with direct harmonic
excitation. The obtained diagrams are showing periodic responses given in the form of amplitude-frequency
curves. It is demonstrated that the parametric ampli�cation phenomena has a signi�cant in�uence on the
response amplitudes for both types of parametric excitation p(τ) = h sin(τ) and p(τ) = h cos(2τ). The
external harmonic excitation is introduced in the following form f cos(τ). To understand the e�ect of
the parametric ampli�cation on harmonically excited system, periodic response curves computed with and
without the in�uence of parametric ampli�cation are compared. Moreover, the results obtained by IHBM
are veri�ed with the results they from direct numerical integration (NI). The second part of the numerical
results section is devoted to the analysis of the in�uence of quadratic and cubic nonlinearities as well as the
magnitude and type of parametric excitation on the EH response. The results revealed the importance of
the �rst three harmonics on the dynamic behaviour of the nonlinear EH model. Therefore, the upper, lower,
and unstable branches of periodic response for the �rst three harmonics are observed in the numerical study.
Furthermore, di�erent nonlinear phenomena such as multiple jumps, loops, and a super-harmonic resonant
peak are also identi�ed.

The response amplitudes are de�ned based on the Fourier series Eq.(6) in the following form

x0(τ) = A10 +A11 cos(τ + φ11) +A12 cos(2τ + φ12) + ..., (25)

v0(τ) = A20 +A21 cos(τ + φ21) +A22 cos(2τ + φ22) + ...,

where
Aj0 = aj0, Ajk =

√
a2
ij + b2jk, φjk = tan−1(bjk/aij), (j = 1, 2; k = 1, 2..., 8).
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5.1. Veri�cation

To demonstrate the accuracy of the proposed approach in determination of the periodic solutions and
corresponding frequency-response diagrams, the obtained results from IHBM and continuation technique are
veri�ed with the results from direct numerical integration. Moreover, results obtained with and without
the in�uence of parametric excitation are presented to highlight its e�ect on the harmonically excited EH
system. The following dimensionless parameters are adopted: δ = 0.025, ω0 = 0.5, ξ = 0.7, γ =
1, χ = 0.5, f = 0.01, λ = 0.07, k = 0.5. Two values of the parametric excitation are used h = 0.1
and h = 0. Moreover, the number of adopted harmonics in the Fourier series isM = 8. In Fig.2 and Fig.3 the
frequency response curves are given for amplitudes A11 and A21 corresponding to both types of parametric
excitation, p(τ) = h sin(τ) and p(τ) = h cos(2τ). The response amplitudes A11 and A21 corresponding to the
mechanical displacement and electrical voltage, respectively are given on the ordinate axis while excitation
frequency Ω is on the abscissa, (Fig.2 a) and Fig.3 a)). Two periodic orbits are selected from the response
curve A11, and validated with the direct numerical integration. The periodic solutions are depicted in the
phase plane, where the velocity is given on the ordinate axis while the displacement is on the abscissa, as
shown in sub-�gures b) and c) of Fig.2 and Fig.3.
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Figure 2: The amplitude-frequency response curves A11 and A21 of the nonlinear energy harvester with combined parametric
(p(τ) = h sin(τ)) and external excitation for two values of the parametric excitation magnitude h = 0 - dotted line and h = 0.1
- solid line are given in the sub-�gure (a). The periodic responses obtained by the incremental harmonic balance (IHB) method
and direct numerical integration (NI) taken far away from the resonant state is given in the sub-�gure (b), and close to resonant
state in the sub-�gure (c).
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Figure 3: The amplitude-frequency response curves A11 and A21 of the nonlinear energy harvester with combined parametric
(p(τ) = h cos(2τ)) and external excitation for two values of the parametric excitation magnitude h = 0 - dotted line and h = 0.1
- solid line are given in sub-�gure (a). The periodic response obtained by the incremental harmonic balance (IHB) method and
direct numerical integration (NI) taken far away from the resonant state is given in the sub-�gure (b), and close to resonant
state in the sub-�gure (c).

Fig.2 a) shows the in�uence of the parametric excitation magnitude h on the amplitude-response curves,
where excitation frequency Ω varies in the range 0.1 � 1. It can be observed that the response amplitudes A11

and A21 are almost doubled for the parametric excitation magnitude equal to h = 0.1 in comparison to the
case when h = 0. This implies that the introduced parametric excitation leads to parametric ampli�cation
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of the harmonic response, which was the main aim of introducing the parametric ampli�cation. Moreover,
both response amplitudes A11 and A21 are exhibiting the nonlinear behaviour in the form of softening and
hardening spring nonlinearity with jump e�ects. More details on forward and backward frequency sweeping
are provided in the following section based on determined bifurcation points and unstable periodic solutions.
To verify the periodic solutions obtained by the IHBM we select two points on the response curve A11, and
show them in the phase plane against the periodic solutions obtained by the numerical integration method
applied to Eq.(3) and Eq.(4) (sub-�gures b) and c) in Fig.2). One can observe an excellent matching of
curves obtained by two di�erent methods.

Fig.3 a) shows response amplitudes A11 and A21 obtained for the parametric excitation in the form p(τ) =
h cos(2τ). The same values of dimensionless parameters as in the previous case of nonlinear piezoelectric
EH are adopted. Similar to the previous parametric excitation case one can also observe an increase of
the response amplitudes A11 and A21 and nonlinear e�ects in the system. As expected, the ampli�cation
phenomena caused by p(τ) = h cos(2τ) in combination with cubic nonlinearity has a dominant e�ect in the
response amplitude. In this case, the frequencies are tuned in the form of two-to-one resonance between
parametric and external excitation causing the combined resonant state. Furthermore, it can be noticed that
the frequency response curves are displaying the hardening spring nonlinearity, which is more prominent
than the softening spring nonlinearity. From the physical viewpoint, the cosine type of parametric excitation
in combination with the external excitation causes a signi�cant ampli�cation of the EH voltage for a wide
spectrum of excitation frequencies. Fig.3 b) and c) shows two periodic solutions chosen from the response
amplitudes in Fig.3 a) and obtained by both IHBM and direct NI method, where �ne agreement of the
results is achieved.

In summary of the above results, it can be stated that the parametric ampli�cation phenomena plays
important role in an increase of the response amplitudes of externally excited nonlinear piezoelectric EH,
which then leads to higher harvesting voltage and corresponding power. Moreover, one can observe that the
system subjected to cosine parametric excitation ampli�es the response amplitude more than the sinusoidal
form of parametric excitation. Finally, the periodic solutions of the mechanical and electrical responses of
the nonlinear EH are veri�ed with the numerical results from the Runge�Kutta (RK) method obtained by
using the Matlab built-in function 'ode45' and excellent agreement of the results is demonstrated.

5.2. The e�ects of cubic nonlinearity

In this section, an investigation of the e�ects of cubic type nonlinearity γ on the frequency response
curves in terms of the �rst three amplitudes (A11, A21, A12, A22, and A13, A23) is performed. The response
amplitudes A1j and A2j for j = 1, 2, 3, are de�ned in Eq.(25). To study the e�ects of cubic nonlinearity
on the parametric ampli�cation of the response amplitudes, two sets of system parameters are used, where
the parametric excitation is adopted as p(τ) = h sin(τ) and p(τ) = h cos(2τ), and the values of cubic
nonlinearity as γ = 0.5 and γ = 3. Other system parameters are: δ = 0.025, ω0 = 0.5, ξ = 0.5, h =
0.2, χ = 0.5, f = 0.01, λ = 0.07, k = 0.5. Fig.4 - Fig.7 shows the frequency response amplitudes
(A11, A12, AA13) of the mechanical displacement (blue solid line) and response amplitudes (A21, A22, AA23)
of the electrical voltage (black dashed line) for the proposed EH device. The e�ects of di�erent types of
parametric excitation for higher and lower values of the cubic nonlinearity are also studied. A signi�cant
di�erence in the response amplitudes of sinusoidal and cosine form of the parametric excitation can be
observed, especially in the vicinity of the resonance frequency. From these response curves, a complex
behaviour characterized by di�erent nonlinear phenomena such as mixed softening and hardening spring
nonlinearity or multiple jump-up jump-down phenomena can be observed.

Fig.4 shows the parametrically ampli�ed response of directly excited EH device when the parametric
excitation is adopted in the form p(τ) = h sin(τ). The �rst three trsed amplitudes corresponding to the
�rst three modes of Fourier series solution are having both stable and unstable branches of the response.
The response amplitudes A11 and A21 (Fig.4 a)) formed by forward and backward frequency sweeping are
analysed in detail. Similar frequency sweeping can be used to trace the response amplitudes of higher modes
(A12, A22 and A13, A23). One can notice that the response amplitude A11 (or A21) linearly increases for
an increase of Ω until the moment when the periodic response loses its stability and jump-up phenomena
appears i.e. the response amplitude suddenly jumps to some higher values. The instability point at which the
periodic solution loses its stability is known as the saddle-node bifurcation. Further increase in the excitation
frequency gives another branch of stable periodic solutions (known as the upper branch of periodic solutions)
for which the amplitude grows until the value of excitation frequency Ω reaches a critical point representing
the maximal value of the response amplitude (response peak), and where periodic solutions loses its stability

11



0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) (b) (c)

Figure 4: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with parametric excitation p(τ) = h sin(τ) and the nonlinear cubic sti�ness γ = 0.5. The stable periodic solutions are
represented by the blue solid line for A11 and dashed back line for A21 while unstable periodic solutions are represented by the
red solid line for A11 and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency response curves
A11 and A21, (b) the amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response curves A13 and
A23.
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Figure 5: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with parametric excitation γ = 0.5. The stable periodic solutions are represented by the blue solid line for A11 and
dashed black line for A21 while unstable periodic solutions are represented by the red solid line for A11 and green solid line for
A21. The following sub-�gures shows (a) the amplitude-frequency response curves A11 and A21, (b) the amplitude-frequency
response curves A12 and A22, (c) the amplitude-frequency response curves A13 and A23.

again. This instability point implies the jump-down phenomena of the response amplitude i.e. a sudden jump
of the response amplitude to some lower values. This process of increasing the excitation frequency from
some small initial values towards higher values, passing through the resonance state and than continuing to
certain �nite and higher values of the excitation frequency is known as forward frequency sweeping. In the
backward frequency sweeping, the starting point of excitation frequency Ω is taken to be higher than the
resonant frequency. By moving backward, small increases in the response amplitude can be observed until
the critical point where the periodic solution loses its stability, which leads to the appearance of jump-up
phenomena. Further decrease of the excitation frequency is followed by the appearance of the stable (upper)
branch of periodic responses. However, after some critical point the periodic solutions become unstable
again, which is indicated by the appearance of jump-down phenomena. The branches of unstable periodic
solutions can be de detected between two instability points and they are represented by the red and green
solid lines. It can be observed that the mixed quadratic and cubic nonlinearities in the proposed EH system
are causing the appearance of multiple jump-up and jump-down phenomena in response amplitudes, which
leads to response amplitudes consisting of both stable and unstable branches of periodic solutions. Moreover,
for the response amplitudes A12, A22,A13 and A23 even more complex dynamic behaviour can be observed
as shown in sub-�gures b) and c) of Fig.4.

Fig.5 shows the frequency response curves when the system is ampli�ed by parametric excitation p(τ) =
h cos(2τ). As expected, an increase of the excitation frequency Ω leads to an increase of the response
amplitudes A11 and A21, especially near the resonant frequency, where periodic solution loses its stability due
to the saddle-node bifurcation Fig.5. Moreover, the response amplitudes are exhibiting the mixed softening-
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hardening spring nonlinearity, where the softening e�ect is more prominent when the system is excited by
the parametric term p(τ) = h sin(τ) as shown in Fig.4 a). On the other hand, for the system excited by
p(τ) = h cos(2τ) the response amplitudes are for an order of magnitude larger (Fig.5 a) ) than those for
the system excited by p(τ) = h sin(τ). Based on this observation, it can be concluded that the nonlinear
EH model excited by p(τ) = h cos(2τ) yields higher response amplitude (A11) and electrical voltage (A21)
therefore becoming more relevant for the EH application. The multiple jumps can be detected (Fig.5 ) by
forward and backward frequency sweeping caused by combining the quadratic and cubic type nonlinearities
in the system. However, these multiple jumps can be also interpreted as regions with coexisting multiple
periodic solutions, which can be easily detected at higher modes, sub-�gures b) and c) in Fig.5.

The frequency response functions for higher harmonic amplitudes (A12, A22, A13 and A23) are shown in
Fig.4 b), c), Fig.5 b) and c). Two types of parametric excitation are considered. By performing forward and
backward frequency sweeping, one can observe few resonant peaks with small response amplitudes before
the excitation frequency reaches a value close to the resonance. In the vicinity of the resonant frequency,
the response amplitude is dramatically increased. A qualitative change in response diagrams is caused
by the combined e�ects of parametric excitation and mixed nonlinearities, which leads to the softening-
hardening spring nonlinearity properties and multiple jump phenomena. By comparing the highest values
of amplitudes for the second and third harmonics, it can be observed that the sinusoidal form of parametric
excitation has the biggest e�ect on the second amplitude, much more than on other modes. However, as
previously observed the cosine form of parametric excitation leads to higher values of the response amplitude
and electrical voltage.

The frequency responses of the EH system are shown in Fig.4 and Fig.5 for the value of cubic nonlinearity
γ = 0.5 and in Fig.6 and Fig.7 for γ = 3. The higher values of cubic nonlinearity increase the overall sti�ness
in the system and reduce the in�uence of parametric ampli�cation on the harmonic signal. Furthermore, the
maximum values of response amplitudes have been reduced by increasing the values of cubic nonlinearity,
especially when the excitation frequency is close to the resonance. However, increasing the value of cubic
nonlinearity can eliminate the e�ects of the quadratic one, which is particularly noticeable in the �rst mode
as given in sub-�gures (a). By cancelling the quadratic nonlinearity, the frequency response diagrams exhibit
only hardening type nonlinearity, which leads to reduction of the unstable branches of periodic responses. It
can be observed that only one unstable branch of periodic response is detected for every particular frequency
response. This reduction in unstable branches causes the upper stable branch of periodic response to become
narrower and therefore the range of operating frequency with higher response amplitude is reduced.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.01

0.02

0.03

0.04

0.05

0.06

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(c)

Figure 6: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with the parametric excitation p(τ) = h sin(τ) and nonlinear cubic sti�ness γ = 3. The stable periodic solutions are
represented by the blue solid line for A11 and dashed back line for A21 while unstable periodic solutions are represented by the
red solid line for A11 and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency response curves
A11 and A21, (b) the amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response curves A13 and
A23.

5.3. The e�ect of the magnitude of parametric excitation

In this subsection, the frequency response curves are determined to analyse the in�uence of the magnitude
and type of parametric excitation on the nonlinear dynamic behaviour of the proposed EH. The parametric
excitation is adopted in the sinusoidal and cosine form. The structural parameters adopted in this analysis
are: γ = 1, δ = 0.025, ω0 = 0.5, ξ = 0.8, χ = 0.5, f = 0.01, λ = 0.07, k = 0.5. Fig.8 - Fig.11
depicts the amplitude-frequency response curves for (A11, A12, AA13) (blue solid line) and (A21, A22, AA23)
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Figure 7: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with the parametric excitation p(τ) = h cos(2τ), where the nonlinear cubic sti�ness is γ = 3. The stable periodic
solutions are represented by the blue solid line for A11 and dashed back line for A21 while the unstable periodic solutions are
represented by the red solid line for A11 and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency
response curves A11 and A21, (b) the amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response
curves A13 and A23.

(black dashed line). The most prominent in�uence of the parametric ampli�cation phenomena can be
detected by changing its magnitude. It can be observed that a light change in the magnitude of parametric
excitation almost doubles the response amplitudes. This change is most noticeable for the �rst (A11 and the
third AA13) harmonic amplitude, as shown in sub-�gures a) and c) of Fig.8 - Fig.11. Moreover, nonlinear
phenomena such as softening and hardening spring nonlinearity and jumps become more pronounced. By
comparing the harmonic responses for lower and higher values of the magnitude of parametric excitation it
can be noticed that an increase in its magnitude emphasizes the softening spring nonlinearity e�ect, especially
for the sinusoidal type of excitation. Consequently, unstable branches of periodic response become also larger
(red and green lines) while the upper stable branches become wider. Based on the previous results, it can
be outlined that an increase in the magnitude of parametric excitation signi�cantly increases the response
amplitude of electrical voltage, which can improve the energy harvesting capabilities of the proposed EH
device with PZT elements. This type of EH design has large potential for immense application in MEMS
and NEMS devices.
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Figure 8: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with parametric excitation p(τ) = h sin(τ) and h = 0.1. The stable periodic solutions are represented by the blue
solid line for A11 and dashed black line for A21 while unstable periodic solutions are represented by the red solid line for A11

and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency response curves A11 and A21, (b) the
amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response curves A13 and A23.

5.4. The e�ects of quadratic nonlinearity and super-harmonic resonances

In this section, the e�ect of quadratic nonlinearity ξ on the frequency response curves is investigated for
the harmonic amplitudes (A11 and A21) of the nonlinear EH model. The parametric excitation p(τ) =
h sin(τ), values of quadratic nonlinearity ξ = 0.2; 0.4; 0.6, and values of other system parameters δ =
0.025, ω0 = 0.5, γ = 1, h = 0.3, χ = 0.5, f = 0.01, λ = 0.07, k = 0.5 are adopted in nu-
merical simulations. Fig.12 shows the e�ect of change of quadratic nonlinearity term on frequency response
curves for displacement amplitude (A11) - blue solid line and electrical voltage (A21) - black dashed line.
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Figure 9: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with parametric excitation p(τ) = h cos(2τ) and h = 0.1. The stable periodic solutions are represented by the blue
solid line for A11 and dashed back line for A21 while unstable periodic solutions are represented by the red solid line for A11

and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency response curves A11 and A21, (b) the
amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response curves A13 and A23.
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Figure 10: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with parametric excitation p(τ) = h sin(τ) and h = 0.2. The stable periodic solutions are represented by the blue
solid line for A11 and dashed back line for A21 while unstable periodic solutions are represented by the red solid line for A11

and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency response curves A11 and A21, (b) the
amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response curves A13 and A23.
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Figure 11: The amplitude-frequency response curves A1j - solid line and A2j - dashed line (j = 1, 2, 3) of the nonlinear energy
harvester with parametric excitation p(τ) = h cos(2τ) and h = 0.2. The stable periodic solutions are represented by the blue
solid line for A11 and dashed back line for A21 while unstable periodic solutions are represented by the red solid line for A11

and green solid line for A21. The following sub-�gures shows (a) the amplitude-frequency response curves A11 and A21, (b) the
amplitude-frequency response curves A12 and A22, (c) the amplitude-frequency response curves A13 and A23.

Moreover, by increasing the values of quadratic nonlinearity in combination with parametric and external
excitation one can observe additional peak in the response amplitude that appears due to the super-harmonic
resonance (SHR). It can be also noticed that an increase of the quadratic nonlinearity parameter leads to an
increase of both response amplitudes A11 and A21. The most prominent in�uence of the quadratic nonlinear-
ity parameter is on the softening spring nonlinearity that occurs on SHR and primary resonance amplitudes.
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Furthermore, the unstable branches can be detected on response amplitudes for SHR as well, where multiple
jumps e�ect also appears implying coexisting periodic orbits. On the other hand, the upper stable branch of
the response amplitude becomes larger and wider, which is important feature for application in broadband
EH systems.
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Figure 12: The amplitude-frequency response curves A11 - blue solid line and A21 - black dashed line for the nonlinear energy
harvester with parametric excitation p(τ) = h sin(τ) and h = 0.3. The stable periodic solutions are represented by the blue solid
line for A11 and dashed back line for A21 while unstable periodic solutions are represented by the red line for A11 and green
solid line for A21 and three values of quadratic nonlinearity: (a) ξ = 0.2, (b) ξ = 0.4, (c) ξ = 0.6, (super-harmonic resonance -
SHR).

Basins of attraction

From above results it is obvious that the system is displaying the coexisting periodic solutions within
certain frequency ranges due to mixed nonlinearities. Generally speaking, the amplitudes of coexisting
periodic solutions depends on initial conditions as well as on starting positions of excitation frequency
sweeping. This means that there are two sets of initial conditions for which the response amplitude after
long time integration will converge i.e. towards the upper or lower branch of the periodic solution. This means
that the system posses two attractors for the given set of material parameters and excitation frequencies.
Marked in di�erent colours for two sets of initial conditions, the response amplitude will converge to upper
and lower branches forming the basin of attraction. For the presented nonlinear EH system, the basins of
attraction are obtained for di�erent values of the excitation frequency Ω as shown in Fig.13. Moreover,
the coexisting periodic solutions from the amplitude-frequency responses given in Fig.10 are investigated
based on varying initial conditions and three di�erent values of excitation frequencies. To form the basin
of attraction, the set of initial conditions (x(0), ẋ(0)) is given as a set of points in the phase space, where
400×400 is the number of adopted points. Setting the excitation frequency Ω = 0.3, the basin of attraction is
given in Fig.13 (a). It can be noticed that the basin of attraction is displaying only one colour and therefore,
there is only one stable periodic solution. Moreover, when increasing the excitation frequency Ω = 0.8 two
coexisting periodic solutions appears as shown in Fig.13 (b). In this case, for the initial condition marked in
red colour the solution converges to the upper stable branch while for the initial conditions marked in blue
the solution converges to the lower stable branch. In Fig.10 one can observe that the excitation frequency
Ω = 0.8 is close to the bifurcation point and therefore, for almost equal portions of initial conditions solution
converges to the upper and lower stable branches of periodic solutions. However, further increase of the
excitation frequency Ω = 1 leads to an increase of the set of initial conditions that converges to the lower
stable branch of periodic solutions as shown in Fig.13 (c).

Time response analysis

To theoretically investigate e�ciency of the proposed design og parametrically ampli�ed EH system, the
time responses of the displacement x(τ) and power P (τ) are plotted in Fig.14 and Fig.15. According to [34],
the formulation of the dimensionless instantaneous power is given as P (τ) = λv(τ)2 and presented in the form
of time response diagrams. By using the direct numerical integration (ode45 in Matlab), Eq.(3) and Eq.(4)
are solved for di�erent values of the magnitude of parametric excitation h to show its e�ect on parametric
ampli�cation. To understand the in�uence of the parametric ampli�cation on the initial harmonic excitation
and performance of the EH, the following initial conditions are adopted x(0) = 0.001, ẋ(0) = 0.001, v(0) = 0
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Figure 13: The basins of attraction for multiple coexisting periodic solutions given for three excitation frequencies and related
to the amplitude-frequency response diagram given in Fig.10; (a) the excitation frequency Ω = 0.3, (b) the excitation frequency
Ω = 0.8, and (c) the excitation frequency Ω = 1. The blue colour represents the set of initial conditions for which solution
converges to the lower stable branch while the red colour represents the set of initial conditions for which the solution converges
to the upper stable branch of periodic solutions.

in each of the presented numerical examples. Here, two cases are investigated with parametric excitations
p(τ) = sin(τ) and p(τ) = cos(2τ) , where the following values of amplitudes h = 0, 0.25, 0.5 are adopted.
The dimensionless time period T = 200 is used in all simulations.

The e�ects of varying parametric ampli�cation h on time responses of the displacement x(τ) and power
P (τ) are presented in Fig.14 and Fig.15. One can observe that introduced parametric ampli�cation increases
the response amplitudes and power with respect to the harmonically excited case and thus having better
performance in the energy harvesting application. It can be seen that small variations in the amplitude of
parametric ampli�cation h results in higher response amplitudes of power P (τ). Also, after the �rst period of
50 time units, the in�uence of initial conditions becomes more prominent. After that period, the rest of the
response is almost periodic for both types of parametric excitation, Fig.14. Moreover, Fig.15 shows changes
in the instantaneous power response for two types of parametric excitation. One can observe that the e�ect
of parametric ampli�cation is the most pronounced for the value of parametric excitation amplitude h = 0.5.
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Figure 14: The time responses of the displacement x(τ) for time period T = 200 and di�erent values of the amplitude of
parametric ampli�cation h = 0, 0.25, 0.5. The following sub-�gures shows time response diagrams for (a)sin(τ) and Ω = 0.6
and (b) cos(2τ) and Ω = 0.7.

5.5. Summary of the numerical results

The following conclusions can be drawn about the results presented in this section. First of all, it is
demonstrated that the introduction of parametric excitation into the nonlinear EH model based on Du�ng
oscillator signi�cantly ampli�es the harmonic response, which then leads to higher voltage responses and
harvested power. Second, it is reviled that variation of the cubic nonlinearity term has a signi�cant e�ect
on the reduction of the softening property and unstable branches of periodic responses. Furthermore, an
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Figure 15: The instantaneous power P = λv2(τ) in time response diagrams determined for two types parametric ampli�cation
(a) sin(τ) and Ω = 0.6, and (b) cos(2τ) and Ω = 0.7.

incremental change in the amplitude of parametric excitation leads to signi�cant ampli�cation of the response.
The e�ect of this parameter is much more pronounced than change in any other parameter. Moreover,
it is found that both softening and hardening spring e�ects become more prominent, and therefore the
regions with coexisting periodic solutions expand. As expected, a change in quadratic nonlinearity leads
to ampli�cation of softening nonlinear property and appearance of additional unstable branches of periodic
responses. Furthermore, it is observed that by considering the sine type of parametric excitation with
one-to-one frequency tuning results in a signi�cant ampli�cation of the response amplitude. This kind of
ampli�cation appears in systems with combined nonlinearity, where in�uence of the quadratic nonlinearity
term is signi�cant for the existence of such e�ect. It is observed that one resonant super-harmonic peak
appears before the primary resonant peak. This e�ect can be in the focus of some future studies of the
broadband EH model. Due to the interesting results obtained from our theoretical investigation a future
research would require an experimental analysis in order to realize a physical counterpart of the proposed
EH system and further explore its dynamic behavior [28, 52].

6. Conclusions

The parametric ampli�cation phenomenon is used to amplify the signal by direct harmonic excitation
and enhance the performance of the broadband piezoelectric energy harvester. The forced Mathieu-Du�ng
oscillator model with quadratic nonlinearity and electric circuit equation is adopted to represent the observed
energy harvester system. An approximation of the periodic response is obtained by using the incremental
harmonic balance method in combination with the path-following to �nd the solution of the strongly nonlinear
system. To obtain a complete periodic response, with upper and lower stable and unstable branches of
periodic solutions, a Floquet stability theory and Hsu procedure are implemented. The results obtained by
the proposed approach are veri�ed with the direct numerical integration technique, where �ne agreement is
achieved.

In the numerical results section it is demonstrated that for a simultaneous action of the external harmonic
excitation and parametric excitation, the system exhibits a combined resonant state i.e. the fundamental
and parametric resonance state. For this case, it is shown that the response amplitude grows until it achieves
its maximum value, which is governed by the introduced cubic nonlinearity. On the other hand, it is found
that response amplitudes become larger for an increase of the value of quadratic nonlinearity term, especially
for the system in combined resonant state. Furthermore, it was shown that the cosine form of parametric
excitation term results in much higher response amplitudes compared to the case with the sinusoidal form.
Moreover, an incremental change of parametric excitation magnitude has signi�cant e�ect on softening and
hardening spring nonlinearity.

Analysis of the amplitude-frequency responses have shown that the �rst three amplitudes are having
the most of the system's energy, which is related to the order of nonlinearity that appears in the system.
A wide spectrum of nonlinear phenomena is detected such as softening and hardening spring nonlinearity,
multiple jump-up and jump-down phenomena, which indicates the existence of coexisting periodic solutions.
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It can be outlined that the parametric excitation in conjunction with the direct harmonic excitation magnify
the response amplitude several times with respect to the the case with only external harmonic excitation.
Time response diagrams of the instantaneous power additionally revealed the advantages of parametric
ampli�cation in improving the energy harvesting capabilities of the proposed EH system. These �ndings
can be important in future applications and potential development of more e�cient broadband piezoelectric
energy harvesters. The presented methodology can be implemented in the analyses of more complex EH
models, especially for systems with a higher number of degrees of freedom and combined nonlinearities.
Moreover, the parametric ampli�cation phenomena can be used to amplify a signal detected in the directly
excited system and therefore increase the e�ective Q-factor for sensing applications in MEMS and NEMS
devices.
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