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1 Introduction

The black information loss paradox has inspired for over 40 years [1]. Recently, however,

it seems as if a step change in understanding has been achieved: it is now possible to

calculate the flow of quantum information in a black hole background using only the semi-

classical approximation. This new understanding grew out of holographic approaches to

the gravitational entropy of the bulk theory [2–5]. This theory of the “generalized entropy”

and the associated quantum extremal surfaces has now been derived from a semi-classical

calculation in a black hole background via the appearance of new saddles, i.e. instantons,

known as replica wormholes [6, 7].

The replica wormhole technology, and the effective generalized entropy rules it under-

pins, give a new calculational window on black hole physics. In [7] (following the earlier [8]),

a simple controllable set up was considered, consisting of an eternal (i.e. 2-sided) black hole

in Jackiw-Teitelboim gravity [12, 13] in AdS2 with Minkowski half spaces welded onto the

boundaries, both left and right, with transparent boundary conditions. The gravity theory

is coupled to a large-c CFT defined over the complete spacetime, which, for simplicity, can

be a free theory. The initial state of the CFT is a pure state whose left, or right, reduced

state is a thermal state with the same temperature of the black hole. This ensures the

whole set up is in thermal equilibrium: as the black holes evaporate Hawking modes are

replaced by modes from the radiation baths at the same temperature. However, the black

hole is not in entanglement equilibrium. The Hawking modes are entangled with their

partners behind the horizon and this entanglement is transferred to the radiation baths

as time evolves. Eventually, this entanglement entropy reaches the Bekenstein-Hawking

entropy of the black hole. At this point, a new saddle, a replica wormhole, has lower —

and in this case constant — entropy equal to the black hole entropy. The cross-over of

entropy saddles is the semi-classical expression of the Page time of the black hole [14].

The entropy transition at the Page time marks a fundamental change in the entan-

glement structure of the black hole. Before the transition, there is simple spatial division

between the radiation and the black holes degrees-of-freedom, whereas, after the transition,

an “island” forms covering the black hole interior and, in this case, part of the exterior of

the horizon. The island is secretly encoded in the radiation rather than the black hole,

so the division of degrees-of-freedom is rather starkly changed. This kind of structure was

guessed at some time ago and is sometimes known as the “A = RB” scenario.1

1The notation here refers to a Hawking mode B emitted by an old black hole. It must be entangled with

its partner mode A behind the horizon but also with a mode in the early part of the Hawking radiation

so that the final state of the radiation, after the black has evaporated, is pure. Clearly, the monogamy of

entanglement does not allow this unless A = RB which implies that the inside partner mode is actually

outside subtely encoded in the radiation! See [15] for a detailed review of these issues.
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The beauty and simplicity of this scenario in [7, 8] suggests that it can provide a starting

point for more detailed questions concerning the entanglement structure in a black hole

background. In this work, we use the scenario to ask how the entanglement structure

responds when a shockwave is created in the CFT in the radiation baths. The shockwave

carries both energy and entropy. When the in-going shockwave propagates into the AdS

part of the geometry and the black hole, it heats the black hole up and leads to a non-

equilibrium state. Intuition suggests that the system relaxes back to equilibrium, and we

confirm this. However, if the shockwave is inserted at late time around the Page time then it

can change the entropy transitions in a fundamental way. The Page time can be delayed or

hastened and there can be more than one transition. The structure of entropy transitions

tell us the extent of the island and this determines how quickly quantum information

sent into the black hole can be recovered from the radiation. Our results show that a

shockwave of large energy will disrupt the scrambling of the black hole and lead to a delay

in the formation of an island and the return of the quantum information carried by the

shockwave. On the other hand, if the shockwave has large entropy then the formation of

the island is hastened and the entanglement is returned to the radiation more quickly.

One of our main observations is that shockwave insertion into the black hole state

allows us to analytically follow the complete evolution of the system whilst staying within

the semiclassical regime. This is possible in a high temperature limit in which the evapo-

ration time scale is parametrically large compared to the inverse temperature. The limit

is controlled by a saddle point approximation to Bessel functions valid for all times.

The paper is set out as follows. In section 2, we provide some of the important con-

cepts of the entanglement structure that have emerged from recent works and establish the

structure of the spacetime and details of the gravitational theory that we need. Section 3

describes the formation and properties of shockwaves in a CFT and then how the gravi-

tational theory responds when they enter the AdS region. This will include solving in a

certain limit for the dilaton of JT gravity as the shockwave propagates into the black hole.

Section 4 calculates the entropy flow in the black hole plus shockwave geometry and the

behaviour of the all-important quantum extremal surfaces, the boundary of the islands. In

section 5, we interpret the results of section 4 and discuss the possible entropy transitions

and Page times, the scrambling times and then the interesting question of whether the

quantum extremal surfaces end up inside or outside the horizon. Section 6, applies the

same analysis to a shockwave sent into an extremal black hole. Finally, in section 7 we

draw some conclusions.

As this work was being completed, there appeared some related work: [9] describing the

Page curve of an evaporating black hole in a related dilaton gravity model, [10] investigating

islands in Schwarzschild black holes in 4 dimensions and [11] investigating islands in one

dimension higher.

2 Review: islands and the eternal black hole

In this section, we briefly review the scenario that allows for the semi-classical calculation

of the Page time for a black hole in JT gravity [8] (and also [7]). What is striking about this

scenario is how it avoids the complicated back-reaction problem that would be expected

– 2 –
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for an evaporating black hole. Here there is a non-trivial transition at the Page time even

in the absence of evaporation.

2.1 The geometry

The idea is to take the eternal black hole solution, corresponding to the extended Penrose di-

agram that describes a pair of black holes at a temperature β−1 linked by an Einstein-Rosen

bridge. The geometry is patch of AdS2 with the standard metric in Poincaré coordinates

ds2 = − 4dx+dx−

(x+ − x−)2
. (2.1)

In Jackiw-Teiltelboim (JT) gravity [12, 13] the metric is fixed and the non-trivial aspects

of the gravitational sector involve the choice of coordinate patch and the dilaton [16–19].

The additional CFT matter fields source the dilaton rather than the metric.

However, instead of the usual reflecting boundary conditions at spatial infinity, the

geometry is extended by two half Minkowski space regions on the left and the right [8].

These are patched onto the AdS geometry in a smooth way. A useful set of coordinates

that cover the AdS regions and also half-Minkowski regions are w± defined by

x± = ±β
π
· w
± ∓ 1

w± ± 1
. (2.2)

in the AdS region, and

w± = ±e±2πy±R/β , w± = ∓e∓2πy±L /β , (2.3)

in the baths. Here, y±L,R are Minkowski coordinates with the standard metric ds2 =

−dy+ dy−, with y+
L − y−L ≤ 0, and y+

R − y−R ≥ 0. We will mostly consider the right

black hole and bath and drop the script R. The coordinates are shown on the Penrose

diagram in figure 1. The coordinates y± (i.e. y±R), when continued into the AdS region

x± =
β

π
tanh

πy±

β
. (2.4)

These coordinates are “Schwarzschild coordinates” that cover the outside of the horizon of

the black hole. We write y± = t ± r∗, where −∞ < r∗ < ∞ is a tortoise coordinate that

covers the right AdS region for r∗ ≤ 0 and the right Minkowski region for r∗ ≥ 0. The

time coordinate t is the “boundary time” and only the top half of the spacetime t ≥ 0 is

actually relevant for the evolution of a particular initial state that is defined at t = 0.

2.2 The dilaton

The dilaton is crucial to the workings of JT gravity and it plays the rôle that the area

plays in higher dimensional black holes. In the eternal black hole background, we have

φ = φ0 + 2φr
1− π2/β2x+x−

x− − x+
= φ0 +

2πφr
β
· 1− w+w−

1 + w+w−
. (2.5)

– 3 –
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Figure 1. The coordinates of the eternal black hole pair along with their half-Minkowski space

bath regions. The pink region is part of the AdS geometry outside the right black hole. The yellow

region is the right bath region. The right Schwarzschild coordinates y± cover the pink and yellow

regions. The global coordinates w± cover all regions on both the left and the right.

This solves the equations-of-motion (see e.g. [16, 27])

− 1

(x+ − x−)2
∂x±

(
(x+ − x−)2∂x±φ

)
= 8πGNTx±x± ,

∂x+∂x−φ+
2

(x+ − x−)2
(φ− φ0) = 8πGNTx+x− ,

(2.6)

with vanishing source Tx±x± = Tx+x− = 0. The constant φ0 sets the extremal entropy

and φr sets a scale at which JT gravity becomes strongly coupled. The analogue of the

singularity is where the dilaton vanishes,

w+w− =
2πφr/β + φ0

2πφr/β − φ0
. (2.7)

The Bekenstein-Hawking entropy of a black hole is determined by the value of the dilaton

on the horizon w− = 0:

S
(β)
BH =

φ

4GN

∣∣∣
horizon

=
φ0 + 2πφr/β

4GN
. (2.8)

2.3 The quantum state

A CFT is defined in the whole spacetime, including both the AdS and bath regions, with

a large central charge c � 1. It is convenient to keep things as simple as possible and

choose it to be a large number 2c of free fermions. The fact that c is large, means that the

CFT modes dominate the quantum gravitational modes and the latter can be ignored in

the semi-classical analysis.

On the initial value surface t = 0 the CFT state is chosen to be the thermofield double

state with respect to the left and right sides of the geometry of the same temperature as

– 4 –
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p1p2

D

RR

Figure 2. The calculation of the entropy of the baths region to the AdS region involves calculating

a CFT entanglement entropy for an interval D across the AdS region between boundary points at

a given time t.

the black hole β−1:

|ψ〉 =
∑
n

e−βEn/2 |ψn〉L ⊗ |ψn〉R . (2.9)

Transparent boundary conditions are chosen at the boundaries between the AdS and bath

regions. This ensures that CFT Hawking modes emitted by the black holes pass into their

respective baths and, correspondingly, modes from the baths, at the same temperature,

pass into the black holes. In this way, thermal equilibrium is maintained and there is no

back-reaction on the geometry.

2.4 Entanglement dynamics

However, although thermal equilibrium is maintained, the entanglement structure of the

quantum state of the CFT is not in equilibrium. As the Hawking modes are collected in the

baths, the baths become more and more entangled with the black hole. This entanglement

can be quantified by calculating the entanglement entropy of the baths relative to the AdS

region. In the regime of parameters, this is a pure CFT calculation which is standard [21,

22]. We choose to do it at a particular time t by computing the entanglement entropy

of the interval across the AdS region as a subset of a complete Cauchy slice across the

spacetime as shown in figure 2 with points at w±1 = ±e±2π/β on the right boundary and

w±2 = ∓e∓2π/β on the left. Note that the boundary points are considered to be just inside

the bath regions.2 On the chosen Cauchy slice the Hilbert space factors (modulo UV

issues) as HR ⊗ HD and the entanglement entropy of D, S(D) = −Tr(ρD log ρD), where

ρD = TrR|ψ〉〈ψ|. Of course, since the overall state is pure, S(D) = S(R).

The calculation is straightforward once we choose an expeditious set of coordinates for

which the CFT is in the vacuum state with respect to the flat metric in those coordinates.

The CFT in the bath regions is in a thermal state so the stress tensor in Minkowski coor-

dinates y± takes the usual thermal form Ty±y± = πc/(12β2).3 On the other hand, in the

AdS region the stress tensor vanishes Tw±w± = 0.4 So an appropriate choice of “vacuum

2In [7, 8], the points are taken to be at arbitrary spatial distance into the baths. Here we keep things as

simple as possible and take a limit where the points move onto the boundary.
3Stress tensor are defined as expectation values in the semi-classical limit, normal ordered with respect

to the vacuum state of the associated coordinate frame.
4There is no anomaly for the Weyl re-scaling that takes the AdS metric to the flat metric ds2 =

−dw+ dw−.
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coordinates” is simply w± which are related to the bath coordinates by a conformal trans-

formation w± = ±e2πy±/β (on the right bath). The conformal anomaly then ensures that

Tw±w± = 0 in the bath as well. The entropy is then5

S(R) ≡ S(D) =
c

6
log

(
−(w+

1 − w
+
2 )(w−1 − w

−
2 )

Ω1Ω2

)
. (2.10)

Here, Ω1,2 are conformal factors that result from transforming the flat metric ds2 =

−dy+ dy− = −Ω−2dw+ dw− to the w± coordinates, so

Ω−2 =
β2

(2π)2w+w−
. (2.11)

Hence, the entropy of the radiation in the baths is

S(R) =
c

3
log

(
β

π
cosh

2πt

β

)
. (2.12)

This result describes the increasing entanglement entropy of the baths as Hawking modes

are collected by the bath that are entangled with their partner modes behind the horizon

and in-going modes of the bath that are entangled with out-going modes. Hence, the bath

draws down entanglement from the black hole at a rate that becomes constant at late

times t� β:

S ∼
2πc

3β
t . (2.13)

However, the black holes only have a finite amount of entropy to give; namely their

Bekenstein-Hawking entropy S
(β)
BH, per black hole. At some point (2.13) cannot be main-

tained and the entropy must top out at 2SβBH. This is the essence of Page’s argument in

this context. Note that the black holes are in thermal equilibrium and so no evaporation

occurs and the final entropy should be constant.

2.5 Resolving the entropy paradox via replica wormholes

The key insight came with the realization that in a gravitational system the von Neumann

entropy is determined by a covariant variational procedure involving the “generalized en-

tropy” [5] (a culmination of earlier work on holographic entropy proposals [2–4]). This

involves a co-dimension 2 surface Σ, the “Quantum Extremal Surface” (QES), in terms

of which

Sgen.(D) = extΣ

[
Area(Σ)

4GN
+ SQFT(D)

]
, (2.14)

where D is the region between Σ and the boundary of AdS and SQFT(D) is the von

Neumann entropy of quantum fields on the interval D. One extremizes over Σ and then if

there are more than one extremum one chooses the one with the minimum entropy. In the

5Here, and in the following, we ignore constant terms involving the UV cut-off of the CFT.
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p2p4

p1p3
I D RDR

Figure 3. The generalized entropy for points p2 and p4 at the boundaries with QES’s at points p1
and p3 in the bulk involves calculating the entropy of disjoint intervals as shown.

present context of JT gravity, the QES is just a point and the rôle of Area(Σ) is played by

the value of the dilaton at the QES.

The generalized entropy and QES prescription was initially formulated on the basis of

holography. But recent work has shown that this prescription can be derived by a semi-

classical calculation of the QFT entropy across the AdS region using the replica method

and allowing the extended geometry that describes the replicas to fluctuate. In the semi-

classical calculation, it turns out that there are different saddles that can contribute namely,

the replica wormholes [6, 7]. The generalized entropy prescription turns out to be the net

effect of taking into account new saddle points in the calculation of the entropy.

In the present context, the previous calculation of the entropy of the black holes cor-

responds to a trivial one without a QES. However, there is a new saddle with 2 QES’s,

one on each side just outside the horizon, that has lower entropy at late times, shown in

figure 3. As before, the two boundary points p2 and p4 are at

w±2 = w∓4 = ±e±2πt/β (2.15)

and there are two QES’s p1 and p3 are located symmetrically at w±1 = w∓3 .

In order to compute the generalized entropy, we need the CFT entanglement entropy

for the 2 interval configuration D. In general, this will depend on the cross ratio of the

two points on the left and right. However, at late times to cross ratio w13w24/(w23w14)

goes to 1.6 With this simplification, the contribution from the left and right contributions

decouple and are equal so we will concentrate on the right one and then double the result.

Hence the generalized entropy is

Sgen.(w
±
1 ) = 2×

{
φ(w±1 )

4GN
+
c

6
log

(
−w2

12

Ω1Ω2

)}
. (2.16)

Here, the conformal factors are

Ω−2
1 =

4

(1 + w+
1 w
−
1 )2

, Ω−2
2 =

∂y+
2

∂w+
2

∂y−2
∂w−2

=
β2

(2π)2
(2.17)

and so

Sgen.(w
±
1 ) =

φ0

2GN
+
c

3
F (w±1 ) +

c

3
log

β

π
. (2.18)

6The notation here is w2
12 = (w+

1 − w
+
2 )(w−1 − w

−
2 ).
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Here, we have defined the function F to be extremized over w±1 :

F (w±1 ) =
π

βk
· 1− w+

1 w
−
1

1 + w+
1 w
−
1

+ log
(e2πt/β − w+

1 )(w−1 + e−2πt/β)

1 + w+
1 w
−
1

. (2.19)

The quantity

k =
GNc

3φr
, (2.20)

sets the rate of evaporation of a black hole that is not in equilibrium. This must be small

k � 1 in order to justify the semi-classical limit.7 In order to simplify the analysis, we will

also work in the high temperature limit for which, in addition, βk � 1. In this case, the

extremization is particularly simple:

w±1 = −βk
2π
· 1

w∓2
= ±βk

2π
e±2πt/β . (2.21)

So the QES lies on the same constant t Cauchy surface as the boundary point. The

coordinate w−1 is small and negative, so the QES is just outside the horizon. On the other

hand the coordinate w+
1 lags behind the boundary point by an amount of time that defines

the scrambling time of the black hole, i.e. in this case

∆ts =
β

2π
log

2π

βk
. (2.22)

This is a realization of the Hayden-Preskill protocol [20] which describes how “diaries”,

i.e. strings of qubits, thrown into an old black hole past the Page time are recovered in the

Hawking radiation after a time lag, precisely ∆ts.

The critical entropy in this limit is

Sgen.(D) =
φ0

2GN
+

πc

3βk
+
c

3
log

β

π
= 2S

(β)
BH , (2.23)

a constant. Note that the Bekenstein-Hawking entropy includes a quantum correction from

the modes of the CFT. So it is clear that the new saddle will dominant at a late time, the

so-called Page time, when

2π

3β
tpage ≈ 2S

(β)
BH . (2.24)

2.6 The island

The interpretation of the transition at the Page time is deep and far-reaching for the

quantum theory of black holes. Before the Page time, the whole of the interior lies in the

entanglement wedge of the pair of points p2 and p4 on the boundaries. This holographic

concept manifests the duality between the bulk theory in the AdS part of the geometry,

including the CFT, and the dual theory on the boundary of AdS. Being in the entanglement

wedge of the boundary means that states and operators in a small “code” subspace of

7In units of the AdS radius that has been set to 1.
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Figure 4. The time evolution of the entanglement structure. For early boundary times (left), the

entanglement wedge of the green boundary points consists of the entire AdS region. For late times,

past the Page time, (right) the minimal entropy is captured by a configuration with 2 QES’s outside

the horizons. The entanglement wedges of the red boundary points are now much smaller and an

island forms between the QES’s (the pink region). Also shown is a Hawking mode and its partner

behind the horizon. Before the Page time, the both modes are in the entanglement wedge of the

boundary point whereas after the Page time the partner mode is now in the island.

quantum modes around the classical background are mapped to the boundary theory, at

least approximately [6, 7].

After the Page time the entanglement wedge of two boundary points p2 and p4 ends

on the two QES’s, p1 and p3, respectively, and so is much reduced: see figure 4. This leaves

the wedge in between the two QES’s, the so-called island I. Since we have calculated the

entropy of the region D from the boundary points to the QES’s, and the overall state is

pure, means that we can equate this to the entropy of the union R∪ I. From a holographic

point of view, states and operators on the island are now interpreted as being “owned”

by the radiation system rather than the dual boundary theory. So the “code” subspace of

modes on R ∪ I is actually contained within the full Hilbert space of R. So the island is

actually lurking in R in a way that is not revealed within the semi-classical approximation.

3 Shockwaves

In this section, we describe how shockwaves can be generated in the bath regions that

propagate along null rays into the AdS region carrying energy and entropy into the black

holes. In order to simplify the analysis, we will create the shockwaves symmetrically on

the left and right baths, shown in figure 5.

3.1 Shockwave production

A shockwave in the AdS2 region results when a narrow pulse of energy is sent in from the

bath. Such a pulse can be prepared by subjecting the CFT to a “local quench” [23–26],

i.e. by perturbing the equilibrium state with a local operator. We can choose the operator

O(y+, y−) to be a primary field with conformal dimension ∆O, so the perturbed density

matrix of the right-hand side is, at t = 0, is

ρRight,ε = NO(t0 + iε,−t0 + iε)ρRightO†(t0 − iε,−t0 − iε) , (3.1)

– 9 –
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where N is a normalization constant and ε a regulator which separates the two operator

insertions along the imaginary time direction. This provides a small temporal width to the

excitation thus regulating the energy in the pulse. We will work in the limit

β � ε, (3.2)

when the resulting pulses can be approximated by left and right-moving delta-functions.8

The CFT energy momentum tensor for an insertion at y± = ±t0 has the form

Ty±y± =
πc

12β2
+

∆O
ε
δ(y± ∓ t0) , (3.3)

in the thermal state.9 The left-moving pulse results in a shockwave when it enters the

gravitating AdS2 bulk, and the energy deposited by it,

Eshock =
∆O
ε
, (3.4)

must be kept fixed in the limit of small ε. In the small width limit, the shockwave profile

and strength are clearly temperature independent and so apply in the zero temperature

limit as well.

As well as having energy, the shockwaves also carry entropy due to entanglement

between the left- and right-moving components. In general, we can write a chiral decom-

position in the form

O(y+, y−) =
∑
a

√
paϕa(y

+)ϕ̄a(y
−) . (3.5)

where the component operators are chosen to diagonalize the OPE:

ϕ†a(y)ϕb(0) =
δab
y2∆O

+ · · · . (3.6)

The operator O creates a state with entanglement between the left and right moving sectors

in the form of a Schmidt decomposition with entanglement entropy

Sshock = −
∑
a

pa log pa . (3.7)

This entropy is also written as log dO where dO is the quantum dimension of the operator

O [23–25]. In a typical CFT calculation, one is interested in the behaviour of the entangle-

ment — or more generally the Rényi — entropy of a sub-region A of space in the presence

of the shockwave. As one of the components, either the left or the right, of the shockwave

enters A the entanglement entropy of the reduced state of A jumps by Sshock.

For example, consider the CFT of N free fermions (or N copies of the Ising model),

with central charge c = N/2. The spin primary field σ has ∆σ = 1
16 and dσ =

√
2.10

The primary O = σ1 · · ·σN has scaling dimension ∆O = N/16 and quantum dimension

dO = 2N/2 = 2c. The shift in the entropy caused by the shockwave is then c log 2.

8The exact universal expressions for the stress tensor expectation values, with finite width ε, can be

found by employing standard Ward identities involving the stress tensor and two primary fields in the

thermal state [26].
9In order to be consistent with the standard normalization of the stress tensor in JT gravity, our nor-

malization of the stress tensor differs from the usual CFT stress tensor by a factor of 1
2π

.
10The other primary, the energy density has ∆ = 1

2
and quantum dimension d = 1.
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Figure 5. The set-up consists of the two-sided black hole in thermal equilibrium with the left and

right flat space with the CFT acting as a thermal bath. Operator insertions in the baths create

shockwaves that enter the AdS region and the black hole. The symmetry between the left and right

is chosen to simplify the analysis.

3.2 Shockwaves in the AdS region

We need to understand how the shockwave affects the gravitational sector as it moves

from the bath to the AdS region. To our advantage, JT gravity can formulated as a

theory on the boundary that boils down to a function τ = f(t) that describes the mapping

between the boundary (Schwarzschild) time t and the Poincaré time on the boundary

x± = τ [17–19]. The function determines the mapping between the Poincaré coordinates

and the Schwarzschild x± = f(y±) of which (2.4) is the example for the eternal black

hole. Our analysis here has some similarity with that in [27] whose approach and notation

we follow, although there are also some fundamental differences. In that reference, the

shockwave is created by the coupling of the AdS spacetime to a zero temperature bath at

some finite time.

The function f(t) determines the ADM energy of the bulk theory via

E(t) = − φr
8πGN

{f, t} . (3.8)

Here,

{f, t} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

, (3.9)

is the Schwarzian.

3.3 The equilibrium state

In the case of the eternal black hole, using (2.4) at the boundary, this yields the black

hole mass,

Eβ =
πφr

4β2GN
. (3.10)

The ADM mass of the spacetime satisfies an energy balance equation determined by the

energy flux at the boundary,

∂tE(t) = Ty+y+(t)− Ty−y−(t) (3.11)

– 11 –
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Here, Ty±y± can be viewed as the normal ordered CFT stress tensor components [18] so

that Ty+y+ is the incoming flux at the boundary, provided by the bath, and Ty−y− is the

outgoing flux, i.e. the Hawking radiation.

For the eternal black hole in thermal equilibrium with the radiation bath, the in-coming

modes and out-going modes both have temperature β−1 and so

Ty±y± =
πc

12β2
. (3.12)

In this case, the energy is constant. Note that these stress tensors are expectation values

normal ordered with respect to the flat metric ds2 = −dy+ dy−. If we transform to the

Poincare coordinates in the AdS metric there is a Weyl re-scaling of the metric and a

corresponding anomaly in the transformation of the stress tensor

Tx±x± =

(
∂y±

∂x±

)2(
Ty±y± +

c

24π
{x±, y±}

)
= 0 . (3.13)

For the case of the eternal black hole, where x± are defined in terms of y± by (2.4), this

means that Tx±x± = 0 as expected.

3.4 Effect of shockwave

Now let us consider the effect of the shockwave that crosses the boundary at time t0
with energy Eshock. As we have explained above, the shock is the result of a narrow

pulse of energy sent in from the bath and corresponds to modifying the in-going stress

tensor Ty+y+ by a delta function (3.3). The effect of the shockwave is to change the map

f(t) = β/π tanh(πt/β) at t = t0 to some more general f(t). Our task is to determine the

function f(t).

The in-coming modes have a stress tensor Ty+y+ in (3.3) but what about the out-going

modes for t > t0? These modes will still have Tx−x− = 0 and therefore for x− > t0 we have

Ty−y− = − c

24π
{f(y−), y−} . (3.14)

Energy conservation at the boundary requires that E(t) jumps by Eshock at t0 and then

for t > t0 satisfies

∂tE(t) =
πc

12β2
+

c

24π
{f(t), t} . (3.15)

The equation is solved with the boundary condition E(t0) = Eβ + Eshock. It is useful to

parametrize the shockwave energy in terms of a new, higher temperature β̃−1, so that

Eshock = Eβ̃ − Eβ . (3.16)

Intuitively, the shockwave raises the black hole temperature to β̃−1 > β−1, which is then

expected to evaporate back to the original thermal state at temperature β−1. We will

shortly prove this intuition is correct.

– 12 –
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Combining eq. (3.8) for the energy flux with the ADM energy (3.15) we obtain,

∂tE(t) =
πc

12β2
− kE(t) , (3.17)

where k was defined in (2.20). Solving, for t > t0,

E(t) =
πφr
4GN

(
β−2 + (β̃−2 − β−2) e−k(t−t0)

)
. (3.18)

Therefore the black hole settles back to the thermal state at temperature β−1 beyond a

time scale k−1 after the injection of the shock.

3.5 The exact solution

In order to determine the complete background and dilaton, we need to solve for the

function f(t). The exponential falloff of the ADM energy implies that the key function

f(t) solves the third order differential equation

{f(t), t} = −2π2
(
β−2 + (β̃−2 − β−2)e−k(t−t0)

)
, t > t0 . (3.19)

Importantly, solutions to this differential equation are only determined up to a Möbius

transformation

f → Af + C

Cf +D
, (3.20)

whose freedom corresponds to the three integration constants of the third order differential

equation. The Möbius transformation is determined by requiring that f(t) is continuous

up to its second derivative across t = t0. Given that f(t) = β/π tanh(πt/β), for t < t0,

gives the conditions

f(t0) =
β

π
tanh

πt0
β
,

f ′(t0) = sech2πt0
β
,

f ′′(t0) = −2π

β
sinh

πt0
β

sech3πt0
β
,

(3.21)

which, given a particular solution of (3.19), fixes the freedom in (3.20).

A particular integral of (3.19) is expressed in terms of modified Bessel functions of the

1st and the 2nd kind:

f̂ = α
Kν(νz)

Iν(νz)
, ν =

2π

βk
, z =

√
Eshock

Eβ
e−k(t−t0)/2 . (3.22)

The constant α is a convenient normalization that we fix below by requiring f̂(t0) = e2πt0/β̃ .

The example in [27] corresponds to the particular case β →∞, so ν = 0 with νz fixed. We

will discuss this case, separately in section 6 where it corresponds to a shockwave incident

on an extremal black hole.

– 13 –
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The exact formulae for the integration constants in the Möbius transformation are

presented in appendix C, and we find,

f(t) =
β

π
·
Kν(νz0)

(
f̂(t)/f̂(t0)− 1

)
+ z0 tanh πt0

β

(
f̂(t)I ′ν(νz0)/α−K ′ν(νz0)

)
Kν(νz0)

(
f̂(t)/f̂(t0)− 1

)
tanh πt0

β + z0

(
f̂(t)I ′ν(νz0)/α−K ′ν(νz0)

) . (3.23)

In the late time limit, t � k−1, when z is small, the asymptotics of Bessel functions

imply that

f̂(t) |z�1 ∝ e
2πt/β , (3.24)

which is what we expect for a black hole that has relaxed back towards its original ther-

mal state.

3.6 High temperature limit

For the semiclassical approximation to apply, we must keep k � 1 (defined in (2.20)) since

it controls matter loops and also sets the black hole evaporation time scale.11 On the

other hand, the combination βk can be arbitrary. However, we will work in the regime

where βk � 1, so the index ν for the Bessel functions is large. This is justified when the

temperature is sufficiently high and so we can call it the “high temperature limit”. Working

in this regime simplifies the analysis as we can employ the saddle-point evaluation of the

integral representation of the modified Bessel function to derive the following approximate

form (see appendix C).

With a suitable fixing of the normalization α in (3.22), this gives the small βk, i.e. ν �
1, approximate form

f̂(t) = e2ν(S(t)−S(t0))+2πt0/β̃ , S(t) ≡ −
√

1 + z2 + tanh−1 1√
1 + z2

, (3.25)

where z is given as a function of t in (3.22). The normalization has been fixed by making

the convenient choice that f̂(t0) = e2πt0/β̃ . The behaviour of f̂ in the neighbourhood of t0
is then

log f̂(t) =
2πt

β̃
− πk(β2 − β̃2)

2β2β̃
(t− t0)2 + O((t− t0)3) . (3.26)

The exponential dependence on time immediately after the shockwave injection is consistent

with a black hole at a new, higher temperature β̃−1. In the limit of small βk, this lasts for

a time scale ∼ O
(
k−1

)
.

In the high temperature limit, our exact solution (3.23) for the map f(t), obtained by

the continuity conditions at t = t0, yields

f(t) =
β

π
·
β tanh πt0

β + β̃ tanh [ν (S(t)− S(t0))]

β + β̃ tanh [ν (S(t)− S(t0))] tanh πt0
β

. (3.27)

11The parameter k is the effective coupling between the boundary degree of freedom in AdS2 and the

CFT [18, 27]. The ADM energy and associated flux equation (3.17) assumes the small k semi-classical limit.
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This result satisfies a simple check. In the limit that β̃ approaches β,

lim
β̃→β

ν (S(t)− S(t0)) =
π

β
(t− t0) , (3.28)

and we recover f(t) = β/π tanh (πt/β) which is the equilibrium result.

In the late time limit, when t� k−1 we find,

log f̂(t) =
2π

β
(t+ κ) + O(e−k(t−t0)) , (3.29)

where the constant

κ = −2

k

(
1 + log

√
β2 − β̃2

2β̃
− kβt0

2β̃
− β

β̃
+ tanh−1 β̃

β

)
. (3.30)

The behaviour (3.29) is exactly as we would expect for a black hole of the original temper-

ature β−1. Therefore, our saddle point expressions correctly capture the relaxation of the

black hole to the original thermal state after (slow) evaporation.

After the shockwave is sent in, the horizon of the black hole shifts outwards from

x− = β/π to x− = f(∞). Within the high temperature limit, this is

x−hor. = f(∞) =
β

π
·
β̃ + β tanh πt0

β

β + β̃ tanh πt0
β

<
β

π
. (3.31)

Thus the horizon shifts even though the black hole returns to equilibrium.

The function f(t) which determines the relation between boundary time t and Poincaré

time, naturally extends into the AdS2 bulk. It is now natural to define new coordinates

behind the shockwave,

x̃± =
β̃

π
· f̂(y±)− 1

f̂(y±) + 1
=
β̃

π
tanh

[
ν(S(y±)− S(t0)) +

πt0

β̃

]
. (3.32)

Immediately after the shockwave, it follows from eq. (3.26) that x̃± = β̃/π tanh(πy±/β̃),

matching on to the eternal black hole patch (2.4) but with a higher temperature β̃−1.

Furthermore, (3.32) reveals that the subsequent relaxation of the black hole is characterized

by an effective temperature β−1
eff ,

x̃± =
β̃

π
tanh

[
π

∫ t

t0

dt′

βeff(t′)
+
πt0
β

]
. (3.33)

The effective temperature decreases monotonically from β̃−1 towards the original unper-

turbed value and is given by

1

βeff(t)
=

1

β

√
1 + (Eshock/Eβ) e−k(t−t0) . (3.34)

In the calculations we present below, the associated coordinates

w̃± = ±f̂(y±)±1 , (3.35)

prove to be useful. In terms of the new coordinates, the horizon is always at x̃− = β̃/π or

w̃− = 0 with w̃− ≷ 0 being inside/outside.
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3.7 Stress tensor

In order to solve for back-reaction on the dilaton after the shockwave enters, we need

to know the stress tensor. For the out-going modes, there is no change and in Poincaré

frame Tx−x− = 0 always. For the in-going modes, the stress tensor is (3.12) which we can

transform to the Poincaré frame using x+ = f(y+) and (3.13)

Tx+x+ =

(
∂y+

∂x+

)2( πc

12β2
+ Eshockδ(y

+ − t0)

)
− c

24π
{f−1(x+), x+} . (3.36)

Using (3.19) we then find the explicit form,

Tx+x+ =
β2 − β̃2

β2β̃2

(
πφr
4GN

cosh2 πt0
β
δ(x+ − x0)− πc e−k(y+−t0)

12f ′(y+)2
θ(x+ − x0)

)
, (3.37)

which determines the discontinuity in the derivative of the dilaton through (2.6). Here

x0 = β/π tanh(πt0/β).

There is a useful way to rewrite (3.36) behind the shockwave, when x+ > x0 (or

y+ > t0). Since {f−1(x+), x+} = −(f ′(y+))−2{f(y+), y+}, for x+ = f(y+), we have, as a

function of y+

Tx+x+ =
1

f ′(y+)2

(
πc

12β2
+

c

24π
{f(y+), y+}

)
. (3.38)

But from (3.11), this is

Tx+x+ =
1

f ′(y+)2
∂y+E(y+) = − φr

8πGN
· 1

f ′(y+)2
∂y+{f(y+), y+} . (3.39)

Converting the y+ to x+ derivatives in the Schwarzian, and assuming y+ = y+(x+),

this yields

Tx+x+ = − φr
8πGN

∂3
x+f

′(y+) . (3.40)

This general result will prove useful when we solve for the dilaton.

3.8 Vacuum coordinates

The strategy for calculating the von Neumann entropy of the bath will be to relate the

relevant CFT correlators to corresponding vacuum correlators by an apporpriate conformal

transformation. Therefore the key to this calculation is to find a coordinate frame for

which the CFT is in the vacuum state (a summary of various coordinate systems employed

is provided in appendix A). Importantly, these frames are only defined up to a Möbius

transformation which can be chosen for convenience.

The in-going modes in the original Schwarzschild frame y+ are always in a state of

temperature β−1. These modes can therefore be mapped to the vacuum CFT state by the

exponential map, choosing e2πy+/β as a vacuum coordinate. For y+ < t0, this is

w+ = e2πy+/β . (3.41)

– 16 –



J
H
E
P
0
8
(
2
0
2
0
)
0
9
4

On the other hand, the out-going modes in the Poincaré frame x− are in the vacuum state,

so we can take w− or, indeed, w̃−, both related to x− by a Möbius transformation. For

y− < t0, we have

w− = −e−2πy−/β , (3.42)

showing that before the shockwave the outgoing Hawking modes have temperature β−1.

Behind the shockwave, for y− > t0, the w− coordinate is related to y− by12

w− ≡ −e−2πη(y−)/β =
πf(y−)− β
πf(y−) + β

. (3.43)

Within the high temperature approximation βk � 1, and in terms of f̂(t), we have

e−2πη(t)/β = e−2πt0/β (β − β̃)f̂(t) + (β + β̃)e2πt0/β̃

(β + β̃)f̂(t) + (β − β̃)e2πt0/β̃
. (3.44)

The behaviour of η(t) is important in our analysis. Recalling that in the high temperature

limit f̂(t) rises exponentially as ∼ e2πt/β̃ at early times, η(t) increases linearly from t = t0
but then at a later time,

t ∼ t0 +
β̃

2π
log

4ββ̃

β2 − β̃2
, (3.45)

saturates at the value

η0 = t0 +
β

2π
log

β + β̃

β − β̃
. (3.46)

For the out-going modes, we can also use w̃− as the vacuum coordinate, where

w̃− = − 1

f̂(y−)
(3.47)

which is a useful coordinate behind the shockwave. This is natural in the high temperature

limit, wherein, w̃− = −1/f̂(y−) ≈ −e−2ν(S(y−)−S(t0))−2πt0/β̃ .

3.9 Dilaton

In the semi-classical limit, the dilaton is sourced by the expectation value of the stress

tensor of the CFT (2.6). As we cross the shockwave, Tx+x+ has a delta function and

then a non-vanishing contribution. This would seem to make the problem of solving for

the dilaton a complicated problem. Fortunately with a non-vanishing Tx+x+ but with

Tx−x− = Tx+x− = 0, there is a simple expression for the dilaton in term of the key function

f(t) [28]. In order to find it, we note that the −− and +− components of the equations

for the dilaton (2.6), have a general solution of the form

φ = φ0 + 2φr

(
1

2
∂x+h(x+) +

h(x+)

x− − x+

)
. (3.48)

12Note that in the absence of a shockwave, f(y−) = β/π tanh(πy−/β) and η(y−) = y−.
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Then the ++ equation gives

Tx+x+ = − 1

8πGN
∂3
x+h(x+) . (3.49)

Now we compare with the expression for this stress tensor component in (3.40). Clearly

we have perfect agreement if we identify13

h(x+) = f ′(y+) , (3.50)

where x+ = f(y+). So, implicitly, in solving the equation at the boundary for energy

balance, we have implicitly solved for the dilaton. Importantly, we can avoid having to use

Green function methods and memory integrals. Note that the delta-function singularity

in Tx+x+ and its strength (3.37) follows automatically from the discontinuity in f ′′′(y+),

implied by the equation for the Schwarzian (3.19).

We can now write the dilaton in mixed coordinates (y+, x−) explicitly as

φ = φ0 + 2φr

(
f ′′(y+)

2f ′(y+)
+

f ′(y+)

x− − f(y+)

)
. (3.51)

In front of the shockwave, f(t) = β/π tanh(πt/β), and one finds (2.5).

Behind the shockwave, we find it more useful to use the mixed coordinates (y+, w̃−)

where w̃+ = f̂(y+). After a Möbius transfromation trading f(y±) for f̂(y±), the dilaton

is then

φ = φ0 + 2φr

(
f̂ ′′(y+)

2f̂ ′(y+)
− w̃−f̂ ′(y+)

1 + w̃−f̂(y+)

)
. (3.52)

Just after the shockwave, in the high temperature limit, we have f̂(t) = e2πt/β̃ (t ≈ t0 and

βk � 1), in which case the dilaton takes the form

φ = φ0 +
2πφr

β̃
· 1− w̃+w̃−

1 + w̃+w̃−
, (3.53)

exactly what one would expect for a black hole of a new temperature β̃−1.

3.10 Entropy of the evaporating black hole

The dilaton determines the entropy of the black hole (2.8). After the passage of the

shockwave, the horizon is at x̃− = β̃/π (i.e. w̃− = 0). Inserting this into (3.52) gives a

remarkably simple expression for the entropy as a function of the boundary time of an

in-going null ray with coordinate y+:

SBH(y+) =
1

4GN

(
φ0 + φr

f̂ ′′(y+)

f̂ ′(y+)

)
. (3.54)

13Strictly, the identification is modulo three integration constants h(x+) = f ′(y+) + a0 + a1x
+ + a2(x+)2

which vanish by requiring matching with the new thermal state immediately after t = t0.
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This gives

SBH(y+) =
1

4GN

(
φ0 +

kφr
z
· (νz2 + 2(ν − 1))Iν−1(νz)− νzIν−2(νz)

Iν(νz)

)
, (3.55)

where ν and z are defined in (3.22) with t replaced by the null coordinate y+. Using the

approximation for f̂ in (3.25), valid for small βk, gives the explicit expression

SBH(y+)
∣∣∣
βk�1

=
1

4GN

(
φ0 +

2πφr
βeff(y+)

)
, (3.56)

written naturally in terms of the effective temperature (3.34), and exhibiting monotonic

decrease from S
(β̃)
BH to S

(β)
BH. This proves that the geometry settles down to a black hole at

the original temperature.

4 Entropy saddles

In this section, we consider the effect of the shockwave on the entropy of the radiation.

Let us emphasize the approximations we are making. These are done to avoid numerical

solutions and so make the interpretation of the results more transparent:

(i) We work in the limit βk � 1. This simplifies the equations that determine the position

of the QES and also allow us to use the approximate form for the map f̂(t) in (3.25).

(ii) As in [7, 8], since we are interested in late-time phenomena, around or after the Page

time of the original black hole, we shall ignore the cross terms in the entanglement entropy

that link the left and the right systems. In particular, this follows from the fact that relevant

time scales, including t0, scale like k−1. We will discuss the validity of this procedure ex

post facto in section 4.4.

4.1 No Islands

The no-island entropy reviewed in section 2.4 is valid before the boundary point crosses

the in-coming shockwave at t = t0. The calculation was performed using the vacuum

coordinate frame w±. As the boundary point crosses the shockwave we can still use w±

as vacuum coordinates and so in terms of these coordinates the result is not changed.

However, the mapping of the coordinate w− to the boundary time changes:

w+ = e2πt/β , w− = −e−2πη(t)/β , (4.1)

where η(t) was defined in (3.44). This changes the conformal factor of the boundary

point to

Ω−2 =
∂y+

∂w+

∂y−

∂w−

∣∣∣
y±=t

=
β2

(2π)2
e−2π(t−η(t))/β−log η′(t) . (4.2)

Plugging these into (2.10) gives

Sno island =
c

3
log
(
e2πt/β + e−2πη(t)/β

)
− πc

3β
(t− η(t))

− c

6
log η′(t) +

c

3
log

β

2π
+ 2Sshock .

(4.3)

– 19 –



J
H
E
P
0
8
(
2
0
2
0
)
0
9
4

From t = t0, η(t) grows linearly at very early times, η(t) ' t, and the entropy matches

that of the no-island contribution before the shockwave (2.13) but with a shift by the

shockwave entropy (3.37). This is to be expected, as the shockwave enters the AdS region

the entanglement entropy jumps because the radiation bath is the purifier of shockwave.

After the time (3.45), η(t) saturates to the constant value η0 (3.46). However, the

function f̂(t) continues to grow (3.26) as f̂ ∼ exp(2πt/β̃), characteristic of the higher

effective temperature after the injection of the shockwave. This growth continues for a

parametrically long timescale t < O(k−1), well after η(t) has saturated. During this phase

the entropy continues to increase linearly

Sno island '
πc

3β̃
(t− t0) +

πc

3β
(t+ t0) +

c

3
log

β + β̃

4π
+ 2Sshock . (4.4)

At later times t� k−1, the black hole relaxes towards its original temperature and f̂(t) ∼
exp(2π(t + κ)/β) as per eq. (3.29), and the rate of growth of the no-island entanglement

entropy (entanglement velocity) changes:

Sno island '
2πc

3β
t+

πc

3β
(t0 + κ) − πct0

3β̃
+
c

3
log

β + β̃

4π
+
c

6
log

β

β̃
+ 2Sshock . (4.5)

4.2 Island with QES in front of shockwave

Now we consider the entropy contributions from configurations with an island. These are

illustrated in figure 6. Previously we reviewed the calculation of the entropy with an island

leading to (2.23). This corresponds to the green boundary region and QES in figure 6.

This result changes when the boundary point crosses the in-coming shockwave and enters

the blue region on the boundary.

There are two distinct situations to consider, the first in which the quantum extremal

surface resides in front of the shockwave in the unperturbed portion of the geometry, and

a second scenario wherein it lies behind the shockwave. Which of these two kinds of

configurations appears depends on the time elapsed after injection of the shockwave.

We can still use vacuum coordinates w± but now the mapping w−2 for the boundary

point to the boundary time changes as in (4.1)

w+
2 = e2πt/β , w−2 = −e−2πη(t)/β . (4.6)

The conformal factor of the boundary point also changes as in (4.2).

Taking the QES to lie in front of the shockwave, the expression for the entropy is given

by (2.16) but with the modified mapping (4.6) and conformal factor for the boundary point,

including a jump from the shockwave entropy,

Sgen.(w
±
1 ) =

φ0

2GN
+
c

3
F (w±1 ) +

c

3
log

2

Ω2
+ 2Sshock . (4.7)

The function F , to be extremized over w±1 , is

F (w±1 ) =
π

βk
· 1− w+

1 w
−
1

1 + w+
1 w
−
1

+ log
(−w+

1 + e2πt/β)(w−1 + e−2πη(t)/β)

1 + w+
1 w
−
1

, (4.8)
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bathAdS

w− = 0

w̃− = 0

w+
frozen

Figure 6. A schematic plot of the 3 possible island saddle points corresponding to par ticular

boundary points with the QES shown as blobs and the islands shown as the shaded regions. The

boundary regions are coloured according to which type of QES has the minimum entropy and the

motion of the QES’s are shown as the dotted lines. The green blob lies on the same Schwarzschild

Cauchy slice as its boundary point, whereas the blue and the red lag behind. The null coordinate

w+ of the blue QES becomes frozen at roughly a scrambling time before t0. For large enough

shockwave energy, the red QES lies behind the shifted horizon as shown here.

which is identical to (2.19) apart from the change of mapping of the boundary coordinate

w−2 . This is because the QES is in front of the shockwave and the form of the dilaton is

unchanged. In the high temperature limit βk � 1, the extremization over w±1 again gives

w±1 = −βk/(2πw∓2 ), and this implies a simple modification of (2.21)

w+
1 =

βk

2π
e2πη(t)/β , w−1 = −βk

2π
e−2πt/β , βk � 1 . (4.9)

This is the position of the QES represented by the blue blob in the AdS in figure 6.

Taking into account the modification of the conformal factor (4.2) and the critical

values (4.9) yielding the position of the QES, gives the entropy

SQES in front = 2S
(β)
BH +

πc

3β
(t− η(t))− c

6
log η′(t) + 2Sshock . (4.10)

Note that this equals 2S
(β)
BH + 2Sshock at t = t0, i.e. the result (2.23) with a jump by the

entropy of the shockwave.

As t increases, the entropy starts to increase. After the time (3.45), η(t) saturates to

the constant value (3.46). Past this time scale, we have (3.26) and the entropy continues

to increase linearly

SQES in front ' 2S
(β)
BH +

πc

3β
(t− η0) +

πc

3β̃
(t− t0) +

c

6
log

β2 − β̃2

4β2
+ 2Sshock . (4.11)

At later times when the black hole is evaporating towards the temperature β−1, we

have (3.29), and the gradient of the entropy changes:

SQES in front ' 2S
(β)
BH +

2πc

3β
t+

πc

3β
(κ− t0 − η0) +

c

6
log

β2 − β̃2

4ββ̃
+ 2Sshock . (4.12)
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Comparing (4.4) and (4.11) along with (4.5) and (4.12), we note that, once the function

η(t) saturates, the difference (Sno island − SQES in front) is independent of time.

4.3 Island with QES behind the shockwave

For late times, indicated by the red region on the boundary, we expect the blue QES in

figure 6 to jump behind the shockwave, and become the red QES. When the QES is behind

the shockwave it is more convenient to use a mixture of coordinates,

w+ = e2πy+/β , w̃− = − 1

f̂(y−)
, (4.13)

as the vacuum coordinates. The choice is guided by the dilaton (3.52) which has a partic-

ularly nice expression in terms of the coordinates (y+, w̃−). The boundary point then has

the coordinates

y+
2 = t , w̃−2 = − 1

f̂(t)
. (4.14)

The conformal factors of the QES and the boundary point are14

Ω−2
1 =

4

(1 + w̃−1 f̂(y+
1 ))2

· βf̂
′(y+

1 )

2πe2πy+1 /β
, Ω−2

2 =
βf̂(t)2

2πe2πt/β f̂ ′(t)
. (4.15)

Now we can write the generalized entropy, as a function of (y+
1 , w̃

−
1 ) as

S(y+
1 , w̃

−
1 ) =

φ0

2GN
+
c

3
F (y+

1 , w̃
−
1 ) +

c

6
log

f̂(t)2

e2πt/β f̂ ′(t)
+
c

3
log

β

π
. (4.16)

Note that the region D between the boundary and the QES no longer owns the shockwave

and so there is no jump from the shockwave entropy. In the above, the function

F (y+
1 , w̃

−
1 ) =

1

k

[
f̂ ′′(y+

1 )

2f̂ ′(y+
1 )
− w̃−1 f̂

′(y+
1 )

1 + w̃−1 f̂(y+
1 )

]

+ log

(
− e2πy+1 /β + e2πt/β

)(
w̃−1 + f̂(t)−1

)
1 + w̃−1 f̂(y+

1 )
+

1

2
log

f̂ ′(y+
1 )

e2πy+1 /β
.

(4.17)

Now we extremize over the position of the QES (y+
1 , w̃

−
1 ). Extremizing over w̃−1 gives

a linear equation for w̃−1 that can be solved

w̃−1 =
f̂ ′(y+

1 ) + kf̂(y+
1 )− kf̂(t)

f̂(t)(kf̂(y+
1 )− f̂ ′(y+

1 ))− kf̂(y+
1 )2

. (4.18)

Then extremizing over y+
1 gives a complicated equation that can be solved numerically

to determine y+
1 . In general terms, the solution for the null coordinate y+

1 of the QES

14The conformal factor in w̃± coordinates is Ω−2 = 4/(1 + w̃+w̃−)2.
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lags behind the boundary time t by an amount that we identify in the next section as the

scrambling time:

∆ts ≡ t− y+
1 . (4.19)

In the early time regime, just after the shockwave enters the AdS region t0, it is

more convenient to transform from y+
1 to w̃+

1 = f̂(y+
1 ). In the first instance, we are

interested in the QES immediately after the shockwave enters, in which case we can use

the approximation (3.26) for f̂ , keeping the leading and next-to-leading terms,

y+
1 =

β̃

2π
log w̃+

1 +
kβ̃ξ

4π
log2(e−2πt0/β̃w̃+

1 ) + · · · . (4.20)

In the small βk limit, the relevant terms are

F (w̃±1 ) =
π

β̃k
· 1− w̃+

1 w̃
−
1

1 + w̃+
1 w̃
−
1

(
1− kξ log(e−2πt0/β̃w̃+

1 )
)

+ log
(−(w̃+

1 )β̃/β + e2πt/β)(w̃−1 + e−2πt/β̃)

1 + w̃+
1 w̃
−
1

+
β − β̃

2β
log w̃+

1 + · · · ,
(4.21)

where ξ = (β2 − β̃2)β̃/(4πβ2) comes from the next-to-leading term in (3.26). Extremizing

over w̃±1 and keeping only the most dominant terms in the limit βk � 1, gives15

2π

β̃k
w̃+

1 −
1

w̃−1 + e−2πt/β̃
+ · · · = 0 ,

2π

β̃k
w̃−1 +

πξ

β̃w̃+
1

− β − β̃
2βw̃+

1

+ · · · = 0 .

(4.22)

These can be solved to yield the short-time behaviour

w̃+
1 =

kβ̃(3β − β̃)(β + β̃)

8πβ2
e2πt/β̃ , w̃−1 =

(β − β̃)2

(3β − β̃)(β + β̃)
e−2πt/β̃ , (4.23)

The solution for w̃+
1 allows us to extract the scrambling time

∆ts =
β̃

2π
log

8πβ2

kβ̃(3β − β̃)(β + β̃)
. (4.24)

From (4.23), since w̃−1 > 0, it follows that the QES is generically inside the horizon in

this early time regime.

In the late time regime, f̂ = e2π(t+κ)/β , the scrambling time satisfies

sinh
2π∆ts
β

=
π

βk
, (4.25)

with a solution

∆ts =
β

2π
log

2π

βk
, (4.26)

at small βk. Then the solution of (4.18) is

w̃−1 = −βk
2π
e−2π(t+κ)/β . (4.27)

So at late time, the QES is outside the horizon, as for an eternal black hole.

15The key observation is that w̃+
1 w̃
−
1 is order k.

– 23 –



J
H
E
P
0
8
(
2
0
2
0
)
0
9
4

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

horizon

w̃
− 1
f̂

(t
)

∆
t s

0 10 20 30 40 50

0.8

1.0

1.2

1.4

Figure 7. Left : a plot of w̃−1 f̂(t) as a function of time, i.e. the scaled position of the QES relative

to the horizon, for some indicative values of the parameters, β = 3, β̃ = 1 and k = 0.065. Negative

values correspond to points outside the horizon. Right : the scrambling time. Horizon crossing

occurs at time ∼ 24 with the origin of the time axis set at t0. For the values of the parameters the

scrambling time is ∼ 0.8. At short times (4.23), we have w̃−1 f̂(t) ∼ 0.5 while at long times, the plot

manifests the saturation in (4.27) βk/2π ∼ 0.03.

It is important that because of the fact that y+
1 lags behind t, this entropy saddle can

only appear for t such that y+
1 > t0. We can use the early time approximation (4.24) to

derive the condition in terms of the boundary time

t > t0 +
β̃

2π
log

8πβ2

kβ̃(3β − β̃)(β + β̃)
. (4.28)

So the saddle appears a scrambling time after the shockwave.

In the limits we are working, the critical entropy is dominated by the values of the

dilaton at the horizon, i.e. the time-dependent expression SBH(y+) in (3.54) where y+
1 (t)

is solution of the extremization problem:

SQES behind = SBH(y+
1 (t)) + Scor. . (4.29)

The correction Scorr. remains subleading so the dominant contribution to the entropy of

this saddle. Consequently, the entropy starts at S
(β̃)
BH and then relaxes back to S

(β)
BH.

4.4 Left/right independence

In this section, we argue that our procedure of ignoring the effect of the left region of the

two-sided black hole, on the right region is a valid one for times that are relevant to the

competition of saddles around the Page time, i.e. of order k−1. The contribution to the

entropy that we have ignored is the cross term

Scross =
c

6
log

σ13σ24

σ14σ23
, (4.30)

where σij = −(w+
i − w

−
j )(w−i − w

−
j ) is the spacetime interval.

We chose to have shockwaves symmetrically on both sides in order to simplify the

discussion. The symmetry means that the QES and boundary points on the left are related

to those on the right by w±3 = w∓1 and w±4 = w∓2 , respectively.
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Let us consider the case with the QES in front of the shockwave since this is the case

that is most sensitive to left-right effects because the two QES are closer. The equations

of motion for the QES p1 including the effects of the QES p3 and boundary point p4 on

the left, are

2π

βk
w±1 =

1

w∓1 − w
∓
2

+
1

w∓1 − w
∓
3

− 1

w∓1 − w
±
4

. (4.31)

We use the left-right symmetry to write these as

2π

βk
w±1 =

1

w∓1 − w
∓
2

+
1

w∓1 − w
±
1

− 1

w∓1 − w
±
2

. (4.32)

The question is whether the latter two terms on the right-hand side alter the solution we

wrote down in (4.9). The coordinates w±2 are given in (4.6). Now at relevant time scales,

t and η(t) are order k−1 and in the limit of small βk it follows straightforwardly that the

latter two terms in (4.32) are either sub-leading, for the w+
1 equation, or cancel, for the w−1

equation, and so do not change the solution (4.9) at leading order. It is also simple to show

that the cross terms (4.30) are sub-leading to our expression for the entropy in (4.10).

The same reasoning and conclusion applies to the case when the QES are behind the

shockwave.

5 Page curves

In this section, we find the Page curves for the shockwave scenario in JT gravity. We also

discuss the associated scrambling time.

5.1 Entanglement dynamics

The Page curves are determined by finding the entropy saddles and then at any given

boundary time, taking the one with the lowest entropy. This leads to transitions as the

entropy of the saddles cross. These transitions point to fundamental re-arrangements of

the entanglement structure of the black hole.

Before shockwave insertion, the eternal black hole in equilibrium with the radiation has

an entropy transition at the late Page time in (2.24). Now we can consider what happens

when we insert the shockwave. It is worth noting here that the shockwave carries energy

and entropy like a large “diary”, to use the popular terminology [20]. However, from the

entropy point-of-view, the shockwave is not an analogue of a diary because its purifier is the

radiation bath. On the contrary, the diary is assumed to be entangled with some auxiliary

system. So shockwave entropy hastens the Page time because it increases the entanglement

between the black hole and the radiation. The shockwave also carries energy, like the diary,

that heats the black hole up and this has the opposite effect of delaying the Page time.

The issue of when entropy transitions occur, depends also on island contributions and

several scenarios are possible. The entropy saddle corresponding to the red QES behind the

shockwave, has the decreasing entropy (4.29). Note this saddle is delayed after the insertion

by the scrambling time scale (4.28). So ultimately this will be the dominant saddle, but

exactly what happens depends on all the parameters. Some potential scenarios are:
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Figure 8. Two possible scenarios for the entropy saddles as a function of time discussed in the

text with a small shockwave entropy. The origin of time is set at shockwave insertion (the vertical

scale has also been shifted). Non-island saddles are shown in black and saddles with islands are

coloured coded according to figure 6 (green: boundary point in front of shockwave; blue: boundary

point behind shockwave, QES in front; red: boundary point and QES behind shockwave). Left :

insertion before the original Page time. Right : insertion after the original Page time. Note that the

red saddle only comes into being a certain scrambling time after the insertion.

(i) The shockwave is inserted before the original Page time and the shockwave entropy

is small (left side of figure 8). In this case, the original transition is avoided and a

new Page time occurs when the no-island saddle jumps to the saddle with the QES

behind the shockwave.

(ii) The shockwave is inserted after the original Page time and the shockwave entropy is

small (right side of figure 8). After the insertion, the entropy of this saddle jumps

and increases (in blue) until a new Page time is reached and eventually the red saddle

dominates.

(iii) When the shockwave entropy is large, either of the scenarios in (i) and (ii) can lead

to a delayed transition to the final saddle due to the time lag (4.28).

5.2 Scrambling time

The Hayden-Preskill protocol interprets the scrambling time as the minimum time it takes

for quantum information thrown into an old black hole to be recoverable in the Hawking

radiation [20]. In the present context, to be recoverable from the Hawking radiation is

interpreted as being in the island. So the scrambling time is the difference of the current

boundary time with the boundary time of an in-going null ray that just passes through the

QES: see figure 9. The implication is that for a wavepacket sent in more than a scrambling

time in the past will be in the island, rather than the entanglement wedge of the boundary

and hence be recoverable from the full radiation Hilbert space.

QES in front of shock: before the shockwave, the scrambling time takes the

value (2.22). As the boundary point passes the shockwave at t = t0, the QES has co-

ordinates (4.9). Since η(t) increases as t, the QES starts on the same Cauchy slice as the

boundary point, but then starts to lag behind the Cauchy slice as η(t) saturates. After
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∆ts

entanglement wedge

QES

island
boundary point

Figure 9. The Hayden-Preskill protocol involves sending in a massless quantum into an old black

hole (i.e. one with a QES) from the boundary at some time t′. The quantum leaves the entanglement

wedge of the boundary (green) and enters the island (pink) precisely when the quantum passes

through the QES. This fixes the boundary time t of the QES. The difference t− t′ is the scrambling

time of the black hole ∆ts.

this time the QES moves towards the horizon in the w− direction but w+ becomes frozen

at the value

w+
frozen =

βk

2π
· β + πf(∞)

β − πf(∞)
=
βk

2π
· β + β̃

β − β̃
e2πt0/β . (5.1)

If the saturation happens quickly, i.e. when for large shockwave energy β̃ � β, then

η(t) ≈ t0 and the boundary time corresponding to the null coordinate w+ of the QES

is frozen at a scrambling time before the time when the shockwave goes in. This is in

agreement with the observations of Penington [29] concerning the generic effect of large

diaries on the QES of black holes after the Page time.

During this regime the scrambling time is effectively time dependent. A wave packet

sent in at boundary time t′ leaves the entanglement wedge of the boundary at a time t, where

e2πt′/β =
βk

2π
e2πη(t)/β , (5.2)

and so the effective, time dependent, scrambling time is

∆ts = t− t′ = β

2π
log

2π

βk
+ t− η(t) . (5.3)

When η(t) saturates, the scrambling time increases linearly as

∆ts = t− t0 +
β

2π
log

2π

βk
− β

2π
log

β + β̃

β − β̃
. (5.4)

QES behind shock: finally, the red saddle point, for which the QES is behind the

shockwave, the scrambling time is determined by the solution for ∆ts = t − y+
1 of the

extremization problem. In the early time regime, f̂(t) ∼ e2πt/β̃ , this is precisely (4.24):

∆ts =
β̃

2π
log

8πβ2

kβ̃(3β − β̃)(β + β̃)
. (5.5)
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In the late time regime, f̂(t) = e2π(t+κ)/β and the scrambling time returns to that of the

original black hole (2.22). The scrambling time for this saddle is shown in figure 7.

5.3 QES: inside or outside the horizon?

An interesting issue is whether the QES of the final saddle that dominates the entropy,

i.e. the red one in figure 6, is inside or outside the new horizon.

The w̃−1 coordinate in the early time regime was found in (4.23). So, generically, the

QES is inside the horizon unless the shockwave energy is very small given that βk � 1.

In the long time regime, the QES is found outside the horizon (4.27), as one expects

for an eternal black hole. The conclusion that we draw from this is that non-equilibrium

conditions maintained for a long time, i.e. large shockwave energy and slow evaporation,

favour the QES to be inside the horizon.

6 Shockwaves and the extremal black hole

In this section, we consider the same shockwave set up but where the initial black hole is

extremal. This leads to a scenario has some similarity to that considered in [27] and the

solution for the function f(t) will be the same.

6.1 The extremal black hole

For this case, the radiation bath has zero temperature and the black hole is one sided. The

extremal black hole corresponds to a solution with f(t) = t. The dilaton takes the form

φ = φ0 +
2φr

x− − x+
. (6.1)

What is perhaps surprising, is that the extremal black hole is at an entropy saddle

with an island [8].16 In order to find it, we write the generalized entropy with the QES

with coordinates x±1 . As previously, for simplicity we take the point in the bath to be just

at the boundary with Schwarzschild time t,

Sgen.(x
±
1 ) =

φ0

4GN
+
c

6

(
1

k
· 1

x−1 − x
+
1

+ log
2(t− x+

1 )(x−1 − t)
x−1 − x

+
1

)
. (6.2)

Extremizing over the position of the QES, for small k, gives

x±1 = t∓ 1

2k
(6.3)

This implies an island extending a small way outside the horizon. The critical entropy is

the Bekenstein-Hawking entropy plus a small correction:

Sgen. =
φ0

4GN
+
c

6
− c

6
log(2k) . (6.4)

The scrambling time is large:

∆ts = t− x+
1 =

1

2k
. (6.5)

16On the other hand there is no left-hand side for the cut of a no-island saddle to end on.
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6.2 The solution with a shockwave

We choose to insert the shockwave at t = 0 with an energy that defines the temperature β−1:

Eshock =
πφr

4GNβ2
. (6.6)

Hence, the analogue of (3.19) is

{f(t), t} = −2π2β−2e−kt , (6.7)

which can be solved in terms of Bessel functions by

f̂(t) =
e4π/(βk)

π

K0(z)

I0(z)
, z =

2π

βk
e−kt/2 . (6.8)

This defines a particular solution, precisely the one in [27]. The pre-factor has been chosen

for later convenience. The solution for f(t) is then, as before, a Möbius transformation

f(t) =
Af̂(t) +B

Cf̂(t) +D
, (6.9)

fixed by requiring the initial conditions dictated by the extremal black hole, f(0) = f ′′(0) =

0 and f ′(0) = 1. This determines

A = βe−4π/(βk) I0

(
2π

βk

)
, B = −β

π
K0

(
2π

βk

)
,

C = πe−4π/(βk) I1

(
2π

βk

)
, D = K1

(
2π

βk

)
.

(6.10)

In the early time window t� k−1, taking into account the pre-factor in (6.8) we have,

f̂(t) ' e2πt/β . (6.11)

There is a longer window t� k−1| log βk|, since we work with βk � 1, for which we have

the approximation

f̂(t) ∼ exp

[
4π

βk

(
1− e−kt/2

)]
. (6.12)

Finally, in the long time regime t� k−1| log βk|, we have

f̂(t) ∼
e4π/(βk)

π

(
kt

2
− γ + log

βk

π

)
. (6.13)

Since this is linear in t, it manifests a return to the extremal solution and so at long times

the excited black hole settles back to the extremal one.

The Bekenstein-Hawking entropy defined (3.54) is

SBH(y+) =
1

4GN

(
φ0 + φr ·

f̂ ′′(y+)

f̂ ′(y+)

)
=

1

4GN

(
φ0 + φr ·

kzI1(z)

K0(z)

)
. (6.14)

where z is the function defined in (6.8) with t replaced by y+.

In calculating the entropy, it is useful to notice that the stress tensor component for

the outgoing modes Tx−x− = 0 whilst for the ingoing modes it is Ty+y+ = 0. So y+ and x−,

or any coordinate related to these by a Möbius transformation, are vacuum coordinates.
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Figure 10. The Bekenstein-Hawking entropy of the evaporating black hole after shockwave inser-

tion. The vertical axis has been scaled appropriately.

6.3 QES in front of shockwave

Let us calculate the position of the QES and the entropy, when the QES is in front of the

shockwave. The boundary point is behind the shockwave, so has coordinates

y+
2 = t , x−2 = f(t) . (6.15)

On the other hand, the QES is in front of the shockwave, and so we can use x+
1 = y+

1 and

x−1 as coordinates. The conformal factors of the QES and the boundary are

Ω−2
1 =

4

(x−1 − x
+
1 )2

, Ω−2
2 =

1

f ′(t)
. (6.16)

Using these we can compute the generalized entropy,

Sgen.(x
±
1 ) =

φ0

4GN
+
c

6

(
1

k
· 1

x−1 − x
+
1

+ log
2(t− x+

1 )(x−1 − f(t− b))
(x−1 − x

+
1 )
√
f ′(t)

)
+ Sshock . (6.17)

For small k, and assuming that kt� 1, the QES is at

x+
1 =

3f(t)− t
2

− 1

2k
, x−1 =

3t− f(t)

2
+

1

2k
, (6.18)

and so the scrambling time is,

∆ts = t− x+
1 =

1

2k
+

3

2

(
t− f(t)

)
. (6.19)

As t increases and becomes of O(k−1), x±1 remain O(k−1), and so in the small k

limit, with kt and β fixed, we can use the approximate form (6.12) to find the leading

order behaviour of the entropy at O(k−1). The behaviour at this order is driven by the

conformal factor of the point in the bath:

SQES in front =
φ0

4GN
+

πc

3βk

(
1− e−kt/2

)
+ Sshock + · · · , (6.20)

where the corrections involve log k. This growing entropy is shown on the left of figure 11

in black.
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6.4 QES behind shockwave

The second entropy saddle has the QES behind the shockwave. In this case, it is more

convenient to use coordinates w± related to x± by

x+ =
Aw+ +B

Cw+ +D
, x− =

A−Bw−

C −Dw−
. (6.21)

so that

w+ = f̂(y+) , w− = −1/f̂(y−) . (6.22)

The horizon is at x− = f(∞) = A/C behind the shockwave, and this corresponds to

w− = 0, so this coordinate is a good choice when the QES can be both inside or outside

the horizon.

The vacuum coordinates we will use are y+ and w−. The boundary point is at

y+
2 = t , w−2 = −1/f̂(t) . (6.23)

The conformal factors of the QES and boundary point are

Ω−2
1 =

4f̂ ′(y+
1 )

(1 + w−1 f̂(y+
1 ))2

, Ω−2
2 =

f̂(t)2

f̂ ′(t)
. (6.24)

Now we can write the generalized entropy, as a function of (y+
1 , w

−
1 ) as

Sgen.(y
+
1 , w

−
1 ) =

φ0

4GN
+
c

6
F (y+

1 , w
−
1 ) +

c

12
log

4f̂(t)2

f̂ ′(t)
. (6.25)

The region D between the boundary and the QES does not now host the shockwave and

there is no jump from the shockwave entropy. The function F to be extremized is,

F (y+
1 , w

−
1 ) =

1

k

{
f̂ ′′(y+

1 )

2f̂ ′(y+
1 )
− w−1 f̂

′(y+
1 )

1 + w−1 f̂(y+
1 )

}

+ log
(t− y+

1 )(w−1 + 1/f̂(t))

1 + w−1 f̂(y+
1 )

+
1

2
log f̂ ′(y+

1 ) .

(6.26)

We can follow the same approach as in section 4.3 to find the QES in the regime just after

the shockwave enters the AdS region at t0. First of all, we change variable from y+
1 back

to w+
1 = f̂(t), in the early time regime, we have

y+
1 =

β

2π
logw+

1 +
kβ2

16π2
log2w+

1 + · · · . (6.27)

In the small k limit, the relevant terms are

F (w±1 ) =
π

β̃k
· 1− w+

1 w
−
1

1 + w+
1 w
−
1

(
1− kβ

4π
logw+

1

)
+ log

(t− β
2π logw+

1 )(w−1 + 1/f̂(t))

1 + w+
1 w
−
1

+
1

2
logw+

1 + · · · ,
(6.28)
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Figure 11. Left : the Page curve, with the saddle with the QES in front/behind the shockwave in

black/red. Right : the w−1 coordinate of the QES as a function of time. The QES starts behind the

horizon but moves outside at a later time, around t = 30 here.

Extremizing over w±1 and keeping only the most dominant terms in the limit βk � 1,

gives17

2π

βk
w+

1 −
1

w−1 + 1/f̂(t)
+ · · · = 0 ,

2π

βk
w−1 −

1

4w+
1

+ · · · = 0 .

(6.29)

These can be solved to yield the coordinates of the QES in the early time regime after the

shockwave enters

w+
1 =

3βk

8π
f̂(t) , w−1 =

1

3f̂(t)
. (6.30)

In the short-time limit, f̂(t) ≈ exp(2πt/β) and we can extract the scrambling time

∆ts = t− y+
1 =

β

2π
log

8π

3βk
. (6.31)

It is apparent that the QES is behind the horizon at early times. In addition, this saddle

only appears when t > ∆ts.

At early times t � k−1, the QES lies behind the horizon and so the critical entropy

is close to the Bekenstein-Hawking entropy of the evaporating black hole in (6.14) with t

replaced by the null coordinate of the QES y+
1 = t−∆ts. At later times, with kt fixed and

k small, we can use the approximation (6.12) to find the leading order behaviour of the

entropy at order k−1,

SQES behind =
φ0

4GN
+

πc

6βk
e−kt/2 + · · · . (6.32)

This decaying entropy is shown on the left of figure 11 in red. By equating this to (6.20),

and assuming that the shockwave entropy is small, we can extract the Page time

tPage =
2

k
log

3

2
, (6.33)

in the small k limit.
17The key observation is that w+

1 w
−
1 is order k.
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At much later times, when f̂(t) is approximated by (6.13), i.e. the form for an extremal

black hole, the QES is outside the horizon. So just as in the finite temperature case, the

QES begins inside the horizon but then moves outside as equilibrium is restored.

7 Conclusions

We have analysed the way the entanglement structure of the finite temperature and ex-

tremal black holes in JT gravity is modified when a CFT shockwave is inserted into them.

The back-reaction problem can be solved exactly and then the entropy saddles can be

found by using the generalized entropy prescription. More fundamentally, we expect that

the latter would follow from replica wormholes in the presence of the shockwave and we

leave the demonstration of this to future work.

The shockwaves carry energy and entropy into the black hole that affects the entan-

glement structure in quite complicated ways that depend on the parameters. The entan-

glement re-arrangement at the Page time is generally disrupted. The Page time can be

hastened or postponed and there can be additional Page times as the QES jumps from

being in front of the shockwave to being behind.

Another interesting phenomenon, is the behaviour of QES relative to the horizon of

the black hole. In equilibrium, the QES is generally outside the horizon [8] but when the

shockwave is inserted, the equilibrium is disturbed, the black hole starts to evaporate and

the QES is inside the horizon. As evaporation proceeds and the black hole returns to

equilibrium, the QES moves from the inside to the outside.
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A Coordinate systems

In our analysis, we use various coordinate systems, each of which has its utility, depending

on process or time scale of interest. Here we collect together these different coordinate

systems for easy reference.

The Poincaré patch of AdS2 is covered by (x+, x−) coordinates:

ds2 = − 4dx+dx−

(x+ − x−)2
. (A.1)

The (y+, y−) coordinates cover the Schwarzschild black hole patch:

x± =
β

π
tanh

πy±

β
, ds2 = −4π2

β2

dy+dy−

sinh2 π
β (y+ − y−)

. (A.2)
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In front of the shockwave, the coordinates (w+, w−) are related to x± and y± (for the black

hole on right side) as,

w± = ±e±2πy±/β , x± = ±β
π
· w
± ∓ 1

w± ± 1
,

ds2 = − 4dw+dw−

(1 + w+w−)2
.

(A.3)

For points behind the shockwave, the relation between the Poincaré patch coordinates and

y± changes:

x± = f(y±) = ±β
π
· w
± ∓ 1

w± ± 1
. (A.4)

where f(y±) is fixed by the Möbius transformation in terms of f̂(y±) in eq. (3.23). The

coordinates (x̃+, x̃−) and (w̃+, w̃−) are also naturally used behind the shockwave with

x̃± = ± β̃
π
· w̃
± ∓ 1

w̃± ± 1
, (A.5)

and

w̃± = ±f̂(y±)±1 . (A.6)

B Exact solution for f(t)

The exact solution to the differential equation (3.19) is in terms of modified Bessel functions,

with a particular solution (choosing α = 1)

f̂(t) =
Kν(νz)

Iν(νz)
, ν =

2π

βk
. (B.1)

The specific solution f(t) which satisfies the boundary conditions (3.21) is a Möbius trans-

form of f̂(t)

f(t) =
Af̂ +B

Cf̂ +D
. (B.2)

The constants {A,B,C,D} can be fixed up to an overall (irrelevant) multiplicative constant

by the matching conditions (3.21). We find,

A = ℵIν(νz0)

[
1 + z0

I ′ν(νz0)

Iν(νz0)
tanh

(
πt0
β

)]
,

B = −ℵKν(νz0)

[
1 + z0

K ′ν(νz0)

Kν(νz0)
tanh

(
πt0
β

)]
,

C = ℵπ
β
Iν(νz0)

[
tanh

(
πt0
β

)
+ z0

I ′ν(νz0)

Iν(νz0)

]
,

D = −ℵπ
β
Kν(νz0)

[
tanh

(
πt0
β

)
+ z0

K ′ν(νz0)

Kν(νz0)

]
,

(B.3)

where, the (irrelevant) constant ℵ can be chosen to set AD −BC = 1:

ℵ =

√
k

2
cosh

(
πt0
β

)
, =⇒ AD −BC = 1 . (B.4)
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C High temperature limit

When βk � 1, the index ν of the Bessel functions is large and we can then use the integral

representions for Iν and Kν to deduce a saddle point (or WKB-like) expression for the

function f(t). Consider the integral representation of the modified Bessel function of the

first kind (for Re ν > −1
2)

Iν(νz) =
(νz

2

)ν 1
√
πΓ(ν + 1

2)

∫ π

0
eνz cos θ (sin θ)2ν dθ . (C.1)

In the large ν limit the integral is dominated by a saddle point and evaluating the leading

contribution from the saddle point, we get,

Iν(νz)
∣∣
ν�1
' 1√

π
exp

[
ν

(√
1 + z2 − tanh−1 1√

1 + z2

)]
. (C.2)

Similarly, for the modified Bessel function of the second kind, we can make use of its

integral representation,

Kν(νz) =
√
π
(νz

2

)ν 1

Γ(ν + 1
2)

∫ ∞
0

e−νz cosh t (sinh t)2ν dt . (C.3)

Once again the large ν saddle point approximation can be employed to yield,

Kν(νz)
∣∣
ν�1
'
√
π exp

[
−ν
(√

1 + z2 − tanh−1 1√
1 + z2

)]
. (C.4)

Therefore the function f̂(t) in (3.22) can be given a WKB-like form in the adiabatic limit

f̂(t)
∣∣
ν�1
≈ πα exp [2νS(t)] , (C.5)

where S(t) is defined in (3.25).

We may also write S(t) in the WKB-like integral form

ν (S(t)− S(t0)) = π

∫ t

t0

dt′

βeff(t′)
, (C.6)

where

β−1
eff ≡ β−1

√
1 + e−k(t−t0)Eshock/Eβ . (C.7)
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