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Abstract

We develop a novel Hawkes process (HP) model with hidden marks for financial

event data, where the hidden marks are used to take account the effect of some extra

random errors (ERE) caused by data collection mechanisms and some data cleaning

procedures. We further propose a Bayesian method for parameter estimation. We

use simulation studies and two data applications to evaluate the performance of the

estimation method and the impact of ERE on the intensity of an underlying financial

process and explain how to use the proposed model in practice. Our results show that

the proposed estimation method works well, and they also confirm that when ERE

cause information about the underlying process to be lost, the intensity function may

be underestimated. We further find that the proposed model performs better in the

presence of ERE compared with the standard HP model.
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1 Introduction

Hawkes process (HP) models, first proposed by Hawkes (1971a, 1971b), have become

more and more popular in finance recently, see Hawkes (2018) for an excellent review.

They are popular mainly because they have the flexibility and advantages of using the class

of counting processes that can be specified by a conditional intensity function for financial

market event data.

For example, Bowsher (2007) proposed a generalized HP model by using a vector con-

ditional intensity to incorporate inhibitory events and dependence between trading days.

Large (2007) extended the work of Bowsher (2007) to model the actions of liquidity

providers in the construction process of the order book. Chavez-Demoulin and McGill

(2012) used HP models to make inferences on instantaneous conditional Value-at-Risk.

Bacry and Muzy (2014) introduced a HP model that accounts for the dynamics of market

prices through the impact of market order arrivals at the microstructural level. Bauwens

and Hautsch (2006) proposed a new type of stochastic intensity model in order to capture

a common latent component in point processes. They assumed that the latent component

follows a log-normal distribution, whose mean follows an autoregressive process, and the

intensity function is driven not only by the observed process history but also by the dy-

namic latent component. They further applied their model to estimate the price intensities

based on NYSE trading. Many other HP models have also been developed for financial

data. See Bacry et al. (2015) and the references therein.

It is worth noting that the work discussed above focuses on how to capture important

components (observable or latent) of an underlying financial process through its intensity

function in the presence of randomness in realized jumps, and whether the formula de-

signed for the intensity function improves the goodness-of-fit and allows researchers to

test the existence of some unobserved features in the underlying process by using the data

provided.

However, in addition to the randomness in realized jumps, the data to be analysed also
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contain other sources of randomness. For example, for data with timestamps of one second

or one millisecond precision, any durations shorter than the required threshold may not be

observable; we may observe a trade with a missing price; we may observe a bid but without

a corresponding ask (or vice-versa); and we may observe several events at the same time,

etc. Hence, data collection mechanisms can introduce some extra random errors into the

data to be analysed.

Some data cleaning techniques could be used to deal with some of the missing informa-

tion. For example, we may take the missing value as the last observed value; we may delete

a trade with missing price; we may also transform the data by adding some appropriate ran-

dom noise to some event times, thus ensuring that no multiple events at the same time, see,

e.g. Lorenzen (2012), Bowsher (2007) and Filimonov and Sornette (2012). It is seen that

data cleaning techniques can also introduce some extra random errors into the data. We

will refer to all of these errors caused by data collection mechanisms and/or data-cleaning

procedures as extra random errors (ERE). Clearly, if such data are used, these ERE may

seriously affect the estimation results of a financial model used. In this paper, we focus on

HP models.

The HP models discussed above allow us to deal with the randomness in realized jumps

of an underlying process but ignore the effect of ERE when analyzing the data. It is worth

noting that it is impossible to remove all the ERE from the data to be analysed. Hence, it

is important to assess the effect of ERE on the analysis, but currently, it is unclear how to

evaluate the effect of ERE and how to deal with their effect and the randomness in realized

jumps of an underlying financial process simultaneously. This literature gap motivated the

work presented in this paper.

Since it is not possible to remove all the ERE from the data to be analysed, we develop

a novel HP model with hidden marks in this paper, where the hidden marks are used to take

account the effect of ERE. As the deviations from a pure Hawkes model caused by ERE

can be very different, we further propose to use the generalized Lambda distribution (GLD)

for the mark distribution due to its high degree of flexibility. As it turns out, existing HP
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estimation methods (see, for example, Veen and Schoenberg, 2008, Rasmussen, 2013, and

the references therein) are hard to apply to the novel structure of the proposed model, we

further propose a Bayesian method for parameter estimation.

We focus our discussions on a simple self-exciting HP model because many other HP

models in the literature are based on this type of models. We conduct extensive simulation

studies to check the performance of our estimation method and evaluate the effect of ERE.

More specifically, we consider six different scenarios that mimic real situations and in each

scenario, we introduce some ERE into the data to be analysed. Our results confirm that

when ERE cause information about the underlying process to be lost, the intensity function

may be underestimated. Our results also show that the proposed estimation method works

well and the proposed model performs better in the presence of ERE compared with the

standard HP model. We further apply our method to some high frequency data to illustrate

the use of the proposed model in practice.

In summary, the main contributions of this paper to the finance literature are given

below. Firstly, we develop a novel HP model by using hidden marks to take account the

effect of ERE, which provides a more flexible model for financial analysis and results in

more reliable and meaningful statistical inferences about the underlying financial process.

Secondly, we propose a Bayesian method for the estimation of the proposed model and

show that the method works well. Hence, the method provides a useful tool for people in

finance to use when they need.

In the following, we introduce the proposed model in Section 2 and discuss a Markov

chain Monte Carlo (MCMC) estimation method in Section 3. Section 4 presents two simu-

lation studies. The first one is used to check the performance of our estimation method, and

the second one is used to assess the impact of the ERE. Section 5 considers a generaliza-

tion of the proposed model briefly. Section 6 presents the results obtained by applying our

method to some high frequency data. Finally, some comments and conclusions are given

in Section 7.
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2 Proposed Model

2.1 The self-exciting HP model

We start from the self-exciting HP model proposed by Hawkes (1971a, 1971b). Let {N(t)}t≥0

be a counting process, defined by

P (N(t+ h)−N(t) = m|N(s)(s < t)) =


λ(t)h+ o(h), if m = 1 ,

o(h), if m > 1 ,

1− λ(t)h+ o(h), if m = 0 ,

(1)

where λ(t) is the conditional intensity function of the point process, i.e. conditional on

the history of the process up to time t. Moreover, h > 0 and o(h) is a function so that

limh↓0
o(h)
h

= 0. In other words, the probability of observing an event during the infinitesi-

mal interval of time t and t+ h when h ↓ 0 is λ(t)h, and the probability of observing more

than one event during the same interval is negligible.

The self-exciting HP model is a point process with λ(t) = v(t|α0)+
∫ t

0
γ(t−s|α1)dN(s),

where t ≥ 0, α0 and α1 are vectors of model parameters, v(t|α0) > 0 is a deterministic

function of t, representing the baseline intensity. v(t|α0) describes the arrival of events trig-

gered by external sources, and their arrival does not depend on the previous events within

the process. γ(u|α1) ≥ 0, called the memory kernel of the point process, is a non-negative

function of u for u ≥ 0 and satisfies 0 <
∫∞
0

γ(u|α1)du < 1.

If we let v(t|α0) = α0 > 0 and let t0 = 0 < t1 < . . . < tn = T be the observed event

times between 0 and T , then the conditional intensity function can be expressed by

λ(t) = α0 +
∑
ti<t

γ(t− ti|α1). (2)

A special case of (2) is obtained by letting γ(u|α1) = α1e
−α2u in (2). It follows from

0 <
∫∞
0

γ(u|α1)du < 1 that 0 < α1 < α2 < ∞. Hence the intensity function of the
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self-exciting HP model becomes

λ(t) = α0 +
∑
ti<t

α1e
−α2(t−ti). (3)

Model (3) shows that all the events having occurred before current time t contribute to

the event intensity at time t. Moreover, the kernel γ(t − ti|α1) = α1e
−α2(t−ti) modulates

the change that an event at time ti has on the intensity function at time t, showing that

more recent events have higher influence on the current event intensity, compared to events

having occurred further away in time. In this paper we focus our discussions on (2) with

γ(u|α1) = α1e
−α2u, and we refer to the HP model defined by (3) as Model A throughout

the paper.

Given the observed event times, Ogata (1981) derived an expression for the likelihood

function of the parameters, in which some components can be calculated recursively. A

more general result can be found in, e.g. Daley and Vere-Jones (2003, Proposition 7.2III).

More specifically, the probability density function of time t after time a is given by f(t) =

λ(t)e−
∫ t
a λ(s)ds. Hence, the likelihood function of α0, α1, α2 is given by

L(α0, α1, α2|tn) =
∏n

j=1 f(tj|tj−1) =
∏n

j=1 λ(tj)e
−

∫ T
0 λ(t)dt,

where tj = (tj, . . . , t0) for j = 1, . . . , n. (Note that we use bold letters for vectors in this

paper.) By taking logs, we have lnL =
∑n

j=1 lnλ(tj)−
∫ T

0
λ(t)dt, where

∫ T

0
λ(t)dt =

∫ T

0

{
α0 +

∫ t

0
α1e

−α2(t−s)dN(s)
}
dt = α0T − α1

α2

∑
ti<T

{
e−α2(T−ti) − 1

}
.

Therefore, the estimates of α0, α1, α2 may be obtained by using a numerical procedure to

maximize the log-likelihood function.
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2.2 The HP model with hidden marks

It is worth noting that due to the effect of ERE, the event intensity at time t should be

a random variable, while the event intensity at time t defined by model A is not. Since

it is unclear how the HP model defined by (2) explains the role of ERE in the data to be

analysed, we provide all points ti with i.i.d. marks ξi such that ξi+α0 > 0 a.s. Furthermore,

we let the conditional intensity depend on the marks only via the mark of the last observed

point, which gives the following model:

λ(t | α) = α0 +
∑
ti<t

γ(t− ti|α1) + ξti0 , t ≥ 0, where i0 := max{i : ti < t}, (4)

where α is a vector containing all parameters of the model. Model (4) says that the event

intensity λ(t|α) at time t is a random variable, whose distribution depends both on the

observed history of the process and on the distribution of the mark ξti0 . Note that due to

the nature of the ERE that we consider, it is reasonable to assume that ξi are i.i.d. random

variables.

So, we need to specify a distribution for ξti0 so that λ(t | α) defined by (4) is positive

for any t ≥ 0 in a parameter space of the model. We also hope that the distribution of

ξti0 is flexible enough to capture different characteristics of the distribution, including the

location, scale, skewness and tail shape etc., which will make model (4) more robust to

model specification errors.

We first consider which distribution could be a good candidate for ξti0 . Many standard

distributions have been used in financial modelling, including normal, lognormal, Weibull,

exponential, t-, skewed t- and F- distributions, as well as many others. However, as the

deviations (caused by ERE) from a pure Hawkes model can be very different, we need a

mark distribution that has a high degree of flexibility. The work of Fournier et al. (2007)

suggests that the generalized lambda distribution (GLD) could be a better candidate for ξti0

because it defines the most flexible class of distributions and it is also able to provide a

very accurate approximation to many commonly used distributions, see Figure 1 for some
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examples. Hence, we use the GLD for ξti0 in this paper.
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Figure 1: Density function plots of GLD (continuous curves) and Normal, Weibull, lognor-
mal, exponential, F-, skewed t- distributions (dashed curves).

Note that GLD has already been used in the finance literature. For example, it has been

used to study option pricing (Corrado, 2001), spot exchange rates (Lee, 2003) and income

data (Tarsitano, 2004). More recently, Corlu and Corlu (2015) studied the performance of

GLD in capturing the leptokurtic and skewed behaviour of exchange rate returns.

It is also worth noting that GLD defines a class of distributions. The distributional

range of GLD depends on its parameters (see e.g. Gilchrist, 2000, Chapter 7). As we need

to ensure that the intensity function is positive for any t in a parameter space of the model,

in this paper we use the GLD defined by the quantile function Q(τ) = µ + η0Q(τ, η1, η2),

where τ is uniformly distributed between 0 and 1, µ and η0 > 0 are the location and scale

of the distribution respectively, and Q(τ, η1, η2) is given by

Q(τ, η1, η2) =
τ η1 − 1

η1
− (1− τ)η2 − 1

η2
, 0 < η1 < 1, η2 < 0, (5)

in which η1 and η2 not only determine the skewness of the distribution but also determine

the relative weights of the tails. In other words, the skewness of the distribution is modelled

as a result of tail shape and not as an independence feature (see Gilchrist, 2000). It is worth

noting that Q(τ, η1, η2) defined by (5) is a special case of GLD with location 0 and scale 1,
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for which we have the following result.

Proposition 1 Consider the GLD defined by (5). Then for any τ ∈ (0, 1), we have −1/η1 <

Q(τ, η1, η2) < ∞, where 0 < η1 < 1, η2 < 0.

See the Proof of Proposition 1 in Appendix I. Proposition 1 says that the support of the

GLD defined by (5) is given by (−1/η1,∞), which will be useful when we define our new

model.

Since the GLD is defined by its quantile function because its density function and other

equivalent functions do not have an explicit mathematical expression, we need to rewrite

model (4) in a quantile function form so that the GLD defined by (5) could be used.

It is worth noting that if we let ξi follow the distribution defined by η0Q(τ, η1, η2), where

τ ∈ (0, 1), η0 > 0 and Q(τ, η1, η2) is defined by (5), then we have ξi = η0Q(τi, η1, η2),

where τi are i.i.d. random variables uniformly distributed between 0 and 1. Using this

relation, model (4) can be expressed by

λ(t | α) = α0+
∑
ti<t

γ(t−ti|α1)+η0Q(τti0 , η1, η2) , t ≥ 0, where i0 := max{i : ti < t},

according to which, we have the following proposition.

Proposition 2 Let ξti0 follow the distribution defined by η0Q(τ, η1, η2), where τ ∈ (0, 1),

η0 > 0 and Q(τ, η1, η2) is defined by (5). Then the quantile function of the event intensity

at time t, denoted by Qλ(t, τ |α), is given by

Qλ(t, τ |α) = α0 +
∑

ti<t γ(t− ti|α1) + η0Q(τ, η1, η2)

= α0 +
∑

ti<t α1e
−α2(t−ti) + η0Q(τ, η1, η2),

(6)

where α = (α0,α1,η), in which α1 = (α0, α1, α2) and η = (η0, η1, η2).

See the Proof of Proposition 2 in Appendix I. It is worth noting that as ξi are i.i.d. random

variables, we have dropped ti0 from (6). Hence, the distribution of the event intensity at
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time t is the GLD, whose location and scale are given by α0 +
∑

ti<t α1e
−α2(t−ti) and η0

respectively, and whose tails are controlled by η1 and η2. We refer to the HP model defined

by (6) as Model B throughout the paper.

Proposition 3 Let Ω̄1 = {α|0 < α1 < α2 < ∞, α0 > η0/η1, η0 > 0, 0 < η1 < 1, η2 <

0}. Then Qλ(t, τ |α) > 0 on Ω̄ for all τ ∈ (0, 1) and t ≥ 0.

See the Proof of Proposition 3 in Appendix I. Proposition 3 ensures that Qλ(t, τ |α) is

positive on Ω̄ for any t and τ . That is, the intensity λ(t|α) > 0 for all t on the parameter

space. Hence, the proposed Model B is well-defined on Ω̄1.

Model B also tells us that the magnitude of the intensity jump right after an event

occurrence is given by α1, the rate at which the intensity decreases exponentially is given

by α2, while the baseline intensity of the process is a random variable given by α0 +

η0Q(τ, η1, η2), which is positive on Ω̄1. Therefore, the parameters of Model A and Model

B are interpreted similarly, but Model B is more flexible than Model A because it involves

hidden marks.

Since Model B defines the entire conditional distribution of event intensity at time t,

it is easy to obtain statistical inferences about any features of event intensity at time t, see

Proposition 4 given below for some examples.

Proposition 4 Consider Model B.

(i) The conditional median of the intensity function is given by Qλ(t, 0.5|α) for t ≥ 0.

(ii) The conditional expectation of the intensity function is given by

µλ(t) = α0 +
∑
ti<t

α1e
−α2(t−ti) + η0

(
1

η2 + 1
− 1

η1 + 1

)
, t ≥ 0.
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(iii) The conditional variance of the intensity function is given by

σ2
λ =

η20
η21

(
1

2η1+1
− 1

(η1+1)2

)
+

η20
η22

(
1

2η2+1
− 1

(η2+1)2

)
− 2η20

η1η2

(
B(η1 + 1, η2 + 1)− 1

(η1+1)(η2+1)

)
, t ≥ 0,

where B(η1 + 1, η2 + 1) =
∫ 1

0
τ η1(1− τ)η2dτ , which is in fact the Beta function.

(iv) The 100(2τ−1)% probability interval for λ(t|α) is given by [Qλ(t, 1−τ ′|α), Qλ(t, τ
′|α)],

where t ≥ 0, τ ′ = τ if τ > 0.5 and τ ′ = 1− τ otherwise.

See the Proof of Proposition 4 in Appendix I. In practice, we may use the conditional

median or conditional expectation to approximate event intensity at time t. In this pa-

per we use the conditional median rather than the conditional expectation because median

is a more robust measure for the central location of a distribution. Moreover, a proba-

bility interval for event intensity at time t also gives us an interval forecast for the in-

tensity. For example, a 95% interval forecast for event intensity at time t is given by

[Qλ(t, 0.025|α), Qλ(t, 0.975|α)], which can be very useful in practice. In finance, we are

also interested in probability forecasting for future events. Proposition 5 shows how these

forecasts can be obtained.

Proposition 5 Consider Model B. Let N be the number of events occurring in the interval

(T, T + h], where h > 0. Then, given observed history up to time T , we have

(i) P (N ≥ 1) = 1− eΛ can be approximated by Pτ (N ≥ 1)|τ=0.5, where Pτ (N ≥ 1) =

1− e−Λτ , Λ =
∫ T+h

T
λ(t|α)dt and

Λτ =
∫ T+h

T
Qλ(t, τ |α)dt

= {α0 + η0Q(τ, η1, η2)}h+
∑

ti<T+h
α1

α2

{
e−α2(T−ti) − e−α2(T+h−ti)

}
.

(ii) The 100(2τ − 1)% probability interval for P (N ≥ 1) is given by [P1−τ ′(N ≥

1), Pτ ′(N ≥ 1)], where τ ′ = τ if τ > 0.5 and τ ′ = 1− τ otherwise.
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See the Proof of Proposition 5 in Appendix I. For example, if τ = 0.975, then a 95%

interval forecast for P (N ≥ 1) is given by [P0.025(N ≥ 1), P0.975(N ≥ 1)]. It is worth

noting that the Proof of Proposition 5 in Appendix I also shows that Λτ is the quantile

function of Λ and Pτ (N ≥ 1) is the quantile function of P (N ≥ 1). This means that any

quantity of interest about P (N ≥ 1) and Λ can also be obtained easily.

Note that Pτ (N = k) = (Λk
τ/k!)exp(−Λτ ) and P (N = k) = (Λk/k!)exp(−Λ), where

k = 1, 2, .... However, Pτ (N = k) is not a monotone function of Λτ , which suggests that

the τ th quantile of P (N = k) is not necessarily given by Pτ (N = k). Hence, P0.5(N = k)

may not be a good approximation of P (N = k). To deal with this problem, we propose the

following method to estimate P (N = k).

Let τj (j = 1, . . . , J) be an i.i.d. random sample of size J between 0 and 1. Then

{Pτj(N = k), j = 1, . . . , J} is a random sample of P (N = k). Hence P (N = k) can be

estimated by the median of this sample. Moreover, the top and bottom e.g. 5% quantiles of

this sample give a 90% interval forecast for P (N = k).

It is seen that by using our modelling approach, we can analyze financial event data

from a distribution perspective, which shows another advantage of the proposed model.

3 Parameter Estimation

3.1 The posterior density function

To use the proposed model, we need to estimate the model parameters. First note that

Model B says that the conditional quantile function of event intensity at time tj is given by

Qλ(tj, τ |α). Hence, a random sample of the intensity at time tj is given by Qλ(tj, τj|α),

where τj is a random sample from (0, 1). Therefore, the likelihood of an event at time

tj after time tj−1 is given by f(tj|τj, tj−1) = Qλ(tj, τj|α) exp
{
−
∫ tj
tj−1

Qλ(s, τj|α)ds
}
,

in which τj is a latent variable. As the latent variables make it difficult to use the MLE
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method, we develop a Bayesian method for parameter estimation, for which we need to de-

rive the posterior density function of the parameters. Note that a posterior density function

is proportional to the product of a likelihood function and a prior density function of the

parameters.

Let τ j = (τj, τj−1, . . . , τ0) and tj = (tj, tj−1, . . . , t0), where j = 0, . . . , n. Moreover,

let the posterior density function of (τ n,α) be π(τ n,α|tn), let the likelihood function

be π(tn|τ n,α), and let the prior density function be π(τ n,α). Then the posterior den-

sity function of the parameters can be expressed by π(τ n,α|tn) ∝ π(tn|τ n,α)π(τ n,α).

However, as the likelihood function π(tn|τ n,α) is difficult to evaluate due to the latent

variables, we derive another expression for the posterior density function. It is worth noting

that π(τ n,α|tn) ∝ π(tn, τ n|α)π(α), where π(α) is the prior density function of α, and

π(tn, τ n|α) =
∏n

j=1 π(tj|τj, tj−1, τ j−1,α)π(τj|tj−1, τ j−1,α), in which π(τj|tj−1, τ j−1,α)

= 1 as τjs are i.i.d. U(0, 1). Hence for Model B, the posterior density function is given by

π(τ n,α|tn) ∝
∏n

j=1

{
α0 +

∑
ti<tj

α1e
−α2(tj−ti) + η0

(
τ
η1
j −1

η1
− (1−τj)

η2−1

η2

)}
× exp

[
−
∫ T

0

{
α0 +

∑
ti<s α1e

−α2(s−ti)
}
ds

−
∑n

j=1 η0

(
τ
η1
j −1

η1
− (1−τj)

η2−1

η2

)
(tj − tj−1)

]
π(α),

(7)

where (α, τ n) ∈ Ω̃ = Ω̄1 × Ω̄2 and Ω̄2 = (0, 1)n.

Clearly, the posterior distribution of the parameters is not a standard one. Hence, we

will use a MCMC method for parameter estimation, which requires that the posterior distri-

bution is well-defined in a parameter space Ω in the sense that
∫
Ω
π(τ n,α|tn)dτ ndα < ∞.

A simple way to define Ω is to slightly modify Ω̃. Specifically, we let the modified

parameter space be Ω = Ω1 × Ω2, where Ω1 = {α|0 < α1 < α2 ≤ M, η0/η1 < α0 ≤

M, 0 < η0 ≤ M, 0 < η1 < 1, −M ≤ η2 ≤ −ϵ}, Ω2 = (0, 1 − ϵ]n. In this paper, we let

ϵ = 10−30 and M = 1030, which ensures that the difference between Ω̃ and Ω can be safely

ignored from a practical perspective.

Proposition 6 If π(α) is a well-defined probability density function of α on Ω1, then the
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posterior density function π(τ n,α|tn) defined by (7) is well-defined on Ω.

See the Proof of Proposition 6 in Appendix I. Hence, we now need to define a proper prior

density function for π(α).

3.2 The prior density function

To make use of the prior knowledge about the parameter space and the dependence struc-

ture between the parameters, we let π(α) = π(α1)π(α2|α1)π(η0)π(η1)π(η2)π(α0|η0, η1),

where α1, η0 and −η2 follow a log-normal distribution, and all others follow a truncated

log-normal distribution. The Appendix II gives a detailed expression of the prior density

function π(α), from which we see that the scale parameters of the prior distributions for αi

and ηi are denoted by ui and vi respectively, where i = 0, 1, 2. Clearly, π(α) is well-defined

on Ω1. Note that these scale parameters measure the knowledge we have about individual

parameters before analysing the data. As in reality we usually do not have any prior knowl-

edge at hand, in this paper we take ui = vi = 2 to reflect this fact. This is because, e.g.

u1 = 2 implies that the standard deviation of α1 is given by
√
(eu

2
1 − 1)eu

2
1 ≈ 54, which is

very large, suggesting that the posterior distribution contains almost no prior information

on α1. Similar explanations hold for other parameters. So our method is also robust to the

specification of priors.

3.3 The MCMC estimation method

One of the MCMC methods is the Metropolis-Hastings method. The basic idea of this

method is to generate a sequence of model parameters that form a Markov chain in the

parameter space, such that its equilibrium distribution is the posterior distribution of the

parameters. This can be achieved by simulating a candidate parameter value from a chosen

distribution and accepting this proposed value as the next in the sequence with a known

probability; see, for example, Brooks (1998) and Geyer (2011) for details.
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In our case, we let α and τ n represent the current values of the parameters, and α′ and

τ ′
n represent the proposed values. The main steps of our MCMC method are also given in

Appendix II. The Markov chain theory (see, e.g. O’Hagan and Forster, 2004) guarantees

that the equilibrium distribution of the Markov chain generated by the above Metropolis-

Hastings algorithm is the posterior distribution defined by (7).

Therefore, after a burn-in period, posterior samples of the parameters can be collected

from the Markov chain, and these samples can be regarded as parameter samples drawn

from the posterior distribution. The Bayes estimate of the unknown parameter is simply

the mean of the posterior distribution, denoted by α̂. Lehmann and Casella (1998, Sec-

tion 6.8) shows that the Bayes estimator defined above is asymptotically unbiased and is

asymptotically efficient.

3.4 Model evaluation

Let λ(t) be the intensity function of a point process, {ti} a set of event times and ai =∫ ti
0
λ(s)ds. Then it is well-known that {ai} follows a stationary unit rate Poisson process.

Hence, the durations defined by bi = ai − ai−1 =
∫ ti
ti−1

λ(s)ds should be i.i.d. random

variables following a unit rate exponential distribution. Moreover, Ui = 1 − e−bi are i.i.d.

uniform random variables on [0, 1). See e.g. Daley and Vere-Jones (2003, Proposition

7.4.IV) for details.

Let âi, b̂i and Ûi be the values calculated using the estimated intensity function λ̂(t).

Then the above results suggest that, if λ̂(t) fits data well, then {âi} should behave like a

unit rate Poisson process, {b̂i} should follow a unit rate exponential distribution, and {Ûi}

should follow a uniform distribution on [0, 1).

Therefore, the goodness-of-fit of a point process can be checked by, e.g. graphical

methods. For example, points on the plot of âi against the cumulative number of events

should be roughly along the reference line y = x. Similarly, points on the plot of the quan-

tiles of b̂i against those of a unit rate exponential distribution should also be roughly along
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the reference line. Significant departures of the points from this line suggest a weakness in

the model.

The above diagnostic methods for the goodness-of-fit of a point process can also be

used for our model. If our intensity function is estimated by Qλ(t, 0.5|α̂), then we have

âi =
∫ ti
0
Qλ(s, 0.5|α̂)ds

= {α̂0 + η̂0Q(0.5, η̂1, η̂2)}(ti − ti−1)−
∑i−1

k=0
α̂1

α̂2

{
e−α̂2(ti−tk) − e−α̂2(ti−1−tk)

}
.

Hence b̂i = âi − âi−1 and Ûi = 1− e−b̂i can be calculated easily.

4 Simulation Studies

In this section we present results of two simulation studies: The first one assesses our

estimation method, and the second one evaluates the effect of ERE on Models A and B

respectively. Our results show that the estimation method works well, and they also confirm

that when ERE cause information about the underlying process to be lost, the intensity

function may be underestimated. Moreover, they show that Model B performs better in the

presence of ERE compared with Model A. These findings are further supported by our first

application in Section 6.

4.1 Simulation study 1: Assess the performance of the estimation method

We check the performance of the proposed estimation method from the following several

aspects: the estimated parameters, the goodness-of-fit of the estimated models, and the

differences between the estimated and the true probabilities Pτ (N ≥ 1) for a range of

τ ∈ (0, 1).
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4.1.1 Simulated data

We consider the following two models

Qλ(t, τ |α) = 0.75 +
∑
ti<t

0.6e−1.8(t−ti) + 0.2

{
τ 0.8 − 1

0.8
− (1− τ)−0.8 − 1

−0.8

}
(8)

and

Qλ(t, τ |α)

= α0 +
∑

ti<t α1e
−γ1(t−ti) +

∑
ti<t α2e

−γ2(t−ti) + η0

{
τη1−1
η1

− (1−τ)η2−1
η2

}
= 0.533 +

∑
ti<t 2e

−5(t−ti) +
∑

ti<t 0.5e
−4.33(t−ti) + 0.2

{
τ0.6−1
0.6

− (1−τ)−0.5−1
−0.5

}
,

(9)

where t ≥ 0, τ ∈ (0, 1) and the parameter values were arbitrarily chosen from the param-

eter space. It is seen that model (9) is a minor generalization of Model B as it contains an

extra term. In fact, a further generalization in this direction is to include k terms into the

model.
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Figure 2: Observed intensity functions (darker curves) and the 90% interval forecasts (grey
curves) for the true intensity function λ(t|α) of Processes One and Two respectively.
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Table 1: 95% credible intervals for model parameters in 200 simulation studies

Model (8) α0 α1 α2 η0 η1 η2
True values 0.75 0.60 1.80 0.2 0.8 −0.8
2.5% 0.407 0.304 0.972 0.009 0.255 −4.891
97.5% 1.09 1.96 11.80 0.586 0.981 −0.016

Model (9) α0 α1 α2 γ1 γ2 η0 η1 η2
True values 0.533 2.000 0.500 5.00 4.333 0.200 0.600 −0.500
2.5% quantile 0.284 0.143 0.158 1.28 1.420 0.058 0.252 −2.483
97.5% quantile 0.661 3.325 3.429 12.23 18.38 0.405 0.981 −0.116

We simulated 200 independent point processes from models (8) and (9) respectively on

the time interval between 0 and 100 with τ = 0.5. Hence, in this simulation study T =

100. For illustration purposes, the first simulated process from model (8) and model (9)

is selected, which is called Process One and Process Two, respectively. The black curves

in Figure 2 show the intensity function plots for Processes One and Two respectively. It is

worth noting that, when τ is fixed, the simulated data from these models can be obtained

by using the method of Ogata (1981) easily.

4.1.2 Results about the estimated models

We applied our method to each simulated dataset, where the initial parameter values re-

quired by the MCMC method were obtained randomly from the parameter space. The

prior information about the parameters used in the estimation is very weak as discussed in

Section 3.2. Our results show that the convergence of the estimation method does not de-

pend on the initial values. Based on the posterior samples collected, we constructed a 95%

credible interval for each parameter of the model, where the lower and upper limits of the

95% credible interval are the lower and upper 2.5% quantiles of the posterior samples of

the parameter, respectively. By repeating the above calculations for each simulated dataset,

we obtained 200 credible intervals for each parameter, the average of which can be found in

Table 1. It is seen that all the true parameter values are well within the respective credible

intervals, suggesting that the performance of the estimation method is satisfactory.
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It follows from Proposition 5 that a 90% probability interval for λ(t|α) can be estimated

by [Qλ(t, 0.05|α̂), Qλ(t, 0.95|α̂)]. The grey curves in Figure 2 show the 90% interval

prediction of the true intensity function of Processes One and Two, respectively. So about

10% of the intensities are expected to be outside this interval. Our results show that, for

Process One, 13.18% of the true intensities are outside this interval, and for Process Two,

it is 8.05%, suggesting that the 90% intervals forecasts are also reasonably good.

We checked the goodness-of-fit of the estimated models using the method discussed

in Section 3.4 and obtained satisfactory results. Figure 3 illustrates the results using Pro-

cesses One and Two respectively, where the straight line is the reference line. Hence, we

do not have any major concerns about the estimated models.
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Figure 3: (a)(c): Plots of âi versus the cumulative number of events, (b)(d): plots of the
quantiles of the durations b̂i against the corresponding quantiles of a unit rate exponential
distribution, for Processes One and Two, respectively.

4.1.3 Results about the probability forecasts for Pτ (N ≥ 1)

By using Proposition 5, we calculated the true and estimated conditional probabilities of

at least one event occurring on (T, T + h], denoted by Pτ (N ≥ 1) and P̂τ (N ≥ 1) re-
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spectively, where h > 0 and T = 100. More specifically, Pτ (N ≥ 1) was calculated by

using Proposition 5 with the true parameter values, while P̂τ (N ≥ 1) is the median of

{P̂ (ℓ)
τ (N ≥ 1), ℓ = 1, . . . , L}, in which L is the number of the posterior samples collected

from the MCMC method and P̂
(ℓ)
τ (N ≥ 1) was calculated by using Proposition 5 with the

ℓth posterior sample of the parameters. We further let L-P̂τ (N ≥ 1) and U-P̂τ (N ≥ 1) be

the lower and upper 5% quantiles of {P̂ (ℓ)
τ (N ≥ 1), ℓ = 1, . . . , L} respectively.

For illustration purposes, we let h = 1, 2, 3, 4, 5 and τ = 0.01, 0.05, 0.25, 0.5, 0.75, 0.95

and 0.99. We use the RMSE to measure the difference betweenPτ (N ≥ 1) and P̂τ (N ≥ 1).

A good performance of the method is expected if the RMSE values are small. Table 2 gives

the summarized results obtained for Process One (similar results for Process Two are not

shown to save space).

Table 2 shows that all RMSE values are small, suggesting that the estimated values

P̂τ (N ≥ 1) are very close to the theoretical ones Pτ (N ≥ 1). Moreover, a 90% interval

forecast for Pτ (N ≥ 1) is given by [L-P̂τ (N ≥ 1), U-P̂τ (N ≥ 1) ]. For example, if h = 1,

then it is given by [0.243, 0.645]. Clearly, all the true values of Pτ (N ≥ 1) are well within

their respective 90% interval forecasts. It is worth emphasising that Pτ (N ≥ 1) defines the

quantile function of P (N ≥ 1). Therefore, any feature of the distribution of P (N ≥ 1) can

be easily obtained. In summary, this simulation study shows that the estimation method

performed satisfactorily.

4.2 Simulation study 2: Assess the effect of ERE

We want to evaluate the effect of ERE on models A and B through the estimated intensity

function. To this end, we first obtained simulated data from Model A by using the method

of Ogata (1981). We call the data obtained at this step the raw data. Then we created

several scenarios that mimic some actual situations, and introduced some ERE into the raw

data under each scenario. We call the data obtained at this step the processed data. We

further fitted Models A and B to the processed data respectively. Finally, we compared the
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Table 2: Probability forecasts for Pτ (N ≥ 1) using process A

h τ 0.010 0.050 0.250 0.500 0.750 0.950 0.990 RMSE
1 Pτ (N ≥ 1) 0.473 0.486 0.541 0.617 0.738 0.966 1.000

P̂τ (N ≥ 1) 0.487 0.504 0.550 0.622 0.725 0.889 0.978 0.032
L-P̂τ (N ≥ 1) 0.186 0.243 0.408 0.544 0.586 0.634 0.666
U-P̂τ (N ≥ 1) 0.641 0.645 0.658 0.699 0.979 1.000 1.000

2 Pτ (N ≥ 1) 0.690 0.705 0.765 0.837 0.923 0.999 1.000
P̂τ (N ≥ 1) 0.701 0.719 0.770 0.838 0.914 0.986 0.999 0.009
L-P̂τ (N ≥ 1) 0.273 0.371 0.614 0.765 0.809 0.845 0.875
U-P̂τ (N ≥ 1) 0.849 0.853 0.867 0.899 0.999 1.000 1.000

3 Pτ (N ≥ 1) 0.814 0.827 0.877 0.929 0.977 1.000 1.000
P̂τ (N ≥ 1) 0.816 0.836 0.878 0.927 0.972 0.998 1.000 0.004
L-P̂τ (N ≥ 1) 0.337 0.480 0.740 0.873 0.908 0.932 0.951
U-P̂τ (N ≥ 1) 0.935 0.938 0.945 0.965 1.000 1.000 1.000

4 Pτ (N ≥ 1) 0.888 0.899 0.936 0.969 0.993 1.000 1.000
P̂τ (N ≥ 1) 0.888 0.900 0.935 0.967 0.991 1.000 1.000 0.001
L-P̂τ (N ≥ 1) 0.404 0.561 0.821 0.930 0.953 0.970 0.980
U-P̂τ (N ≥ 1) 0.972 0.974 0.978 0.988 1.000 1.000 1.000

5 Pτ (N ≥ 1) 0.933 0.941 0.966 0.986 0.998 1.000 1.000
P̂τ (N ≥ 1) 0.930 0.940 0.965 0.985 0.997 1.000 1.000 0.001
L-P̂τ (N ≥ 1) 0.459 0.632 0.877 0.961 0.977 0.987 0.992
U-P̂τ (N ≥ 1) 0.988 0.989 0.991 0.996 1.000 1.000 1.000

h represents the width of the time interval on which forecasts were obtained, τ is the quantile level, Pτ (N ≥ 1) represents the true
probability; P̂τ (N ≥ 1) represents the estimated probability; (P̂0.05(N ≥ 1), P̂0.95(N ≥ 1)) gives a 90% probability interval
forecast for P (N ≥ 1); L-P̂τ (N ≥ 1) ( U-P̂τ (N ≥ 1)) represents the lower (upper) bound of a 90% probability interval for
Pτ (N ≥ 1); and RMSE is the square root of the mean squared errors between Pτ (N ≥ 1) and P̂τ (N ≥ 1).
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estimated intensity functions with the true intensity function so that the effect of ERE can

be evalueated.

4.2.1 Simulated data

The steps for obtaining processed data are given below.

(a) Simulate event times s0 < s1 < . . . < sn1 from a HP model with intensity function

λ(t|α) = 0.75 +
∑
si<t

0.6e−1.8(t−si), (10)

where s0 = 0 and sn1 = T and T = 500. Hence, s0 < s1 < . . . < sn1 are our raw data.

(b) Delete si as follows. Let u0 = 0 and for j > 0, let uj = max{si|si − uj−1 < m0},

resulting in u0 < u1 < . . . < un2 , where un2 = T . This step mimics the situation in the

data collection stage where events occurred in a very short time period, here shorter than

m0, are not recorded. In this study, we let m0 = 1.

(c) Randomly delete m1 event times from u1, . . . , un2−1, resulting in v0 < v1 <

· · · < vn3 , where v0 = 0, vn3 = T and n3 = n2 − m1 + 1. This step mimics the

situation where some event times were not recorded for some unknown reasons. In this

study, we let m1 = [w1 ∗ n2], where [x] represents the integer part of x and w1 =

5%, 15%, 25%, 35%, 45%, 55%. Hence, w1 and m1 are the percentage and the number

of events that are missing respectively.

(d) Randomly select m2 event times from v1, . . . , vn3−1, denoted by viℓ , ℓ = 1, . . . ,m2.

Let wiℓj = viℓ+rj , where j = 1, . . . ,m3, r1 = 0 and rj (j ̸= 1) is a random sample between

0 and 1. Then we arrange the event times in the set {v0, . . . , vn3}\{viℓ , ℓ = 1, . . . ,m2} ∪

{wiℓj, ℓ = 1, . . . ,m2, j = 1, . . . ,m3} in an increasing order, resulting in the final processed

data t0 < t1 < . . . < tn, where t0 = 0, tn = T and n = n3 + 1 +m2(m3 − 1).

This final step mimics the situation where m3 events occurred at time viℓ . In this case,

we transform viℓ by adding a small amount that is uniformly distributed on (0, 1). In this
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Table 3: Average number of events in 200 processed datasets

w1 = 5% w1 = 15% w1 = 25% w1 = 35% w1 = 45% w1 = 55%
n1 n2 n3 n n3 n n3 n n3 n n3 n n3 n

563 236 225 236 201 223 178 197 154 171 131 146 107 120

study, we let m3 = 3 and m2 = [w2∗n3], where w2 = 5%, which corresponds to a situation

where only 5% of the observed event times are affected by this type of random errors.

Hence, this step allows us to assess the effect of ERE on the intensity of an underlying

process when the percentage and the number of events that occurred simultaneously are

fixed at a given level.

Therefore, for each raw dataset generated from model (10), 6 processed datasets have

been obtained since we have six values of w1, representing 6 different scenarios. Large

values of w1 imply that the quality of the processed data is low. Each processed dataset

contains three different types of random errors introduced by the steps (b), (c) and (d)

respectively, that mimic a possible scenario in reality. Clearly, the raw data s0 < s1 < . . . <

sn1 follow model (10), but the processed data t0 < . . . < tn are actually very different from

the raw data due to the ERE introduced by steps (b)-(d). By repeating the steps (a)-(d) 200

times, we obtained 200 independent raw datasets, each of which introduced six processed

datasets.

The average values of n1, n2, n3 and n over 200 simulations are given in Table 3. It is

seen that the number of event times that have been lost from the raw data in steps (b) and

(c) is larger than the number of event times that have been added to the raw data in step (d).

Therefore, we should expect that the estimated unconditional and conditional intensities of

the processed data are lower than those of the raw data.

Table 4 shows the mean of the observed average intensity rates over 200 processed

datasets in each scenario, confirming that estimated unconditional intensities are indeed

much smaller than the true value, which is 1.125.
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Table 4: Mean of the observed average intensity rates in 200 processed datasets

w1 5% 15% 25% 35% 45% 55%
0.476 0.451 0.399 0.346 0.294 0.243

4.2.2 Results about the estimated conditional intensity function

We evaluated the estimated conditional intensity functions at 2000 equally spaced time

points on [0, T ] by using each processed dataset and the corresponding estimated parame-

ters. Similarly, we also evaluated the true intensity functions at the same 2000 points on

[0, T ] by using the raw data and the true parameter values. Then we calculated the average

difference between: (i) the true intensity and the estimated intensity from Model B; (ii) the

true intensity and the estimated intensity from Model A; and (iii) the estimated intensities

from Model B and those from Model A.

By repeating the above calculations for each processed dataset, we obtained 200 values

for each of the cases (i)-(iii) and for each value of w1. If the ERE has no effect on the esti-

mated intensities, then we should expect that these average values are distributed around 0.

To avoid normality assumptions, the non-parametric singed rank test was used to test the

null hypothesis that the median of the distribution of these average values is 0, against the

alternative hypothesis that the median of the distribution is greater than 0.

We found that all the p-values of the tests are virtually 0 for cases (i)-(iii). For cases

(i) and (ii), a small p-value implies that the conditional intensity function has been under-

estimated; and for case (iii), a small p-value suggests that Model B performs better than

Model A under the simulation scenarios considered here.

We further calculated the values of the Bayesian Information Criterion (BIC) for all

models, resulting in 2400 BIC values, half of which are for Model A and another half for

Model B, where BIC is defined by BIC = k ln(n) − 2 ln(L̂), in whihc n is the number of

event times, k is the number of parameters in the model, and L̂ is the likelihood evaluated

at α̂. Table 5 shows the average BIC values over 200 estimated models in each case. The
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Table 5: Average BIC values over the 200 simulated datasets in each case

w1 5% 15% 25%
Model B Model A Model B Model A Model B Model A

Average BIC −792.23 −752.079 −773.102 −768.958 −728.703 −718.43

w1 35% 45% 55%
Model B Model A Model B Model A Model B Model A

Average BIC −677.555 −686.758 −618.93 −613.938 −551.636 −526.151

overall average BIC values for Models A and B are given by −678.317 and −690.359

respectively. Clearly, based on the BIC, the average performance of Model B is also better

compared with Model A. Hence, this simulation study shows that the use of hidden marks

and the GLD has made Model B more flexible in dealing with the effect of ERE.

It is worth noting that this simulation study is very limited as many other possible

situations have not been considered here. For example, new scenarios could occur if we

use a different value of m0, or if we combine step (a) with any one of the steps (b)-(d) or

any combinations of (b)-(d) or any others that have not been considered in this paper. It is

clearly out of the scope of this paper if we consider all these possible situations. Hence,

further research on the effect of ERE is certainly required in the future.

5 Generalization

Now we briefly discuss how to generalize Model B to a mutually-exciting HP model with

hidden marks. Consider a collection of m counting processes {N1(t), . . . , Nm(t)}, t ≥ 0.

Let tij ∈ [0, T ) be the observed arrival times for each counting process, where i = 1, . . . ,m

and j = 0, 1, . . . , ni. Similar to one dimensional case, we define λi(t, τ |αi) by

λi(t, τ |αi) = µi +
m∑
j=1

∑
tjk<t

αije
−βij(t−tjk) + ξt

iji0

, ji0 = max{j : tij < t},
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where the hidden marks {ξij, j = 1, . . . , ni} are i.i.d. and ξij and ξkℓ are independent for

i ̸= k. Moreover, let ξij follow the distribution defined by the quantile function Qi(τ,ηi) =

ηi1

{
τηi2−1
ηi2

− (1−τ)ηi3−1
ηi3

}
, where τ ∈ (0, 1). Then the quantile function of the conditional

intensity function of the mutually-exciting HP model with hidden marks is given by

Qλi
(t, τ |αi) = µi +

m∑
j=1

∑
tjk<t

αije
−βij(t−tjk) +Qi(τ,ηi), i = 1, . . . ,m,

where t ≥ 0, τ ∈ (0, 1), αi = (µi, αij, βij,ηi, j = 1, . . . ,m), ηi = (ηi1, ηi2, ηi3), µi >

ηi1/ηi2, ηi1 > 0, 0 < ηi2 < 1, ηi3 < 0, αij > 0, βij > 0,
∑m

j=1 αij/βij < 1. Specifically, if

m = 2, we have

Qλ1(t, τ |α1) = µ1 +
∑

t1k<t α11e
−β11(t−t1k) +

∑
t2k<t α12e

−β12(t−t2k) +Q1(τ,η1),

Qλ2(t, τ |α2) = µ2 +
∑

t1k<t α21e
−β21(t−t1k) +

∑
t2k<t α22e

−β22(t−t2k) +Q2(τ,η2).

(11)

Clearly, the intensity function of the ith process depends not only on its own history

but also on the history of all other processes. Hence the interactions between financial pro-

cesses can be taken into account. Moreover, we use different Qi(τ,ηi) to model the effect

of ERE, which allows us to deal with the situations in which different data collection mech-

anisms and/or different data cleaning techniques have been used for different processes.

The estimation of the mutually-exciting HP model with hidden marks is also similar to

that of Model B. Let tij = (ti0, . . . , tij), τ ij = (τi0, . . . , τij), τij ∈ (0, 1), ti = tini
and

τ i = τ ini
, where i = 1, . . . ,m, j = 0, . . . , ni, and let τ = (τ 1, . . . , τm), t = (t1, . . . , tm)

and α = (α1, . . . ,αm). Then it follows from Daley and Vere-Jones (2003, p251) that the

likelihood function of the parameters is given by L = L1 · · ·Lm, where Li is the likelihood

for the ith counting process, where i = 1, . . . ,m. Hence, for example, when m = 2, i.e.

for model (11), the posterior density function of the model parameters is given by

π(τ ,α|t)

∝ π(α)
∏n1

i=1 Qλ1(t1i, τ1i|α1)e
−

∫ T
0 Qλ1

(t,τ1i|α1)dt
∏n2

j=1Qλ2(t2j, τ2j|α2)e
−

∫ T
0 Qλ2

(t,τ2j |α2)dt,
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where π(α) is the prior density function of α. Therefore, a MCMC method can be used

for parameter estimation.

6 Data Applications

6.1 Transaction Data

This application shows that the effect of ERE can indeed cause the intensity of an un-

derlying financial process to be underestimated in practice and Model B performs better

compared with Model A in the presence of ERE. Hence, these results confirm what we

have found in our simulation studies.

We consider a small set of transaction data with timestamps of one second precision1.

The transaction data contain trading times within a time period of 56 minutes. We noticed

that some trades that occurred simultaneously have also been recorded. Hence, we followed

the work of Bowsher (2007) and adjusted the times of the trading events by adding some

appropriate random noise. The black continuous curve in Figure 4 shows the empirical

trade counts per minute for the adjusted data. It is seen that the adjusted data is the data to

be analysed and they contain at least two types of random errors that are similar to those

introduced by steps (b) and (d) in Section 4.2.1.

Models A and B were fitted to the adjusted data and the estimation results are given in

Table 6. Hence, the estimated intensity function corresponding to Model A is given by

λ(t) = 0.1496 +
∑
ti<t

1.2206 e−2.7491(t−ti), (12)

1The dataset is available from http://www.tickdatamarket.com/formats-donnees.php?
id=1/&nom=tick
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Figure 4: Empirical (black continuous) and estimated (dashed curve for model (12), grey
curve for model (13)) trade counts per minute for the transaction data, where the horizontal
line indicates the empirical average trade count per minute.

and corresponding to Model B it is given by

Qλ(t, τ |α) = 0.1612+
∑
ti<t

119.1 e−276.0(t−ti)+0.027

{
τ 0.4524 − 1

0.4524
− (1− τ)−0.704 − 1

−0.704

}
.

(13)

For model (12) the MLE method was used to obtain the estimated parameters and the

corresponding 95% confidence intervals. For model (13), our Bayesian MCMC method

was used. The parameters were estimated by the mean of the respectively posterior sam-

ples, and the lower and upper bounds of the 95% credible intervals correspond to the 2.5%

and 97.5% quantiles of the posterior samples respectively.

Figure 5 checks the goodness-of-fit of the two models. It is seen that model (12) fits

badly when (x, y) < (0.4, 0.4). Note that in this application some observed event times

were adjusted by adding some appropriate random noise to ensure that no events could
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Table 6: Estimated model parameters

Model (12) Model (13)
Parameters α0 α1 α2 α0 α1 α2 η0 η1 η2
Estimates 0.1496 1.2206 2.7491 0.161 119.1 276.0 0.027 0.452 −0.704
L-bound 0.1348 1.0062 2.2081 0.120 102.7 249.8 0.002 0.060 −3.960
U-bound 0.1645 1.4349 3.2902 0.181 136.4 304.2 0.104 0.963 −0.026

The row labeled by ‘Estimates’ gives the estimated parameter values. The rows labeled by ‘L-bound’ and ‘U-bound’ define the lower
and upper bounds of a 95% confidence/credible interval for the corresponding parameters.
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Figure 5: Goodness-of-fit of (a) model (12) and (b) model (13) for the transaction data.
The dark continuous curve is the empirical cdf of Ûi = 1− e−b̂i . The grey line y = x is the
theoretical cdf of U(0, 1). The dashed lines represent 95% confidence bounds for U(0, 1).

occur at the same time, which results in a group of events in the adjusted data that are close

to each other. Figure 5(a) reflects this fact correctly as the empirical cdf of Ui increases

quickly when Ui is small. Note that small values of Ui correspond to small values of bi,

and hence small values of ti − ti−1. On the other hand, we used data with timestamps

of one second precision, which means that short durations of trades were not recorded,

leading to a gap on the observed event times. This gap is also reflected by the horizontal

segment of the empirical cdf of Ui on Figure 5(a). Hence, the large deviation from the

reference line shown in Figure 5(a) is caused by the lack of small durations in the data due

to the data collection mechanism and the data cleaning procedure. However, Figure 5(b)
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shows clearly that model (13) does not suffer from the same problem. This example further

confirms that the effect of ERE should not be ignored in practice and the proposed model

is able to provide much improved results in the presence of ERE. The results also suggest

that statistical inferences on short time durations could be problematic if model (12) is

used, and hence caution should be exercised in practice.

It follows from model (12) that the immigration intensity of the trading process is given

by 0.1496 and the expected intensity is given by 0.2691. Hence, model (12) says that

about 16.143 (or about 16) trades are expected to occur in one minute. For model (13), the

intensity λ(t|α) is estimated by Qλ(t, 0.5|α). Hence the immigration intensity is given by

0.1612 + 0.0081 = 0.1693 and the expected intensity is given by 0.2978. So model (13)

tells us that the average trade count per minute is 17.869, i.e. about 18 trades are expected

in one minute. Table 7 summarizes these results. It is seen that the results obtained from

model (13) are much more consistent with the observed data. Figure 4 also shows the

estimated trade counts per minute for both models, where the horizontal line indicates

the empirical average trade count per minute. In summary, the results obtained from this

application are consistent with what we have found in our simulation studies.

Table 7: The empirical and the estimated intensity rate and average trade count per minute
Average intensity rate Average trade count per minute

Observed 0.3030 18.180
Model (12) 0.2691 16.143
Model (13) 0.2978 17.869

The average intensity rate is estimated by α0/(1−α1/α2) for model (12) and by (α0+η0Q(0.5, η1, η2))/(1−α1/α2) for model (13).
The average trade count per minute is calculated by multiplying the average intensity rate by 60.

6.2 Futures Data

We consider a sample of futures data on trades and quotes that cover a 7.5-hour period2.

This dataset contains information that allows us to study the interaction between trading ac-

2The data are available from http://www.tickdatamarket.com/formats-donnees.php?
id=3/&nom=trade-and-quotes
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tivity and price volatility. Hence, we illustrate the analysis by using the proposed mutually-

exciting HP model with hidden marks, i.e. model (11).

The observed intensity in one minute window for both trade arrival times and mid-

quote price change times are shown by the black curves in Figure 6, in which the red

curves, obtained by using local polynomial regression fitting method (see e.g. Cleveland

et al. Chapter 8, 1992), show the overall evolution patterns of two intensity functions

respectively. It is seen that the evolution patterns of the two intensity functions are similar,

which suggests that a trade might affect the waiting time to the next change in the mid-quote

price, and a mid-quote price change might also lead to a change in the trading intensity.
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Figure 6: Estimated (grey) and observed (black) intensity functions in one minute window
for (a) trade arrival times and (b) mid-quote change times respectively. Red curves are the
smoothed intensities.

Table 8 gives the estimated parameter values and the associated 95% credible intervals,

where the estimated parameter values are the mean of the respective posterior samples and

the lower and upper bounds of the 95% credible intervals correspond to the 2.5% and 97.5%

quantiles of the posterior samples respectively. Hence, the estimated model is given by
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Table 8: Estimated parameters and the associated 95% credible intervals

Parameters α11 α12 α21 α22 β11 β12 β21 β22

Estimates 2.212 0.011 16.399 0.040 7.468 0.026 45.223 0.103
L-bound 1.769 0.008 14.349 0.032 5.899 0.018 40.813 0.079
U-bound 2.795 0.015 18.791 0.052 9.721 0.040 50.267 0.138

Parameters η11 η12 η13 η21 η22 η23 µ1 µ2

Estimates 0.004 0.560 -0.296 0.002 0.641 -0.394 0.016 0.005
L-bound 0.000 0.082 -3.560 0.000 0.158 -2.942 0.011 0.003
U-bound 0.012 0.980 -0.009 0.004 0.982 -0.013 0.020 0.006

Qλ1(t, τ |α1) = 0.016 +
∑

t1k<t 2.212e
−7.468(t−t1k) +

∑
t2k<t 0.011e

−0.026(t−t2k)

+0.004
{

τ0.56−1
0.56

− (1−τ)−0.296−1
−0.296

}
,

Qλ2(t, τ |α2) = 0.005 +
∑

t1k<t 16.399e
−45.223(t−t1k) +

∑
t2k<t 0.040e

−0.103(t−t2k)

+0.002
{

τ0.641−1
0.641

− (1−τ)−0.394−1
−0.394

}
.

(14)

The estimated model has the following interpretations. Let us consider Qλ1(t, τ |α1),

corresponding to the trading process. We see that each new trade in the system instan-

taneously increases the trading intensity by 2.212, then over time this arrival’s influence

decays at a rate of 7.468. Moreover, each new price change instantaneously increases the

trading intensity by 0.011, then over time this arrival’s influence also decays but at a rate of

0.026. Similar interpretations hold for Qλ2(t, τ |α2), corresponding to the mid-quote price

change process.

Therefore, the estimated model suggests that, an arrival of trade has a larger instanta-

neous impact on the two intensity functions but its impact lasts only for a short period of

time, while an arrival of price change has a smaller instantaneous impact on the intensity

functions but its impact can last for a much longer time period.

The estimated intensity functions were also shown in Figure 6 by using grey curves. As

it is difficult to visually check the differences between the estimated and observed intensi-

ties in one minute window, we calculated the RMSE between the observed and estimated

number of events per minute, the results of which are 2.66 and 1.74 for trades and mid-
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quote price changes respectively. This means that, on average, the difference between the

observed and estimated trade counts is less than 3 trades per minute and that for the mid-

quote changes is less than 2 changes per minute.
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Figure 7: (a) (b): The plots of the probability Ph(Ni ≥ 1) against h for trades and price
changes respectively, where the grey areas show the 95% interval forecasts for these prob-
abilities. (c) Plot of Ph(N1 ≥ 1) for trades against that for price changes.

Let N1 and N2 be the number of trades and mid-quote changes occurring in (T1, T1+h]

and (T2, T2 + h] respectively, where h > 0 and T1 and T2 are the final time for trades

and mid-quote changes respectively. Then, probability forecasts for P (Ni ≥ 1), denoted

by Ph(Ni ≥ 1), can be calculated for different values of h by using Proposition 5(i).

Moreover, the lower and upper bounds of a 95% interval forecast for P (Ni ≥ 1) can be

obtained by using Proposition 5(ii).

Figure 7 shows the results of probability forecasts for h = 1, . . . , 2000 seconds, where

Figure 7 (a) and (b) are for trade arrival times and mid-quote price change times respec-
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tively, and the grey areas show the 95% interval forecasts for P (Ni ≥ 1) on (Ti, Ti+h]. It is

seen that trades arrive much sooner than that for mid-quote price changes as the probability

Ph(N1 ≥ 1) for trades increases much faster than that for price changes. Figure 7 (c) is the

plot of Ph(N1 ≥ 1) for trades against Ph(N2 ≥ 1) for mid-quote price changes. The posi-

tive association between them suggests that when the probability of having a price change

increases, the probability of having a trade also increases. Figure 7 (c) further shows that

the probability Ph(N1 ≥ 1) for trades is larger than that for price changes over almost the

entire range between 0 and 1, suggesting that price changes are more likely to trigger more

trading activities.

Finally, to have a closer look at how the waiting time of one process is affected by an-

other process, we fitted Model B to the trading times and the mid-quote changes separately,

resulting in the following two models. For the trading process we have

Qλ(t, τ |α) = 0.028 +
∑
ti<t

2.796 e−10.991(t−ti) + 0.006

{
τ 0.558 − 1

0.558
− (1− τ)−0.288 − 1

−0.288

}
,

(15)

and for the mid-quote changes we have

Qλ(t, τ |α) = 0.025 +
∑
ti<t

1.826 e−16.598(t−ti) + 0.007

{
τ 0.590 − 1

0.590
− (1− τ)−0.278 − 1

−0.278

}
.

(16)

By using the estimated models (14), (15) and (16), we calculated the average intensity

rates of the two processes separately, see Table 9. It is seen that the interaction between

Table 9: Estimated average intensity rate for trades and mid-quote changes
Trades Mid-quote changes

Model (14) 0.0591 0.020
Model (15) 0.0386 -
Model (16) - 0.030

the two processes has shortened the average waiting time for the trading process, which is

consistent with what we have observed from Figure 7 (c). On the other hand, the interaction
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between the two processes has lengthened the average waiting time for the mid-quote price

change process, which might suggest that unless necessary, traders may not want to change

prices when the trading process is going smoothly.

7 Conclusions

We propose a novel HP model with hidden marks for financial event data. The hidden

marks are used to take account the effect of ERE caused by data collection mechanisms

and data cleaning procedures. We also develop a MCMC method for parameter estimation

to allow the proposed model to be used in practice.

We conduct extensive simulation studies to assess the estimation method and the effect

of ERE on the intensity function. We show that the proposed estimation method works

well. We also show that when ERE cause information about the underlying process to

be lost, the intensity function may be underestimated. Our results further show that the

proposed model performs better in the presence of ERE.

It is worth noting that our simulation study for assessing the effect of ERE is very

limited as many other possible situations that could occur in the data collection and data

cleaning stage in practice have not been considered. Therefore, further work is definitely

needed in this regard. This could be done by using, for example, a simulation method such

as the one we exemplified in Section 4.

As pointed out by a referee, the hidden marks ξti0 could also be included into Model A

by using the following formulation:

λ(t|α) = α0 +
∑
ti<t

ξti0γ(t− ti|α1).

It is worth noting that under this formulation, we need to choose a new distribution for ξti0

in order to ensure that the intensity function is positive for all t. There is no doubt that
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a comprehensive study of this new model is worthwhile, but we have to leave it to future

work.

In this paper we combined our approach with a self-exciting HP model. However, it

is worth reemphasizing that our method can also be used in conjunction with existing HP

models, such as the model proposed by Bauwens and Hautsch (2006). If we do so, we

will be able to deal with the effect of ERE, the randomness in realized jumps and some

other components of an underlying financial process simultaneously. When more data is

available, it is absolutely necessary to make a more thorough comparison between the two

types of HP models. We leave them for future research.
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Appendix I

Proof of Proposition 1.

Note that dQ(τ,η1,η2)
dτ

= τ η1−1 + (1− τ)η2−1 > 0 for all τ ∈ (0, 1). Hence, for all τ > 0,

we have Q(τ, η1, η2) > Q(0, η1, η2) = −1/η1. On the other hand, for all τ < 1, we have

Q(τ, η1, η2) < limτ→1Q(τ, η1, η2) = ∞. This completes the proof.

Proof of Proposition 2.

As η0Q(τ, η1, η2) is the quantile function of ξti0 , we have, for any τ ∈ (0, 1), P (ξti0 ≤
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η0Q(τ, η1, η2)) = τ . Hence,

P

(
α0 +

∑
ti<t

γ(t− ti|α1) + ξti0 ≤ α0 +
∑
ti<t

γ(t− ti|α1) + η0Q(τ, η1, η2)

)
= τ.

Since λ(t|α) = α0 +
∑

ti<t γ(t− ti|α1) + ξti0 , we see that

P

(
λ(t|α) ≤ α0 +

∑
ti<t

γ(t− ti|α1) + η0Q(τ, η1, η2)

)
= τ.

Hence, by definition, the quantile function of the intensity function at time t is given by

Qλ(t, τ |α) as required.

Proof of Proposition 3.

It follows from Proposition 1 that η0Q(τ, η1, η2) > −η0/η1. Hence, Qλ(t, τ |α) >

α0 + η0Q(τ, η1, η2) > α0 − η0/η1. It follows from α0 > η0/η1 on Ω̄ that Qλ(t, τ |α) > 0

for all t and τ , as required.

Proof of Proposition 4.

(i) First note that it follows from the definition that Qλ(t, 0.5|α) is the conditional

median of the intensity function.

(ii) Consider the conditional expectation of the intensity function.

µλ(t) =
∫ 1

0

[
α0 +

∑
ti<t α1e

−α2(t−ti) + η0

(
τη1−1
η1

− (1−τ)η2−1
η2

)]
dτ

= α0 +
∑

ti<t α1e
−α2(t−ti) + η0

[
1
η1

(
1

η1+1
− 1
)
− 1

η2

(
1

η2+1
− 1
)]

= α0 +
∑

ti<t α1e
−α2(t−ti) + η0

[
1

η2+1
− 1

η1+1

]
as required.
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(iii) Consider the conditional variance of the intensity function.

σ2
λ = η20

[∫ 1

0

(
τη1−1
η1

− (1−τ)η2−1
η2

)2
dτ − µ2

λ

]
= η20

[
1
η21

(
1

2η1+1
− 2

η1+1
+ 1
)
+ 1

η22

(
1

2η2+1
− 2

η2+1
+ 1
)

− 2
η1η2

(
B(η1 + 1, η2 + 1)− 1

η1+1
− 1

η2+1
+ 1
)
−
(

1
η2+1

− 1
η1+1

)2]
= η20

[
1
η21

(
1

2η1+1
− 1

(η1+1)2

)
+ 1

η22

(
1

2η2+1
− 1

(η2+1)2

)
− 2

η1η2

(
B(η1 + 1, η2 + 1)− 1

(η1+1)(η2+1)

)]
as required.

(iv) This is because Qλ(t, 1 − τ ′|α) and Qλ(t, τ
′|α) define the (1 − τ ′)th and τ ′th

quantiles of λ(t|α) respectively. This completes the proof.

Proof of Proposition 5.

(i) To show this part of the proposition, we need to show (a) Λτ is the quantile function

of Λ, (b) Pτ (N ≥ 1) is the quantile function of P (N ≥ 1). Hence, P (N ≥ 1) can be

estimated by Pτ=0.5(N ≥ 1).

First, we consider (i)(a). First note that model (6) implies that ξti0 follows the distribu-

tion defined by the quantile function η0Q(τ |η1, η2). Then it follows from

P (Λ ≤ Λτ )

= P
{∫ T+h

T
λ(t|α)dt ≤

∫ T+h

T
Qλ(t, τ |α)dt

}
= P

{∫ T+h

T

(
α0 +

∑
ti<t γ(t− ti|α1) + ξti0

)
dt

≤
∫ T+h

T

(
α0 +

∑
ti<t γ(t− ti|α1) + η0Q(τ |η1, η2)

)
dt
}

= P
{
hξti0 ≤ hη0Q(τ |η1, η2)

}
= P

{
ξti0 ≤ η0Q(τ |η1, η2)

}
= τ

that Λτ is the τ th quantile of Λ as required. Moreover, for model (6), we have
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Λτ =
∫ T+h

T

{
α0 +

∑
ti<t α1e

−α2(t−ti) + η0Q(τ, η1, η2)
}
dt

= α0h+ η0Q(τ, η1, η2)h+
∑

ti<T+h
α1

α2

{
1− e−α2(T+h−ti)

}
−
∑

ti<T
α1

α2

{
1− e−α2(T−ti)

}
= {α0 + η0Q(τ, η1, η2)}h+

∑
ti<T+h

α1

α2

{
e−α2(T−ti) − e−α2(T+h−ti)

}
as required. Note that in the above expression we used the fact

∑
ti<T+h =

∑
ti<T as we

have no observed events between T and T + h.

Now we consider (i)(b). It follows from

P {P (N ≥ 1) ≤ Pτ (N ≥ 1)} = P
{
1− e−Λ ≤ 1− e−Λτ

}
= P (Λ ≤ Λτ ) = τ

that Pτ (N ≥ 1) is the τ th quantile of P (N ≥ 1). Hence, P (N ≥ 1) can be estimated by

Pτ=0.5(N ≥ 1) as required.

(ii) This is because P1−τ ′(N ≥ 1) and Pτ ′(N ≥ 1) are the (1− τ ′)th and τ ′th quantiles

of P (N ≥ 1) respectively. This completes the proof.

Proof of Proposition 6.

It follows from −M ≤ η2 ≤ −ϵ and 0 < τj ≤ 1 − ϵ that ϵ−M ≥ ϵη2 ≥ ϵ−ϵ and

(1− τj)
η2 ≤ ϵη2 respectively. Hence

π(τ n,α|tn) = M1

∏n
j=1

{
α0 +

∑
ti<tj

α1e
−α2(tj−ti) + η0Q(τj, η1, η2)

}
× exp

[
−
∫ T

0

{
α0 +

∑
ti<s α1e

−α2(s−ti)
}
ds− η0

∑n
j=1Q(τj, η1, η2)(tj − tj−1)

]
π(α)

≤ M1

∏n
j=1

{
α0 + nα1 + η0

ϵη2−1
−η2

}
e0 e−η0

∑n
j=1 Q(τj ,η1,η2)(tj−tj−1)π(α)

≤ M1

∏n
j=1

{
α0 + nM + M(ϵ−M−1)

ϵ

}
e(η0/η1)

∑n
j=1(tj−tj−1)π(α)

≤ M1

∏n
j=1

{
α0 + nM + M(ϵ−M−1)

ϵ

}
eη0T/η1π(α)

≤ M1

∏n
j=1

{
M + nM + M(ϵ−M−1)

ϵ

}
eMTπ(α) ≤ M̄π(α),
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where M1 is the normalizing constant and M̄ is a constant such that

M̄ ≥ M1

{
M + nM +

M(ϵ−M − 1)

ϵ

}n

eMT .

Hence ∫
Ω

π(τ n,α|tn)dτ ndα ≤ M̄

∫
Ω1

π(α)dα

∫
Ω2

dτ n < ∞

as required.

Appendix II

The prior density functions.

π(α1) = (
√
2π u1α1)

−1 e−(log2 α1)/2u2
1 ,

π(α2) = (
√
2π u2α2)

−1 e−(log2 α2)/2u2
2 [1− Φ{(logα1)/u2}]−1 ,

π(α0|η0, η1)

= (
√
2π u0α0)

−1e−(log2 α0)/2u2
0

{∫∞
η0/η1

1√
2π u0α0

e−(log2 α0)/2u2
0dα0

}−1

= e−(log2 α0)/2u2
0

(√
2π u0α0

[
1− Φ

{
log(η0/η1)

u0

}])−1

,

π(η1) = (
√
2π v1η1)

−1e−(log2 η1)/2v21

{∫ 1

0
1√

2π v1η1
e−(log2 η1)/2v21dη1

}−1

= 2(
√
2π v1η1)

−1e−(log2 η1)/2v21 ,

π(η2) = {
√
2π v2(−η2)}−1e−{log2(−η2)}/2v22 ,

π(η0) = {
√
2π v0(η0)}−1e−{log2(η0)}/2v20 ,

where ui is the scale parameter for αi, vi is the scale parameter for ηi and i = 0, 1, 2.

MCMC method.

Let α and τ n represent the current values of the parameters, and α′ and τ ′
n represent

the proposed values. Then the main steps of our MCMC method are given below.
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Step 1. Obtain the proposed value α′. Note that due to the dependence structure between the

parameters, we need to obtain α′ in the following order of priority:

(a) Propose α′
1 by simulating logα′

1 ∼ N(logα1, σ
2
1)

(b) Propose α′
2 by simulating logα′

2 ∼ N(logα2, σ
2
2) such that logα′

2 > logα′
1.

(c) Propose η′0 by simulating log η′0 ∼ N(log η0, s
2
0)

(d) Propose η′2 by simulating log(−η2)
′ ∼ N(log(−η2), s

2
2)

(e) Propose η′1 by simulating log η′1 ∼ N(log η1, s
2
1) such that log η′1 < 0.

(f) Propose α′
0 by simulating logα′

0 ∼ N(logα0, σ
2
0) such that logα′

0 > log
η′0
η′1

.

Step 2. Obtain the proposed τ ′
n by letting τ ′j = 0.5. So the proposed intensity is the median

intensity.

Step 3. Accept the proposed values with probability min{AB, 1}, where A and B are given

below.

Step 4. If α′ and τ ′
n are accepted, let α = α′, τ n = τ ′

n and goto Step 1. Otherwise, discard

α′ and τ ′
n and goto Step 1.

Calculation of the acceptance probability:

A = π(τ ′
n,α

′|tn)/π(τ n,α|tn)

=

∏n
j=1{α′

0+
∑

ti<tj
α′
1e

−α′
2(tj−ti)+η′0Q(τ ′j ,η

′
1,η

′
2)}∏n

j=1{α0+
∑

ti<tj
α1e

−α2(tj−ti)+η0Q(τj ,η1,η2)}
×

exp
{
−
[
α′
0T−(α′

1/α
′
2)

∑
ti<T {e−α′

2(T−ti)−1}
]}

exp{−[α0T−(α1/α2)
∑

ti<T {e−α2(T−ti)−1}]}

× exp{−η′0
∑n

j=1 Q(τ ′j ,η
′
1,η

′
2)(tj−tj−1)}

exp{−η0
∑n

j=1 Q(τj ,η1,η2)(tj−tj−1)} × π(α′)
π(α)

;

π(α′)
π(α)

= α0α1α2η0η1η2
α′
0α

′
1α

′
2η

′
0η

′
1η

′
2
e−(log2 α′

0−log2 α0)/2u2
0 e−(log2 α′

1−log2 α1)/2u2
1

× e−(log2 α′
2−log2 α2)/2u2

2 e−(log2 η′0−log2 η0)/2v20 e−(log2 η′1−log2 η1)/2v21

× e−{log2(−η′2)−log2(−η2)}/2v22 1−Φ[{log(η0/η1)}/u0]

1−Φ[{log(η′0/η′1)}/u0]
1−Φ{(logα1)/u2}
1−Φ{(logα′

1)/u2} .
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B = q(α′→α)
q(α→α′)

q(τ ′
n→τn)

q(τn→τ ′
n)

=
α′
0α

′
1α

′
2η

′
0η

′
1η

′
2

α0α1α2η0η1η2
×

1−Φ

{
log(η′0/η

′
1)−logα0
σ0

}
1−Φ

{
log(η0/η1)−logα′

0
σ0

} × Φ{−(log η1)/s1}
Φ{−(log η′1)/s1}

×
1−Φ

{
logα′

1−logα2
σ2

}
1−Φ

{
logα1−logα′

2
σ2

} ,

since q(τ ′
n → τ n)/q(τ n → τ ′

n) = 1, where q(u → v) denotes the density function of v

conditional on u.

Combining all the above results, we have

AB =

∏n
j=1{α′

0+
∑

ti<tj
α′
1e

−α′
2(tj−ti)+η′0Q(τ ′j ,η

′
1,η

′
2)}∏n

j=1{α0+
∑

ti<tj
α1e

−α2(tj−ti)+η0Q(τj ,η1,η2)}
× e

−
[
α′
0T−(α′

1/α
′
2)

∑
ti<T

{
e
−α′

2(T−ti)−1

}]

e
−[α0T−(α1/α2)

∑
ti<T{e−α2(T−ti)−1}]

× e
−η′0

∑n
j=1 Q(τ ′j ,η

′
1,η

′
2)(tj−tj−1)

e
−η0

∑n
j=1

Q(τj ,η1,η2)(tj−tj−1)
× e

− log2 α′
0−log2 α0

2u20 e
− log2 α′

1−log2 α1

2u21

× e
− log2 α′

2−log2 α2

2u22 e
− log2 η′0−log2 η0

2v20 e
− log2 η′1−log2 η1

2v21 e
− log2(−η2)

′−log2(−η2)

2v22

×
1−Φ

{
log(η0/η1)

u0

}
1−Φ

{
log(η′0/η

′
1)

u0

} 1−Φ
{

logα1
u2

}
1−Φ

{
logα′

1
u2

} 1−Φ

{
log(η′0/η

′
1)−logα0
σ0

}
1−Φ

{
log(η0/η1)−logα′

0
σ0

} Φ
{
− log η1

s1

}
Φ

{
−

log η′1
s1

} 1−Φ

{
logα′

1−logα2
σ2

}
1−Φ

{
logα1−logα2

σ′
2

} .
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