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Abstract

Grid generation for reservoir simulation, must honour classical key geolog-

ical features and multilateral wells. The features to be honored are classified

into two groups; 1) involving layers, faults, pinchouts and fractures, and 2) in-

volving well distributions. In the former, control-volume boundary aligned grids

(BAGs) are required, while in the latter, control-point (defined as the centroid of

the control-volume) well aligned grids (WAGs) are required. Depending on dis-

cretization method type and formulation, a choice of control-point and control-

volume type is made, i.e. for a cell-centred method the primal grid cells act as

control-volumes, otherwise for a vertex-centred method the dual-grid cells act as

control-volumes. Novel three-dimensional unstructured grid generation methods

are proposed that automate control-volume boundary alignment to geological

features and control point alignment to complex wells, yielding essentially per-

pendicular bisector (PEBI) meshes either with respect to primal or dual-cells

depending on grid type. Both grid types use tetrahedra, pyramids, prisms and

hexahedra as grid elements. Primal-cell feature aligned grids are generated us-

ing special boundary surface protection techniques together with constrained

cell-centred well trajectory alignment. Dual-cell feature aligned grids are gener-

ated from underlying primal-meshes, whereby features are protected such that

dual-cell control-volume faces are aligned with interior feature boundaries, to-

gether with protected vertex-centred (control point) well trajectory alignment.
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The novel methods of grid generation presented enable practical application of

both method types in 3-D for the first time. The primal and dual grids gener-

ated here demonstrate the gridding methods, and enable the first comparative

performance study of cell-vertex versus cell-centered control-volume distributed

multi-point flux approximation (CVD-MPFA) finite-volume formulations using

equivalent mesh resolution on challenging problems in 3-D. Pressure fields com-

puted by the cell-centered and vertex-centered CVD-MPFA schemes are com-

pared and contrasted relative to the respective degrees of freedom employed, and

demonstrate the relative benefits of each approximation type. Stability limits of

the methods are also explored. For a given mesh the cell-vertex method uses ap-

proximately a fifth of the unknowns used by a cell-centered method and proves

to be the most beneficial with respect to accuracy and efficiency. Numerical re-

sults show that vertex-centered CVD-MPFA methods outperform cell-centered

CVD-MPFA method.

Keywords: Boundary aligned unstructured hybrid gridding; Three

dimensional Delaunay mesh generation; Control Volume Distributed

Multipoint Flux Approximation (CVD-MPFA); Cell-centered versus

vertex-centered methods;

1. Introduction

General reservoir geometries are comprised of various features such as faults,

fractures, pinch-outs and layered media, with a wide range of variations in

porosity and permeability across different layers, e.g., [80, 54, 55, 56, 41, 5,

43, 75, 76, 9] where a range of gridding strategies are presented. In addition5

reservoirs can have a complex spatial distribution of wells in place [5, 28]. In

order to minimize the effects of grid orientation and discretization errors in

simulation of hydrocarbon flows, grids generated should conform as closely as

possible to geological features, while maintaining compatibility with the flux

approximation schemes employed.10

In three dimensions the term primal-cell grid is used for meshes comprised
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of tetrahedra, pyramids, prisms, and/or hexahedra cells. Whereas, a dual-mesh

is derived from an underlying primal mesh as median and/or voronoi dual, and

is comprised of polyhedron cells. Grid generation methods, generally employ

primal-cells to mesh a geometry. For example a structured-mesh is generated15

by employing hexahedra as grid elements [82], whereas unstructured meshing

is carried out using tetrahedra cells [34, 85, 86], and hybrid mesh generation

involves, e.g., prisms for boundary layer meshing together with tetrahedron

grid elements for meshing regions away from the domain boundaries [38].

A cell-centered approximation uses the primal grid cells as control-volumes,20

while a vertex-centered approximation uses the dual-cells, making the choice of

control-volume discretization dependent, this has a critical impact on the grid

generation methods presented in this work. All flux approximation schemes

used here are control volume distributed (CVD), i.e. employ a piecewise con-

stant representation of rock properties over the grid control-volumes, with flow25

variables defined at control volume nodes or control-points (e.g. control-volume

centroids). The two-point flux approximation (TPFA) is still most widely used

in reservoir simulation due to its simplicity e.g. [6, 16, 2, 11, 40]. However, due to

the limited range of applicability of the TPFA scheme (discussed below) more ro-

bust control-volume distributed multi-point flux approximation (CVD-MPFA)30

schemes have been developed, cell-centered CVD-MPFA schemes are presented

in [16, 19, 18, 27, 26], other cell-centered CVD-MPFA related methods are pre-

sented in [1, 2, 88, 47] and cell-vertex (dual-mesh) CVD-MPFA schemes are

presented in [18, 20, 21]. Unstructured mesh generation techniques are broadly

classified into two categories: the advancing front method; and Delaunay tri-35

angulation [46, 63, 64]. The advancing front method provides an optimal point

placement strategy and generates quality meshes. The advancing front method

constructs a mesh by generating each element one at a time, where in order

to validate each newly created element a check for intersection with existing

elements is required [46]. Due to these reasons the advancing front method is40

not only inefficient but also suffers from robustness issues. Delaunay triangula-

tion (DT) satisfies the empty circumsphere property (Delaunay criterion), i.e.,
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every simplex (tetra) constituting a Delaunay grid does not contain any other

mesh point, within its circumsphere drawn [85, 32]. Delaunay triangulations

have the desirable locally orthogonal PErpendicular BIsectional (PEBI) prop-45

erty which is required by the industry standard two-point flux approximation

for consistency when applied to isotropic fields or on k-orthogonal grids [6, 16].

In Delaunay mesh generation each point is triangulated one at a time generat-

ing multiple elements. It is well established that the Delaunay criterion has a

sound mathematical basis, while its counter part, the advancing front method50

provides optimal point placement [64]. The idea to combine these two meth-

ods into one technique was introduced in the nineties [67, 63, 64]. In such a

combined technique field points are introduced in a manner similar to the ad-

vancing front method, while their connections are improved by enforcing the

Delaunay criterion [63]. The advancing front method used in conjunction with55

the Delaunay criterion both provides optimal point placement, and simplifies

boundary aligned grid generation. There are several algorithms for construction

of Delaunay triangulation [45, 30, 25], among others the incremental insertion

[77, 8, 87, 31] is the most widely used technique. It is a simple and flexible

technique in that its extension to higher space dimensions is relatively straight60

forward [82]. The two variants of incremental insertion algorithm, namely Wat-

son’s [87] and Green-Sibson’s [31] method, are the most commonly employed

algorithms for construction of Delaunay triangulation. The Green-Sibson’s al-

gorithm is more general in the sense that it can be used with any user defined

connection optimization criterion to construct a data dependent triangulation65

[8]. In this work, we employ Green-Sibson’s [31], used in conjunction with the

advancing front point placement.

In this paper following the introduction, methods are presented for gener-

ating primal-cell grids for cell-centred methods and dual-cell grids for vertex-

centred methods in section 2, where in particular gridding, boundary surface70

protection and curve protection procedures are described (in five key steps in

subsections and flow chart displayed in Figure 2) that ensure both primal and

dual-cell methods honour interior geological boundaries, and perforated grid
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blocks (wells). The methods are illustrated with a well-fault interface example

in section 3. A brief summary of CVD-MPFA methods together with a measure75

of M-matrix violation is then presented in section 4. This is followed by the

results in section 5, where example primal and dual cell grids are presented to-

gether with results that provide comparisons in performance of the correspond-

ing cell-centred and vertex-centered CVD-MPFA flux approximation schemes.

A summary of the grid generation methods and CVD-MPFA comparisons is80

given section 6. Finally, we close with conclusions in section 7.

2. Proposed grid generation methods

In this work geological feature based primal and dual grid generation is

presented for two groups of features [55, 56, 57, 59]. The first group involves

domains that may include geological layers, pinch-outs, fractures and/or faults,85

and the second group involves well distributions. The primal and dual grid

types are illustrated in Figure 1 and the five key steps involved in the proposed

grid generation are summarized in the flowchart of Figure 2, and are detailed

in the subsequent subsections that follow below.

Primal cell feature based grids are generated for cell-centred methods, with90

primal cell-faces (control-volume faces) aligned with geological boundaries. Bound-

ary preservation is ensured by the novel use of special protection spheres, and

illustrated for surface meshing with reference to Figure 1(a). In the empty mesh

(described below subsection 2.4) protection spheres enclose the surface triangu-

lation simplexes so that the surface definition is retained without any part of95

the surface triangulation being reconnected when volume meshing takes place.

A formal statement of protection sphere properties is captured in the theorem of

Appendix A. Volume meshing is performed such that field points are introduced

so as to avoid invading protection spheres and obey the Delaunay criterion, en-

suring the mesh is guaranteed to be a DT. However in contrast for deviated100

wells special local grid cell generation is required in order to preserve the well

trajectories (so as to remain cell-centred on the primal mesh), which we call
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a halo. This is illustrated in Figure 1(b), where in this case the halo cells are

hexahedra. Introduction of a halo necessitates the use of other cell types to gen-

erate a local halo interface with the main grid, resulting in polyhedra (below)105

and consequently the DT property is relaxed locally. In the absence of wells

the grid would be comprised of a purely tetrahedral DT mesh with the PEBI

property [51, 64].

Dual-cell feature based grids are generated for vertex-centred methods such

that dual-cell faces (i.e. control-volume faces) are aligned with the geological110

boundary surfaces, which is achieved via the use of surface enclosing halo cells.

Thus boundary aligned grids are generated while primal grid vertices are not

placed on interior geological boundaries, enabling vertex-centred methods to

maintain the control-volume distributed property. We illustrate dual-cell sur-

face meshing with reference to Figure 1(c), which shows a halo protected mesh115

comprised of prismatic cells (polygonal prisms) and polyhedral dual cells. Pyra-

mids are used to provide transition from quad faces of the halos, and triangular

faces of the outer tetra mesh. For the local non-tetra mesh, it is hard to ensure

that the circumsphere of every element (prism, pyramid and/or hexahedron) is

empty [13]. In order to design a robust halo construction procedure, the PEBI120

property is relaxed for halo elements only, however away from halos tetrahedra

are used as grid elements and are ensured to have the PEBI property via the

Delaunay criterion. Gridding of well trajectories is more straight forward in dual

grid generation, as they are defined by primal grid nodes (vertices), Figure 1(d)

with protection spheres ensuring their preservation under the action of volume125

meshing and a DT is ensured.

Thus both primal and dual-cell grids are generated such that their con-

trol volume faces honour geological boundaries yielding boundary aligned grids

(BAGs), while for wells the grid nodes (or control-points) are aligned such that

when joined sequentially the control points retrieve the well-trajectories, and130

are called well aligned grids (WAGs). The respective use of protection spheres

and halos in these boundary preserving grid generation methods are a key con-

tribution of this work and further details are given below.

6



Primal-Cell Geological Feature Based Grids
(Grids for Cell-Centered Methods)

Primal Control-Volume Aligned Grids
(Fractures/Faults/Layers/Pinchouts)

Primal Control-Point Aligned Grids
(Honour Well-Trajectories)

(a) Primal-BAG
(Involves
protection spheres,
illustrated in yellow)

(b) Primal-WAG

(Requires halo
-construction)

Dual-Cell Geological Feature Based Grids
(Grids for Vertex-Centered Methods)

Dual Control-Volume Aligned Grids
(Fractures/Faults/Layers/Pinchouts)

Dual Control-Point Aligned Grids
(Honour Well-Trajectories)

(c) Dual-BAG

(Requires halo construction)

(d) Dual-WAG

(Involves protection spheres,
illustrated in yellow)

Figure 1: Classification of geological feature based grids, i.e., geological fea-

ture/boundary aligned (BAG) and well-aligned grids(WAG) both with respect to

primal and dual cells.
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Input Data Set
(Points defining domain
boundaries, geological
objects, and/or wells)

i) Curve Meshing (Well trajectories)
ii) Surface Meshing (Geological
objects and domain boundaries)

Well-Halo: Enclose
well-trajectories

with Halos

Feature-Halo: En-
close faults, fractures,
or layers with Halos

Empty-Mesh: Boundary - Halo Connection

Empty mesh, and
Semi constrained
boundary recovery

Novel technique to con-
strain/recover halo faces

Novel technique for con-
structing Pyramids

between hex & tet cells

Protection Spheres: Features
not enclosed with Halos are pro-
tected with protection spheres

Construct Halo
Select Target Mesh

Volume Meshing: Recur-
sively mesh new points until
desired mesh size is achieved

Generate new points using ad-
vancing front points placement

Filter candidate points

Mesh filtered points
using Delaunay criterion

Step- 1

Step- 2

Step- 3

Step- 4

Step- 5

Primal
Cell-

Center
ed

Meth
ods

Dual

Vertex-Centered Methods

Figure 2: Key steps involved in the proposed method for generating boundary and

well aligned grid.
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2.1. Step-1: Curve and Surface meshing

Well-trajectories are characterized by three dimensional curves and embed-135

ded after being discretized using one dimensional curve linearization [49, 60],

i.e., as a series of line segments, which when joined sequentially give rise to well-

paths. Surface meshing techniques [48] are employed to construct a triangular

surface-mesh of domain boundaries and of surfaces relating to geological ob-

jects. In this work, parametric surface meshing [83, 60] is used to mesh domain140

boundaries and geological objects. Meshing a surface in mapped two dimen-

sional (u, v) space requires the use of a metric [48, 23, 60]. In a mapped space a

metric is a 2× 2 tensor, derived from a three dimensional representation of the

surface. The metric allows the curvature of the surface to be taken into con-

sideration. Since the metric is in general an anisotropic tensor, in the mapped145

space an anisotropic triangulation is generated subject to anisotropic variation

of the Delaunay criterion [32, 60]. Figure 3 displays the resulting anisotropic

mesh generated in a unit square parametric space [0, 1] × [0, 1], together with

the corresponding isotropic mesh in physical space. The surface mesh is used

(a) Mesh of a surface in mapped space (b) Isotropic mesh in physical space

Figure 3: Anisotropic meshing in parametric (mapped) space (u, v), and correspond-

ing mesh in the physical space.

directly in primal grid generation, with protection spheres enclosing surface grid150
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cells (in the corresponding empty mesh, e.g. see subsection 2.4) ensuring the

surface triangulation is not violated when DT of the volume takes place. For

the dual mesh, halo cells are introduced so as to enclose the surface, prior to

the definition of the dual.

2.2. Step-2: Halo construction155

The next step involves halo construction, which is performed by enclosing ge-

ological boundary surfaces and/or wells with prismatic-cells (polygonal prisms)

such that actual features are retrieved as medial surfaces / curves derived from

the halo elements. This is applied to well-paths for a cell-centred method and

to geological objects for a vertex-centred method. A summary is given below160

with further details in appendix B and C.

2.2.1. Halos enclosing well-paths: for cell-centred method only

Geological reservoirs often have a layered structure, and well-trajectories

traversing through the layers penetrate into the reservoir domain. When gener-

ating grids for use with cell-centred methods, multilateral well trajectories must165

be enclosed by protecting them with halos. To elucidate halo construction, con-

sider a well-path discretely defined by a point set displayed in Figure 4a. At the

points where a well-path intersects the first geological layer, a polygon located

in the layer is constructed with its centroid positioned at the well intersection

point. For the selected case two polygons (quads) located at the top and bot-170

tom surfaces are constructed such that their centroids meet at the intersection

points of the well-path, with the respective surfaces, e.g., see Figure 8a. To

start with halo construction, using the above constructed polygons, spears com-

prised of pyramids (or in general cones) are first built as shown in Figure 4a. A

halo is propagated via spear pyramids which enables sequential hexahedra cell175

construction, displayed in 4b. The spears are propagated until the spear heads

meet at a single point, called a junction point, e.g., see Figure 4c(left). Finally,

the spear heads are opened to fully enclose features by the resulting hexahedron

halo, as shown in Figure 4c(right). Figure 4c (right) also shows the medial curve
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(a) Spear

construction

(b) Advance spear

constructing each

hexahedron 1-1

(c) Merge spear ends to fully enclose

well-trajectory with halo

Figure 4: Procedure to protect well-paths by enclosing them with hexahedron halo.

characterizing an honoured well-path in close proximity.180

The procedure to sweep a polygon along a well-path is given in appendix B

and is summarized (referring to figures in appendix B ) in the following steps:

• Translation: Translate a sweeping polygon, i.e., base of the spear (pyra-

mid), to the summit-node of the pyramid along the well-trajectory, as

shown in Figure 20a.185

• Projection: Project the translated swept polygon on to a plane passing

through the summit-node, defined by the normal taken as an average of

edge vectors emanating from the summit-node, i.e., bisection plane of

edges meeting at the summit node (Figure 20b).

• Size correction: Ensure that the size of the projected polygon matches190

the size of reference polygon, i.e., to the base of the pyramid, this step is

displayed in Figure 20c.

• Propagating spear: A new polygon is constructed, by sweeping the base

of the existing spear element to its summit node. There is a one-one

correspondence between a newly generated swept polygon and the base of195
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the existing pyramid (spear). This allows construction of a hexahedron

together with a pyramid (spear) required for propagation, as displayed in

Figure 20d.

2.2.2. Halo construction enclosing geological boundary surfaces: for vertex-centred

method only200

When generating grids for use with vertex-centred methods, surfaces char-

acterizing geological objects are enclosed with halos, such that the input surface

is retrieved as a medial surface of the halo elements. Before starting halo con-

struction, for every surface mesh point a marching vector and marching step

size are established. The marching vectors are defined by averaging normals to205

the surface-mesh triangles sharing the surface mesh point to be enclosed with

a halo, e.g. see Figure 21.A marching vector constructed by averaging face

normals may intersect with other neighbouring marching vectors. A variant of

Laplacian smoothing, can be used to smooth the marching vector, such that it

falls in the visibility cone [38] associated with the point being split, and also to210

resolve any possible intersection with neighbouring normals. For every surface

mesh point the step-size assumed is representative of the average length of edges

of the surface mesh sharing the point, limited by a user defined scale factor. To

ensure formation of valid elements, the scale-factor can be locally modified.

Initially the surface is comprised of triangles, operating on every surface mesh215

point(p) which is split into an edge (p̄′q), and the mesh is locally modified. The

insertion of an edge in a background mesh comprised of triangles, tets, pyramids

and/or prisms, also requires the use of tets, pyramids, and/or prisms. The key

steps involved in enclosing a surface by protecting it with a halo are:

• Cluster of point p: Find group of elements (triangles, tets, pyramids220

and/or prisms) sharing point p, called the ball (cluster) of p

• Star-shaped polyhedron: Derive a star-shaped polyhedron (SSP) by delet-

ing repeated interior edges, triangles and/or quads in the ball of p.
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• Split point into an edge: Using the associated marching vector, point p is

split by pushing point p downward generating a new point q and modifying225

p to p′ by pushing it upward. The marching vectors are limited by step

size, after splitting every point p into an edge (p̄′q).

• Re-mesh star-shaped polyhedron: Re-triangulate the star-shaped polyhe-

dron by connecting its edges/faces (tri/quad) to the edge ( ¯p′q) in a consis-

tent manner, generating tetrahedrons, pyramids and/or prisms. Further230

details relating how to re-mesh a SSP is given in appendix C.

Next we demonstrate the new method by honouring the surface displayed in

Figure 3b with respect to dual-cells. Following the above procedure the surface

is enclosed with a halo as displayed in Figure 5a. The medial surface of the

halo corresponds to the input surface, e.g., see Figure 5b (centroid-dual) and is235

honoured with respect to the dual-cell faces. Salient features of the proposed

(a) Halo constructed around a representative

feature shown in Figure 3b

(b) Centroid-dual of the halo

protected primal-mesh (Figure 5a)

Figure 5: Geological features(fault/layer/fracture) in a dual-configuration are hon-

oured by protecting them with halos constructed such that the medial surface of the

halo corresponds to the embedded feature in close proximity.

halo construction method are given below:

• Operation on each point one by one in an unstructured manner and can

also be used for 2.5D grid generation applications.

• Bi-directional marching thereby splitting points constituting the under-240

lying surface by moving them in upward and downward directions, such
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that the input surface can be retrieved as a medial surface of the halo

elements.

• Operating on the star-shaped polyhedron associated with each point en-

sures visibility of the point (split-edge) with respect to edges/faces of the245

star-shaped polyhedron, yielding a valid grid.

• A quality and/or consistency check (is implemented), resolving intersec-

tion among the marching vectors, and allows changing marching vectors

locally to avoid formation of self intersecting tangling elements.

• When halo construction is in transition, in addition to prisms the method250

involves the use of pyramids and tetrahedrons. The points where geo-

logical features intersect are treated via the use of spears comprising of

tetrahedrons and pyramids.

2.3. Step-3: Empty-Mesh A: Boundary - Halo Connection

The first stage of Delaunay mesh generation involves connecting outer bound-255

ary nodes with interior boundary nodes and/or halo nodes creating what is

termed an empty mesh. In this section we describe connection to halos (Empty-

Mesh A). Connection to boundaries is described in Step 4 (Empty-Mesh B).

Surface and curve meshing together with halo enclosure is performed a-priori.

This results in a predefined data set and connectivity defining boundaries, halos,260

geological objects, and wells. Halos enclosing wells and/or geological objects are

comprised of prismatic cells with quad (polygonal) faces. For Delaunay meshing

and to recover halo faces (as a concatenation of simplexes), it is a prerequisite

to subdivide any non-simplex external face into simplexes. Delaunay empty

mesh generation involves the triangulation of a convex hull [14, 51] connecting a265

predefined data set. The empty-mesh is generated by employing an incremental

insertion algorithm used in conjunction with the insphere criterion [64]. In De-

launay triangulation connections are established such that none of the spheres

circumscribing simplexes contain any site in their interiors, but it cannot be

guaranteed that connections between the given point set are present in a pre-270

scribed manner [85]. Consequently, integrity of the input boundaries, halo(s),
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and/or curves can not be guaranteed. Therefore, it is mandatory to couple De-

launay triangulation algorithms with a boundary/feature recovery technique(s).

This limitation of the Delaunay meshing is well known, and methods have been

described [50, 85, 86] which can be employed to retrieve missing boundary con-275

nections.

2.3.1. Semi-constrained feature recovery supported by Steiner points

In three dimensions boundary recovery involves retrieving missing edges

(that define predefined surfaces and curves), this is followed by face recovery,

i.e., recovering the triangular surfaces. Two methods used to constrain a mesh280

to honour features/boundaries are: 1) conformal (local refinement) or stitching;

and 2) non-conformal (local reconnection with/without Steiner points) recov-

ery. Conformal boundary recovery is achieved with the use of additional points,

called Steiner points, introduced recursively splitting missing connections (edges

and/or faces), e.g., see [37, 85]. The conformal boundary recovery technique285

operates in an iterative manner, wherein during every iteration after ensuring

integrity of edges, face recovery is performed, and missing faces are recovered, as

a concatenation of sub-edges and/or sub-faces supported by the Steiner point(s).

In the conformal recovery technique new points are triangulated subject to the

Delaunay criterion, and the resulting boundary honoured grid will have the290

PEBI property [51, 58]. Boundary recovery by local-reconnection / swapping

relies on edge and/or face-swaps used to retrieve missing connections. In con-

trast to the two dimensional constrained boundary recovery technique [79], in

three dimensions there is no theoretical basis for the success of local reconnection

methods, this is due to the existence of Schönhardt polyhedron [32, 50, 72, 86]. A295

Schönhardt configuration, can not be triangulated without adding a new point,

thus success of constrained boundary recovery relies on the occasional insertion

of Steiner points. Boundary recovery involving local-reconnection used in con-

junction with Steiner point insertion, is a semi-constrained boundary recovery

technique. In this work:300

• For primal grids curves corresponding to wells are recovered by using the
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stitching conformal recovery technique, and have PEBI property.

• For dual-grids, face recovery is required for boundaries and in particular

for halos, as a concatenation of simplexes without Steiner points. To this

end, at first semi-constrained face recovery with minimal use of Steiner305

points is performed, this is followed by fully constrained recovery achieved

by suppressing Steiner points. A novel technique to suppress Steiner points

is described below (section 2.3.2).

With semi-constrained recovery, missing faces of boundaries and those of ha-

los have been recovered as a group of sub-faces (triangles) supported by Steiner310

point(s). At this point, the superfluous tetrahedrons including those formed in-

side the halo(s) and those outside the region of interest formed due to the convex

bounding box, containing the given data set employed for the incremental inser-

tion algorithm to carry out Delaunay triangulation are now deleted [32]. This

will simplify the empty mesh for further processing, and may also remove some315

Steiner point(s). Next to fill a halo channel with predefined halo elements, 1)

Steiner points must be removed; and 2) Pyramids acting as transition elements

connecting triangular faces of tetra and quad faces of halo elements should be

constructed.

2.3.2. Novel technique to suppress Steiner points & fully constrained feature320

recovery

Any Steiner point(s) interrupting the pre-defined connectivity of the halo

elements must be removed. This demands fully constrained recovery without

Steiner points. As described above in three dimensions fully constrained De-

launay triangulation can not be achieved by local reconnection alone, thus at325

first we perform semi-constrained recovery and then fully constrained recovery

is achieved by suppressing Steiner point(s) ensuring connectivity of the input

mesh or halo. To suppress a Steiner point we re-mesh its associated star-shaped

(Bowyer-Watson’s) polyhedron(SSP) locally, by projecting a Steiner point in a

direction normal to the intersected edge and/or face inside the SSP, e.g., see330
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Figure 6. In a case where a Steiner point is locked, i.e., its movement in any

direction renders one or more tetrahedral element(s) connected to it to be neg-

ative, then to ensure topology of quad faces of the halo hexahedron, low quality

elements may form which are later exuded by local reconnection and/or smooth-

ing. Figure 6 displays key steps involved, when suppressing a Steiner point, and335

are explained below:

• Cluster sharing Steiner point(p): Find the set of elements sharing the

Steiner point(p) to be lifted, also called a ball/cluster of point p. Figure

6a displays the cluster of a Steiner point p introduced to honour a quad

face of a halo hexahedron.340

• Star-shaped polyhedron: A star-shaped polyhedron is derived from the

cluster sharing Steiner point p, this is done by removing repeated interior

faces of the elements constituting a cluster of the point p, e.g., see Figure

6b.

• Lift the steiner point(p) and modified star-shaped polyhedron: In order to345

recover an underlying quad face, as a set of two triangles, the Steiner point

being suppressed is lifted in a direction normal to the underlying quad face,

a distance limited by ensuring visibility of the lifted point with respect to

faces of the associated star-shaped polyhedron. After the Steiner point

is lifted, the underlying quad face is recovered as a set of two triangles,350

modifying the associated star-shaped polyhedron, e.g., see Figure 6c.

• Re-meshing the modified star-shaped polyhedron: Connecting the lifted

Steiner point(p) to the faces of the modified star-shaped polyhedron, a set

of new tetrahedrons defining the ball of point p is created, as shown in

Figure 6d.355

When suppressing Steiner points, a special case may be encountered and is

described in Appendix D.
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(a) A Steiner point(p)

introduced to honour quad

face (abcd) of a halo-cell.

a

bc

d

e

p

(b) Star-shaped polyhedron

associated with Steiner point

p, constructed by deleting

interior faces

(4pae,4pbe,4pce,4pde)

from the cluster of p.

a

bc

d

e

p

(c) Lift Steiner point &

replace sub-diagonals of

underlying quad face with a

desired diagonal.

a

bc

d

e

p

(d) Re-mesh star-shaped

polyhedron, joining each of its

faces to the lifted Steiner

point

Figure 6: Procedure to suppress Steiner points, by lifting them in a direction normal

to the underlying quad face.
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2.3.3. Novel technique for constructing pyramids as transition elements & filling

halo channel

After fully constrained recovery is achieved, in the empty mesh, each quad360

face of the halo exists with a diagonal subdividing it into two triangles. By join-

ing each set of two such triangles the underlying quad faces are reconstructed.

The empty mesh is comprised of tetrahedra, and therefore insertion of quad-

faces over the halo surfaces, requires a transition from hexahedra (prisms) to

the tetrahedra mesh. To establish connectivity between (hex) quad and (tet)365

triangular faces, pyramids are used as transition elements. Here, a novel tech-

nique to construct an unstructured pyramid layer abutting the halo quad faces,

such that the underlying halo channel can be filled with hexahedra is used.

To recover a quad face, the edge splitting it into two triangles is deleted, and

a pyramid is constructed abutting the recovered quad-face. Figure 7 presents370

the pictorial representation highlighting key steps involved in constructing the

pyramids as transition elements. For every edge that splits the underlying halo

quad into two triangles, we operate in the following manner:

• Edge cluster: Find the set of elements (tets) sharing the edge (diagonal)

subdividing an underlying halo quad face into two triangles, named edge375

cluster. Figure 7a displays an edge ac subdividing the halo quad(abcd)

into two triangles (4abc,4acd). There are three tetrahedrons sharing the

edge ac, and these are (abce, acdf, acef).

• Star-shaped polyhedron: Deleting repeated interior faces of the cells con-

stituting a cluster of the edge to be removed, an associated star-shaped380

polyhedron (SSP) is derived, e.g., see Figure 7b.

• Deleting edge and constructing quad-SSP: By default a star-shaped poly-

hedron (SSP) is comprised of triangular faces, deleting the edge on the

halo face at hand, the two triangular faces of the SSP sharing the edge are

joined to construct a quad, yielding a modified star-shaped polyhedron385

having a quad face, called a quad-SSP.
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• Re-meshing a quad-SSP: In order to construct a quality pyramid, a new

point in a direction normal to the recovered quad face is introduced inside

the quad-SSP, limited by a scale factor initially assumed as representa-

tive of spacing of points constituting the underlying quad, as displayed in390

Figure 7c. The scale factor is then limited by a distance ensuring local-

convexity [64], i.e., visibility of the faces constituting the quad-SSP with

respect to the point being introduced is ensured. The quad-SSP is then re-

meshed by connecting the new point to the faces of the quad-SSP, creating

a pyramid abutting the halo face and tets are generated when triangular395

faces of the quad-SSP are joined to the new point, e.g., see Figure 7d.

Since the quad-SSP is star-shaped with respect to points located on the as-

sociated edge [32], the proposed method for pyramid construction is robust.

Appendix E describes special cases, that may be encountered when construct-

ing pyramids as transition elements.400

2.4. Step-4: Empty-Mesh B: Boundary - interior protection-sphere enclosed

boundary connection

Empty mesh generation involves connecting outer boundaries to interior

boundaries and halos. Connection to halos is described in Step-3: (Empty-Mesh

A) which yields a predominately Delaunay grid. After connection with interior405

boundary nodes, and prior to volume meshing, in order to avoid swapping and

to preserve integrity of feature boundary connectivity honoured/recovered in the

empty mesh (Step-3), we introduce protection spheres (described above) that

pass through the simplexes/segments constituting geological objects/wells. In

volume mesh generation, integrity of features is maintained provided any new410

points encroaching the protection spheres are rejected. Protection spheres are

used both in cell-centered and vertex-centered grid generation methods. In the

former, protection spheres are used to retain triangular cell-faces aligned with

geological boundary surfaces, and in the later protection spheres are used to

protect cell-edges constituting well-path(s). Types of protection spheres with415

validity conditions for application are given in Appendix A.
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(a) Edge ac has three tetrahedrons

associated with it (abce, acdf, acef)
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b
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(b) Star-shaped polyhedron obtained

after deleting repeated interior faces

(ace, acf)

a

b

c

d

ef

p

(c) Delete edge(ac), modify star-shaped

polyhedron to have a quad(abcd), and

introduce a new point in a direction

normal to quad face(abcd).

a

b

c

d

ef

p

(d) Construct pyramid by joining quad

face of star-shaped polyhedron(SSP) to

new point and tetra from the tri-faces of

the SSP.

Figure 7: Procedure to construct a pyramid transition element required to recover

underlying quad face
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2.5. Step-5: Feature honoured 3-D volume mesh

The above steps lead to the empty mesh, which is comprised of large low

quality elements connecting far ends of domain boundaries, geological bound-

aries, surfaces and halos. In order to generate a quality well resolved grid leading420

to the three-dimensional volume mesh, the empty mesh is locally refined by in-

troducing new (field) points. In order to start with field mesh generation in

the empty mesh a metric (density distribution function) [63, 29, 49] is assigned

to each point. For uniform isotropic meshing, a scalar value representative of

boundary point spacing defines the metric. In the empty mesh quality elements,425

e.g., those constituting halos satisfy unit metric length approximately and are

not refined. Field points are introduced using the advancing front method and

triangulated subject to the Delaunay criterion iteratively until a unit metric

length mesh [29] is generated. The candidate points introduced during each level

are filtered to remove conflict with protection spheres, halo elements, pyramids,430

and existing previously generated points. In the general case the grid will be

comprised of tetrahedra, prisms, pyramids and hexahedra. The dual mesh is

generated by joining cell centroids (or circumcentres when inside tetra) to cell-

face midpoints, which are joined in turn to cell-edge midpoints. The resulting

subcells attached to a given grid vertex form a polyhedron which is the dual435

cell.

3. Examples: Boundary and well aligned grid generation

A multilateral well penetrating a representative faulted layer, Figure 8a, is

selected to demonstrate the proposed grid generation methods. The five key

steps of section 2 are followed in both cases with appropriate use of halos ac-440

cording to grid type following step 2. Surface meshing of the domain boundaries

and fault is performed first for both grid types.

3.1. Grid generation for cell-centered methods

Cell-centered formulations have primal-cell faces aligned with geological bound-

ary surfaces and halo cell-centers aligned with wells. After surface meshing (step445
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1) the multilateral well is enclosed with a halo comprised of primal-cells (pris-

matic cell type depends on constraints, here hexahedra are used) following step

2 as described in section 2.2.1, and illustrated in Figures 8a-8b. After halo con-

struction, for mesh conformity, the halo sweep polygon(s) for well trajectories

are made an integral part of the corresponding surface mesh together with lo-450

cal refinement. For step 3 (empty mesh A), non-triangular faces of halos are

subdivided into triangles as shown in Figure 8c. For step 4 (empty mesh B),

simplexes defining the embedded feature surface are protected by protection

spheres, c.f. Appendix A. The empty mesh is generated, with surface and halo

integrity ensured, with pyramids forming transition elements and the halo chan-455

nels having prismatic-cells of predefined connectivity, e.g., see Figure 8d. The

empty-mesh is then refined by triangulating new (field) points via the advancing

front procedure of step 5. A cross-section of the resulting final mesh generated,

is displayed in Figure 8e.

3.2. Dual grid generation for vertex-centered methods460

Vertex-centered formulations have dual-cell faces aligned with geological

boundary surfaces and primal grid vertices aligned with wells. After surface

meshing (step 1) halo cells are generated to enclose the geological boundary

surface following step 2 of section 2.2.2, with the fault boundary (Figure 8a)

aligned with the dual-cell faces of the halo displayed in Figure 9a. Local refine-465

ment is performed around the intersection points of well trajectories with the

surface, c.f. Figure 9a. The halo protected empty-mesh A (step 3) is displayed

in Figure 9b, where integrity of the halo surface is ensured with pyramids form-

ing protected transition elements (Figure 9b). Adjacent well trajectory nodes

are enclosed by protection spheres in step 4 (empty-mesh B), also shown in470

Figure 9b, where the halo protected empty-mesh is displayed. The 3-D mesh is

generated following step 5, a cross-section of the final halo protected surface and

well-trajectory preserved primal mesh, is displayed in Figure 9c. The dual-mesh

is then derived from the 3-D mesh of step 5 Figure 9c and displayed in Figure

10a. Note that faces of the dual-cells (polyhedrons) respect the embedded fault475
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Pyramid spear

(a) Using underlying quads,

pyramids are constructed as

spears

(b) Propagate halo to

enclose well-path

(c) Non-triangular faces of

the halo are subdivided to

triangles.

Pyramid abutting
quad face
of the halo

Protection sphere
  enclosing fault

(d) Halo-protected BAG

empty mesh

(e) Well-path enclosed boundary aligned final primal

mesh

Figure 8: Primal-cell boundary and well-halo control-point aligned mesh

Halo protected fault

Multilateral well-path

(a) Halo-protected fault

and conformal

discretization of the

multilateral well-path

intersecting synthetic fault

Protection
 sphere

Halo protected fault

Pyramid

(b) Halo-protected empty

primal mesh

(c) Boundary/feature

enclosed well-path

preserved final primal mesh

Figure 9: Dual-cell boundary and well aligned grid generation (required in cell-vertex

method)
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and the well-trajectory is retrieved by joining the centroids (i.e. vertices) of the

polyhedron (dual) cells enclosing the well-path in a sequential manner, Figure

10b.

(a) Cross-sections of the dual-mesh (b) Close of the dual-mesh showing

dual-cells honoring both fault and well

Figure 10: Cross-section and close up of dual-cell boundary and well aligned grid

(cell-vertex mesh), derived from Figure 9.

4. CVD-MPFA, flow equations and measure of M-matrix violation

A brief review of CVD-MPFA schemes for pressure equation discretization is480

now given. The constraints and consequences for generating unstructured grids

that are compatible with CVD-MPFA have been discussed at length in the above

sections, however in contrasting the methods; With the exception of wells, the

cell centred method can be used with more conventional primal grid generation

provided interior boundaries are honoured, while the vertex-centred method485

requires a non-conventional dual grid generation method, while for wells the

converse is true. Two important distinctions between cell-centred and vertex-

centred methods arise on unstructured grids. First, while for structured meshes

the number of primal and dual cells are basically equivalent with an off-set for

boundaries, for unstructured grids (tetrahedra) the number of cells (tets) are490

between 5 and 6 times the number of mesh vertices. This is easily envisaged by
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constructing an unstructured mesh from a background structured mesh, in 3-D

this requires subdividing each hexahedron into 5 or 6 tetrahedrons, providing

a rough estimate of the ratio which can vary on general unstructured grids, in

this work the ratio is between approximately 4 and 5. Consequently the cell-495

centered formulation involves many more degrees of freedom, and is thus more

computationally expensive, but might be expected to resolve flow fields more

accurately. Secondly for the cell-centred method, the local flux molecule depends

on the number of cells attached to a vertex, while the vertex-centred local flux

molecule only depends upon the vertices of the primal cell, and consequently500

the vertex-centred method is relatively compact, with much smaller bandwidth

when the discretization matrix is assembled, this is illustrated in two-dimensions

in [57].

Pressure equation: The pressure equation arises from mass conservation

together with Darcy’s law and is written in integral form as:

−
∫
Ω

∇.(K∇φ)dΩ = q (1)

where φ represents field pressure; ∇ is the gradient operator, K is the elliptic

symmetric permeability tensor; q is the source term, which is zero away from

well sources or sinks. The finite-volume formulation begins with the use of the

Gauss divergence theorem to integrate Equation 1, over a control-volume Ω.

After integration Equation 1 is then written as

−
∮

(K∇φ) • ~ndΓ = −
nf∑
i=1

∫
∆Ωi

(K∇φ • ~ni)dΓ = q (2)

where Γ corresponds to the boundary of control-volume Ω, ∆Ωi is the ith face of

the control-volume and nf is the number of faces; ~ni is the outward unit normal505

to face i as shown in Figure 11. The resolution of Darcy velocity −K∇φ along

the unit normal ni is called the Darcy-flux through face i.

Approximation of Darcy-flux is a key step in a finite-volume formulation

and many approximations have been proposed, here we use the control-volume

distributed multi-point flux approximation (CVD-MPFA) formulation. Cell-510
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Figure 11: Representative polyhedral control volume..

centred CVD-MPFA formulations are presented in [16, 19, 26, 27, 3, 4, 57], and

CVD-MPFA related cell-centered methods are presented in [2, 1, 88, 47, 42].

Vertex-centred CVD-MPFA formulations are presented in [18, 20, 21, 70, 57].

CVD-MPFA schemes work directly with the integral form of the flow equa-

tions and are optimal in the sense that they employ a single primal discrete515

pressure per control-volume, and provide consistent flux-continuous locally con-

servative approximations of the pressure equation for any permeability tensor

and grid type, while satisfying local pressure and normal flux continuity con-

ditions. The continuity conditions imposed around every cluster point, e.g.,

[26, 57], leads to an increased pressure support with wider matrix bandwidth520

compared to the standard TPFA scheme, but crucially retains the same num-

ber of unknown discrete pressures or degrees of freedom. However the TPFA

scheme has O(1) error in flux and is generally inconsistent unless the grid is

K-orthogonal [6, 16]. We note that alternative CVD-MPFA related methods

have been proposed [68] which involves a hybrid approximation and [53] which525

imposes a maximum principle via a non-linear formulation. In terms of other

methods, we note that the control-volume finite element method (CVFE) [24, 61]

uses the same vertex degrees of freedom as the cell-vertex CVD-MPFA method,

however unlike CVD-MPFA, CVFE is not flux continuous across interfaces sepa-

rating jumps in permeability, which can lead to loss of flow resolution compared530

to CVD-MPFA [17]. We note that all other methods that rival CVD-MPFA
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in terms of consistency, flux continuity and linearity depend on a much larger

number of degrees of freedom and consequently yield much larger assembled

matrices. For example on a 3-D structured grid mixed finite element meth-

ods, e.g., see [7, 74, 12] require four times as many degrees of freedom. The535

mixed hybrid finite-element method (MHFEM) [10] and mimetic methods [52]

only depend on control-volume face values and have an SPD matrix. How-

ever, while reducing the degrees of freedom compared to the original mixed

methods, with the traditional control-volume centred pressures now removed,

MHFEM still involve three times the degrees of freedom when compared to540

the CVD-MPFA formulations in 3D, while CVD-MPFA only depends upon the

traditional control-volume centred pressures.

CVD-MPFA schemes divide into two types, namely triangular(2D) / tetra-

hedral(3D) pressure support (TPS), and full pressure support (FPS) schemes.

CVD-MPFA (TPS) schemes are parameterized by quadrature q. The quadra-545

ture point q can be selected anywhere between the cluster vertex(q = 0) (but

not at the cluster vertex which would be singular) and edge mid point(q=1)

with 0 < q ≤ 1 , where continuity of flux is imposed. We note for cell centred

methods the default (q = 1.0) corresponds to standard CVD-MPFA ([16, 1]),

and (q = 2/3) defines the SPD variant for arbitrary triangle cell meshes [26].550

Note that anisotropic quadrature is also possible e.g. with FPS [20], but not

explored here.

Measure of M-matrix Violation: An M-matrix ensures a local discrete maxi-

mum principle (LDMP) and that the discrete solution is free of spurious oscilla-

tions, however as with all linear schemes, CVD-MPFA schemes have conditional555

M-matrices [19, 16], and M-matrix violation can occur for sufficiently strong full-

tensor problems. The degree of M-matrix violation is measured, by comparing

for local diagonal dominance violation of the corresponding discrete matrix.

For every row of a discrete matrix A, the number of positive off-diagonals

and maximum positive off-diagonal relative to the positive diagonal-term i.e.560

max(ai 6=j)/aii for aij > 0 are computed [57]. L∞ and L2 norms together with

arithmetic mean(x̄) of all row violations are used as representative measures of
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M-matrix violation.

5. Numerical results

The benefits of dual-meshing over primal meshing for the respective CVD-565

MPFA formulations was recently demonstrated by [57] in two-dimensions with

the aid of a new dual-mesh generator which is essential for a CVD-MPFA cell-

vertex formulation. Previous comparative studies of other cell-centered and

vertex-centered methods for subsurface flow have been undertaken [22, 35].

Here, in addition to developing and demonstrating novel grid generation meth-570

ods compatible with CVD-MPFA in three-dimensions, a comparative perfor-

mance of cell-centered versus vertex-centered CVD-MPFA schemes is presented

together with measures of the degree of M-matrix violation. For comparison

purposes the meshes employed are designed to be comparable in the primal

framework and for vertex-centered simulations the median-duals act as control-575

volumes, unless stated otherwise. A number of test cases are presented including

reservoirs with strongly anisotropic permeability fields.

5.1. Case-1: Cell-centred versus vertex-centered TPFA and CVD-MPFA on

mixed element meshes

This test case is designed to simulate a linear pressure field, so as to vali-

date the implementation of cell-centered and vertex-centered TPFA and CVD-

MPFAs formulations in 3-D. We simulate the linear pressure field, on a cubical

domain, i.e., Ω = [0, 1] × [0, 1] × [0, 0.5], governed by homogeneous permeabil-

ity tensor K = I. The analytical solution governing linear pressure field is

defined by: φ(x, y, z) = x + y + z + 1. The system is closed by prescribing

Dirichlet boundary conditions on the sides of the cubic domain, imposed from

the exact solution. To simulate the flow field, the grid employed is displayed in

Figure 12, and is comprised of prisms, hexahedra and hexagonal-prisms. In cell-

centered and vertex-centered configurations the centroid is used as the approx-

imation and dual-point respectively, unless stated otherwise. In cell-centered
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mode primal-cells act as control volumes, whereas in the vertex-centered mode

control-volumes are dual polyhedrons constructed around primal mesh vertices

using primal-cell centroid dual-points, as shown in Figure 12b. The number of

control-volumes used in cell-centered and vertex-centered modes are 4869 and

3970 respectively. The L2 norm of pressure field error is used to compute de-

viation from the true solution and is given by equation 3, where ncv are the

number of control volumes with Vi, φi and φhi
are volume, exact pressure and

numerical pressure solution respectively for control volume i and eh denotes the

error.

L2(eh) =


ncv∑
i=1

(Vi(φhi
− φi)2)

ncv∑
i=1

Vi


1/2

(3)

5.1.1. Cell-centred vs vertex-centered CVD-MPFA580

Both cell-centered and vertex-centered TPS and FPS schemes are employed

to simulate the linear flow field, results with L2(eh) for pressure fields are dis-

played in Table 1. The results substantiate that both cell-centered and vertex-

centered formulations resolve the linear flow field exactly [19, 69].

Scheme Formulation L2(eh) pressure

cell-centered 2.9407× 10−03

TPFA
vertex-centered 3.2135× 10−03

cell-centered 2.2329× 10−14

TPS
vertex-centered 5.4651× 10−14

cell-centered 3.8166× 10−14

FPS
vertex-centered 5.4682× 10−14

Table 1: L2(eh) of pressure for cell-centered vs vertex-centered TPFA and CVD-

MPFA employed to simulate linear-flow field
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Hexagonal Prism

(a) Mixed elements hybrid mesh comrpising of 3970 points and 4869 polygonal

prisms (3312 prisms + 1512 hexahedron + 45 hexagonal-prisms)

(b) Median dual derived from the prismatic primal mesh shown in 12a.

Figure 12: Grid (prismatic-cells) used for simulating pressure field case-1.
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5.1.2. Cell-centred vs vertex-centered TPFA585

For this case the industry standard two-point flux approximation (TPFA) is

tested. Both cell-centered and vertex-centered TPFA are found to yield incon-

sistent approximations. This is because the grids (Figure 12) employed using

the centroid as the approximation (cell-centered formulation) and dual-point

(vertex-centered formulation) are not K-orthogonal. For an isotropic flow field590

the Delaunay-grid is K-orthogonal, provided the circumcentre is used as the

approximation/dual point. Figure 13a displays the linear flow field resolved ex-

actly by employing TPFA, simulated on an unstructured Delaunay triangulation

with circumcentre as dual-point. However when the same unstructured grid is

employed using the centroid as the dual-point an inconsistent approximation is595

obtained, e.g., see Figure 13b. Consistency of TPFA demands a K-Orthogonal

mesh, which in the general case where meshes are comprised of general grid

elements and flow domains have strong anisotropic permeability fields can not

be ensured, and therefore TPFA has limited applications [84, 16].

5.2. Case-2: Discontinuous full-tensor test case with imposed vertical source600

and sink

This case contains internal intersecting boundaries and is selected to compare

cell-centered versus vertex-centered CVD-MPFA formulations. A heterogeneous

domain Ω = [0, 3]× [0, 1]× [0, 0.45], is embedded with a layer/fault system par-

titioning the computational domain into four distinct regions, e.g., see Figure605

14. A piecewise constant permeability tensor is assumed in each sub-domain

and its orientation is varied ±30◦, so as to define a discontinuous permeability

field. Two vertical wells are located at opposite corners, i.e., (0.75, 0.25) and

(2.25, 0.75), penetrates from the top to bottom of the domain. The wells are con-

sidered as geometrical objects with Dirichlet boundary conditions, assumed with610

pressure φ = 1 and φ = −1 defining source and sink. In order to close the system

we specify homogeneous Dirichlet boundary conditions with pressure φ = 0 on

the sides, together with zero normal flow boundary conditions prescribed on the

top and bottom of the domain. The permeability tensor across the sub-domains
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(a) Cross-section of vertex-centered TPFA with circumcentre as dual point

(voronoi mesh) has L2(eh) = 4.695× 10−15.

(b) Cross-section of vertex-centered TPFA with centroid as dual point

(median-dual mesh) has L2(eh) = 2.804× 10−03.

Figure 13: Vertex-centred TPFA on an unstructured Delaunay triangulation with

centroid vs circumcentre as dual-point.

33



is discontinuous (defined below), and consequently to minimize discretization615

error feature based grids honouring both faults and well-paths are required. For

a cell-centered formulation the primal-cells act as control-volumes, and the grid

employed is generated by enclosing wells with halos and primal faces aligned

to the internal boundaries, e.g., see Figure 14a. Whereas in a vertex-centered

formulation the dual-cells are chosen as control-volumes. To honour features620

in the dual grid the internal boundaries require special treatment, using a pris-

matic halo construction as shown in Figure 14b. Halo construction enclosing a

feature, is performed such that the actual feature can be retrieved as the medial

surface of the halo elements as displayed in Figure 14b (right).

5.2.1. Case 2a: Anisotropy ratio=6625

The permeability tensor with anisotropic ratio k11/k22 = 6 and orientation

θ = 30◦ in xy plane, e.g., see Equation 4 is assigned to first and third sub-

regions. In the second and fourth subregions the permeability tensor has the

same anisotropic ratio however with different orientation θ = −30◦ yielding

negative off-diagonal coefficients, i.e., k12 = k21 = −2.165 and k13 = k31 = −1.630

First we test performance of cell-centered versus vertex-centered TPFA. TPFA

does not yield a consistent solution, this is because the grid employed is not

K-orthogonal, nevertheless the numerical solution is bounded and has a local

discrete maximum principle (LDMP) [19, 53]. The TPFA solution displayed in

Figure 15a has a LDMP, both in cell and vertex centred configurations. Next635

we compute the pressure field using the CVD-MPFA schemes. The resulting

numerical pressure solutions are shown in Figure 15b. Both cell-centered and

vertex-centered CVD-MPFA yield consistent well resolved pressure fields free of

any visible spurious oscillations. However, M-matrix violation is observed for

both cell-centered and vertex-centered CVD-MPFA-TPS, induced by the per-640

meability tensor and grid, and is tabulated so as to provide a formal measure

of violation as defined earlier, e.g., see Figure 15c. The table clearly shows that

the cell-centered method has the worst violations. When comparing TPFA ver-

sus CVD-MPFA pressure fields 15, we note that as expected, TPFA does not
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capture the anisotropy of pressure field due to the inherent inconsistency of the645

method in such cases.

K =


4.750 2.165 1.000

2.165 2.250 0.000

1.000 0.000 2.250

 (4)

(a) Primal-cell boundary and well aligned

grid (cross section), comprised of 9556

primal control volumes.

(b) Dual-cell boundary and well aligned grid (cross section), comprised of 1910 dual

control volumes

Figure 14: Case-2: Primal and dual-cell interior boundaries and well aligned grids.
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(a) Cell-Centered(left) versus vertex (right) centred TPFA solution

(b) Cell-Centered(left) versus vertex (right) centred CVD-MPFA-TPS solution

M-matrix statistics Cell-Centred Vertex-Centred

# of -ve diagonals 5 0

# of positive off- L∞ 49.000 9.000

diagonal per row x̄ 27.399 2.975

L2 5.405 2.082

max. positive off- L∞ 2.910× 101 9.605× 10−1

diagonal relative to x̄ 1.050× 10−1 7.653× 10−2

the diagonal per row L2 1.099× 100 3.768× 10−1

(c) Degree of M-matrix violation of cell-centered vs cell-vertex

CVD-MPFA-TPS

Figure 15: Case-2a: Cell-centred versus vertex-centered numerical pressure solution

obtained with TPFA and CVD-MPFA
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5.2.2. Case 2b: Anisotropy ratio=50

Next we test a modified version of case 2a, where the anisotropy ratio is

increased to 50, i.e., k11/k22 = 50 and cross terms in z-direction are set by

using k13 = k31 = 5. Similar to Case-2a, the orientation of permeability ten-

sor is varied ±30◦ defining a strong discontinuous full tensor pressure field,

e.g., see Equation 5. The pressure fields computed by employing cell-centered

and vertex-centered TPFA are displayed in Figure 16a. The numerical pres-

sure solutions computed by cell-centered and vertex-centered CVD-MPFA-TPS

schemes are displayed in Figures 16b. While each TPFA solution has a LDMP

with bounded numerical solution, however solution inconsistency is very pro-

nounced when compared with the CVD-MPFA vertex-centered TPS pressure

solution in Figure 16b(right), again the TPFA solution is unable to resolve the

induced anisotropy of the pressure field. The cell-centred TPS result of Figure

16b(left), clearly shows strong spurious oscillations consistent with decoupling.

On the other hand the vertex-centered TPS method is consistently found to be

more robust with no visible spurious oscillations in the solution consistent with

[21], see, Figure 16b(right). Again, the M-matrix violation comparison table

16c clearly shows that the cell-centered method has the worst violations which

increases with (full-tensor) anisotropy ratio, suggesting that the unstructured

vertex-centred method is quasi-positive and does not suffer from decoupling that

is inherent in the cell-centered TPS formulation [27].

K =


37.750 21.218 5.000

21.218 13.250 0.000

5.000 0.000 13.250

 (5)

5.3. Case-3: Multilateral well-trajectory and discontinuous full permeability ten-

sor

This case is designed to simulate a pressure field, over a Ω = [0, 1]× [0, 1]×650

[0, 0.55] domain, involving a multilateral well path penetrating/intersecting a

synthetic layer/fault defined by the plane z = 0.20, Figure 17, which bisects
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(a) Cell-Centered(left) versus vertex (right) centred TPFA solution

(b) Cell-Centered(left) versus vertex (right) centred CVD-MPFA-TPS solution

M-matrix statistics Cell-Centred Vertex-Centred

# of positive off- L∞ 54.000 10.000

diagonal per row x̄ 28.553 3.292

L2 5.504 2.151

max. positive off- L∞ 2.013× 103 1.203× 100

diagonal relative to x̄ 1.678× 100 9.794× 10−2

the diagonal per row L2 2.393× 101 4.116× 10−1

(c) Degree of M-matrix violation of cell-centered vs cell-vertex

CVD-MPFA-TPS

Figure 16: Case-2b: Cell-centred versus vertex-centered numerical pressure solution

obtained with TPFA and CVD-MPFA.
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the domain into two sub-domains. In each sub-domain a piecewise constant

permeability field is specified, which is discontinuous across the plane z = 0.20.

The multilateral well-trajectory is considered as a geometrical object where im-655

posed Dirichlet boundary conditions are prescribed with pressure φ = 1. The

system is closed with homogeneous Dirichlet boundary conditions specified with

pressure φ = 0 on the domain sides together with no-flow conditions prescribed

at the top and bottom of the domain. This case requires grids which are both

boundary and well-aligned. As described above, the generation of grids honour-660

ing geological features with respect to control volumes (BAG) involves entirely

different strategies compared to those requiring control point alignment (WAG).

This is further exacerbated, when these features appear while intersecting each

other, since they meet conflicting requirements at the point of intersection. For

such complex geometries the proposed feature based triangulation technique665

proves versatile. Details of the primal and dual grid generation for this case are

presented in section 3. The resulting primal and dual-cell boundary and well-

aligned meshes thus obtained are shown in Figures 17a and 17b respectively.

The boundary and well-aligned grids generated are hybrids and comprised of

tetrahedra (predominantly), prisms and hexahedra (required for halo) together670

with pyramids. Pyramids are used as transition elements from quad faces of

halo cells to the rest of the mainly tetra mesh.

5.3.1. Case 3a: Discontinuous permeability tensor with anisotropy ratio=50

The first test involves an anisotropic ratio 50 : 1 in xy-plane, with respec-

tive orientations of (±30◦) in the two sub-domains, leading to a discontinuous

permeability field. A planar full-tensor is defined with k13 = k31 = 5.00, and

k33 = k22, in third dimension. In the lower sub-domain the permeability tensor

is:

K =


37.75 21.22 5.00

21.22 13.25 0.00

5.00 0.00 13.25

 (6)
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Well-trajectory
honoured mesh

Boundary Aligned Grid

(a) Cross-section of primal-cell hybrid

(23152 tets, 350 pyramids, 8 prisms, and

89 hexahedron) BAG employed for

cell-centered formulation (23599 control

volumes)

Halo Protected Fault
Well-Path Preserved Grid

Boundary 
Aligned Grid

Well Aligned 
      Grid

(b) Cross-section of prism-halo protected primal-cell (27982 tets, and 856 prisms)

grid, used for vertex-centered formulation, also shown is dual-BAG derived from the

halo protected primal-mesh (7146 control volumes)

Figure 17: Case-3: Boundary aligned grids:(a) primal cell-centered mesh and (b)

vertex-centered mesh and dual-mesh with control-vols aligned with boundary.
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whereas in the upper region (0.20 < z ≤ 0.55) the permeability tensor has

the same diagonals but negative off-diagonals with, k12 = k21 = −21.22 and675

k13 = k31 = −5.00. The numerical pressure solution computed by employing

CVD-MPFA-TPS using cell-centered and vertex-centered methods is displayed

in Figures 18a and 18b respectively. As in the previous case we note that both

methods violate the M-matrix conditions, the most severe violations by far (by

12 orders of magnitude in maximum positive off-diagonal) occurring with the680

cell-centred method again suggesting by comparison that the vertex centred

method is quasi-positive [20]. In this case both the cell-centered and vertex-

centered methods yield well resolved pressure fields, with no visible spurious

non-physical oscillations.

5.3.2. Case 3b: Discontinuous full permeability tensor with anisotropy ratio=500685

Next an analogous case is considered with an increased anisotropy ratio of

500 : 1 in xy plane, and same (±30◦) orientations in the respective sub-domains,

defining a much larger jump in discontinuous permeability field across z = 0.2.

A planar full-tensor is defined with k13 = k31 = 15.00, and k33 = k22, in third

dimension. In the lower sub-domain the permeability tensor is:

K =


375.25 216.07 15.00

216.07 125.75 0.00

15.00 0.00 125.75

 (7)

whereas in the upper region (0.20 < z ≤ 0.55) the permeability tensor has neg-

ative off-diagonals, i.e. k12 = k21 = −216.07 and k13 = k31 = −15.00. The

problem poses serious challenges to the numerical schemes, which are mainly

due to the large anisotropic ratio and local grid orientation effects. Figure 19

shows the numerical pressure fields obtained by employing both the cell-centered690

and vertex-centered TPS schemes. The cell-centered TPS formulation strongly

violates the M-matrix conditions and introduces non-physical oscillations con-

sistent with decoupling [20], e.g., see Figure 19a, whereas vertex-centered TPS

Figure 19b, yields a well resolved solution that is free of any visible spurious

oscillations consistent with the decoupling analysis of [21]. We note that as695
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Boundary & well
  aligned grid

Multilateral well

(a) Cell-Centred CVD-MPFA-TPS

numerical solution

Halo Protected 
      fault

Multilateral well

(b) Vertex-Centred CVD-MPFA-TPS

numerical solution

M-matrix statistics Cell-Centred Vertex-Centred

# of positive off- L∞ 48.00 10.00

diagonal per row x̄ 25.99 4.15

L2 5.247 2.247

max. positive off- L∞ 3.270× 1013 8.656× 10−1

diagonal relative to x̄ 1.648× 109 9.527× 10−2

the diagonal per row L2 5.333× 106 3.591× 10−1

(c) Degree of M-matrix violation of cell-centered vs cell-vertex

CVD-MPFA-TPS

Figure 18: Case-3a: Cell-centred versus vertex-centered CVD-MPFA-TPS numerical

pressure solutions, contours displayed in cross-section.
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in the previous case, while both methods violate the M-matrix conditions, by

far the most severe violations (now by 13 orders of magnitude) occur with the

cell-centred method, with a further order of magnitude difference in this case,

again suggesting by comparison that the vertex centred method is quasi-positive

[20]. We conclude that the unstructured vertex-centered TPS formulation does700

not suffer from decoupling that is inherent in the cell-centered TPS formulation

[27].

(a) Cell-Centred TPS

numerical solution with

non-physical oscillations

Halo Protected 
      fault

Multilateral well

(b) Vertex-Centred TPS numerical solution

M-matrix statistics Cell-Centred Vertex-Centred

# of positive off- L∞ 49.00 11.00

diagonal per row x̄ 25.06 4.256

L2 5.161 2.276

max. positive off- L∞ 1.115× 1014 9.093× 10−1

diagonal relative to x̄ 4.725× 109 1.092× 10−1

the diagonal per row L2 1.056× 107 3.976× 10−1

(c) Degree of M-matrix violation of cell-centered vs cell-vertex TPS

Figure 19: Case-3b: Cell-centred versus vertex-centered TPS numerical pressure

solutions, contours displayed in cross-section

.

43



6. Summary of Grid Generation and CVD-MPFA Comparison

We note that the primal cell-centered and dual cell-vertex CVD-MPFA for-

mulations are essentially analogous on structured grids. However on general un-705

structured grids discretization compatibility requirements add additional chal-

lenges to grid generation that are addressed in this work, which for the first time

makes both the primal and dual formulations suitable for practical application.

We summarize key steps in the novel grid generation process and then list key

observations regarding TPFA and cell-centered and dual cell-vertex CVD-MPFA710

formulations on unstructured grids.

6.1. Grid Generation Summary

The key novel components of the geological feature based grid generation

methods presented are:

• Unique work flow for generating feature based cell-centered and vertex-715

centered grids is presented

• Protection spheres: When generating primal-cell boundary aligned and

dual-cell well-aligned meshes, geological features are honoured in the empty-

mesh and are protected by enclosing them with protection spheres, which

are diametric, equatorial and/or circumspheres according to simplex type720

i.e. (edge/face) and emptiness of the associated protection sphere.

• Cell-centred Primal Mesh Halo construction: For primal-cell halo well-

aligned grids, halo construction is performed by sweeping a polygon along

the well-trajectory analogous to the advancing front method.

• Vertex-centred Dual Mesh Halo construction: Geological feature bound-725

aries are protected by embedding their surfaces in prismatic halos, such

that halo medial surfaces lie on the boundary surfaces, which is achieved

by splitting each surface mesh point into an edge, followed by triangulation

that yields tets, pyramids and/or prisms.
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• Novel technique for suppressing Steiner points: A novel technique for sup-730

pressing additional connectivity points, i.e. Steiner points is proposed. An

empty-mesh is primarily comprised of tetra. By deleting repeated inte-

rior faces of elements sharing the Steiner point, a star-shaped polyhedron

is constructed, and the Steiner point is suppressed by projecting it in a

direction normal to the intersected face/edge inside the star-shaped poly-735

hedron. A set of new elements(tets) is then constructed by joining each

face(tri) of the star-shaped polyhedron to the projected Steiner point.

• A novel technique for constructing pyramids as transition elements: The

empty-mesh is comprised of tetrahedra and after recovery of halo quad-

faces, pyramids are constructed as transition elements in the unstructured740

mesh via a star-shaped polyhedron construction and point insertion pro-

cedure, thus protecting halo quad-faces, with tetrahedra connected to the

triangular faces.

6.2. CVD-MPFA Discretization Summary

• TPFA cell-centered and vertex-centered formulations are inconsistent on745

non K-orthogonal grids.

• Cell-vertex dual-mesh simulation requires much less computational time

compared to the corresponding cell-centered primal grid formulation. This

is because the cell-centered formulation involves between approximately 4

and 5 times the number of degrees of freedom compared to the cell-vertex750

formulation, when using the same primal unstructured (tetrahedra) grid.

The cell-vertex method is thus computationally more efficient for a given

tetrahedral mesh.

• Cell-vertex CVD-MPFA formulations with TPS are computationally more

robust than their cell-centered counter part formulations on unstructured755

grids, even with between a quarter to one fifth of the number of degrees

of freedom, the cell-vertex formulation yields consistent well resolved so-

lutions consistent with [21]. Such resolution is not always achieved by
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the cell-centered counter part TPS formulation which can yield highly

oscillatory decoupled pressure fields (in particular when applied to e.g.760

source/sink problems with strong full-tensor fields) consistent with [27],

even though the cell-centered method uses more degrees of freedom.

• Tables showing a measure of M-matrix violation for challenging cases ver-

ifies the robustness of the cell-vertex methods with relatively small M-

matrix violation compared to the cell-centered methods which have strong765

violation.

• Cell vertex CVD-MPFA schemes are more compact than their cell-centered

counterparts on unstructured grids resulting in globally assembled matri-

ces with smaller bandwidth.

• The dual-control-volumes of the compact cell-vertex CVD-MPFA formu-770

lations on unstructured grids have more facets than primal cells and con-

sequently involve more sub-face fluxes per control volume, compared to

the cell-centered formulation, which may contribute to the observed im-

provement in resolution.

7. Conclusions775

Novel methods of grid generation are presented that honour geological fea-

tures both with respect to primal and dual cells. The CVD-MPFA formulation

overcomes the consistency limitation of the standard TPFA scheme used rou-

tinely in reservoir simulation. However crucially for general application, CVD-

MPFA control-volume faces must be aligned with key feature surfaces when780

generating the mesh. This paper presents boundary aligned unstructured grid

generation methods that satisfy these key constraints for both cell-centred and

vertex centred CVD-MPFA formulations in three-dimensions.

The development of halos and protection spheres surrounding key feature

boundary surfaces are central to the boundary aligned grid generation methods785

presented. The resulting grids are predominantly tetrahedral and Delaunay
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where the empty circumsphere property is ensured. When halos are required (for

discretization compatibility), the method naturally generates transition grids

comprised of combinations of pyramids, prisms, tetrahedra and/or hexahedra

(polygonal prisms) to handle geological features with boundary alignment.790

This development has also enabled the first detailed 3-D comparison to be

made between the primal (cell-centred) and dual-cell (vertex centred) CVD-

MPFA formulations using comparable primal meshes, and major computational

advantages of the dual-cell formulation are identified: i) computational efficiency

due to the number of vertices being a fraction of the number of cells for a given795

unstructured grid. ii) compact support with significantly reduced bandwidth

and iii) prevention of decoupled modes that cause spurious oscillations on the

essentially tetra meshes.

Future work will include using the latest developments to test more chal-

lenging geometries resulting from classical reservoir features (highly distorted800

faults, fractures, pinchouts, variable layered systems and intersections, with

various surface models and representations including non-uniform rational ba-

sis splines [36]) together with multilateral wells. The algorithms presented are

quite general and we anticipate that any modifications for handling more dis-

torted features is relatively straightforward, however much testing needs to be805

conducted. Further extensions include coupling with unstructured multiscale

methods (which involve a number of strategies [66, 71, 15]) to develop general

unstructured grid multiscale methods in 3-D, extension to multiphase flow and

field scale applications.
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[46] R. Löner, and P. Parikh [1988] Three dimensional grid generation by ad-

vancing front method. International Journal for Numerical Methods in955

Fluids, 8, 1135–1149.

[47] S. Lee, L. Durlofsky, M. Lough, and W. Chen [1998] Finite difference

simulation of geologically complex reservoirs with tensor permeabilities.

SPE Reservoir Evaluation & Engineering, 1, 567-574.

[48] P. Laug, and H. Borouchaki [2011] High quality geometric meshing of960

CAD surfaces. Proceedings of the 20th international meshing roundtable,

W.R. Quadros (Ed.).

[49] P.Laug, and H. Borouchaki [2004] Curve linearization and discretization

for meshing composite parametric surfaces. Commun. Numer. Meth. En-

gng, 20, 869876, 2004.965

[50] Y. Liu, S. Lo, Z.Q.Guan, and H.W. Zhang [2014] Boundary recovery for

3D Delaunay triangulation. Finite Elements in Analysis and Design, 84,

32-43, 2014.

[51] C. Lawson [1986] Properties of n-dimensional triangulations. Computer

Aided Geometric Design, 3, 231-246.970

[52] K. Lipnikov, G. Manzini, and M. Shashkov [2014] Mimetic Finite Differ-

ence Method. J. Comput. Phys., 257, 1163–1227.

53



[53] K. Lipnikov, D. Svyatskiy, and Y. Vassilevski [2012] Minimal stencil finite

volume scheme with the discrete maximum principle. Russ. J. Numer.

Anal. Math. Modelling, 27(4), 369–385.975

[54] B. Mallison, C. Sword, T. Viard, W. Milliken, A. Cheng [2014] Unstruc-

tured Cut-Cell Grids for Modeling Complex Reservoirs. SPEJ vol 19, Issue

02, doi.org/10.2118/163642-PA

[55] S. Manzoor, M.G. Edwards, A.H. Dogru, and T.M. Shaalan [2015] Bound-

ary Aligned Grid Generation in Three Dimensions and CVD-MPFA Dis-980

cretization. SPE Reservoir Simulation Symposium, 23-25 February.

[56] S. Manzoor, M.G. Edwards, A.H. Dogru, and T.M. Al-Shaalan [2016] 3D

Geological Feature Honored Cell-centered and Vertex-centered Unstruc-

tured Grid Generation, and CVD-MPFA Performance. ECMOR XV - 15th

European Conference on the Mathematics of Oil Recovery.985

[57] S. Manzoor, M.G. Edwards, A.H. Dogru, T.M. Shaalan [2018] Interior

boundary-aligned unstructured grid generation and cell-centered versus

vertex-centered CVD-MPFA performance. Computational Geosciences,

22(1), 195230, 2018.

[58] S. Manzoor, M.G. Edwards, and A.H. Dogru [2018b] Acute Boundary990

Aligned Unstructured Grid Generation And Consistent Flux Approxima-

tions.ECMOR XVI - 16th European Conference on the Mathematics of

Oil Recovery, 2018.

[59] S. Manzoor, M.G. Edwards, and A.H. Dogru [2019] Three-Dimensional

Geological Boundary Aligned Unstructured Grid Generation, and CVD-995

MPFA Flow Computation. SPE 193874, Reservoir Simulation Confer-

ence, Galveston Texas USA, 10-11th April 2019

[60] S.Manzoor, M.G.Edwards, A.H. Dogru [2019]. Quasi-K-Orthogonal

Grid Generation. Society of Petroleum Engineers, March 29, 2019.

doi:10.2118/193927-MS.1000

54



[61] S. Matthai, A.A. Mezentsev, and M. Belayneh [2007] Finite element-node-

centered finite-volume two-phase-flow experiments with fractured rock

represented by unstructured hybrid-element meshes.SPE Reservoir Eval-

uation & Engineering, 10(6), 740-756.

[62] D. Marcum, and K. Gaither [1997] Solution Adaptive Unstructured Grid1005

Generation Using Pseudo-Pattern Recognition Techniques. AIAA 13th

Computational Fluid Dynamics Conference, 1997.

[63] D.L. Marcum, and N.P. Weatherill [1995] Unstructured grid generation

using iterative point insertion and local reconnection. AIAA Journal, 33,

1619–1625.1010

[64] D.J. Mavriplis [1995] An Advancing Front Delaunay Triangulation Algo-

rithm Designed for Robustness. Journal of Computational Physics, 117,

90–101.

[65] M. Mlacnik, and L. Durlofsky [2006] Unstructured Grid Optimization for

Improved Monotonicity of Discrete Solutions of Elliptic Equations with1015

Highly Anisotropic Coefficients. J. Comput. Phys., 216, 337-361.

[66] O.Moyner, K.-A. Lie [2015] A multiscale restriction-smoothed basis

method for high contrast porous media represented on unstructured grids

J. Comput. Phys., 304 (2015), pp. 46-71.

[67] J.D. Müller, P.L. Roe, and H. Deconinck [1993] A frontal approach for1020

internal node generation in Delaunay triangulations. International Journal

for Numerical Methods in Fluids, 17(3), 241-255.

[68] H.M. Nilsen, J.R. Natvig, K-A. Lie [2012] Accurate modeling of faults by

multipoint, mimetic, and mixed methods. SPE journal, 17(02).

[69] M. Pal, and M.G. Edwards [2010] q-Families of CVD(MPFA) Schemes on1025

General Elements: Numerical Convergence and the Maximum Principle.

Archives of Computational Methods in Engineering, 17, 137-189.

55



[70] M. Pal, and M.G. Edwards [2012] A family of multi-point flux approxima-

tion schemes for general element types in two and three dimensions with

convergence performance. International Journal for Numerical Methods in1030

Fluids 69(11), 1797-1817.

[71] E. Parramore, M.G. Edwards, M. Pal, and S. Lamine [2016] Multiscale

Finite-Volume CVD-MPFA Formulations on Structured and Unstructured

Grids SIAM Multiscale Model. Simul., 14(2), 559594. 2016.

[72] J.O’. Rourke [1987] Art Gallery Theorems and Algorithms. Three Dimen-1035

sions and Miscellany, Oxford University Press, 253-254. Editors: J.E.

Hopcroft, G.D. Plotkin, J. Schwartz, D. Scott, and J. Vuillemin.

[73] S. Rebay [1993] Efficient Unstructured Mesh Generation by Means of De-

launay Triangulation and Bowyer-Watson Algorithm.Journal of Compu-

tational Physics, 106(1), pp. 125138.1040

[74] T.Russell, and M. Wheeler [1984] The Mathematics of Reservoir Simula-

tion Finite element and finite difference methods for continuous flows in

porous media. Frontiers in Applied Mathematics, SIAM, 35-106.

[75] P. Samier, and R. Masson [2017]. Implementation of a Vertex-Centered

Method Inside an Industrial Reservoir Simulator: Practical Issues and1045

Comprehensive Comparison With Corner-Point Grids and Perpendicular-

Bisector-Grid Models on a Field Case. SPEJ vol 22, Issue 02,

doi.org/10.2118/173309-PA

[76] P Salinas, D Pavlidis, Z Xie, H Osman, CC Pain, MD Jackson [2018] A

discontinuous control volume finite element method for multi-phase flow1050

in heterogeneous porous media. Journal of Computational Physics, 352,

602-614, 2018.

[77] P. Su, and R.L. Scot [1997] A comparison of sequential Delaunay trian-

gulation algorithms. Computational Geometry–11th ACM Symposium on

Computational Geometry, 7(5-6), 361–385.1055

56



[78] S. Sloan, and G. Houlsby [1984] An implementation of Watson’s algo-

rithm for computing 2-dimensional delaunay triangulations Advances in

Engineering Software, 6, 192-197.

[79] S.A. Sloan [1993] Fast algorithm for generating constrained delaunay tri-

angulations.Computers & Structures, 47, 441-450.1060

[80] M. Sahimi, R. Darvishi, M. Haghighi, and M. Rasaei [2010] Upscaled

Unstructured Computational Grids for Efficient Simulation of Flow in

Fractured Porous Media. Transport in Porous Media, 83, 195-218.

[81] I. Sazonov, and P. Nithiarasu [2012] Semi-automatic surface and volume

mesh generation for subject-specific biomedical geometries. International1065

Journal for Numerical Methods in Biomedical Engineering, 28, 133-157.

[82] J.F. Thompson, and N.P. Weatherill [1998], Chapter: Fundamental Con-

cepts and Approaches. In Handbook of Grid Generation; Thompson, J.F.,

Soni, B, K. and Weatherill, N.P.(Eds.).

[83] U. Tremel, F. Deister, O. Hassan, and N.P. Weatherill [2004] Automatic1070

unstructured surface mesh generation for complex configurations. Inter-

national Journal for Numerical Methods in Fluids, 45, 341-364, 2004.

[84] S.K. Verma [1996] Flexible grids for reservoir simulation. PhD Thesis,

Stanford University.

[85] N.P. Weatherill [1992] Delaunay triangulation in computational fluid dy-1075

namics.Computers & Mathematics with Applications, 24, 129-150.

[86] N.P. Weatherill, and O. Hassan [1994] Efficient three-dimensional Delau-

nay triangulation with automatic point creation and imposed boundary

constraints.International Journal for Numerical Methods in Engineering,

37, 2005-2039.1080

[87] D.F. Watson [1981] Computing the n-dimensional Delaunay tessellation

with application to Voronoi polytopes. The Computer Journal, 24(2), 167–

172.

57



[88] M.F. Wheeler and I. Yotov [2006] A multipoint flux mixed finite element

method. SIAM J. Numer. Anal. , 44:5 2082-2106.1085

Appendices

A. Delaunay admissible simplexes and protection-spheres

A simplical mesh is comprised of points (0-D simplexes), edges (1-D sim-

plexes), triangles (2-D simplexes), and tetrahedra(3-D simplexes). In D dimen-

sions for a Delaunay triangulation, a D − i (∀i = 1, D − 1) simplex whose1090

smallest sphere is empty, exists in the mesh. The smallest sphere encompass-

ing an edge (segment) is the sphere containing the edge as its diameter, i.e.,

diametric sphere. For a triangle, the smallest sphere contains the triangle as

its equatorial plane, and is the equatorial sphere. In three dimensional Delau-

nay triangulation, for an edge whose smallest sphere is not empty to exist, a1095

triangle must be formed by joining the edge at hand to the point being near-

est to the edge, contained in its diametric sphere. If the smallest sphere of

a triangle (existing in a Delaunay mesh) is not empty then there must be a

tetra with connectivity defined by joining vertices of the triangle to the point

which is contained in its equatorial sphere and is the nearest to the triangle1100

(plane). In a Delaunay triangulation the circumsphere of a tetrahedron is al-

ways empty[51, 32]. The Delaunay admissibility of the simplexes constituting a

Delaunay mesh, is summarized in the following theorem:

Theorem 1. In D dimensions, for a D − i simplex ∀i = 1, D − 1 to be part

of a Delaunay triangulation either its smallest sphere is empty or there exist a1105

(D − i) + j simplex ∀j = 1, i with empty smallest sphere.

B. Halos enclosing well-paths (description and implementation)

Consider ~e1 and ~e2 as two edge vectors sharing a summit-node labeled p2

defining a pyramid (b1b2b3b4p2), as shown in Figure 20a. The base of the pyra-
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mid is a quad defined by points, bi ∀ i = 1 : 4, the translation of the base of the

pyramid is given by:

ti = bi + ~e1; ∀ i = 1 : 4

where ti represents points of the swept quad, e.g., see Figure 20a. In case well-

trajectories are vertical or nearly vertical, the above translation of a sweeping

polygon along the well-paths leads to formation of a quality hexahedron enclos-

ing the well-paths. Nevertheless this simple translation when used to construct

a halo around curved well-paths, is found to yield low quality distorted pinched

out hexahedra. This is because each interior point (and associated sweep poly-

gon) of a well-trajectory is associated with two edges (hence two hexahedrons).

To correct the position of a translated polygon we project it onto the plane

passing through summit-node (p2) defined with normal ~np given by:

~np =
~e1 + ~e2

||~e1 + ~e2||
(8)

i.e. to the bisection plane of edge ~e1 and ~e2. While correcting the position of the

swept polygon, induced by the projection, changes in the dimension(size) of the

swept polygon occurs, viewed with respect to the reference sweeping polygon.1110

To delimit this local size and/or shape change of the swept polygon, an addi-

tional step involving size correction is used. The size correction is performed

by ensuring that the distance of corners(ti) of the swept polygon with respect

to summit-node(p2), matches those of the reference polygon in a 1-1 correspon-

dence, i.e. ||p2ti|| = ||p1bi||, where p2 is the summit-node and p1 is the centroid1115

of the base(bi), e.g., see Figure 20c. At each summit-node a new(swept) face is

constructed first by translating its base, this is followed by projection and finally

size correction. By joining the newly constructed quad face at the summit-node

to the base of the pyramid a hexahedron, together with a pyramid obtained by

joining the quad face at the summit-node to the following point of edge ~e2, (to1120

p3 in Figure 20) is constructed. The size correction step is found to be useful

for highly curved well-trajectories and/or multilateral well-paths described in

section 3.1.
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~e1 = p2 − p1

~e 2
=
p 3
−
p 2

p3

p2
p1

b1

b2

b3

b4

t1

t2

t3

t4

(a) Translation of base (b1b2b3b4) of

pyramid (b1b2b3b4p2) along vector ~e1

~e1 = p2 − p1

~e 2
=
p 3
−
p 2

p3

p2
p1

b1

b2

b3

b4

(b) Projection of the swept face to the

bisection plane of ~e1 and ~e2

p3

p2
p1

b1

b2

b3

b4

t1

t2

t3

t4

(c) Size corection, i.e. |p2ti| = |p1bi|

p3

p2
p1

b1

b2

b3

b4

t1

t2

t3

t4

(d) Propagate spear constructing

hexahedron 1-1

Figure 20: Procedure to sweep polygon along a well-trajectory
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C. Halos enclosing geological objects (re-meshing SSP)

When re-meshing a star-shaped polyhedron(SSP) with respect to an edge1125

(p̄′q), one of three possible cases occurs, as displayed in Figure 21, and detailed

below:

• Case-1 (edge SSP): This is the simplest case, where the point p to be split

is shared by the surface-mesh triangles alone, and the associated star-

shaped polyhedron (SSP) reduces to a star-shaped polygon comprising of1130

edges (Figure 21a). First we split point p, by pushing it in upward and

downward directions yielding an edge (p̄′q), then joining each edge of the

star-shaped polygon to the edge (p̄′q) tetrahedra are generated, e.g., see

Figure 21a.

• Case-2 (edge-tri SSP): The star-shaped polyhedron associated with a1135

surface mesh point p, is constructed by deleting repeated edges/faces

(tri/quad). In this case the cluster (ball) of the point p is comprised

of triangles and tetrahedrons, deleting repeated interior edges/triangles

in the ball of p, a star-shaped-polyhedron comprised of edges and/or tri-

angles is constructed. After splitting point p, it is replaced by an edge1140

(p̄′q), and joining edges of the SSP to the edge (p̄′q) generates tetrahedra,

whereas joining triangular faces of the SSP to the edge (p̄′q) in a consistent

manner generates pyramids, as displayed in Figure 21b.

• Case-3 (edge-tri-quad SSP): In this case in the cluster (ball) of a point

p, there exists pyramid(s) sharing point (p) to be split, e.g. see figure1145

21c. The star-shaped polyhedron associated with point p is constructed

by deleting repeated interior edges, triangles and quads in the ball of p.

The star-shaped-polyhedron constructed, is comprised of edges, triangles

and/or quads. By splitting point p, an edge (p̄′q) is obtained. By joining

edge (p̄′q) to each quad-face in a consistent manner a prism is constructed,1150

e.g., see Figure 21c, whereas as mentioned above triangular faces yield

pyramids and edges are used to construct tetrahedrons.
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p ⇒ ⇒
p′

q

(a) Case 1: Cluster of p is comprised of triangles and star-shaped polyhedron

reduces to a polygon, joining each edge of the polygon to edge (p′, q) a tetra is

generated

p
⇒ ⇒

p′

q

(b) Case 2: Cluster of p is comprised of triangles & tetras; joining each edge/tri of

the star-shaped-polyhedron(SSP) to (p′, q) a tetra/pyramid is generated

p
⇒ ⇒

p′

q

(c) Case 3: Cluster of p is comprised of triangles, tets and pyramids; in star-shaped

polyhedron joining each edge/tri/quad to (p′, q) a tetra/pyramid/prism is

generated.

Figure 21: Procedure proposed for unstructured halo construction, operating on each

mesh-point of the underlying surface, the halo enclosing the surface is constructed

in an unstructured manner
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D. Suppressing Steiner points (Special Case)

If suppressing a Steiner point to recover an underlying quad face as a set

of two triangles, and the degree of the cluster (number of cells sharing the1155

Steiner point at hand) is two, then it is checked against a special case. The

special case occurs when connectivity of both cluster elements (tets) is defined

by points constituting halo sub-faces (triangles) supported by the Steiner point

being lifted. Figure 22a displays this special case, where to recover edge ac

subdividing the underlying quad(abcd) into two triangles(4abc,4cda), a Steiner1160

point(p) was introduced and there are two tetrahedrons (abdp, bcdp) sharing the

Steiner point(p). This case is simply dealt with by deleting the Steiner point(p)

and updating the mesh locally, i.e., two tetrahedrons(abdp, bcdp) sharing Steiner

point(p), are replaced with a tetrahedron(abcd) constituted by points defining

a non-planar quad face, e.g., see Figure 22b.1165

a

bc

d

p

(a) Steiner point(p) is introduced to

recover diagonal ac constituting halo

quad (abcd)

a

b
c

d

(b) Delete Steiner point and replace

two tetra sharing it, with one tetra

defined by quad-face

Figure 22: Special case encounters when suppression of Steiner point, is performed

by deleting the Steiner point
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E. Constructing pyramid as transition element (Special Cases)

Special-Case 1 (combining two tets abutting a quad-face into a pyramid): In

the case of a cluster of the edge, comprised of two tetra being removed, then

such tets can be combined into a pyramid provided the point opposite to the1170

underlying quad face is limited by a distance representative of spacing of points

constituting the quad. Figure 23 displays an edge ac and two tetrahedrons

(abcp, acdp) sharing it. The point opposite to the quad face, i.e., p is used to

construct a pyramid (abcdp) abutting the halo, thereby replacing two existing

tetrahedrons (abcp, acdp).1175

a

b

c

d

p

⇒

a

b

c

d

p

Figure 23: Special case encountered when constructing pyramid transition elements,

used to recover underlying quad faces of the halo elements.

Special-Case2 (degree of edge-cluster is one): The construction of a star-

shaped polyhedron from a set of elements sharing an edge (edge-cluster) bi-

secting an underlying quad into two triangles, requires deleting interior faces.

A special case is encountered when the degree of the edge-cluster is one. The1180

degree of an edge-cluster being one, implies that there exists a tetra with its
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connectivity defined by the point set constituting the quad face to be protected

by constructing a pyramid. Figure 22b displays a case where a representative

edge(ac) bisecting the halo quad (abcd) into two triangles (4abc,4acd) has one

tetrahedron(abcd) sharing it. This situation requires special treatment and we1185

propose to construct a pyramid abutting a quad (abcd) by operating on the other

possible diagonal of the underlying quad face, i.e., bd in Figure 22b. Note that

the other possible diagonal of an underlying quad is an integral part of the tetra

constituted by the quad-face and being inside the domain, is shared by more

than one tetra. This switching of an edge bisecting an underlying quad face into1190

two triangles consistently yields valid meshes, thereby protecting quad-faces by

pyramids.

65


	Introduction
	Proposed grid generation methods
	Step-1: Curve and Surface meshing
	Step-2: Halo construction
	Halos enclosing well-paths: for cell-centred method only
	Halo construction enclosing geological boundary surfaces: for vertex-centred method only

	Step-3: Empty-Mesh A: Boundary - Halo Connection
	Semi-constrained feature recovery supported by Steiner points
	Novel technique to suppress Steiner points & fully constrained feature recovery
	Novel technique for constructing pyramids as transition elements & filling halo channel

	Step-4: Empty-Mesh B: Boundary - interior protection-sphere enclosed boundary connection
	Step-5: Feature honoured 3-D volume mesh

	Examples: Boundary and well aligned grid generation
	Grid generation for cell-centered methods
	Dual grid generation for vertex-centered methods

	CVD-MPFA, flow equations and measure of M-matrix violation
	Numerical results
	Linear pressure field simulation:
	Cell-centred vs vertex-centered CVD-MPFA
	Cell-centred vs vertex-centered TPFA

	Case-2: Discontinuous full-tensor test case with imposed vertical source and sink
	Case 2a: Anisotropy ratio=6
	Case 2b: Anisotropy ratio=50

	Case-3: Multilateral well-trajectory and discontinuous full permeability tensor
	Case 3a: Discontinuous permeability tensor with anisotropy ratio=50
	Case 3b: Discontinuous full permeability tensor with anisotropy ratio=500


	Summary of Grid Generation and CVD-MPFA Comparison
	Grid Generation Summary
	CVD-MPFA Discretization Summary

	Conclusions
	Appendices
	Delaunay admissible simplexes and protection-spheres
	Halos enclosing well-paths (description and implementation)
	Halos enclosing geological objects (re-meshing SSP)
	Suppressing Steiner points (Special Case)
	Constructing pyramid as transition element (Special Cases) 

