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Abstract

This paper proposes a novel computational framework for the solution of geometrically parametrised flow problems governed
by the Stokes equation. The proposed method uses a high-order hybridisable discontinuous Galerkin formulation and the proper
generalised decomposition rationale to construct an off-line solution for a given set of geometric parameters. The generalised
solution contains the information for all the geometric parameters in a user-defined range and it can be used to compute
sensitivities. The proposed approach circumvents many of the weaknesses of other approaches based on the proper generalised
decomposition for computing generalised solutions of geometrically parametrised problems. Four numerical examples show the
optimal mesh convergence properties of the proposed method and demonstrate its applicability in two and three dimensions,
with particular emphasis on parametrised flows in microfluidics.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Reduced order model; Geometry parametrisation; Hybridisable discontinuous Galerkin (HDG); Proper generalised decomposition
PGD)

1. Introduction

Reduced order models (ROMs) have become commonplace in many areas of computational sciences and engin-
eering [1]. Some popular ROMs used to reduce the complexity of high dimensional problems include the reduced
basis method [2], the proper orthogonal decomposition (POD) [3–5] and the proper generalised decomposition
(PGD) [6–8].

One of the main attractive properties of the PGD is its ability to build reduced basis without prior knowledge of
the solution [6–8]. However, the intrusive implementation and the difficulty in handling geometrically parametrised
problems has often been considered a difficulty when considering its application to complex problems. In recent
years, there have been an increase in non-intrusive implementations of the PGD [9–11]. In terms of geometrically
parametrised problems, early work focused on solutions tailored to specific problems [12–15] or strategies only
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applicable in a context of low order approximations [16,17]. Similar to the work in [16,17], where piecewise linear
geometric parametrisations are used, other PGD approaches that employ piecewise NURBS parametrisations have
been proposed [18]. More recently, a general approach to deal with geometrically parametrised problems in a CAD
environment was proposed [19]. The previously mentioned PGD strategies using high order approximations lead to
the need to use the so-called high-order PGD projection [20] to separate some terms of the weak formulation.

In this work a PGD strategy is proposed in the framework of the hybridisable discontinuous Galerkin (HDG)
method [21–25]. The use of a mixed formulation is shown to be beneficial as all the terms of the weak formulation
can be written in a separated form, as required by the PGD, without invoking to the memory intensive high-order
PGD projection. The use of the HDG method for the spatial discretisation also guarantees that equal order of
approximation can be used for all the variables circumventing the so-called Ladyzhenskaya–Babuška–Brezzi (LBB)
condition. This is of special importance in this work, where geometrically parametrised domains are considered
with curved boundaries. The use of the same degree of approximation for all the variables means that standard
isoparametric elements can be used. In contrast, the work in [19], employing standard FEs, required the use of
sub-parametric or super-parametric formulations in the presence of curved boundaries due to the different degree
of approximation used for the velocity and pressure, as required to satisfy the LBB condition. Furthermore, the
proposed HDG-PGD approach facilitates the imposition of the Dirichlet boundary conditions as in the HDG context
all boundary conditions are weakly imposed.

The formulation is presented using Stokes flows as the model problem. However, it is worth mentioning that
there has been a substantial effort in developing HDG methods for a variety of problems in different areas of science
and engineering [26–33] and therefore, the proposed approach can be easily extended to a wide range of problems.
It is also worth noting that the integration within a CAD environment proposed in [19] is also feasible given the
recent development of a coupled HDG-NEFEM formulation for fluid [34] and solid mechanics [35].

The structure of the remainder of the paper is as follows. Section 2 presents the Stokes flow problem on
a geometrically parametrised domain and the corresponding multi-dimensional parametric problem. The HDG
formulation for the multi-dimensional parametric Stokes problem is described in Section 3. The proposed PGD
rationale is described in detail in Section 4. Section 5 presents a series of numerical examples involving Stokes
flow problems in two and three dimensions. Finally, Section 6 presents the conclusions of the work that has been
presented.

2. Problem statement

2.1. The Stokes problem on a parametrised domain

Let us consider a parametrised domain Ωµ
⊂ Rnsd , where nsd is the number of spatial dimensions and

∈ I ⊂ Rnpa is a set of geometric parameters that controls the boundary representation of the domain, with
pa being the number of geometric parameters. It is worth noting that the set of geometric parameters can be
ritten as I := I1

× I2
× · · · × Inpa with µ j ∈ I j for j = 1, . . . , npa.

For any set of parameters µ, the goal is to find the parametric velocity, u(xµ), and pressure, p(xµ), fields that
atisfy the Stokes problem given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∇· (ν∇u − pInsd ) = s in Ωµ,
∇· u = 0 in Ωµ,

u = uD on Γµ
D ,

nµ
·
(
ν∇u − pInsd

)
= gN on Γµ

N ,

u · Dµ
+ nµ

·
(
ν∇u − pInsd

)
Eµ
= 0 on Γµ

S ,

(1)

here ν > 0 is the kinematic viscosity, s is the volumetric source and nµ is the outward unit normal vector to
Ωµ. The boundary of the domain, ∂Ωµ, is partitioned into the non-overlapping Dirichlet, Γµ

D , Neumann, Γµ
N , and

lip, Γµ
S , boundaries such that ∂Ω

µ
= Γ

µ

D ∪ Γ
µ

N ∪ Γ
µ

S . On the Dirichlet boundary the velocity is given by uD . On
he Neumann boundary the pseudo-traction is given by gN . Finally, on the slip boundary, the matrices Dµ and Eµ

re given by Dµ
= [nµ, 0nsd×(nsd−1)] and Eµ

= [0, tµ
1 , . . . , tµ

nsd−1], as detailed in [25]. The tangential vectors tµ
k ,

µ µ µ
for k = 1, . . . nsd − 1 are such that {n , t1 , . . . , tnsd−1} form an orthonormal system of vectors.
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The free divergence condition in Eq. (1) induces the compatibility condition

⟨1, uD · nµ
⟩Γ

µ
D
+ ⟨1, u · nµ

⟩∂Ωµ\Γ
µ
D
= 0, (2)

here ⟨·, ·⟩S denotes the standard L2 scalar product in any domain S ⊂ ∂Ωµ.
In addition, it is worth noting that, if Γµ

N = ∅, an additional constraint to avoid the indeterminacy of the pressure
s required. One common option [36–39] that is considered here, consists of imposing the mean pressure on the
oundary of the domain, namely⟨ 1

|∂Ωµ|
p, 1

⟩
∂Ωµ
= 0. (3)

.2. The multi-dimensional parametric Stokes problem

The classical strategy to solve the parametric Stokes problem is to solve equation (1) for every set of parameters
∈ I . However, this strategy is not well suited when fast queries are required.
Reduced order models have demonstrated to be a viable alternative to compute multi-dimensional parametric

olutions in an offline phase. Once the offline solution is available, the computation of the solution for a given set
f parameters has a very small computational cost, being very well suited for applications where fast queries are
equired.

The multi-dimensional parametric problem arises from interpreting µ as additional parametric coordinates, rather
han parameters of the problem. In the context of the Stokes problem considered here, the strategy is to consider
he velocity and pressure fields as functions in a multidimensional space, namely u(xµ,µ) and p(xµ,µ). The

ulti-dimensional parametric Stokes problem can be written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∇µ· (ν∇µu − pInsd) = s in Ωµ
× I ,

∇µ· u = 0 in Ωµ
× I ,

u = uD on Γµ
D × I ,

nµ
·
(
ν∇µu − pInsd

)
= gN on Γµ

N × I ,

u · Dµ
+ nµ

·
(
ν∇µu − pInsd

)
Eµ
= 0 on Γµ

S × I .

(4)

For the multi-dimensional problem, the compatibility condition induced by the free divergence condition can be
ritten as

⟨1, uD · nµ
⟩Γ

µ
D×I
+ ⟨1, u · nµ

⟩(∂Ωµ\Γ
µ
D )×I = 0 (5)

nd the additional constraint to avoid the indeterminacy of the pressure, required when Γµ
N = ∅, becomes⟨ 1

|∂Ωµ|
p, 1

⟩
∂Ωµ×I

= 0. (6)

. Hybridisable discontinuous Galerkin formulation

Let us consider a subdivision of the domain Ωµ in nel disjoint subdomains Ωµ
e such that

Ω
µ
=

nel⋃
e=1

Ω
µ

e . (7)

The interior boundaries of the subdomains define the so-called mesh skeleton or internal interface Γµ as

Γµ
:=

[
nel⋃
e=1

∂Ωµ
e

]
\ ∂Ωµ. (8)

A partition of the parametric domains I j , for j = 1, . . . , npa, in n
j
el disjoint subdomains I j

e such that

I j
=

n
j
el⋃
I j

e , (9)

e=1
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is also considered to use a Galerkin approach for the parametric problems. This is in contrast with other approaches
that use collocation for the parametric problems.

This section briefly presents the HDG formulation for the multi-dimensional parametric Stokes problem. The
presentation is based on previous work on HDG methods found in [36,37,39,40].

3.1. Mixed formulation

Introducing the so-called mixed variable L = −ν∇µu, the Stokes problem can be written as a first-order system
f equations in the broken computational domain, namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Le + ν∇µue = 0 in Ωµ
e × I , and for e = 1, . . . , nel,

∇µ·
(
Le + peInsd

)
= s in Ωµ

e × I , and for e = 1, . . . , nel,

∇µ· ue = 0 in Ωµ
e × I , and for e = 1, . . . , nel,

ue = uD on
(
∂Ωµ

e ∩ Γ
µ
D

)
× I ,

nµ
·
(
Le + peInsd

)
= −gN on

(
∂Ωµ

e ∩ Γ
µ
N

)
× I ,

ue · Dµ
− nµ

·
(
Le + peInsd

)
Eµ
= 0 on

(
∂Ωµ

e ∩ Γ
µ
S

)
× I ,

Ju⊗ nµK = 0 on Γµ
× I ,

Jnµ
·
(
L + pInsd

)
K = 0 on Γµ

× I ,

(10)

here the last two equations, known as transmission conditions, impose the continuity of the velocity and the
ormal flux on the mesh skeleton. Following [41], the jump operator J·K is defined as the sum from the left, Ωl ,
nd right, Ωr , elements of a given portion of the interface Γµ

× I , that is

J⊙K = ⊙l +⊙r . (11)

.2. Strong form of the local and global problems

The HDG method solves the mixed problem of Eq. (10) in two steps. First, the so-called local problems are
onsidered⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Le + ν∇µue = 0 in Ωµ
e × I , and for e = 1, . . . , nel,

∇µ·
(
Le + peInsd

)
= s in Ωµ

e × I , and for e = 1, . . . , nel,

∇µ· ue = 0 in Ωµ
e × I , and for e = 1, . . . , nel,

ue = uD on
(
∂Ωµ

e ∩ Γ
µ
D

)
× I ,

ue = û on
(
∂Ωµ

e \ Γ
µ
D

)
× I ,⟨ 1

|∂Ωµ
e |

pe, 1
⟩
∂Ω

µ
e ×I
= ρe, for e = 1, . . . , nel,

(12)

here û is the so-called hybrid variable, which is an independent variable representing the trace of the solution
n the element faces, and ρe is the mean value of the pressure on the boundary ∂Ωe. It is worth noting that the
ocal problem is a pure Dirichlet problem and therefore, the last condition in Eq. (12) is introduced to ensure the
niqueness of the pressure. The local problems can be solved independently, element by element, to write Le, ue
nd pe in terms of û and ρe along the interface Γµ

∪ Γµ
N ∪ Γ

µ
S .

Second, the so-called global problem is defined to impose the continuity of the normal flux on the inter-element
aces and the Neumann and slip boundary conditions, namely⎧⎪⎪⎨⎪⎪⎩

Jnµ
·
(
L + pInsd

)
K = 0 on Γµ

× I ,

nµ
·
(
Le + peInsd

)
= −gN on

(
∂Ωµ

e ∩ Γ
µ
N

)
× I ,

µ µ
( )

µ
(

µ µ) (13)
ue · D − n · Le + peInsd E = 0 on ∂Ωe ∩ ΓS × I.
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It is worth noting that, due to the unique definition of the hybrid variable on each face and the Dirichlet boundary
ondition in the local problems, there is no need to enforce the continuity of the solution in the global problem.

The constraint of Eq. (5), induced by the incompressibility condition, is also considered in the global problem
nd written in terms of the hybrid variable as

⟨1, uD · nµ
⟩Γ

µ
D×I
+ ⟨1, û · nµ

⟩(∂Ωµ\Γ
µ
D )×I = 0. (14)

3.3. Weak form of the local and global problems

The following discrete functional spaces are introduced:

Vh(Ωµ) := {v ∈ L2(Ωµ) : v|Ωµ
e
∈ Pk(Ωµ

e ) ∀Ωµ
e , e = 1, . . . , nel},

V̂h(S) := {v̂ ∈ [L2(S)]nsd : v̂|Γµ
i
∈ Pk(Γµ

i ) ∀Γµ
i ⊂ S ⊆ Γµ

∪ ∂Ωµ
},

Lh(I j ) := {v ∈ L2(I j ) : v|I j
e
∈ Pk(I j

e ) ∀I j
e , e = 1, . . . , n j

el},

Lh(I) := Lh(I1)⊗ · · · ⊗ Lh(Inpa),

Vh
µ := Vh(Ωµ)⊗Lh(I),

V̂h
µ :=

[
V̂h(Γµ

∪ Γµ
N ∪ Γ

µ
S )⊗Lh(I)

]nsd
,

Vh
µ :=

[
Vh(Ωµ)⊗Lh(I)

]nsd
,

Wh
µ :=

[
Vh(Ωµ)⊗Lh(I)

]nsd×nsd
,

here Pk(Ωµ
e ), Pk(Γµ

i ) and Pk(I j
e ) stand for the spaces of polynomial functions of complete degree at most k in

µ
e , on Γµ

i and in I j
e respectively.

The weak form of the local problems, for e = 1, . . . , nel, reads: given uD on Γµ
D and ûh on Γµ

∪Γµ
N ∪Γ

µ
S , find

Lh
e , uh

e , ph
e ) ∈Wh

µ × Vh
µ × Vh

µ that satisfy

AL L (W , Lh
e )+ ALu(W , uh

e ) = L L (W )+ ALû(W , ûh),

AuL (v, Lh
e )+ Auu(v, uh

e )+ Aup(v, ph
e ) = Lu(v)+ Auû(v, ûh),

Apu(v, uh
e ) = L p(v)+ Apû(v, ûh),

Aρp(1, ph
e ) = Aρρ(1, ρh

e ),

(15)

or all (W , v, v) ∈Wh
µ ×Vh

µ ×Vh
µ , where the multi-dimensional bilinear and linear forms of the local problem are

iven by

AL L (W , L) := −
(
W , ν−1 L

)
Ω

µ
e ×I

, ALu(W , u) :=
(
∇µ·W , u

)
Ω

µ
e ×I

,

ALû(W , û) := ⟨nµ
·W , û⟩(∂Ωµ

e \Γ
µ
D )×I , AuL (v, L) :=

(
v,∇µ· L

)
Ω

µ
e ×I

,

Auu(v, u) := ⟨v, τµu⟩∂Ωµ
e ×I , Aup(v, p) :=

(
v,∇µ p

)
Ω

µ
e ×I

,

Auû(v, û) := ⟨v, τµû⟩(∂Ωµ
e \Γ

µ
D )×I , Apu(v, u) :=

(
∇µv, u

)
Ω

µ
e ×I

,

Apû(v, û) := ⟨v, û · nµ
⟩(∂Ωµ

e \Γ
µ
D )×I , Aρp(w, p) := ⟨w, |∂Ωµ

e |
−1 p⟩∂Ωµ

e ×I ,

Aρρ(w, ρ) :=
(
w, ρ

)
I ,

(16)

nd
L L (W ) := ⟨nµ

·W , uD⟩(∂Ωµ
e ∩Γ

µ
D )×I , Lu(v) :=

(
v, s

)
Ω

µ
e ×I
+ ⟨v, τµuD⟩(∂Ωµ

e ∩Γ
µ
D )×I ,

L p(v) := ⟨v, uD · nµ
⟩(∂Ωµ

e ∩Γ
µ
D )×I ,

(17)

espectively, where (·, ·)D denotes the standard L2 scalar product in a generic subdomain D and τµ is the stabi-

isation tensor, whose selection has an important influence on the accuracy, stability and convergence properties
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of the resulting HDG method [21,38,42,43]. The choice of the stabilisation tensor for geometrically parametrised
problems will be discussed in the next section.

Similarly, the weak form of the global problem is: find ûh
∈ V̂h

µ and ρh
∈ Rnel ⊗Lh(I) that satisfies

nel∑
e=1

{
AûL (v̂, Lh

e )+ Aûu(v̂, uh
e )+ Aû p(v̂, ph

e )+ Aûû(v̂, ûh)
}
=

nel∑
e=1

{
L û(v̂)

}
,

Apû(1, ûh) = −L p(1),

(18)

or all v̂ ∈ V̂h
µ, where the multi-dimensional bilinear and linear forms of the global problem are given by

AûL (v̂, L) :=⟨v̂, nµ
· L⟩(∂Ωµ

e \(Γ
µ
D∪Γ

µ
S ))×I − ⟨v̂, nµ

· L Eµ
⟩(∂Ωµ

e ∩Γ
µ
S )×I

Aûu(v̂, u) :=⟨v̂, τµu⟩(∂Ωµ
e \(Γ

µ
D∪Γ

µ
S ))×I − ⟨v̂, (τµu) · Eµ

⟩(∂Ωµ
e ∩Γ

µ
S )×I

Aû p(v̂, p) :=⟨v̂, pnµ
⟩(∂Ωµ

e \(Γ
µ
D∪Γ

µ
S ))×I

Aûû(v̂, û) := − ⟨v̂, τµû⟩(∂Ωµ
e \(Γ

µ
D∪Γ

µ
S ))×I + ⟨v̂, û · Dµ

+ (τµû) · Eµ
⟩(∂Ωµ

e ∩Γ
µ
S )×I

(19)

nd

L û(v̂) := −⟨v̂, gN ⟩(∂Ωµ
e ∩Γ

µ
N )×I , (20)

espectively.
The local problem of Eq. (15) is used to write the velocity, ue, pressure, pe, and gradient of the velocity Le,

s a function of the hybrid variable, û, and the mean value of the pressure in each element, ρe. Inserting these
xpressions in the global problem of Eq. (18) leads to a global problem with û, and ρ being the only unknowns.
nce the global problem is solved, the local problem can be solved, element-by-element, to retrieve the velocity,
ressure and the gradient of the velocity in each element.

. The proper generalised decomposition strategy

The solution of the parametric problem of dimension nsd + npa, presented in the previous section, with the
tandard HDG approach is usually not affordable, even for a relatively small number of parameters. To circumvent
he curse of dimensionality, this section proposes the use of the PGD framework. As it will be shown in this section,
he use of an HDG formulation has important advantages compared to other formulations such as standard finite
lements [19].

To simplify the presentation, the subindex e and the superindex h used in the previous section to specify the
lement and the discrete approximations will be omitted here, unless they are needed to follow the development.

.1. Separated spatial mapping to obtain generalised solutions

As discussed in detail in [19,44,45], the solution of the parametric problem described in Section 3 requires that
he bilinear and linear forms in the weak form can be expressed, or well approximated, by a sum of products of
arametric functions and operators that are parameter-independent. To enforce the affine parameter dependence, the
ntegrals appearing in the weak form must involve domains that are not dependent upon the parameters. Following
he work of [16,17,19], a mapping between a parameter-independent reference domain, Ω , and the geometrically
arametrised domain is considered, namely

Mµ : Ω × I −→ Ωµ

(x,µ) ↦−→ xµ
=Mµ(x,µ).

(21)

he coordinates of the reference, or undeformed, domain are denoted by x whereas the coordinates of the parametric,
r deformed, domain are denoted by xµ. To ensure the affine parameter dependence, the mapping is assumed to be
iven in separated form as

Mµ(x,µ) =
nM∑

Mk(x)φk(µ), (22)

k=1
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here nM is the number of terms required to express the mapping in a separable form.

emark 1. To simplify the presentation here, it is assumed that the separated representation of the mapping is
iven analytically. As mentioned earlier, a general strategy to construct a separable mapping was described in [19]
sing an exact boundary description of the computational domain by means of NURBS.

The separated representation of the mapping leads to the following separated representation of its Jacobian

Jµ(x,µ) =
∂xµ

∂x
(x,µ) =

nM∑
k=1

Jk(x)φk(µ). (23)

In addition, the separated description of the mapping and its Jacobian can be used to obtain a separated expression of
the determinant and the adjoint of the Jacobian using the Leibniz formula and the Leverrier’s algorithm as explained
in detail in [19]. The separated expression of the determinant of the Jacobian and its adjoint are written in compact
form as

det(Jµ)(x,µ) =
nd∑

k=1

Dk(x)θ k(µ) (24)

and

adj(Jµ)(x,µ) =
na∑

k=1

Ak(x)ϑk(µ), (25)

espectively.
It is worth noting that the number of terms required to write the determinant and the adjoint in a separated form,

d and na respectively, is higher than the number of terms required to describe the mapping in a separated form
M.

.2. Affine parameter dependence of the HDG bilinear and linear forms

Introducing the mapping Mµ of Eq. (21) into the weak form of the local and global problems, it is possible to
write the integrals over the reference domain, Ω , and its boundary, ∂Ω , not dependent on the parameters µ. The

ilinear and linear forms for the local problems can be written as

AL L (W , L) = −
(
W , ν−1 det (Jµ)L

)
Ωe×I

, ALu(W , u) =
(
adj (Jµ)∇·W , u

)
Ωe×I

,

ALû(W , û) = ⟨adj (Jµ)n ·W , û⟩(∂Ωe\ΓD )×I , AuL (v, L) =
(
v, adj (Jµ)∇· L

)
Ωe×I

,

Auu(v, u) = ⟨v, τu⟩∂Ωe×I , Aup(v, p) =
(
v, adj (Jµ)∇ p

)
Ωe×I

,

Auû(v, û) = ⟨v, τ û⟩(∂Ωe\ΓD )×I , Apu(v, u) =
(
adj (Jµ)∇v, u

)
Ωe×I

,

Apû(v, û) = ⟨v, û · adj (Jµ)n⟩(∂Ωe\ΓD )×I , Aρp(w, p) = ⟨w, |∂Ωe|
−1 p⟩∂Ωe×I ,

Aρρ(w, ρ) =
(
w, ρ

)
I ,

(26)

and
L L (W ) = ⟨adj (Jµ)n ·W , uD⟩(∂Ωe∩ΓD )×I , Lu(v) =

(
v, det (Jµ)s

)
Ωe×I

+ ⟨v, τuD⟩(∂Ωe∩ΓD )×I ,

L p(v) = ⟨v, uD · adj (Jµ)n⟩(∂Ωe∩ΓD )×I ,
(27)

respectively, where the adjoint operator is defined as adj(A) = det(A) A−1 and the stabilisation parameter in the
deformed domain is chosen as

τµ
:=

1
∥ adj(Jµ)n∥

τ . (28)

he scaling factor ∥adj(Jµ)n∥ in Eq. (28) accounts for the increased or decreased area of the deformed face, ∂Ωµ
e ,
ith respect to the reference one, ∂Ωe. This definition, inspired by the expression of the penalty coefficient in
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classical interior penalty DG methods [46], ensures that the larger the deformation of the face, the smaller the value
of τµ is. This ensures that a weaker continuity is imposed for large deformations and it is justified by the expected
loss of accuracy in the hybrid variable when the mapping introduces a large deformation.

Following previous work on HDG methods for Stokes problems [39], the stabilisation parameter in the reference
domain is selected as τ = (τν/ℓ)Insd , where τ is a numerical parameter, selected as τ = 10 in this work, and ℓ is
a characteristic length of the domain.

Remark 2. As mentioned above, it holds that ∥ adj(Jµ)n∥ = |∂Ωµ
e |/|∂Ωe|. Hence, no parametric dependence

appears in the arguments of the bilinear form Aρp.

Analogously, the bilinear and linear forms for the global problem can be written as

AûL (v̂, L) =⟨v̂, adj (Jµ)n · L⟩(∂Ωe\(ΓD∪ΓS ))×I − ⟨v̂, adj (Jµ)n · L E⟩(∂Ωe∩ΓS )×I

Aûu(v̂, u) =⟨v̂, τu⟩(∂Ωe\(ΓD∪ΓS ))×I − ⟨v̂, (τu) · E⟩(∂Ωe∩ΓS )×I

Aû p(v̂, p) =⟨v̂, p adj (Jµ)n⟩(∂Ωe\(ΓD∪ΓS ))×I

Aûû(v̂, û) =− ⟨v̂, τ û⟩(∂Ωe\(ΓD∪ΓS ))×I + ⟨v̂, û · adj (Jµ)D + (τ û) · E⟩(∂Ωe∩ΓS )×I

(29)

and

L û(v̂) = −⟨v̂, gN ⟩(∂Ωe∩ΓN )×I , (30)

respectively.

Remark 3. The derivation of the terms on the slip boundary in (29) follows from the relationship ⟨v̂, nµ
·

H⟩(∂Ωµ
e ∩Γ

µ
S )×I = ⟨v̂, adj (Jµ)n · H⟩(∂Ωe∩ΓS )×I and the definition (28). The slip boundary condition is used here

to enforce a symmetry condition and therefore, it is assumed that the orientation of the vectors {nµ, tµ
1 , . . . , tµ

nsd−1}

is preserved by the mapping Mµ. It is worth noting that this does not imply that Γµ
S = ΓS as it will be shown

ith numerical examples.

emark 4. As is typical in the context of shape optimisation [47], in (30) it is assumed that Neumann boundaries,
here a traction (or pseudo-traction) is imposed, are fixed, that is, Γµ

N = ΓN . On the contrary, deformable Neumann
oundaries, also known as free boundaries, are traction-free, whence gN is null.

.3. Separated representation of the data

As usual in a PGD context, the data is assumed to be given in separated form. For the Stokes problem under
onsideration, this means that the Dirichlet and Neumann data and the source term can be written as

uD =

nD∑
l=1

gl
D(x)λl

D(µ),

gN =

nN∑
l=1

gl
N (x)λl

N (µ),

s =
nS∑

l=1

gl
S(x)λl

S(µ).

(31)

ven if the data is not directly given in this form, it is possible to obtain a good approximation in a separated form,
ee [6].

.4. Separated representation of the primal, mixed and hybrid variables

The standard PGD approach consists of assuming a separated representation of all the variables. For instance,
or the velocity field, it is assumed that its PGD approximation can be written as

um
PGD

(x,µ) =
m∑

f̃u
k
(x) ψ̃k(µ),
k=1
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here f̃u
k

and ψ̃k are the kth spatial and parametric modes respectively and the total number of modes is a priori
unknown and automatically determined by the algorithm based on a user-defined tolerance, as described in the next
section.

In practice, it is advantageous [19] to write the separated approximation as

um
PGD

(x,µ) = σm
u f m

u (x)ψm(µ)+ um−1
PGD

(x,µ), (32)

where f m
u and ψm are the normalised mth spatial and parametric modes, respectively, and σm

u is the amplitude of
the mth mode, namely f m

u := f̃u
m
/∥ f̃u

m
∥, ψm

:= ψ̃m/∥ψ̃m
∥ and σm

u := ∥ f̃u
m
∥∥ψ̃m

∥.
This alternative expression enables to directly use the amplitude of the modes, σm

u , to determine when it is
feasible to stop adding new modes. In addition, as explained in detail in the next section, the expression of equation
(32) suggests that the modes are computed sequentially. So, assuming that the first m − 1 modes are known, the
next section will focus on detailing how the new mode m is computed.

In this work, the implementation follows the predictor–corrector PGD rationale, which has been shown [11]
to improve the original algorithm, because it applies the alternating direction method to the Jacobian of the high-
dimensional nonlinear problem. This improves the convergence for each mode because it is easier to select the
initial prediction and provides a faster convergence.

Each variable of the HDG formulation, presented in Section 3, is written as a rank-m separable approximation,
that is

Lm
PGD

(x,µ) = σm
L [Fm

L (x)ψm(µ)+∆Lm
PGD

(x,µ)]+ Lm−1
PGD

(x,µ),

um
PGD

(x,µ) = σm
u [ f m

u (x)ψm(µ)+∆um
PGD

(x,µ)]+ um−1
PGD

(x,µ),

pm
PGD

(x,µ) = σm
p [ f m

p (x)ψm(µ)+∆pm
PGD

(x,µ)]+ pm−1
PGD

(x,µ),

ûm
PGD

(x,µ) = σm
û [ f m

û (x)ψm(µ)+∆ûm
PGD

(x,µ)]+ ûm−1
PGD

(x,µ),

ρm
PGD

(x,µ) = σm
ρ [ f m

ρ (x)ψm(µ)+∆ρm
PGD

(x,µ)]+ ρm−1
PGD

(x,µ),

(33)

here σm
L Fm

L ψ
m , σm

u f m
u ψ

m , σm
p f m

p ψ
m , σm

û f m
û ψ

m and σm
ρ f m

ρ ψ
m are the predictors of the mth mode in the PGD

xpansion, whereas σm
L ∆Lm

PGD
, σm

u ∆um
PGD

, σm
p ∆pm

PGD
, σm

û ∆ûm
PGD

and σm
ρ ∆ρ

m
PGD

are the corresponding correction terms.
ntroducing the variation ∆, the correctors are defined as

∆Lm
PGD

(x,µ) := ∆FL (x)ψm(µ)+ Fm
L (x)∆ψ(µ)+∆FL (x)∆ψ(µ),

∆um
PGD

(x,µ) := ∆ fu(x)ψm(µ)+ f m
u (x)∆ψ(µ)+∆ fu(x)∆ψ(µ),

∆pm
PGD

(x,µ) := ∆ fp(x)ψm(µ)+ f m
p (x)∆ψ(µ)+∆ fp(x)∆ψ(µ),

∆ûm
PGD

(x,µ) := ∆ fû(x)ψm(µ)+ f m
û (x)∆ψ(µ)+∆ fû(x)∆ψ(µ),

∆ρm
PGD

(x,µ) := ∆ fρ(x)ψm(µ)+ f m
ρ (x)∆ψ(µ)+∆ fρ(x)∆ψ(µ),

(34)

here the last term denotes a high-order variation and it is henceforth neglected.
Each term, or mode, of the PGD approximation is the product of a function that depends upon the spatial

oordinates and a function that depends upon the parameters. In addition, the parametric functions are assumed to
e the product of functions that depend upon a single parameter, namely

ψm(µ) =
npa∏
j=1

ψm
j (µ j ). (35)

emark 5. This work considers the so-called single-parameter approach, where the parametric function of the
th mode, ψm , is the same for all the variables. Other approaches, including a different parametric function for each

ariable or even the use of vector-valued parametric functions in the approximation of vector fields are discussed
n [48]. It is worth noting that using the same parametric function for all the variables is particularly beneficial in
he context of HDG due to the large number of functions involved, not only velocity and pressure but also the trace

f the velocity, the velocity gradient and the mean value of the pressure.
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The tangent manifold for L is characterised by choosing W as variations of FLψ , that is

W = δFLψ
m
+ σm

L Fm
L δψ, (36)

for δFL ∈Wh
:=

[
Vh(Ω )

]nsd×nsd and δψ ∈ Lh(I). Similarly, the tangent manifolds for u, p, û and ρ are character-
ised by choosing

v = δ fuψ
m
+ σm

u f m
u δψ, v = δ fpψm

+ σm
p f m

p δψ,

v̂ = δ fûψ
m
+ σm

û f m
û δψ, w = δ fρψm

+ σm
ρ f m

ρ δψ,
(37)

for δ fu ∈ Vh
:=

[
Vh(Ω )

]nsd , δ fp ∈ Vh , δ fû ∈ V̂h
:=

[
V̂h(Γ ∪ ΓN ∪ ΓS)

]nsd and δ fρ ∈ Rnel .

.5. Alternating direction scheme

With the separated structure of the PGD approximations, the weighting functions and the bilinear and linear
DG forms described in the previous sections, it is possible to drastically reduce the complexity of the problem.
he PGD uses a fixed-point iteration scheme for the high-dimensional nonlinear problem solved with an alternating
irection strategy to reduce the computational cost (iterating along low-dimensional problems).

First, in the so-called spatial iteration, the parametric function of the mth mode is assumed known and the spatial
unctions are determined. As it will be shown, this step requires to solve a system of equations with a very similar
tructure to the non-parametric HDG problem. Second, in the so-called parametric iteration, the parametric function
s computed using the spatial functions determined in the first step. This process is repeated until convergence is
chieved. It is worth noting that the order of the spatial and parametric iterations can be swapped without affecting
he alternating direction algorithm.

Let us assume that we have computed the first m − 1 modes and it is of interest to compute the mth mode. In
he next two sections, the alternating direction strategy to compute the spatial and parametric modes is detailed.

.5.1. The spatial iteration
In the spatial iteration, it is assumed that the parametric function ψm and the spatial predictions σm

L Fm
L , σm

u f m
u ,

σm
p f m

p , σm
û f m

û and σm
ρ f m

ρ are known and the goal is to compute the corresponding corrections σm
L ∆FL , σm

u ∆ fu ,
σm

p ∆ fp, σm
û ∆ fû and σm

ρ ∆ fρ . As usual in a PGD context, it is assumed that no previous knowledge of the solution
is available and therefore, the trivial initial guess of ψm

= 1 is employed for the parametric function.
Taking into account that δψ = 0 when ψm is known and introducing the expression of the PGD approximations

and the weighting functions in the weak form of the HDG local problems, the following weak form of the local
problem for the spatial iteration is obtained: find (σm

L ∆FL , σ
m

u ∆ fu, σm
p ∆ fp) ∈Wh

× Vh
× Vh that satisfy

nd∑
k=1

βk
θAk

L L (δFL , σ
m

L ∆FL )+
na∑

k=1

βk
ϑAk

Lu(δFL , σ
m

u ∆ fu)

=Rm
L (δFLψ

m)+
na∑

k=1

βk
ϑAk

Lû(δFL , σ
m

û ∆ fû),

na∑
k=1

βk
ϑAk

uL (δ fu, σ
m

L ∆FL )+ βAuu(δ fu, σ
m

u ∆ fu)+
na∑

k=1

βk
ϑAk

up(δ fu, σ
m
p ∆ fp)

=Rm
u (δ fuψ

m)+ βAuû(δ fu, σ
m

û ∆ fû),
na∑

k=1

βk
ϑAk

pu(δ fp, σm
u ∆ fu) =Rm

p (δ fpψm)+
na∑

k=1

βk
ϑAk

pû(δ fp, σm
û ∆ fû)

βAk
ρp(1, σm

p ∆ fp) =Rm
p (ψm)+ βAρρ(1, σm

ρ ∆ fρ),

(38)

for all (δFL , δ fu, δ fp) ∈Wh
× Vh

× Vh .
The bilinear and linear forms of the local problem are detailed in Eq. (A.1), in Appendix A, and Eq. (B.1),

in Appendix B, respectively. The constants in Eq. (38) are given by

βk
:= Ak (ψm, ψm) βk

:= Ak (ψm, ψm), β := A(ψm, ψm), (39)
θ θ ϑ ϑ
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here the bilinear forms involved in the definitions of these constants are introduced in Eq. (A.3), in Appendix A.
As mentioned earlier, in Remark 5, this work considers the same parametric function for all the variables. It is

orth noting that this choice reduces the number of different constants in Eq. (38).
Similarly, the weak form of the global problem is: find σm

û ∆ fû ∈ V̂h
and σm

ρ ∆ fρ ∈ Rnel that satisfy

nel∑
e=1

{ na∑
k=1

βk
ϑAk

ûL (δ fû, σ
m

L ∆FL )+ βAûu(δ fû, σ
m

u ∆ fu)+
na∑

k=1

βk
ϑAk

û p(δ fû, σ
m
p ∆ fp)+ βAûû(δ fû, σm

û ∆ fû)

+

na∑
k=1

βk
ϑAk

ûû(δ fû, σ
m

û ∆ fû)
}
=

nel∑
e=1

Rm
û (δ fûψ

m),

(40a)

or all δ fû ∈ V̂h
, with the incompressibility constraint

na∑
k=1

βk
ϑAk

pû(1, σm
û ∆ fû) = Rm

ρ (ψm), e = 1, . . . , nel. (40b)

he bilinear and linear forms of the global problem are detailed in Eq. (A.2), in Appendix A, and Eq. (B.2), in
ppendix B, respectively.

.5.2. The parametric iteration
After computing the spatial corrections following the procedure described in the previous section, the spatial

odes are updated, namely

σm
L Fm

L ← σm
L Fm

L + σ
m

L ∆FL ,

σm
u f m

u ← σm
u f m

u + σ
m

u ∆ fu,
σm

p f m
p ← σm

p f m
p + σ

m
p ∆ fp,

σm
û f m

û ← σm
û f m

û + σ
m

û ∆ fû,
σm
ρ f m

ρ ← σm
ρ f m

ρ + σ
m
ρ ∆ fρ,

(41)

here the constant σm
⋄

on the left hand side denotes the amplitude of the newly computed mth mode of the
unction ⋄, e.g. σm

p ← ∥σ
m
p f m

p + σ
m
p ∆ fp∥.

In the parametric iteration, the goal is to compute the parametric correction ∆ψ given the prediction ψm and
he known spatial functions in (41). Following the assumption that such functions are known, it holds that
FL = δ fu = δ fp = δ fû = δ fρ = 0. Introducing the expression of the PGD approximations and the weighting
unctions in the weak form of the HDG local problems, the following weak form of the local problem for the
patial iteration is obtained: find ∆ψ ∈ Lh(I) such that

nd∑
k=1

γ k
L LAk

θ (δψ,∆ψ)+
na∑

k=1

γ k
LuAk

ϑ (δψ,∆ψ) =Rm
L (σm

L Fm
L δψ)+

na∑
k=1

γ k
LûA

k
ϑ (δψ,∆ψ),

na∑
k=1

γ k
uLAk

ϑ (δψ,∆ψ)+ γuuA(δψ,∆ψ)+
na∑

k=1

γ k
upAk

ϑ (δψ,∆ψ) =Rm
u (σm

u f m
u δψ)+ γuûA(δψ,ψm),

na∑
k=1

γ k
puAk

ϑ (δψ,∆ψ) =Rm
p (σm

p f m
p δψ)+

na∑
k=1

γ k
pûA

k
ϑ (δψ,∆ψ),

γρpA(δψ,∆ψ) =Rm
p (δψ)+ γρρA(δψ,∆ψ),

(42)

h
or all δψ ∈ L (I),
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Similarly, the weak form of the global problem is: find ∆ψ ∈ Lh(I) that satisfies
nel∑
e=1

{
na∑

k=1

γ k
ûLA

k
ϑ (δψ,∆ψ)+ γûuA(δψ,∆ψ)+

na∑
k=1

γ k
û pA

k
ϑ (δψ,∆ψ)

+γûûA(δψ,∆ψ)+
na∑

k=1

γ k
ûûA

k
ϑ (δψ,∆ψ)

}
=

nel∑
e=1

Rm
û (σm

û f m
û δψ),

na∑
k=1

γ k
ρûA

k
ϑ (δψ,ψm) =Rm

ρ (δψ),

(43)

or all δψ ∈ Lh(I).
The constants in Eqs. (42) and (43) are defined as

γ k
L L := Ak

L L (σm
L Fm

L , σ
m

L Fm
L ), γ k

Lu := Ak
Lu(σm

L Fm
L , σ

m
u f m

u ), γ k
Lû := Ak

Lû(σm
L Fm

L , σ
m

û f m
û ),

γ k
uL := Ak

uL (σm
u f m

u , σ
m

L Fm
L ), γuu := Auu(σm

u f m
u , σ

m
u f m

u ), γ k
up := Ak

up(σm
u f m

u , σ
m
p f m

p ),

γuû := Auû(σm
u f m

u , σ
m

û f m
û ), γ k

pu := Ak
pu(σm

p f m
p , σ

m
u f m

u ), γ k
pû := Ak

pû(σm
p f m

p , σ
m

û f m
û ),

γρp := Aρp(1, σm
p f m

p ), γρρ := Aρρ(1, σm
ρ f m

ρ ), γ k
ûL := Ak

ûL (σm
û f m

û , σ
m

L Fm
L ),

γûu := Aûu(σm
û f m

û , σ
m

u f m
u ), γ k

û p := Ak
û p(σm

û f m
û , σ

m
p f m

p ), γûû := Aûû(σm
û f m

û , σ
m

û f m
û ),

γ k
ûû := Ak

ûû(σm
û f m

û , σ
m

û f m
û ), γ k

ρû := Ak
pû(1, σm

û f m
û ).

(44)

The choice of a single parameter approximation implies that we can combine Eqs. (42) and (43) to obtain the
ollowing parametric problem: find ∆ψ ∈ Lh(I) that satisfies

nd∑
k=1

γ k
L LAk

θ (δψ,∆ψ)+
na∑

k=1

γ k
ϑAk

ϑ (δψ,∆ψ)+ γA(δψ,∆ψ) = Rm(δψ), (45)

or all δψ ∈ Lh(I), where

γ k
ϑ :=γ

k
Lu − γ

k
Lû + γ

k
uL + γ

k
up + γ

k
pu − γ

k
pû + γ

k
ûL + γ

k
û p + γ

k
ûû + γ

k
ρû,

γ :=γuu − γuû + γρp − γρρ + γûu + γûû,

Rm(δψ) :=Rm
L (σm

L Fm
L δψ)+Rm

u (σm
u f m

u δψ)+Rm
p (σm

p f m
p δψ)+ Rm

p (δψ)+Rm
û (σm

û f m
û δψ)+Rm

ρ (δψ).

(46)

Remark 6. Alternative formulations of the parametric problem may be devised, e.g. by considering only equation
(42) or (43). In this work, Eq. (45) has been considered in the parametric iteration in order to account for the
information of both the local and the global HDG problems.

As detailed in Eq. (35), the parametric iteration involves npa geometric parameters. To reduce the size of the
problem of the parametric iteration, npa one-dimensional problems are solved sequentially, as commonly done in a
PGD framework [8].

4.6. The HDG-PGD algorithm

The HDG solver for geometrically parametrised Stokes equation is described in Algorithm 1. Differently from
traditional PGD strategies relying on continuous Galerkin approximations, Dirichlet boundary conditions do not
require a special treatment in the context of HDG-PGD. More precisely, Dirichlet conditions are imposed in a weak
sense and appear in the linear forms (17) of the HDG local problem.

In the greedy enrichment loop, first a predictor of the spatial mode is computed as the solution of the HDG global
and local problems using a guess for the parametric mode (Algorithm 1 - Steps 3–5). Then, the alternating direction
scheme computes the corrections of the parametric (Algorithm 1 - Steps 8–10) and spatial mode (Algorithm 1 -

Steps 11–14) solving a parametric linear system and the HDG global and local problems, respectively. As usual
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Algorithm 1 The HDG-PGD implementation

Require: For the greedy enrichment loop, the value η⋆ of the tolerance. For the alternating direction iterations, the
values ηû and ηr

◦
of the tolerances for the mode amplitude σû and the residuals r◦ obtained from the linear forms

in Appendix B, respectively. For the spatial and parametric problems, the typical values typ◦ of the residuals.
◦ = û, ψ .

1: Set m ← 1 and initialise the amplitude of the spatial mode σ 1
û ← 1.

2: while σm
û > η⋆ σ 1

û do
3: Set q ← 1 and initialise the parametric predictor ψm

←1.
4: Compute the spatial constants (39).
5: Solve the HDG global (40a)–(40b) and local problems (38).
6: Initialise εû ← 1, εr

◦
← typ◦.

7: while εû > ηû or εr
◦
> ηr

◦
do

8: Compute the parametric constants (44).
9: Solve the parametric linear system (45).

10: Update the parametric predictor ψm
←(ψm

+∆ψ)/∥ψm
+∆ψ∥.

11: Compute the spatial constants (39).
12: Solve the HDG global (40a)–(40b) and local problems (38).
13: Normalise the spatial predictor σm

û ←∥σ
m

û f m
û + σ

m
û ∆ fû∥.

14: Update the spatial predictor σm
û f m

û ←σ
m

û f m
û + σ

m
û ∆ fû .

15: Update the stopping criteria for the mode amplitude εû←∥σ
m

û ∆ fû∥/σm
û and the residuals εr

◦
←∥r◦∥.

16: Increase the counter of the alternating direction iterations q ← q + 1.
17: end while
18: Increase the mode counter m ← m + 1.
19: end while

when solving a nonlinear system of equations, the nonlinear iterations of the alternating direction scheme stop when
the amplitude σm

û ∆ fû of the correction is negligible with respect to the amplitude σm
û of the current mode and the

esiduals of the spatial and parametric problems are below a given tolerance (Algorithm 1 - Steps 7 and 15). The
topping criterion for the greedy enrichment algorithm relies on the relative amplitude σm

û of the current mode
eing negligible with respect to the first mode σ 1

û (Algorithm 1 - Step 2). Alternative stopping criteria based on
ormalising the amplitude of the current mode with respect to the cumulative amplitudes of the previous modes
ave also been considered in the literature, see e.g. [11]. Note that for the purpose of normalisation (Algorithm
- Step 14), an appropriate norm needs to be defined and the L∞ norm has been utilised for the simulations in

ection 5.

.6.1. Discretisation of the spatial and parametric problems
The discretisation of the local problems of the spatial iteration using an isoparametric formulation with equal

nterpolation for all the variables [23,33,34], leads to a system of equations for each element with the following
tructure:⎡⎢⎢⎣

AL L ALu 0 0
AT

Lu Auu Aup 0
0 AT

up 0 aT
ρp

0 0 aρp 0

⎤⎥⎥⎦
e

⎧⎪⎪⎨⎪⎪⎩
FL

Fu

Fp

Fζ

⎫⎪⎪⎬⎪⎪⎭
e

=

⎧⎪⎪⎨⎪⎪⎩
fL

fu

fp

0

⎫⎪⎪⎬⎪⎪⎭
e

+

⎡⎢⎢⎣
ALû
Auû
Apû

0

⎤⎥⎥⎦
e

Fû +

⎧⎪⎪⎨⎪⎪⎩
0
0
0
1

⎫⎪⎪⎬⎪⎪⎭
e

Fρ, (47)

here FL , Fu , Fp and Fû denote the nodal values of the unknown spatial functions σm
L ∆FL , σm

u ∆ fu , σm
p ∆ fp and

m
û ∆ fû respectively and the constraint on the mean value Fρ of the pressure on the element boundaries is enforced
sing the Lagrange multiplier Fζ .

The only difference between the local system obtained in the spatial iteration of the proposed HDG-PGD
pproach and the local system of a standard HDG method [33,34] lies in the construction of the blocks forming

he matrices A⊙⊚ and vectors f⊙. As an example, let us consider the matrix AL L . In the proposed HDG-PGD
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framework, this matrix is defined as

(AL L)I J = −

nd∑
k=1

βk
θ

(
NI , ν

−1 Dk NJ
)
Ωe

Insd×nsd (48)

whereas in a standard HDG approach, the corresponding matrix is defined as

(AL L)I J = −
(
NI , ν

−1 NJ
)
Ωe

Insd×nsd . (49)

In the above expressions {NI } denotes the set of shape functions used to define the spatial approximation of the
mixed variable.

Similarly, the discretisation of the global problem of the spatial iteration leads to a system of equations for the
trace of the velocity on the element boundaries and the mean value of the pressure in each element, namely

nel∑
e=1

{[
AûL Aûu Aû p

]
e

⎧⎨⎩FL

Fu

Fp

⎫⎬⎭
e

+ [Aûû]e Fû

}
=

nel∑
e=1

[fû]e,

1T [Apû]eFû = −1T [fp]e.

(50)

As usual in an HDG context, the local problem of Eq. (47) is used to express the spatial part of the gradient
of the velocity, the velocity and the pressure in terms of the spatial part of the trace of the velocity and the mean
pressure. Introducing these expressions into the global problem, leads to the global system[

K̂ G
GT 0

] {
Fû
Fρ

}
=

{
f̂û

f̂ρ

}
, (51)

where the only unknowns are the spatial parts of the trace of the velocity and the mean pressure.
In a similar fashion, the discretisation of the parametric problem (45) using Lagrange shape functions leads to

an algebraic system of equations whose unknowns are the nodal values of the parametric modes.

4.6.2. A remark for a computationally efficient implementation
The evaluation of the right hand sides of the PGD spatial and parametric iterations tends to become computa-

tionally expensive when approximations with a large number of modes are considered. Indeed, the number of terms
involved in such computation experiences a geometric growth rate during the iterations of the greedy algorithm.

In order to ease the computational burden of the overall algorithm, the number of terms in the modal
approximations um

PGD
, pm

PGD
, Lm

PGD
, ûm

PGD
and ρm

PGD
is reduced. It is well known that the terms in the PGD reduced basis

are not orthogonal to each other and repeated information may appear. Hence, orthogonal separable approximations
featuring m̃ < m modes are constructed via the PGD compression [20,49], that is, a least-squares higher-order
projection minimising the L2 norm of the difference between target and test functions, namely

Lm̃
PGD
= arg min

W∈Wh
∥W − Lm

PGD
∥L2(Ω×I),

um̃
PGD
= arg min

v∈Vh
∥v − um

PGD
∥L2(Ω×I),

pm̃
PGD
= arg min

v∈Vh
∥v − pm

PGD
∥L2(Ω×I),

ûm̃
PGD
= arg min

v̂∈V̂h
∥v̂ − ûm

PGD
∥L2(Γ∪ΓN∪ΓS×I),

ρm̃
PGD
= arg min

q∈Rnel⊗Lh (I)
∥q − ρm

PGD
∥L2(Rnel×I).

From a practical point of view, the PGD compression is applied during the enrichment strategy described in
Algorithm 1. A trade-off between the cost of performing the greedy iterations with a larger number of modes
and the extra cost required by the PGD compression needs to be achieved. For the simulations in Section 5,
PGD compression is applied every ten new computed modes for the analytical examples and every five for the

microfluidics test cases.
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Fig. 1. Coaxial Couette flow: Four triangular meshes of the reference domain.

5. Numerical examples

This section presents four numerical examples. The first two examples are used to validate the implementation
of the proposed approach as well as to study a number of properties of the proposed ROM. The last two examples
consider two applications taken from the biomechanics community and involve the Stokes flow around a micro-
swimmer formed by two spheres and the flow around a sphere in a corrugated channel. All the examples consider
geometric parameters as extra coordinates within the proposed PGD approach.

5.1. Coaxial Couette flow

The first example considers the well known coaxial Couette flow problem [50], consisting of the flow confined
within two infinite coaxial circular cylinders with radius Rin and Rout respectively, with Rin < Rout. The boundary
conditions introduce the known angular velocities, Ωin and Ωout, at Rin and Rout, respectively. The problem has
analytical solution, given by the azimuthal component of the velocity as

vφ =
R2

outΩout − R2
inΩin

R2
out − R2

in
r +

(Ωin − Ωout)R2
out R

2
in

R2
out − R2

in

1
r

(52)

here r is the distance to the axis of the cylinders.
To demonstrate the applicability of the proposed ROM the problem is considered in two dimensions, with
µ
= {xµ

∈ R2
| µ1 ≤ rµ ≤ Rout}, with Rout = 5 and µ1 ∈ I = I1

= [1, 3] and where rµ =
√

(xµ1 )2 + (xµ2 )2. The
eference domain is chosen to be Ω = {x ∈ R2

| 1 ≤ r ≤ Rout} and the mapping between the reference and the
eometrically parametrised domains is defined by the general separable expression of Eq. (21) with the mapping
f Eq. (22) given by

M1(x) =
1
r

x ψ1(µ) =
Rout(µ− 1)

Rout − 1
,

M2(x) = x ψ2(µ) =
Rout − µ

Rout − 1
,

(53)

here r =
√

x2
1 + x2

2 . The Jacobian of the mapping is also written in the general separated form of Eq. (23), with

J1(x) =
1
r3

[
x2

2 −x1x2

−x1x2 x2
1

]
, J2(x) = I2. (54)

For the numerical experiments in this section, four triangular meshes of the reference domain are generated, as
hown in Fig. 1. The meshes have 128, 512, 2048 and 8192 elements respectively.

The proposed HDG-PGD framework is used to obtain the generalised solution of the parametric Stokes problem.
he first four normalised modes of the magnitude of the velocity field are displayed in Fig. 2. The computation
as performed using the second mesh shown in Fig. 1 with a degree of approximation k = 4 for all the variables
nd with a mesh of 1000 elements in the parametric dimension with also k = 4. As usual in the context of ROMs,
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Fig. 2. Coaxial Couette flow: First four normalised spatial modes of the velocity field.

Fig. 3. Coaxial Couette flow: First eight normalised parametric modes.

Fig. 4. Coaxial Couette flow: Convergence of the mode amplitudes.

the first modes capture the most relevant and global features of the solution whereas the features captured for the
next modes only introduce localised features.

Fig. 3 shows the first eight normalised parametric modes computed. It can be observed that the first three modes
are smooth, whereas the next modes, that have a less relevant contribution to the generalised solution, show a more
oscillatory character.

To quantify the importance of the modes on the generalised solution, Fig. 4 shows the relative amplitudes of
the modes with respect to the amplitude of the first mode for all the variables. It can be clearly observed that the
fourth mode has an amplitude that is already more than 100 times smaller than the amplitude of the first mode.

−6
After computing only nine modes the relative amplitude is already of the order of 10 . It is worth noting that in
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Fig. 5. Coaxial Couette flow: Absolute value of the error of the velocity magnitude using n PGD modes and for different values of the
geometric parameter µ1. A quartic approximation is used for all variables in the second mesh of Fig. 1.

practice it is not required to add modes with such a lower relative amplitude with respect to the first mode, but in
this first example nine modes are computed to show the rapid decrease in their amplitudes.

Once the generalised solution is computed, it is of interest to quantify its accuracy. Fig. 5 shows the absolute value
of the error of the velocity magnitude using as the number of modes is increased for three relevant configurations
corresponding to the parameter µ1 = 1, µ1 = 2 and µ1 = 3. The results show that with only one PGD mode an
absolute error below 10−1 is already obtained for all three configurations, with more accurate results for the case
with µ1 = 2. With two PGD modes the error drops substantially, being less than 7 × 10−3 in all cases, and with
only three PGD modes the error is below 2× 10−4 for the three configurations considered.

To further illustrate the accuracy of the proposed HDG-PGD approach, the relative error in the L2(Ω×I) norm,
efined as

εPGD =

⎛⎜⎜⎝
∫
I1

∫
Ω

(uPGD − u) · (uPGD − u)dΩ dµ∫
I1

∫
Ω

u · u dΩ dµ

⎞⎟⎟⎠
1/2

, (55)

s studied and compared to the error of the full order HDG approach. Fig. 6 shows the evolution of εPGD, for all the
ariables, as the number of PGD modes is increased, for different meshes using a quadratic degree of approximation.
he discontinuous lines in Fig. 6 show the relative error of the full order HDG method, measured in the L2(Ω×I)
orm. It is worth noting that the computation of the error for the full order approach requires the computation
f a large number of solutions. More precisely, the number of HDG solutions required is equal to the number of
lements in the parametric space multiplied by number of integrations points in each element.
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Fig. 6. Coaxial Couette flow: convergence of the L2 norm of the error for L, u, p and û as the number of PGD modes is increased. A
quadratic approximation is used for all the variables.

The results show that the error of the proposed ROM converges monotonically to the error of the full order
approach as the number of modes is increased. In all cases the number of PGD modes required to reach the
maximum accuracy on a given mesh is lower than six. Furthermore, the results in Fig. 6 illustrate the increased
level of accuracy obtained as the spatial and parametric discretisations are refined. Analogous results, not reported
here for brevity, are obtained for lower and higher orders of approximation.

Next, the optimal rate of convergence of the proposed HDG-PDG method is studied by performing a mesh
convergence study. Fig. 7 shows the evolution of the relative error in the L2(Ω × I) norm as a function of the
haracteristic element size, h, for different orders of approximation and for all the variables of the HDG formulation.
he optimal rate of convergence, equal to hk+1, is approximately observed for all the variables. In each case, the
inimum number of PGD modes required to achieve the accuracy of the full order method is selected, as previously

iscussed when presenting the results of Fig. 6.
Finally, it is worth mentioning the differences between the proposed HDG-PGD approach presented here and the

ecently proposed PGD approach for geometrically parametrised domains in [19] using standard finite elements for
he spatial discretisation. First, the current approach does not require the higher order PGD projection to separate
he inverse of the determinant of the Jacobian, given the first-order character of the problem solved with HDG.
econd, the current approach enables the use of the same degree of approximation for velocity and pressure, contrary
o the standard FE approach where specific choices are required to satisfy the LBB condition. In the context of
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Fig. 7. Coaxial Couette flow: mesh convergence of the L2 norm of the error for L, u, p and û.

eometrically parametrised domains with curved boundaries this implies that the current approach enables the use
f isoparametric elements whereas super-parametric or sub-parametric elements are required in the FE context.
hird, the weak imposition of the Dirichlet boundary conditions, as usually done in a DG context, facilitates the
onstruction of the generalised solution without the need for specific choices for the modes that satisfy the Dirichlet
oundary conditions, as required by other approaches. Finally, the results in Fig. 7 can be compared to the results
n [19].

.2. Axisymmetric Stokes flow past a sphere

The second example considers the Stokes flow past a sphere, a typical test case for axisymmetric Stokes flow
olvers. The domain of interest is selected as the region confined by two concentric spheres with radius Rin and

Rout respectively, with Rin < Rout. This problem also has analytical solution, given, in polar coordinates, by the
following velocity and pressure fields

ur =
v∞

2r3

(
2r3
− 3Rinr2

+ R3
in

)
cos θ,

uθ = −
v∞

4r3

(
4r3
− 3Rinr2

+ R3
in

)
sin θ,

p = p∞ −
3
νv∞Rin cos θ,

(56)
2r2
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Fig. 8. Axisymmetric flow past a sphere: First four normalised spatial modes of the norm of the velocity field.

Fig. 9. Axisymmetric flow past a sphere: First four normalised spatial modes of the pressure field.

where v∞ and p∞ are the magnitude of the velocity and the pressure of the undisturbed flow, far away from the
bstacle. A typical quantity of interest in this problem is the drag force, whose exact value is given by FD =

6πνv∞Rin
Similar to the previous example, the geometric parameter considered here is the radius of the inner sphere.

The parametric domain considers the axial symmetry of the problem is defined as Ωµ
= {xµ

∈ R2
| xµ2 ≥ 0

and µ1 ≤ rµ ≤ Rout}, with Rout = 5 and µ1 ∈ I = I1
= [1, 3]. The reference domain is chosen to be

Ω = {x ∈ R2
| x2 ≥ 0 and 1 ≤ r ≤ Rout}. The mapping between the reference and the geometrically parametrised

domains is exactly the same mapping utilised in the previous example, given by the two terms in Eq. (53).
A no-slip boundary condition is imposed on the inner sphere, a Dirichlet boundary condition corresponding to

the exact solution on the outer boundary and axial symmetry is imposed on the rest of the boundary. The axial
symmetry is imposed by selecting α = β = 0 in the matrices Dµ and Eµ in Eq. (1). As mentioned earlier, in
Remark 3, the portion of the boundary where the axial symmetry is imposed depends on the geometric parameter,
but the normal and tangent to the boundary are independent on the geometric changes. Therefore, the matrices D
and E do not depend upon the geometric parameters.

The proposed ROM is used to obtain the generalised solution of the parametric axisymmetric Stokes problem.
The first four normalised modes of the magnitude of the velocity field and the pressure are shown in Figs. 8 and 9.

The computation was performed using the second mesh with a degree of approximation k = 4 for all the
variables and with a mesh of 1000 elements in the parametric dimension with also k = 4. Fig. 10 shows the first
eight normalised parametric modes computed. It is worth noting that despite the different nature of the flow and
the axisymmetric boundary condition, the parametric modes have a similar behaviour when compared to the modes
obtained in the previous example. This is mainly attributed to the geometric parameter describing an analogous
variation of the computational domain.

As in the previous example, the evolution of the relative amplitude of the modes is shown in 11. The rapid
decrease shows that it is possible to compute a generalised solution to this problem with a very small number of
modes. With eight modes the relative amplitude is already below 10−5.

Next, the optimal rate of convergence of the proposed HDG-PGD method are studied by performing a mesh
convergent study. Fig. 12 shows the evolution of the relative error in the L2(Ω × I) norm as a function of the
characteristic element size, h, for different orders of approximation and for all the variables of the HDG formulation.
The optimal rate of convergence, equal to hk+1, is approximately observed for all the variables.

Finally, the accuracy of the HDG-PGD approach on the drag force is studied for three different configurations
corresponding to µ1 = 1, µ1 = 2 and µ1 = 3. Fig. 13 shows evolution of the error in the drag force as the
number of degrees of freedom is increased for the three different geometric configurations and for different orders
of approximation.
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Fig. 10. Axisymmetric flow past a sphere: First eight normalised parametric modes.

Fig. 11. Axisymmetric flow past a sphere: Convergence of the mode amplitudes.

The number of degrees of freedom refers to the size of the HDG global problem as this is the most time
consuming part of the spatial iteration.

The results show the variation of the drag force induced by the variation of the geometric parameter and how the
generalised solution produces accurate results for any value of the geometric parameter. In all cases, convergence
to exact value is observed, and the superiority of using high-order approximations is clearly appreciated. For the
first configuration, the results in Fig. 13(a) show that with a linear approximation requires the solution of a global
problem with 24,832 degrees of freedom to obtain relative error in the drag force of 0.0181. In contrast , using
a quartic approximation, the error in the first mesh is 0.0021, solving a global problem with only 416 degrees of
freedom, that is an error one order of magnitude lower with almost 20 times less degrees of freedom.

The results also show that for higher values of the geometric parameter the solution is slightly more difficult
to capture and the number of degrees of freedom required is slightly higher. In fact, the advantages of high-order
approximations are more noticeable for the case of µ1 = 3.

Finally, it is worth mentioning that when objective is to compute a given quantity of interest, such as the drag
orce, the adoption of a goal oriented PGD approach would be beneficial to incorporate the required accuracy of a
uantity of interest in the stopping criteria.

.3. Axisymmetric Stokes flow around two micro-swimmers

The next example considers the Stokes flow around the so-called push-me-push-you microswimmer, proposed
n [51]. This swimmer consists of two spherical bladders that have the ability to change their mutual distance and
ndividual volume, whilst maintaining the total volume of the two spheres. The swimmer is placed in a cylindrical
hannel of length L and diameter D.
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Fig. 12. Axisymmetric flow past a sphere: mesh convergence of the L2 norm of the error for L, u, p and û.

Fig. 13. Axisymmetric flow past a sphere: evolution of the error in the drag force as the number of modes is increased for three different
geometric configurations.

Two geometric parameters are considered in this example. The first one, µ1 ∈ I1 = [−1, 1], controls the radius
f the two spheres in such a way that the total volume of the two spheres is maintained. The second parameter,
2 ∈ I2 = [−3, 2], controls the distance between the centre of the two spheres. The value of µ1 = −1 corresponds

o the configuration where the radius of the first sphere is R1 = 0.3096 and the radius of the second sphere is

R2 = 0.116, whereas the value of µ = 1 corresponds to the opposite situation, with R1 = 0.116 and R2 = 0.3096.



R. Sevilla, L. Borchini, M. Giacomini et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113397 23

T
c
w
r(
w
u
2

m
i
a

i
k
w
t
v

i
s
i
t
i
t
r

Fig. 14. Axisymmetric flow around two micro-swimmers: Computational mesh.

Fig. 15. Axisymmetric flow around two micro-swimmers: First four normalised spatial modes of the velocity field.

he value of µ2 = −3 corresponds to the case where the distance between the spheres is maximum, with the
entres of the spheres placed at (−3, 0) and (3, 0) respectively. The value of µ2 = 2 corresponds to the case
here the distance between the spheres is minimum, with the centres of the spheres placed at (−0.5, 0) and (0.5, 0)

espectively.
Using the axial symmetry of the problem, the reference domain is chosen as Ω = ([−L , L]× [0, H ]) \

B+ ∪ B−
)
, where

B± = {x ∈ R2
| ∥x ± x0∥ ≤ Rref}, (57)

here L = 6, H = 2, x0 = (1.5, 0) and Rref = 0.116. Fig. 14 shows the triangular mesh of the reference domain
sed for this numerical example. The mesh has 1426 elements, leading to a system in the HDG global problem of
2,260 equations for a degree of approximation k = 4.

On the left part of the boundary a Dirichlet boundary condition, corresponding to a horizontal velocity of
agnitude one, is imposed. On the right part of the boundary a homogeneous Neumann boundary condition is

mposed. On the surface of the two spheres a no-slip boundary condition is enforced and on the rest of the boundary
slip boundary condition is imposed.
The geometric mapping used in this example is detailed in Appendix C.
The first four spatial modes for the velocity and pressure computed with the proposed HDG-PGD are shown

n Figs. 15 and 16. The computation was performed using the mesh of Fig. 14 with a degree of approximation
= 4 for all the variables and with a mesh of 10,000 elements in each parametric dimension with also k = 4. It is
orth noting that the cost of the one-dimensional parametric problems is negligible when compared to the cost of

he spatial iteration. Therefore, a large number of elements is used in the parametric dimension to ensure that the
ariation induced by the geometric parameters are captured with no a priori knowledge of the solution.

Fig. 17 shows the first eight normalised parametric modes computed.
Contrary to the previous examples, in this example there are more parametric modes that have an important

nfluence over the whole range of values for both µ1 and µ2. For instance, in Fig. 17(a) the first, third, fifth and
ix parametric modes have a normalised value near one for the whole range of values of µ1. A similar behaviour
s observed for the second parameter µ2. In addition, the second parameter, corresponding to the distance between
he spheres it can be observed that many of the modes have a much more relevant influence near µ2 = 2. This
s expected as this configuration corresponds to the case where the distance between the spheres is minimum and
herefore induces an important variation in the flow field because the first sphere will influence the flow that is

eaching the second sphere.
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Fig. 16. Axisymmetric flow around two micro-swimmers: First four normalised spatial modes of the pressure field.

Fig. 17. Axisymmetric flow around two micro-swimmers: First eight normalised parametric modes.

Fig. 18. Axisymmetric flow around two micro-swimmers: Convergence of the mode amplitudes.

The evolution of the relative amplitude of the modes is displayed in Fig. 18. The results show that with 24 modes

all the relative amplitude of the hybrid variable, used to check convergence, is below 10−3. A slower decrease of

he relative amplitudes when compared with the previous examples can be observed. This is attributed to two

actors. First, this problem considers two geometric parameters and, second, the range of variation of the distance

s relatively high when compared to the minimum radius of the spheres.
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Fig. 19. Axisymmetric flow around two micro-swimmers: Velocity (top) and pressure (bottom) fields for three different geometric
configurations.

To illustrate the variation in the geometry induced by the parameters as well as the different flow features that
are induced by the geometric changes, Fig. 19 shows the magnitude of the velocity and the pressure fields in the
three dimensional domain for three different configurations.

The first configuration, shown in Figs. 19(a) and 19(d), corresponds to the case where the distance between the
spheres is maximum and the sphere closer to the inflow boundary has maximum radius. The opposite scenario,
with the distance between spheres is minimum and the sphere closer to the inflow boundary has minimum radius
is shown in Figs. 19(c) and 19(f). Finally, the configuration displayed in Figs. 19(b) and 19(e) corresponds to the
case when the distance between the spheres is half the maximum value and the radius of both spheres is the same.

To analyse the accuracy of the proposed approach, Fig. 20 compares the drag force on the two spheres as a
function of the µ2, controlling the distance between the spheres, and for three different configurations of the µ1,
controlling the radius of both spheres. The results obtained with the HDG-PGD approach are compared to the results
of the standard HDG method on a reference mesh. Both solutions show an excellent agreement in all cases, with
an overlap between the symbols used to plot the results of the standard HDG method and the discontinuous line
used to plot the results of the proposed PGD approach.

Finally, to stress the potential of the proposed approach, Fig. 21 shows the drag force on the two spheres and the
total drag as a function of both geometric parameters. This figure shows that generalised solution computed with
the HDG-PGD approach can be used to rapidly explore the whole space of parameters and used to find optimal
strokes, of interest in many applications [52].

5.4. Stokes flow around a sphere in a corrugated channel

The last example, inspired from the studies in [53,54], considers the flow past a sphere placed in a corrugated
channel. The corrugated channel has a height of 1 µm and the undulatory profile is defined by the expression

y =

{
1
2 ( fω + fn)+

1
2 ( fω − fn) cos

( 16πx
7L

)
if |x | < 7

16 L ,

fn if 7
16 L ≤ |x | ≤ 1

2 L ,
(58)

here L = 12.5 µm, fω = 2 µm and the value of fn controls the oscillation of the boundary. A sphere of radius
R, centred at the origin, is placed inside the corrugated channel.
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Fig. 20. Axisymmetric flow around two micro-swimmers: Comparison of the drag computed on the first and second sphere with the proposed
HDG-PGD approach against a reference solution for different configurations. Symbols are used to plot the results of the standard HDG
method whereas the discontinuous line shows the results of the proposed PGD approach. The overlap between both shows the excellent
agreement provided by the proposed PGD approach.

Fig. 21. Axisymmetric flow around two micro-swimmers: Drag force on the individual spheres and the total drag over the two spheres.

A Dirichlet boundary condition is imposed at one end of the channel, given by uD(x) =
{
64(x2

2−1/4)(x2
3−1/4),

, 0
}T , and a homogeneous Neumann boundary condition is imposed at the other end. A homogeneous Dirichlet

oundary condition is on the rest of the boundary of the domain, corresponding to material walls.
To demonstrate the applicability and potential of the proposed methodology in three dimensions, two geometric

arameters are considered. The first parameter µ1 ∈ [−1, 1] is used to control the radius of the sphere, defined as
R(µ1) = (µ1 + 2)/10. The second parameter µ2 ∈ [0, 2] controls the amplitude of the corrugated channel, given
y fn = 1/2+ µ2. The geometry of the reference domain, corresponding to µ1 = µ2 = 0, is shown in Fig. 22(a).

Exploiting the symmetry of the problem, a mesh of a quarter of the domain is considered, with 2191 tetrahedral
lements, as depicted in Fig. 22(b).

The geometric mapping used in this example is detailed in Appendix D.
The first four spatial modes for the velocity and pressure computed with the proposed HDG-PGD are shown in

igs. 23 and 24. The computation was performed using the mesh of Fig. 22(a) with a degree of approximation
= 3 for all the variables and with a mesh of 10,000 elements in each parametric dimension with also k = 3.
Fig. 25 shows the first six normalised parametric modes computed.
Compared to previous examples, the results show that more modes have an influence over the whole range of

arameters, illustrating the more complex nature of this three dimensional example.
The evolution of the relative amplitude of the modes is displayed in Fig. 26. In this example, 12 modes are

−3
equired to ensure the relative amplitude of the hybrid variable, used to check convergence, is below 10 .
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Fig. 22. Flow around a sphere in a corrugated channel: Geometry of the domain and computational mesh of a quarter of the domain.

Fig. 23. Flow around a sphere in a corrugated channel: First four normalised spatial modes of the velocity field.
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Fig. 24. Flow around a sphere in a corrugated channel: First four normalised spatial modes of the pressure field.

Fig. 25. Flow around a sphere in a corrugated channel: First six normalised parametric modes.
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Fig. 26. Flow around a sphere in a corrugated channel: Convergence of the mode amplitudes.

Fig. 27. Flow around a sphere in a corrugated channel: Velocity (top) and pressure (bottom) fields for three different geometric configurations.

Fig. 27 shows the magnitude of the velocity and the pressure fields in the channel for three different
configurations. The results illustrate the variation in the velocity and pressure fields as the amplitude of the channel
and the radius of the sphere is increased.

To assess the accuracy of the computed generalised solution computed with the proposed approach, a reference
solution is computed for the three configurations displayed in Fig. 27. The reference solutions are computed on a
much finer mesh with a standard HDG solver. As a quantity of interest, the drag on the sphere is measured. Fig. 28
shows the evolution of the error of the drag force as the number of PGD modes is increased. To further analyse the
accuracy of the computed generalised solution, the error of an HDG solution, computed in each configuration using
the same spatial resolution as the one used in the HDG-PGD formulation is considered. The results show that the
error of the HDG-PGD approach tends to the error of the HDG solution computed for each configuration, showing
the ability of the proposed approach to accurately capture the solution for different geometric configurations.

As mentioned in the previous example, the proposed approach provides a generalised solution that can be used

to perform fast queries of different quantities of interest. To illustrate the potential of the developed HDG-PGD
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Fig. 28. Flow around a sphere in a corrugated channel: Evolution of the error on the drag force as the number of PGD modes is increased.
The horizontal line denotes the reference error computed on a finer mesh with the standard HDG method.

Fig. 29. Flow around a sphere in a corrugated channel: Drag force on the sphere and difference between the pressure at the inlet and the
outlet.

approach, Fig. 29 shows the drag force on the sphere and the pressure drop, measured as the difference between
the pressure at the inlet and outlet, as a function of the geometric parameters µ1 and µ2. The results show that the

rag force is not sensitive to the variation of the amplitude of the channel oscillation but very dependent on the
adius of the sphere. In contrast, the pressure drop shows a dependency on both geometric parameters.

. Concluding remarks

A reduced order model approach based on the PGD and the HDG methods is being presented for the solution
f geometrically parametrised Stokes flow problems. The mixed formulation, characteristic of HDG methods, is
hown to provide advantages as the weak formulation can be written in a separated form, without using to the
emory intensive high-order PGD projection. In addition, the adoption of an HDG formulation enables the use of

qual order of approximation for all the variables circumventing the LBB condition. This is advantageous in the
ontext of geometrically parametrised problems in complex domains as it enables the use of standard isoparametric
ormulations. Finally, the use of a DG formulation implies that no special treatment of the Dirichlet boundary
onditions is required.

Two numerical examples with analytical solution are used to demonstrate the optimal mesh convergence
roperties of the proposed approach. These examples are also used to illustrate that the accuracy of the PGD
pproach, with enough computed modes, matches the accuracy provided by the standard HDG method when
omputing the solution for a given parameter. The examples also quantify the number of required modes to reach
given accuracy when the velocity, pressure and gradient of the velocity are of interest and when the drag force is

f interest. Finally, these examples also provide evidence of the superiority of high order elements when compared
o low order elements.

The ability of the proposed approach to compute generalised solutions involving geometric parameters has been

llustrated for problems relevant to the microfluidics community. The examples consider geometric parameters that
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nvolve substantial changes of the geometry and induce sizeable changes in the flow features and the relevant
uantities of interest. The two examples presented show the potential in the solution of axisymmetric and three
imensional problems with two geometric parameters.

The proposed methodology can be extended to nonlinear problems following the rationale presented in [11].
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ppendix A. Bilinear forms of the HDG-PGD weak formulation

The bilinear forms introduced in the spatial iteration are given by

Ak
L L (δFL , FL ) := −

(
δFL , ν

−1 Dk FL
)
Ωe
, Ak

Lu(δFL , fu) :=
(
Ak

∇· δFL , fu
)
Ωe
,

Ak
Lû(δFL , fû) := ⟨Ak n · δFL , fû⟩∂Ωe\ΓD , Ak

uL (δ fu, FL ) :=
(
δ fu,Ak

∇· FL
)
Ωe
,

Auu(δ fu, fu) := ⟨δ fu, τ fu⟩∂Ωe , Ak
up(δ fu, fp) :=

(
δ fu,Ak

∇ fp
)
Ωe
,

Auû(δ fu, fû) := ⟨δ fu, τ fû⟩∂Ωe\ΓD Ak
pu(δ fp, fu) :=

(
Ak

∇δ fp, fu
)
Ωe
,

Ak
pû(δ fp, fû) := ⟨δ fp, fû · A

k n⟩∂Ωe\ΓD , Aρp(δ fρ, fp) := ⟨δ fρ, |∂Ωe|
−1 fp⟩∂Ωe ,

Aρρ(δ fρ, fρ) := δ fρ fρ,

(A.1)

for the HDG local problems and by

Ak
ûL (δ fû, FL ) := ⟨δ fû,Ak n · FL⟩∂Ωe\(ΓD∪ΓS ) − ⟨δ fû,Ak n · FL E⟩∂Ωe∩ΓS ,

Aûu(δ fû, fu) := ⟨δ fû, τ fu⟩∂Ωe\(ΓD∪ΓS ) − ⟨δ fû, (τ fu) · E⟩∂Ωe∩ΓS ,

Ak
û p(δ fû, fp) := ⟨δ fû, fpAk n⟩∂Ωe\(ΓD∪ΓS ),

Aûû(δ fû, fû) := −⟨δ fû, τ fû⟩∂Ωe\(ΓD∪ΓS ) + ⟨δ fû, (τ fû) · E⟩∂Ωe∩ΓS ,

Ak
ûû(δ fû, fû) := ⟨δ fû, fû · A

k D⟩∂Ωe∩ΓS ,

(A.2)

for the HDG global problems.
In addition, the following bilinear forms are introduced in the parametric iteration

Ak
θ (δψ,ψ) :=

(
δψ, θ kψ

)
I ,

Ak
ϑ (δψ,ψ) :=

(
δψ, ϑkψ

)
I ,

A(δψ,ψ) :=
(
δψ,ψ

)
I .

(A.3)

Appendix B. Linear forms of the HDG-PGD weak formulation

The linear forms introduced in the spatial and parametric iterations are given by

Rm
L (δFLψ) :=

na∑
k=1

nD∑
l=1

⟨Ak n · δFL , gl
D⟩∂Ωe∩ΓDA

k
ϑ (ψ, λl

D)

−

m∑ nd∑
Ak

L L (δFL , σ
i

L Fi
L )Ak

θ (ψ,ψ
i )
i=1 k=1
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f

−

m∑
i=1

na∑
k=1

{
Ak

Lu(δFL , σ
i

u f i
u )−Ak

Lû(δFL , σ
i

û f i
û )

}
Ak
ϑ (ψ,ψ i )

Rm
u (δ fuψ) :=

nd∑
k=1

nS∑
l=1

(
δ fu, Dk gl

S

)
Ωe
Ak
θ (ψ, λ

l
S)

+

nD∑
l=1

⟨δ fu, τ gl
D⟩∂Ωe∩ΓDA(ψ, λl

D)

−

m∑
i=1

na∑
k=1

{
Ak

uL (δ fu, σ
i

L Fi
L )+Ak

up(δ fu, σ
i
p f i

p )
}
Ak
ϑ (ψ,ψ i )

−

m∑
i=1

{
Auu(δ fu, σ

i
u f i

u )−Auû(δ fu, σ
i

û f i
û )

}
A(ψ,ψ i )

Rm
p (δ fpψ) :=

na∑
k=1

nD∑
l=1

⟨δ fp, gl
D · A

k n⟩∂Ωe∩ΓDA
k
ϑ (ψ, λl

D)

−

m∑
i=1

na∑
k=1

{
Ak

pu(δ fp, σ i
u f i

u )−Ak
pû(δ fp, σ i

û f i
û )

}
Ak
ϑ (ψ,ψ i )

Rm
p (δ fρψ) := −

m∑
i=1

{
Aρp(δ fρ, σ i

p f i
p )−Aρρ(δ fρ, σ i

ρ f i
ρ )

}
A(ψ,ψ i ),

(B.1)

or the HDG local problems and by

Rm
û (δ fûψ) := −

nN∑
l=1

⟨δ fû, gl
N ⟩∂Ωe∩ΓN A(ψ, λl

N )

−

m∑
i=1

{
Aûu(δ fû, σ

i
u f i

u )+Aûû(δ fû, σ
i

û f i
û )

}
A(ψ,ψ i )

−

m∑
i=1

na∑
k=1

{
Ak

ûL (δ fû, σ
i

L Fi
L )Ak

ϑ (ψ,ψ i )

+

[
Ak

û p(δ fû, σ
i
p f i

p )+Ak
ûû(δ fû, σ

i
û f i

û )
]
Ak
ϑ (ψ,ψ i )

}
,

Rm
ρ (δ fρψ) := −

na∑
k=1

nD∑
l=1

⟨δ fρ, gl
D · A

k n⟩∂Ωe∩ΓDA
k
ϑ (ψ, λl

D)

−

m∑
i=1

na∑
k=1

Ak
pû(δ fρ, σ i

û f i
û )Ak

ϑ (ψ,ψ i )

(B.2)

for the HDG global problems.

Appendix C. Geometric mapping for the channel with two microswimmers

The mapping used in the example involving the flow around two microswimmers is designed as the composition
of two mappings. The first mapping, Mµ1 , is defined to account for the change of radius of the two spheres and
it is written in the general separable expression of Eq. (22) with

M1
1(x) =

⎧⎨⎩
1
r

x−0 if ∥x−0 ∥ ≤ Rout

0 otherwise
ψ1

1 (µ1) =
Rout(R+(µ1)− Rref)

Rout − Rref
,

M2
1(x) =

{
x−0 if ∥x−0 ∥ ≤ Rout

0 otherwise
ψ2

1 (µ1) =
Rout − R+(µ1)

R − R
,

out ref
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M3
1(x) =

{
x0 if ∥x−0 ∥ ≤ Rout

0 otherwise
ψ3

1 (µ1) = 1,

M4
1(x) =

⎧⎨⎩
1
r

x+0 if ∥x+0 ∥ ≤ Rout

0 otherwise
ψ4

1 (µ1) =
Rout(R−(µ1)− Rref)

Rout − Rref
,

M5
1(x) =

{
x+0 if ∥x+0 ∥ ≤ Rout

0 otherwise
ψ5

1 (µ1) =
Rout − R−(µ1)

Rout − Rref
,

M6
1(x) =

{
−x0 if ∥x+0 ∥ ≤ Rout

0 otherwise
ψ6

1 (µ1) = 1,

(C.1)

where x±0 = x ± x0, Rout = 0.45 and, as detailed in Section 5.3, x0 = (1.5, 0) and Rref = 0.116. The radius of
he sphere centred at x0 is defined as R+(µ1) = −0.0372µ2

1 + 0.0968µ1 + 0.25 so that it takes value 0.116 for
1 = −1, 0.25 for µ1 = 0 and 0.3096 for µ1 = 1. The radius of the sphere centred at −x0 is defined in terms of

R+(µ1) in such a way that the total volume of the two spheres is maintained, namely (R+)3
+ (R−)3

= 1/32. The
iecewise nature of the mapping is illustrated in Fig. C.30, in the vicinity of one of the spheres.

The second mapping, Mµ2 , is defined to account for the change of distance between the spheres and it is written
in the general separable expression of Eq. (22) with

M1
2(x) =

{
d(x)

0

}
ψ1

2 (µ2) = −x0µ2/3,

M2
2(x) = x ψ2

2 (µ2) = 1,
(C.2)

where the function d(x) is given by

d(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + L
x0 + Rint − L

if x ∈ [−L ,−x0 − Rint]

−1 if x ∈ [−x0 − Rint,−x0 + Rint]
x

x0 − Rint
if x ∈ [−x0 + Rint, x0 − Rint]

1 if x ∈ [x0 − Rint, x0 + Rint]
x − L

x0 + Rint − L
if x ∈ [x0 + Rint, L],

(C.3)

ith Rint = 0.47 and, as detailed in Section 5.3, L = 6.
As illustrated in Fig. C.30 both mappings are defined in a piecewise form. The mappings selected are only

0 on the artificial interfaces denoted by discontinuous lines in Fig. C.30. Therefore, to facilitate the numerical
ntegration of the terms involving the Jacobian and the adjoint of the mapping, the computational meshes selected
re conforming with these interfaces, as it can be observed in the mesh displayed in Fig. 14. Mappings with higher
egree of continuity could be designed using a problem specific approach or the more general technique described
n [55]. Further numerical experiments, not reported here, show that a greater degree of continuity enables to use

eshes that do not conform with the piecewise nature of the mapping but they do not provide any extra accuracy
nd they induce a higher cost due to the extra number of integration points required to integrate the higher order
acobian of the mapping.

It is also worth noting that other mappings, with a smooth transition in the artificially created interfaces can
e devised. Numerical experiments not reported here for brevity, demonstrate that the piecewise linear mapping
escribed here results in a lower number of integration points required to ensure that errors due to the numerical
ntegration are lower than the interpolation error. However, the choice of a smoother mapping circumvents the need
o create meshes conforming with artificially created interfaces. In any case, as stressed in Remark 1, this work
ocuses on the combination of the HDG and PGD formulations and for general geometries the general procedure

escribed in [19] is preferred, rather than the definition of analytical mappings.
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Fig. C.30. Illustration of the piecewise nature of the mappings Mµ1 and Mµ2 detailed in Eqs. (C.1) and (C.2) respectively in the vicinity
f the sphere centred at x0.

ppendix D. Geometric mapping for the corrugated channel

Similarly to the previous example, the mapping used in the example involving the flow around a sphere in a
orrugated channel is designed as the composition of two mappings. The first mapping, Mµ1 , is defined to account

for the change of radius of the sphere and it is written in the general separable expression of Eq. (22) with

M1
1(x) =

⎧⎨⎩
1
r

x if ∥x∥ ≤ Rout

0 otherwise
ψ1

1 (µ1) =
Rout(R(µ1)− Rref)

Rout − Rref
,

M2
1(x) =

{
x if ∥x∥ ≤ Rout

0 otherwise
ψ2

1 (µ1) =
Rout − R(µ1)
Rout − Rref

,

M3
1(x) =

{
x if ∥x∥ ≤ Rout

0 otherwise
ψ3

1 (µ1) = 1,

(D.1)

where Rout = 0.4 and Rref = 0.2 and the radius of the sphere, centred at the origin, is defined as R(µ1) =
(µ1 + 2)/10.

The second mapping, Mµ2 , is defined to account for the change of amplitude in the undulatory part of the
channel. It only affects the y coordinate and, more precisely, only the definition of fn in Eq. (58). More precisely,
he profile of the channel is given by Eq. (58) with fn = 1/2+ µ2.
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