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Abstract 

The objective of this study is to investigate the sensitivity of the Equivalent Dynamic Stiffness 

Mapping (EDSM) identification method to typical types of inaccuracy that are often present 

during the identification process. These sources of inaccuracy may include the presence of noise 

in the simulated/measured data, expansion error in the estimation of unmeasured coordinates, 

modelling error in the updated underlying linear model, and the error due to neglecting the 

higher harmonics in the nonlinear response of the system. An analytical study is performed to 

identify the structural nonlinearities of two nonlinear systems, a discrete three-DOF Duffing 

system and a cantilever beam with a nonlinear restoring force applied to the tip of the beam, 

considering the presence of all the aforementioned sources of inaccuracy.  First, the EDSM 

technique is utilized to identify the nonlinear elements of two example systems to verify the 

accuracy of the EDSM technique. Finite Element modelling, the Modified Complex Averaging 

Technique (MCXA), and arc-length continuation are exploited in this study to obtain the steady 

state dynamics of the nonlinear systems. Numerical models of the two systems are then simulated 

in MATLAB and the numerical results of the simulation are used to identify the unknown 

nonlinear elements using the EDSM technique and investigate the effect of different sources of 

error on the outcome of the identification process. The nonlinear response of the system has been 

regenerated using the identified parameters with the sources of error present and the generated 

response has been compared to the simulated response in the absence of any noise or error. The 

EDSM technique is capable of identifying accurately the nonlinear elements in the absence of any 

source of inaccuracy although, based on the results, this method is highly sensitive to the 

aforementioned sources of inaccuracy that results in significant error in the identified model of 

the nonlinear system. Finally, an optimization-based framework, developed by the authors, is 

utilized to identify the nonlinear cantilever beam and the results are compared with the results 

of the EDSM technique. It is shown that by using the optimization method, the inaccuracy due to 

different sources of noise and error is significantly reduced. Indeed, by using the optimization 

method, the necessity to use an expansion method and consider the higher harmonics of the 

response is eliminated. 
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1 Introduction 
 

Nonlinear behaviour is very likely to occur in most practical structures due to the effects of 

material properties, structural joints and boundary conditions. However, in many applications, 

the nonlinearity is small enough so that the structure is analysed using linear theories. On the 

other hand, there are unknown strong nonlinearities in many structures making it difficult to 

predict accurately the dynamic behaviour of the structures using linear analysis. Therefore, an 

appropriate nonlinear model is required to investigate the dynamics of the system. As a 

consequence, identification (localization, characterization and quantification) of such 

nonlinearities has received significant attention over recent decades.  

There are many well-developed model updating and linear modal analysis methods for linear 

structures [1-4]. However, many of these methods are not directly applicable to nonlinear 

systems. There has been a wide range of studies in the literature focusing on identification and 

characterization of the nonlinear elements. One may find comprehensive reviews of system 

identification approaches in [5-9]. The following paragraphs provide a brief literature review of 

system identification methods for nonlinear dynamical structures. 

The literature has an extensive range of identification approaches such as the force-state mapping 

technique, the restoring force surface method, the Hilbert transform, Bayesian system 

identification, Volterra series approximation, optimization-based identification approach, and 

the Equivalent Dynamic Stiffness Mapping technique [10-23]. Some methods assume the type of 

the nonlinearity is pre-known, and others do not rely on this assumption. Kerschen et al. [14] 

investigated the performance of the restoring force surface method in identifying nonlinear 

structural elements. In this regard, they considered the vibrations of a clamped beam with two 

different types of nonlinearities. Their method requires the displacement, velocity, acceleration 

and force of all degrees of freedom to be measured in the time domain. Feldman [15] 

recommended a nonparametric technique for identification of nonlinear elastic force functions 

based on the Hilbert transform. The method presented by Feldman does not require a priori 

information about the system structure or its parameters.  

Worden and Hensman [17] surveyed the benefits and limitations of using the Bayesian approach 

for identification of nonlinear structural systems. This approach is not limited to any assumption 

regarding the type and parameters of the system nonlinearity. Using a combination of time and 

frequency domain techniques, Haroon et al. [21] presented a method to identify nonlinear 

systems in the absence of input measurements. Taghipour et al. [22] proposed an optimization-

based identification approach in order to avoid different sources of error in the identification 

process. According to this framework, it is not necessary to have complete measurement of the 

response at all coordinates. Therefore, using expansion methods (e.g. SEREP) is not required in 

the case of incomplete measurements. The Equivalent Dynamic Stiffness Mapping technique was 

proposed by Wang and Zheng [23] for identification of nonlinear structural elements in 

dynamical systems using steady-state primary harmonic frequency response functions (FRF). 

There is no need for the type and parameters of the nonlinearity to be pre-known in this method, 

however having knowledge of the type of nonlinear element leads to a better parameter 

estimation and identification of the system.  

Unlike the numerical simulation of theoretical problems, the experimental study of practical 

structures is never free of noise. As the model of underlying linear system is an essential 
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requirement in the identification of nonlinear systems and investigation of their dynamics, having 

an accurate linear model of the underlying linear system is very important. On the other hand, 

the presence of nonlinearity in the system yields modelling errors in the updating of the linear 

model. Furthermore, the complexity of the structure, insufficient sensors, and the high cost of 

experiments, often make it impossible to have complete measurements at all coordinates of the 

nonlinear system. Therefore, due to the existence of noise and modelling errors, an additional 

error may occur in the estimation of the responses at the unmeasured coordinates.  

The response of nonlinear systems is usually a multi-harmonic (including sub- or super-

harmonics) behaviour. In many problems, the sub- or super-harmonics of the response are 

significant and cannot be neglected. Therefore, considering only primary harmonic of the 

response may be errorsome. The aforementioned noise and errors may lead to errors in the 

results of the identification methods. This study is focused on the investigation of the sensitivity 

of the Equivalent Dynamic Stiffness Mapping technique (EDSM) [23] to experimental noise and 

various types of errors and showing the advantages of an optimisation based approach in the 

presence of measurement noise. 

In this paper, both theoretical and experimental studies are carried out to analyse the sensitivity 

of the EDSM technique to noise and error. In this regard, the accuracy of the application of the 

EDSM technique is verified using numerical simulation of a nonlinear discrete multi-degree-of-

freedom (MDOF) system and a nonlinear cantilever beam. Steady state responses of numerical 

simulations are obtained by utilizing the Modified Complex Averaging (MCXA) technique [24, 25] 

and numerical arc-length continuation. Considering various types of noise and error, the 

sensitivity of the EDSM technique is studied using both theoretical results of both discrete and 

continuous nonlinear systems. It is concluded that contaminated data used for the identification 

may lead to errors in the results of the EDSM identification. Then, an optimization-based 

framework introduced by Taghipour et al. [22] is utilized to identify the nonlinear system of the 

cantilever beam. By using the optimization method, one may reduce the inaccuracy arising from 

the aforementioned sources of noise and errors. The nonlinear response of the system obtained 

from the optimization method and the EDSM technique are compared with the simulated 

response of the system. It is shown that by using the optimization method, the use of an expansion 

method and consideration of the higher harmonics of the response are not required. Finally, a 

brief conclusion of the study is presented. 

 

 

2 Theory 
 

The Equivalent Dynamic Stiffness Mapping Technique is explained in Section 2.1. In order to 

obtain the dynamical response of the system in the numerical simulation, the semi-analytic 

Modified Complex-Averaging (MCXA) method is used along with the numerical arc-length 

continuation method. The MCXA method is briefly described in Section 2.2. 

 

2.1 Equivalent Dynamic Stiffness Mapping Technique 
The governing equation of a general nonlinear dynamical system can be considered as, 

 [𝐌]{𝒙̈(𝒕)} + [𝐂]{𝒙̇(𝒕)} + [𝐊]{𝒙(𝒕)} + {𝒇𝒏𝒍(𝒕)} = {𝒇(𝒕)} (1) 
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where [𝐌], [𝐂] and [𝐊] are mass, damping and stiffness matrices, respectively. {𝒇(𝒕)}, {𝒙(𝒕)} and 

{𝒇
𝒏𝒍

(𝒕)} are respectively the applied force, response and nonlinear restoring force vectors. 

Considering that the external applied force is harmonic, i.e. {𝒇(𝒕)} = {𝐅𝑒𝑥}𝒆𝒋𝝎𝒕, the response and 

nonlinear force vector can be considered harmonic too as {𝒙(𝒕)} = {𝐗}𝒆𝒋𝝎𝒕 and {𝒇
𝒏𝒍

(𝒕)} =

{𝐅𝑁𝐿}𝒆𝒋𝝎𝒕.  By substituting the assumed force and response vectors into equation (1) one obtains,  

 𝐅𝑁𝐿 = 𝐅𝑒𝑥 − (𝐊 + 𝑗𝜔𝐂 − 𝜔2𝐌)𝐗, (2) 
 

where 𝐅𝑒𝑥 and 𝐗 are the vectors of the external force and the response of the system in the 

frequency domain and 𝑗 = √−1. As the type of nonlinearity is unknown, it is assumed to be 

composed of both nonlinear stiffness and nonlinear damping as  

 𝐅𝑁𝐿 = 𝐃𝐞𝐪𝐗 = (𝐊𝑒𝑞 + 𝑗𝜔𝐂𝑒𝑞)𝐗, (3) 

 

where 𝐊𝑒𝑞 and 𝐂𝑒𝑞 denote, respectively, the equivalent stiffness and damping elements of the 

nonlinear internal force. The unknown Equivalent Dynamic Stiffness 𝐃𝐞𝐪 of the internal force is 

defined as the ratio of the nonlinear internal force to the displacement response of the system in 

the frequency domain. However, as the total number of unknowns in 𝐃𝐞𝐪  is more than the 

number of equations in Eq. (3), it cannot be solved as a system of linear equations. Indeed, the 

elements of 𝐃𝐞𝐪 at which there is no nonlinear element should be zero. In addition, 𝐃𝐞𝐪 is a 

symmetric matrix. That is, in case of ungrounded (connected) nonlinearities between two DOFs 𝑖 

and 𝑗, 𝐷𝑒𝑞𝑖𝑗
= 𝐷𝑒𝑞𝑗𝑖

. Therefore, instead of solving Eq. (3) as a system of equations to find the 

matrix 𝐃𝐞𝐪, it is solved individually for each nonlinear element.  

It is taken for granted that prior to the characterization of the nonlinear element, the exact 

location of the nonlinearity, i.e. whether it is grounded or ungrounded and the involved DOFs, has 

been determined. Accordingly, for grounded nonlinearities, in which only one degree of freedom 

is involved, the equivalent dynamics stiffness 𝐷𝑖𝑖, is obtained as 

 𝐷𝑖𝑖 =
𝑓𝑁𝑖

𝑋𝑖
, (4) 

 

The real and imaginary parts of the equivalent dynamics stiffness give the equivalent nonlinear 

stiffness 𝑘𝑒𝑞𝑖𝑖
 and equivalent nonlinear damping 𝑐𝑒𝑞𝑖𝑖

 of the nonlinear internal force, 

 𝑘𝑒𝑞𝑖𝑖
= ℜ(𝐷𝑖𝑖),   𝑐𝑒𝑞𝑖𝑖

=
ℑ(𝐷𝑖𝑖)

𝜔
, (5) 

 

For the case of ungrounded (connected) nonlinearities the relations of Eqs. (4) and (5) become 

 𝐷𝑖𝑗 =
𝑓𝑁𝑖

𝑋𝑖 − 𝑋𝑗
,   𝑘𝑒𝑞𝑖𝑗

= ℜ(𝐷𝑖𝑗),   𝑐𝑒𝑞𝑖𝑗
=

ℑ(𝐷𝑖𝑗)

𝜔
, (6) 

 

where 𝐷𝑖𝑗, 𝑘𝑒𝑞𝑖𝑗
, and 𝑐𝑒𝑞𝑖𝑗

 are the element of dynamic stiffness, equivalent nonlinear stiffness, 

and equivalent nonlinear damping between DOF-i and DOF-j. Table 1 includes different types of 

internal forces and their ideal equivalent dynamic stiffness [23].  
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Table 1- Different types of internal forces and their ideal equivalent dynamic stiffness [23]. 

Type of internal force Exact internal force 
Ideal Equivalent 

Dynamic Stiffness 

Linear spring 𝑓𝑁𝐿 = 𝑘𝑥 𝐷𝑒𝑞 = 𝑘 

Viscous damping 𝑓𝑁𝐿 = 𝑐𝑥̇ 𝐷𝑒𝑞 = 𝑗𝜔𝑐 

Cubic stiffness spring 𝑓𝑁𝐿 = 𝑘𝑥3 𝐷𝑒𝑞 =
3

4
𝑘|𝑋|2 

  

It is worth mentioning that the EDSM technique is based on some assumptions and has some 

limitations: 

- As the identification procedure of the described method utilizes deterministic FRFs, the 
method requires steady state responses. Therefore, it should be ensured that the steady 
state response is measured and used in the calculations. 

- All of the coordinates are required to be known. If some DOFs are not measured, they 
should be estimated utilizing an expansion method (e.g. SEREP) that may result in some 
inaccuracy. 

- The method is based on the assumption that the primary harmonic is dominant and all 
other harmonics of the response are neglected.  

- In practical systems, particularly in multi-DOF systems with strong nonlinearities and a 
flexible structure, there may be ill-conditioning problems in calculating the equivalent 
dynamic stiffness. 

 

 

2.2 Semi-analytic Treatment and Numerical Simulation 
For the theoretical analysis, the steady state dynamic response of the system subject to harmonic 

external force is obtained using the modified complex averaging technique (MCXA), [24, 25]. In 

order to use this technique, the response of the i-th degree of freedom 𝑥𝑖(𝑡) is approximated using 

the sum of the static response 𝑥𝑠𝑡𝑖
 and 𝑁𝐻 harmonics of the dynamic response 𝑥𝑖

𝑛(𝑡), 

 𝑥𝑖(𝑡) = 𝑥𝑠𝑡𝑖
+ ∑ 𝑥𝑖

𝑛(𝑡)

𝐻

𝑛=1

,             𝑖 = 1, … , 𝑁𝑖 , (7) 

 

where 𝑁𝑖  is the number of degrees of freedom of the system. Defining new complex variables on 

each harmonic  

 𝜓𝑖
𝑛 = 𝑥̇𝑖

𝑛 + 𝑗𝑛𝜔𝑥𝑖
𝑛 =  𝜑𝑖

𝑛𝑒𝑗𝑛𝜔𝑡 , 𝜓̅𝑖
𝑛 = 𝑥̇𝑖

𝑛 − 𝑗𝑛𝜔𝑥𝑖
𝑛 =  𝜑̅𝑖

𝑛𝑒−𝑗𝑛𝜔𝑡, (8) 

 

where 𝜔 is the excitation frequency, the displacement 𝑥𝑖
𝑛(𝑡) and derivatives 𝑥̇𝑖

𝑛(𝑡) and 𝑥̈𝑖
𝑛(𝑡) can 

be derived for each harmonic of every degree of freedom as below. 

 
𝑥𝑖

𝑛 =
1

2𝑗𝑛𝜔
(𝜑𝑖

𝑛𝑒𝑗𝑛𝜔𝑡 − 𝜑̅𝑖
𝑛𝑒−𝑗𝑛𝜔𝑡), 𝑥̇𝑖

𝑛 =
1

2
(𝜑𝑖

𝑛𝑒𝑗𝑛𝜔𝑡 + 𝜑̅𝑖
𝑛𝑒−𝑗𝑛𝜔𝑡), 

𝑥̈𝑖
𝑛 =

(𝜑̇𝑖
𝑛𝑒𝑗𝑛𝜔𝑡 + 𝜑̇̅𝑖

𝑛𝑒−𝑗𝑛𝜔𝑡)

2
+

𝑗𝑛𝜔

2
(𝜑𝑖

𝑛𝑒𝑗𝑛𝜔𝑡 − 𝜑̅𝑖
𝑛𝑒−𝑗𝑛𝜔𝑡) 

(9) 
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Substituting Eqs. (8) and (9) into the governing equation of the system and averaging over each 

harmonic, 𝑁𝑖 × 𝑁𝐻 new first order differential equations are obtained in terms of new complex 

variables 𝜑𝑖
𝑛. The complex variables 𝜑𝑖

𝑛 are separated into real and imaginary parts. 

 𝜑𝑖
𝑛 = 𝑦2((𝑖−1)𝑁𝐻+𝑛)−1 + 𝑗𝑦2((𝑖−1)𝑁𝐻+𝑛)  ,            𝑖 = 1, … , 𝑁𝑖 , (10) 

 

Substituting Eq. (10) into the equation of motion of the system, 2 × 𝑁𝑖 × 𝑁𝐻 first order differential 

equations are derived in the general form as below 

 𝐘̇ = 𝐑(𝐘), (11) 

 

where 𝐘 = [𝑦1𝑦2 … 𝑦2×𝑁𝑖×𝑁𝐻
]

𝑇
 is the unknown vector and 𝐘̇ = [𝑦̇1𝑦̇2 … 𝑦̇2×𝑁𝑖×𝑁𝐻

]
𝑇

 is the 

derivative of Y. For the case of steady state dynamics, eliminating the time derivatives 𝐘̇ =

[𝑦̇1𝑦̇2 … 𝑦̇2×𝑁𝑖×𝑁𝐻
]

𝑇
 results in algebraic equations in the form 

 𝐑(𝐘) = 0, (12) 

For nonlinear systems, it would be difficult or in many cases impossible to find an explicit analytic 

solution. Hence, in this study, pseudo arc-length continuation method has been used to solve the 

nonlinear Eqs. (12) and compute unknown variables 𝑦𝑘 , 𝑘 = 1, … , 2 × 𝑁𝑖 × 𝑁𝐻 , by which 

amplitude of each harmonic can be determined. 

 
𝑋𝑖

𝑛 =
√(𝑦

2((𝑖−1)𝑁𝐻+𝑛)−1
2 + 𝑦

2((𝑖−1)𝑁𝐻+𝑛)
2 )

𝑛𝜔
, 

(13) 

 

Stability analysis of the steady state solution of the nonlinear system is also performed using 

Lyapunov's first method of stability analysis and simple linearization of Eq. (13) and considering 

the eigenvalues of the Jacobian matrix at equilibrium. 

 

 

 

3 Verification 
 

In this section, the accuracy of the semi-analytic MCXA technique and the EDSM method, 

respectively, in estimating the steady state response of nonlinear dynamic systems and 

identifying nonlinear systems is verified. For this purpose, the steady state dynamic response of 

two systems is considered. The first system is a 3DOF mass-spring system shown in Figure 1, 
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Figure 1- Three-DOF discrete nonlinear system. 

 

The governing equations of the system is derived using Newton’s second law as 

 

 

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘𝑙1
𝑥1 + 𝑘𝑛1

𝑥1
3 + 𝑐12(𝑥̇1 − 𝑥̇2) + 𝑘𝑙12

(𝑥1 − 𝑥2) = 𝐹 sin(𝜔𝑡) 

𝑚2𝑥̈2 + 𝑐12(𝑥̇2 − 𝑥̇1) + 𝑘𝑙12
(𝑥2 − 𝑥1) + 𝑐23(𝑥̇2 − 𝑥̇3) + 𝑘𝑙23

(𝑥2 − 𝑥3)

+ 𝑘𝑛23
(𝑥2 − 𝑥3)3 =  0 

𝑚3𝑥̈3 + 𝑐3𝑥̇3 + 𝑘𝑙3
𝑥3 + 𝑘𝑛3

𝑥3
3 + 𝑐23(𝑥̇3 − 𝑥̇2) + 𝑘𝑙23

(𝑥3 − 𝑥2) + 𝑘𝑛23
(𝑥3 − 𝑥2)3 = 0, 

(14) 

 

where 𝑚1, 𝑚2 and 𝑚3 are the masses of the oscillators, 𝑐1, 𝑐12, 𝑐23, 𝑐3 are damping coefficients, 

𝑘𝑙1
, 𝑘𝑙12

, 𝑘𝑙23
, 𝑘𝑙3

 are linear stiffnesses and 𝑘𝑛1
, 𝑘𝑛23

, 𝑘𝑛3
 denote the coefficients of nonlinear cubic 

stiffness. A harmonic external force with an amplitude of 𝐹 and excitation frequency of 𝜔 is 

applied to the first degree of freedom. Table 2 contains the values given to the parameters of the 

system of Eq. (14) used for numerical simulations in this study. 

 

Table 2- Values for the parameters of the system shown in Figure 1. 

Parameters 
(unit) 

value Parameters 
(unit) 

value Parameters 
(unit) 

value 

𝒎𝟏 (𝐤𝐠) 1 𝑐23 (
N.s

m
) 0.25 𝑘𝑙23

 (
N

m
) 30 

𝒎𝟐 (𝐤𝐠) 2 𝑐3 (
N.s

m
) 0.15 𝑘𝑛23

 (
N

m3) 300 

𝒎𝟑 (𝐤𝐠) 1.5 𝑘𝑙1
 (

N

m
) 25 𝑘𝑙3

 (
N

m
) 30 

𝒄𝟏 (
𝐍.𝐬

𝐦
) 0.1 𝑘𝑛1

 (
N

m3) 400 𝑘𝑛3
 (

N

m3) 500 

𝒄𝟏𝟐 (
𝐍.𝐬

𝐦
) 0.2 𝑘𝑙12

 (
N

m
) 50 𝐹 (N) 1.5 

 

It is assumed that all parameters are known except 𝑐1, 𝑐3, 𝑘𝑙1
, 𝑘𝑛1

, 𝑘𝑛23
, 𝑘𝑙3

, 𝑘𝑛3
. Accordingly, the 

mass, damping and stiffness matrices and the vector of nonlinear forces for the system shown in 

Figure 1 is defined as,  

𝑐1 𝑐12 𝑐23  𝑐3 

𝑥3(𝑡) 𝑥2(𝑡) 𝑥1(𝑡) 

𝑘𝑙1
+ 𝑘𝑛1

𝑥1
2 𝑘𝑙12

 𝑘𝑙23
+ 𝑘𝑛23

(𝑥2 − 𝑥3)2  
𝑘𝑙3

+ 𝑘𝑛3
𝑥3

2 

𝑚1 𝑚2 𝑚3 

𝐹 sin(𝜔𝑡) 
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𝑀 = [

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] , 𝐶 = [

𝑐12 −𝑐12 0
−𝑐12 𝑐12 + 𝑐23 −𝑐23

0 −𝑐23 𝑐23

] ,

𝐾 = [

𝑘𝑙12
−𝑘𝑙12

0

−𝑘𝑙12
𝑘𝑙12

+ 𝑘𝑙23
−𝑘𝑙23

0 −𝑘𝑙23
𝑘𝑙23

] ,

{𝑓𝑁𝐿} = {

𝑐1𝑥̇1 + 𝑘𝑙1
𝑥1 + 𝑘𝑛1

𝑥1
3

𝑘𝑛23
(𝑥2 − 𝑥3)3

𝑐3𝑥̇3 + 𝑘𝑙3
𝑥3 + 𝑘𝑛3

𝑥3
3 + 𝑘𝑛23

(𝑥3 − 𝑥2)3

} ,

{𝑓(𝑡)} = {
𝐹 sin(𝜔𝑡)

0
0

}, 

(15) 

 

Therefore, Eq. (14) is rearranged in matrix form so that the vector of nonlinear force {𝑓𝑁𝐿} 
includes only unknown parameters, which are identified using the Equivalent Dynamic Stiffness 

Mapping technique.  

 

 

Figure 2- Schematic of the cantilever beam with a grounded nonlinear restoring force at the tip. 

 

A nonlinear stainless-steel cantilever beam subject to an external harmonic force is considered 

as the second system studied in this paper. The beam is assumed to have the geometry and 

material properties given in Table 3. As shown in Figure 2, a nonlinear restoring force is applied 

to the tip of the beam through a grounded nonlinear attachment including a nonlinear spring (a 

linear and a cubic stiffness) and a linear dashpot. The nonlinear restoring force and parameters 

are given as  

 𝑓𝑁𝐿 = 𝑐𝑙𝑤̇(𝑙, 𝑡) + 𝑘𝑙𝑤(𝑙, 𝑡) + 𝑘𝑁𝑤(𝑙, 𝑡)3, (16) 
where  

 𝑐𝑙 = 0.004
N. s

m
, 𝑘𝑙 = 20

N

m
, 𝑘𝑁 = 1 × 105

N

m3
. (17) 

 

and 𝑤(𝑙, 𝑡) denotes the deflection of the beam at the tip. Harmonic point force 𝐹𝑒𝑥(𝑡) = 𝑓 sin(𝜔𝑡) 

excitation is used to excite the beam. In the configuration of the beam in Figure 2, there are four 

point masses 𝑝𝑚 = {6, 6, 6, 8} g respectively located at positions 𝑥𝑚 = {
𝑙

6
,

3𝑙

6
,

5𝑙

6
, 𝑙} from the 
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clamped end of the beam, where 𝑙 is the beam length. Tip mass represents the mass of bolts and 

nuts used to attach spring and dashpot to the beam. The three other masses represent the mass 

of accelerometers used to measure the response of the beam. 

 

Table 3- Geometry and material properties of the beam shown in Fig. 2. 

Length 𝟎. 𝟑𝟎 𝐦 
Width 30 mm 

Thickness 1.5 mm 
Modulus of Elasticity, 𝑬 205 GPa 

Density, 𝝆 7800
kg

m3
 

Damping coefficient per length, 𝜸 0.2
kg

m. s
 

  

According to Euler-Bernoulli beam theory [26] and utilizing the Finite Element method and six 

two-node linear Euler-Bernoulli beam elements, the given nonlinear structure is governed by 

following equation in matrix form  

 𝐌𝐰̈(𝑡) + 𝐂𝐰̇(𝑡) + 𝐊𝐰(𝑡) + 𝒇𝑁𝐿(𝐰, 𝐰̇) = 𝒇𝑒𝑥(𝑡), (18) 
   

where 𝐌, 𝐊, 𝐂 denote the global mass, stiffness, and damping matrices, respectively.  𝐰(𝑡) is the 

time response of the beam at instant time 𝑡. The vectors of displacement and its time derivatives 

are shown by 𝐰(𝑡), 𝐰̇(𝑡), and 𝐰̈(𝑡), respectively. 𝒇𝑛𝑙(𝐰, 𝐰̇) is the unknown nonlinear internal 

force of the system. 

 

 

3.1 Verification of the MCXA Technique 

In order to verify the accuracy of the MCXA method, the 3DOF system of Figure 1 is considered. 

The steady state dynamics of the system of Eq. (14) with parameters of Table 2 is obtained using 

the MCXA technique and ODE direct integration in MATLAB. Then, the results of the two methods 

are compared.  

To simulate the response of the system using MCXA, the first three harmonics of the response are 

considered. Figures 3 and 4 illustrates the amplitude-frequency and phase-frequency diagrams 

of the first three harmonics of the steady state dynamics of the system. |𝑋𝐻𝑖
| and 𝜑𝐻𝑖

 in Figures 3 

and 4 denote, respectively, the amplitude and phase of 𝑖-th harmonic of the steady state response. 

Stable and unstable branches of the steady state response are shown by blue and red lines, 

respectively. The stability of the steady state response of the system was investigated using 

Lyapunov's first method of stability analysis. 
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Figure 3- Amplitude–frequency diagram of the first three harmonics of the steady state response of the 3DOF system. Blue 

lines denote the stable branches and red lines represent the unstable branches. 
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Figure 4- Phase–frequency diagram of the first three harmonics of the steady state response of the 3DOF system. Blue lines 

denote the stable branches and red lines represent the unstable branches. 

 

Figure 5 illustrates the comparison between the first and third harmonics of the steady state 

dynamics of the 3DOF system obtained using the MCXA technique and ODE integration in 

MATLAB. As expected, ODE integration is not capable of estimating the unstable solutions. ODE 

integration cannot even predict some of the stable solutions due to the limited stability range at 

some points. However, there is a good compatibility between the results obtained by the MCXA 

technique and the results estimated using ODE integration. 
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Figure 5- Comparison between the first and third harmonics of the steady state response of the 3DOF system obtained by the 

MCXA technique and ODE integration. 

 

Figure 6 shows the comparison between the time history of the steady state response of the 3DOF 

system at 𝜔 = 3.5 rad/s obtained using the MCXA technique and ODE integration. Figure 6(a) 

illustrates the multi-harmonic response of the system, while Figures 6(b) and 6(c) demonstrate, 

respectively, the first and third harmonics of the response. The results show a good compliance 

between the two different methods. However, since the MCXA technique is able to obtain both 

stable and unstable branches of the response, and also has a much lower computational cost than 

ODE integration, the MCXA technique is used here in this study. 
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Figure 6- Comparison between the time history of the first degree of freedom of the 3DOF system obtained using MCXA 

and ODE integration. (a) Multi-harmonic response; (b) primary harmonic; (c) third harmonic. 

 

   

 

3.2 Verification of the EDSM Technique 

In this section, the accuracy of the EDSM method is verified in the absence of any noise and error. 

For this purpose, the steady state dynamics of the two example nonlinear systems are obtained 

using the MCXA technique and arc-length continuation. The nonlinear forces of the two systems 

are identified using the EDSM technique. 
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Figure 7- (a, c, e) Amplitude-frequency response and (b, d, f) Phase of the 1st, 2nd , and 3rd oscillators of the 
nonlinear discrete system, respectively. 

 

3.2.1 Discrete MDOF Nonlinear System 

The three-DOF nonlinear discrete system of Eq. (1) is used to verify the accuracy of the EDSM 

technique. The EDSM technique is used to identify various types of unknown internal forces 

including linear and nonlinear stiffnesses and linear damping, for both grounded and ungrounded 

cases.   

For the purpose of verification, it is assumed that the response includes only the primary 

harmonic and simulation is performed accordingly. The effect of higher harmonics in the results 

of the identification is discussed later in the paper. Using the MCXA technique, described in 

Section 2.3, the steady state response of the system of Eq. (1) is obtained. Figure 7 gives the 

amplitude and phase of the response of the system, where the blue lines denote the stable 

responses and red lines show the unstable branches of the response of the system. The stability 

of the steady state response of the system was investigated using Lyapunov's first method of 

stability analysis. 

Once the frequency domain response of the system has been obtained, the Equivalent Dynamic 

Stiffness Mapping technique is applied to identify the unknown internal forces of the system. The 

ideal equivalent dynamic stiffness of different types of internal forces are given in Table 1. 
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Accordingly, a linear spring and a cubic stiffness spring are shown respectively as a constant and 

a quadratic in the plot of the real part of the equivalent dynamic stiffness versus the amplitude of 

the response. On the other hand, linear damping is given as a constant in the plot of the imaginary 

part of the equivalent dynamic stiffness versus the amplitude of the response.  

Figure 8 shows the real part of the equivalent dynamic stiffness in terms of the frequency domain 

amplitude of the response of the system. From the plot of the real part of 𝐷𝑒𝑞 the linear stiffness 

is identified as a constant, while the nonlinear part would be identified as a variation with respect 

to the amplitude of the response. Figure 8 (a) shows the grounded stiffness is composed of a linear 

and a nonlinear part which is attached to DOF 1. The ungrounded (connected) nonlinear stiffness 

between DOFs 2 and 3 is shown in Figure 8 (b). The grounded nonlinear stiffness attached to DOF 

3 is shown in Figure 8 (c). The imaginary parts of the equivalent dynamic stiffness identify the 

equivalent damping coefficients of the nonlinear internal force, as shown in Figure 9. The 

grounded equivalent damping coefficients of DOFs 1 and 3 are linear in Figures 9 (a) and 9(b), 

respectively.  

 

 

Figure 8- The real parts of the dynamic stiffness demonstrate the stiffness of nonlinear internal force of 
the system. (a) grounded nonlinear cubic stiffness including linear part at DOF1; (b) ungrounded 
nonlinear stiffness between DOFs 2 and 3; (c) grounded nonlinear stiffness including linear part 

connected to DOF 3. 

 

 

Figure 9- The imaginary parts of the dynamic stiffness identify the unknown linear damping at (a) DOF1  
and (b) DOF 3. 
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3.2 Cantilever Beam 
 

In order to investigate the capability of the EDSM identification technique in identifying the 

nonlinearities of continuous systems, a theoretical case study is carried out in this section on the 

cantilever beam described in Section 2.2. In order to verify the accuracy of the EDSM technique 

in the absence of all sources of inaccuracy, it assumed that there is no noise in the simulated data 

or modelling error in the underlying linear model. In addition, for the sake of simplicity, it is 

assumed that the response is free of higher harmonics. As the EDSM technique requires the 

response of the system to be given (simulated/measured) at all coordinates, in order to avoid any 

expansion error due to the estimation of unmeasured coordinates, the simulated response at all 

coordinates are utilized in the EDSM identification process. However, particularly for continuous 

systems, it is not possible to have complete measurements at all coordinates in practical 

applications. 

The steady state dynamics of the cantilever beam is simulated by developing a code in MATLAB 

using the semi-analytical modified complex-averaging technique (MCXA) and are-length 

continuation [24, 25]. Different force amplitudes are applied to the beam in order to obtained the 

linear and nonlinear responses of the system. Figure 10 (a) illustrates the underlying linear and 

nonlinear responses of the system at DOF 11, the coordinate where the nonlinear restoring force 

is applied, for 𝐹 = 1 N. To obtain the underlying linear system, the nonlinear element is neglected 

in the simulation. Figure 10 (b) shows the nonlinear response of the cantilever beam in the 

vicinity of first natural frequency for different values of force amplitude 𝐹.  

 

Figure 10- (a) Amplitude-frequency response of the underlying linear and nonlinear system of the 
cantilever beam for 𝐹 = 1 𝑁; (b) amplitude-frequency response of the system for different force 

amplitudes. 

 

From the nonlinear response of the system at all degrees of freedom, the Equivalent Dynamic 

Stiffness Mapping (EDSM) technique is used to identify the nonlinear element. Figures 11(a) and 

11(b) respectively illustrate the comparison between the estimated and true values of the 

equivalent stiffness and damping of the nonlinear restoring force applied to the cantilever beam. 

Due to the Fourier Integral used to find the equations of motion in the frequency domain, the 

cubic nonlinear stiffness is given by a quadratic in Figure 11(a), with the constant 20
N

m
 indicating 

the linear part of the stiffness. The nonlinear internal force also includes linear damping with 𝑐𝑙 =
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0.004
N.s

m
, and the identification gives an accurate constant value equal to the linear damping 

coefficient, see Fig. 11(b). As demonstrated, the EDSM technique is capable of accurately 

predicting the unknown nonlinear force, without any noise or error. 

 

 

Figure 11- (a) Equivalent nonlinear stiffness, obtained from the real part of the equivalent dynamic stiffness, in 
comparison with the true value; (b) comparison of the estimated and true value of damping of the nonlinear restoring 

force. 

 

4 Sensitivity to Error and Noise 
 

Using the numerical simulation of both discrete and continuous nonlinear systems, the capability 

of the EDSM technique for the identification of nonlinearities has been investigated in the absence 

of noise and error. It is easy to avoid modelling errors and noise in simulated/measured data, but 

in practical systems and in experimental measurement, noise is inevitable in measured data. 

Therefore, having noise in the measured data makes it difficult to accurately identify the unknown 

elements/parameters and may lead to inaccuracy in the results of the identification.  

In addition, many of the nonlinear identification methods require the underlying linear model to 

be properly updated in advance. However, since even the low amplitude response of a nonlinear 

system is not exactly same as the response of its underlying linear system, updating the 

underlying linear system using the measured response of the nonlinear system is unlikely to be 

free of error. This modelling error will also result in incorrect identification.  

Incomplete measurement in experimental studies is considered as another source of error in the 

EDSM technique. Indeed, in practical systems, it is almost always impossible to have complete 

measurements due to insufficient equipment or sensors, or the difficulty in placing sensors. As 

the EDSM technique requires the responses of the system at all coordinates to be determined 

(measured or estimated), expansion methods are used to estimate the response at unmeasured 

DOFs, and this may create errors in the estimated data to be used in the EDSM technique. 

The other source of error in the identification of nonlinear elements of dynamic structures is 

neglecting the presence of higher harmonics in the dynamics of the structure. Indeed, in many 

nonlinear structures the effect of higher harmonics in the response is too significant to be 

neglected. Therefore, utilizing only the primary harmonic of the response in the identification 
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process, as many of the identification methods do, may result in considerable error with respect 

to the magnitude of higher harmonics in the response. 

In this section, the numerical simulations of the previously introduced continuous and discrete 

systems of the nonlinear cantilever beam and three-DOF Duffing oscillator are used to investigate 

the sensitivity of the EDSM technique to noise and various types of error such as expansion error, 

modelling error, and the error due to neglecting the higher harmonics in the response of 

nonlinear systems.  

 

4.1 The Effect of Expansion Error 
 

Expansion methods such as System Equivalent Reduction Expansion Process (SEREP) [1] are 

used to estimate the response of the system at unmeasured coordinates. For a system with 𝑝 

measured DOFs and 𝑞 unmeasured DOFs, the unmeasured response is estimated using the SEREP 

method as 

 {
𝐗𝒎

𝐗𝒖
} = 𝐓𝐗𝒎, (19) 

   
where [𝐗𝒎]𝒑×𝟏 and [𝐗𝒖]𝒒×𝟏 are respectively the measured response and estimated response at 

unmeasured coordinates, [𝐓]𝐧×𝐦 denotes the transform matrix of the SEREP method, and 𝑛 is the 

number of total degrees of freedom. Since such expansion methods are usually based on the linear 

systems, using them for nonlinear systems may lead to some error in the estimated response. 

Therefore, the estimated response at unmeasured coordinates is slightly deviated from the actual 

unmeasured response, 𝐗𝑢 = 𝐗𝑢
𝑎 + 𝛿𝐗𝑢. 𝐗𝑢

𝑎  is the actual response at unmeasured DOFs and 𝛿𝐗𝑢 

denotes the error of estimating the response at unmeasured DOFs using SEREP. Nonlinear force 

may be obtained using the estimated response as 

 

𝐅𝑁𝐿 = 𝐅𝑒𝑥 − (𝐊 + 𝑗𝜔𝐂 − 𝜔2𝐌) ({
𝐗𝒎

𝐗𝑢
𝑎 } + {

𝟎
𝛿𝐗𝑢

}), 

 
𝐅𝑁𝐿 = 𝐅𝑁𝐿

𝑎 + 𝛿𝐅𝑁𝐿 
 

(20) 

where 𝐅𝑁𝐿
𝑎  denotes the vector of actual nonlinear force and 𝛿𝐅𝑁𝐿 is the vector of error in the 

identified nonlinear force arising from the use of SEREP method to estimate the response at 

unmeasured coordinates. 

 

 

𝛿𝐅𝑁𝐿 = −(𝐊 + 𝑗𝜔𝐂 − 𝜔2𝐌) {
𝟎

𝛿𝐗𝑢
} 

 

(21) 

To study the effect of expansion error, it is assumed that the measurements on the beam are 

carried out on only three degrees of freedom (DOFs 1, 5, 9) using three simulated accelerometers 

shown in Figure 2. Hence, the responses of the measured coordinates are expanded using the 

SEREP expansion method [1] to predict the response at unmeasured DOFs. Figure 12 (a) shows 

the measured and estimated responses for the translational coordinates of the system under 1N 

harmonic excitation force in the neighbourhood of first natural frequency. The expansion error 

from the SEREP expansion is given in Figure 12 (b). The maximum expansion error for the 

translational DOFs is 1.5% at DOF11. The EDSM technique is then applied to the simulated (DOFs 
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1, 5, 9) and estimated (other DOFs) steady state response of the system obtained for different 

amplitudes of external force, 𝐹, to identify the unknown nonlinear elements.  

 

Figure 12- (a) Estimation of the translational responses of the system at unmeasured DOFs using the 
measured data and SEREP expansion. (b) The expansion error (%) for translational DOFs. 

 

Applying the SEREP expansion method to the incomplete measurement, identified stiffness and 

damping gives the results shown in Figure 13. To fit a curve to the EDSM data, a constant function 

for the linear damping and a quadratic curve for the nonlinear cubic stiffness are assumed. The 

identified nonlinear force is given as, 

 

𝐹𝑁 = 𝑐𝑙𝑤̇(𝑙, 𝑡) + 𝑘𝑙𝑤(𝑙, 𝑡) + 𝑘𝑁𝑤(𝑙, 𝑡)3, 
 

𝑐𝑙 = 0.0435
N. s

m
, 𝑘𝑙 = 40

N

m
, 𝑘𝑁 = 7.3 × 104

N

m3
. 

(22) 

 

The error caused by the expansion has led to errors of 987%, 100%, and 27% in the identification 

of 𝑐𝑙 , 𝑘𝑙 , and 𝑘𝑁, respectively.   

The identification process has been performed using different numbers of coordinates of the 

simulated response of the system to study the effect of expansion error in the final results of the 

identification. Figure 14 demonstrates how increasing the number of measured/simulated 

coordinates may decrease the level of error in the results of the identification.  
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Figure 13- Errors in the identified stiffness (a) and damping (b) due to using SEREP expansion to estimate the 
response at unmeasured DOFs. The response was simulated/measured only at three DOFs: 1, 5, and 9. 

 

 

Figure 14- Identification of the unknown nonlinear force using the simulated response at different numbers of 
degrees of freedom. The response of the system was obtained for 𝐹 = 4 𝑁. 
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Figure 15- Comparison of the simulated response of the nonlinear system with the response regenerated using the 
identified parameters of Eq. (22), considering the effect of expansion error. 

The main purpose of the identification of nonlinear systems is to generate an accurate 

mathematical model so that it can predict the behaviour of the system precisely. Figure 15 shows 

a comparison between the simulated response of the nonlinear system and the response 

regenerated using the identified nonlinear force of Eq. (22). It is observed that the identified 

parameters are not able to regenerate exactly the simulated response. 

 

4.2 The Effect of Modelling Error 
 

Other than the error due to the expansion of the incomplete measured responses, modelling error 

may result in considerable error in the identified parameters. Modelling error comes from 

updating the underlying linear system and it may arise from contaminated data or using the low 

amplitude nonlinear response to identify the underlying linear model. Having modelling error in 

the updated underlying linear model is shown by deviation from actual values of the linear system 

as 

 𝐌 = 𝐌𝒂 + 𝜹𝐌, 𝐂 = 𝐂𝒂 + 𝜹𝐂, 𝐊 = 𝐊𝒂 + 𝜹𝐊, (23) 
   

where 𝐌, 𝐂, and 𝐊 are respectively updated mass, damping, and stiffness matrices. Superscript 

∎𝒂 and 𝜹 denote the actual value and error of each identified matrix, respectively. Using an 

inaccurate underlying linear model may lead to inaccurate nonlinear force as 

 

𝐅𝑁𝐿 = 𝐅𝑒𝑥 − (𝐊𝒂 + 𝜹𝐊 + 𝑗𝜔(𝐂𝒂 + 𝜹𝐂) − 𝜔2(𝐌𝒂 + 𝜹𝐌)) ({
𝐖𝒎

𝐖𝑢
𝑎 } + {

𝟎
𝛿𝐖𝑢

}), 

 
𝐅𝑁𝐿 = 𝐅𝑁𝐿

𝑎 + 𝛿𝐅𝑁𝐿 
 

(24) 

where 𝐅𝑁𝐿
𝑎  denotes the vector of actual nonlinear force and 𝛿𝐅𝑁𝐿 is the vector of error in the 

identified nonlinear force arising from the use of SEREP method to estimate the response at 

unmeasured coordinates and modelling error in updating the underlying linear system. 
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𝛿𝐅𝑁𝐿 = −(𝐊𝒂 + 𝑗𝜔𝐂𝒂 − 𝜔2𝐌𝒂) {
𝟎

𝛿𝐖𝑢
} − (𝜹𝐊 + 𝑗𝜔𝜹𝐂 − 𝜔2𝜹𝐌) ({

𝐖𝒎

𝐖𝑢
𝑎} + {

𝟎
𝛿𝐖𝑢

}) 

 

(25) 

A usual way to update the underlying linear system is using the response of the nonlinear system 

excited by a very low-amplitude external force. Although the effect of nonlinear force on the 

response of the system decreases by reducing the amplitude of excitation force, one cannot get 

rid of it in practical systems. In other words, one of the most significant sources of modelling error 

is the difference between the response of the true (pure linear) underlying linear system and the 

linear response obtained from a low amplitude excitation test of the nonlinear system. A low 

amplitude excitation of 0.01 N was applied to both the underlying linear system and the nonlinear 

system of Figure 2 and the responses are shown in Figure 16. Such differences in the responses 

may cause errors in updating the modal parameters of the underlying linear system (i.e. natural 

frequency, damping ratio, and mode shape). As the updated underlying linear model of the 

nonlinear system is used for both expansion and identification, the existence of modelling errors 

may lead to additional errors in both the expansion and the identification of the system.  

 

 

Figure 16- Difference between a purely linear system and the response of a nonlinear system with a very low 
amplitude excitation. 

 

 

Here it is assumed that a complete measurement has been performed and there is no expansion 

error in the identification process. Figure 17 demonstrates the identification of the unknown 

internal stiffness and damping considering two levels of modelling error (+5%, +10%) in the 

parameters of the underlying linear system (𝐸, 𝜌, 𝛾). Applying 5% and 10% modelling error to 
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the parameters of the underlying linear system resulted in 5% and 9% errors in the identification 

of the nonlinear stiffnesses, respectively. The errors for the identified linear stiffnesses were 5% 

and 12.5%. Furthermore, EDSM was not capable of estimating the linear damping. The identified 

nonlinear forces for two levels of modelling error were obtained as, 

 
𝐹𝑁 = 𝑐𝑙𝑤̇(𝑙, 𝑡) + 𝑐𝑁𝑤̇(𝑙, 𝑡)𝑤(𝑙, 𝑡)2 + 𝑘𝑙𝑤(𝑙, 𝑡) + 𝑘𝑁𝑤(𝑙, 𝑡)3, 

 
(26) 

#modelling error of +5%, 

 𝑐𝑙 = 0.0034
N. s

m
, 𝑐𝑁 = 0.325

N. s

m3
, 𝑘𝑙 = 19

N

m
, 𝑘𝑁 = 1.05 × 105

N

m3
. (27) 

#modelling error of +10%, 

 𝑐𝑙 = 0.0028
N. s

m
, 𝑐𝑁 = 0.675

N. s

m3
, 𝑘𝑙 = 17.5

N

m
, 𝑘𝑁 = 1.09 × 105

N

m3
. (28) 

 

 

Figure 17 - The effect of modelling error on the identification of nonlinear force of the system using the EDSM 
method. (a & b) modelling error of +5% (c & d) modelling error of +10%.  

 

 

 

4.3 The Effect of Noise 
 

Figures 18 and 19 show the effect of noise in the measured data on the results of the identification. 

In order to investigate the effect of noise, four different levels (0.5, 1, 2, 5 %) of normally 

distributed noise have been applied to the response of the system. Incomplete measurements are 

assumed and there is no modelling error. In fact, a combination of expansion error and noise 

effects are shown in Figures 18 and 19. It is observed in Figure 18 that increasing the noise level 

in the response of the system may make it difficult to fit a reasonable curve to the EDSM data 
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points, and therefore, it would be difficult to identify the nonlinear internal force. Note that, in 

practice, the noise is not likely to be normally distributed.  

 

 

Figure 18- Identification of stiffness with different noise levels. (a) 0.5%, (b) 1%, (c) 2%, (d) 5%. 

 

 

Figure 19- Identification of damping with different noise levels. (a) 0.5%, (b) 1%, (c) 2%, (d) 5%. 
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4.4 The Effect of Higher Harmonics 

One of the most important problems to be considered in the analysis of nonlinear systems is the 

participation of the higher harmonics in the response of the system. Although the primary 

harmonic is dominant in many nonlinear systems and higher harmonics can be neglected during 

the analysis, neglecting higher harmonics in cases where they play a significant role in the 

behaviour of the system may lead to considerable errors in the results of the analysis. In this 

section, the effect of higher harmonics on the results of identification of nonlinear elements of 

dynamical systems is investigated. To this end, the 3 DOF discrete system of Figure 1 is 

considered.  

 

 

Figure 20- Comparison of the primary harmonic of the nonlinear response of the three-DOF discrete system with and 
without considering higher harmonics in the simulation. 

 

The simulated steady state dynamics of the system shown in Figure 7 was obtained neglecting 

the higher harmonics in the response, and the parameters were identified in Figures 8 and 9 
based on this assumption. However, higher harmonics usually play significant role in the 

dynamics of nonlinear systems. The simulation data was used to identify the unknown nonlinear 

elements of the system, and the response was assumed to include only the primary harmonic. 

Therefore, neglecting higher harmonics in the identification process would not lead to an effective 

identification. In this section, the higher harmonics are considered in the response of the system 

and it is assumed that the simulation/measurement includes higher harmonics in addition to the 

primary harmonics in the steady state response of the system.  
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Figure 20 illustrates the amplitude and phase of the primary harmonic of the response of the 

nonlinear system in the frequency domain, with and without the presence of higher harmonics in 

the simulation. |𝑋11|, |𝑋21|, and |𝑋31| in Figure 20 denote the amplitudes of the primary harmonics 

of three degree of freedom of the system of Figure 1, respectively. 𝜑11, 𝜑21, and 𝜑21 represent the 

phases of the primary harmonic of the steady state response of the 3DOF system. As shown, the 

presence of higher harmonics makes the most difference for the first resonant frequency of the 

response. And among all three degrees of freedom, DOF 1 has been affected more than two other 

DOFs. The amplitude and phase of the first three harmonics of the response of the nonlinear 

system of Eq. (14) is shown in Figure 3. The phase of the response of each degree of freedom is 

the same for all harmonics. As shown, due to the presence of the cubic nonlinearity in the system, 

the amplitude of the second harmonic is zero as expected. However, the third harmonic of the 

response mainly appears in the vicinity of the first resonant frequency, and its amplitude is small 

in the neighbourhood of the second and third resonances. The maximum ratio between the 

amplitude of the third harmonics of the response of DOF 1 and the amplitude of its primary 

harmonic is 0.5 at ω = 3.53 (rad), while this ratio is 0.14 at ω = 3.53 (rad) for DOF 2 and 0.09 at 

ω = 5 (rad) for DOF 3. All of these peak points occur within the neighbourhood of the first 

resonance, ω = 2 − 6 (rad). Accordingly, neglecting the higher harmonics in the response of the 

system in the vicinity of first resonant frequency has the biggest effect in generating errors in the 

identification. In other words, implementing the identification process using only the primary 

harmonic of the response within the frequency range of the second and third resonances, as 

illustrated in Figures 21 and 22, may not lead to significant errors in the results, as the higher 

harmonics cannot be observed strongly in the response in that region. Figures 21 and 22 

demonstrate the results of the identification of the unknown parameters using the primary 

harmonic of the response of the system within the region of the second and third resonances, 

respectively. Apparently, due to the small participation of the higher harmonics in these regions, 

the magnitude of the error in the identification is not significant. In contrast, if the identification 

is performed using only the primary harmonic of the response in the vicinity of the first 

resonance, neglecting higher harmonics will result in significant errors in the identification 

results, see Figure 23. In Figures 21-23, |𝑋11|, |𝑋21|, and |𝑋31| are, respectively, the amplitudes of 

the primary harmonics of three degrees of freedom of the system of Figure 1. 𝐷𝑒𝑞11
, 𝐷𝑒𝑞11

, 𝐷𝑒𝑞11
 

denote the equivalent dynamic stiffness, respectively, for the grounded nonlinear element 

attached to DOF 1, the ungrounded nonlinear force between DOFs 2 and 3, and the grounded 

nonlinear element attached to DOF 3. 
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Figure 21- (a, b, c) The primary harmonic of the amplitude-frequency responses of three oscillator in the 
neighbourhood of second resonance used in the EDSM identification; (d, e, f) Comparison of true EDSM-estimated 

nonlinear stiffnesses and linear damping (g and h).  

 



 28 

 

Figure 22- (a, b, c) The primary harmonic of the amplitude-frequency responses of three oscillator in the 
neighbourhood of third resonance used in the EDSM identification; (d, e, f) Comparison of true EDSM-estimated 

nonlinear stiffnesses and linear damping (g and h).  
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Figure 23- (a, b, c) The primary harmonic of the amplitude-frequency responses of three oscillator in the 
neighbourhood of first resonance used in the EDSM identification; (d, e, f) Comparison of true EDSM-estimated 

nonlinear stiffnesses and linear damping (g and h).  

 

 

5 Identification Using Optimization 

According to the discussion in Section 4, one may conclude that there are many sources of 

inaccuracy affecting the results of identification methods, particularly for the EDSM technique. To 

avoid such sources of inaccuracy, or at least to reduce their effects on the results of identification, 

Taghipour et al. [22] proposed an optimization-based framework to identify nonlinear structures. 

In this section, the nonlinear system of the cantilever beam of Figure 2 is identified utilizing the 

framework proposed in [22]. For this purpose, following assumptions and considerations are 

taken into account: 

- Only the inaccuracy due to expansion method is considered. All other sources of 
inaccuracy (i.e. noise and modelling error) are neglected. 
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- The identified nonlinear force obtained from the EDSM method are considered as the 
initial estimate for the unknown parameters of the nonlinear force in the optimization 
process. 

- The objective function is defined so that the difference between the measured/simulated 
and estimated nonlinear response are minimized. 

 𝐽 = min (∑|log(‖𝑋𝑚(𝛺𝑖)‖2) − log(‖𝑋𝑎(𝛺𝑖)‖2)|

𝑁𝑓

𝑖=1

), (29) 

   

where 𝑋𝑚 and 𝑋𝑎 are respectively the experimental/simulated response and the 
estimated response of the system in the frequency domain. 

- Considering the response of the system in the vicinity of the resonance may improve the 
efficiency of the optimization process. 

- In nonlinear systems, multiple solutions for the response may occur (more than one 
stable solution). In such cases, the most significant stable branch of the response is 
considered within the range of the multiple solutions.  

- The unstable solution of the numerical estimation is neglected, as it is almost impossible 
to measure the unstable solution in an experiment. 

 

 

Figure 24- Simulated/measured response at DOF 9 compared with the regenerated response obtained from the 
nonlinear model identified using EDSM technique. 

 

To compare the result of the optimization-based framework with the result of the EDSM 

technique, the identified nonlinear force of the cantilever beam given by Eq. (22) is considered as 

the initial estimate for the optimization process. It is assumed that the response of the cantilever 

beam is measured at only the three DOFs 1, 5, and 9. Figure 24 shows the simulated response at 

DOF 9 of the beam under the excitation force amplitude of 𝐹 = 1 N and compares it with the 

regenerated response obtained using the identified nonlinear force from the EDSM technique. As 

mentioned above, the unstable and the lower stable branch of the response are neglected. The 

optimization method aims to minimize the difference between the simulated/measured and the 
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estimated response. As a spatially complete measurement is not required in the optimization-

based framework, it is not necessary to use an expansion method in order to estimate the 

response at unmeasured DOFs. Therefore, the measured response at only one of the measured 

DOFs (e.g. DOF 9) is used for the optimization process. The optimized parameters of the nonlinear 

force are obtained using the optimization process exploiting the identified parameters of Eq. (22) 

as the initial estimate. Table 4 gives a comparison between the true values of the parameters of 

the nonlinear force and the identified values obtained from the EDSM and optimization methods. 

 

Table 4- Optimized parameters of the nonlinear force of the cantilever beam. 

Parameters 
(unit) 

True 
value 

Identified by EDSM Optimized 

value Error (%) value Error (%) 

𝒄𝒍 (
𝐍.𝐬

𝐦
) 0.004 0.0435 987 0.00427 6.75 

𝒌𝒍 (
𝐍

𝐦
) 20 40 100 21.586 19.93 

𝒌𝑵 (
𝐍

𝐦𝟑) 1× 105 7.3 × 104 −27 9.355 × 104 −6.45 

 

As it can be seen, the accuracy of the identified values of the parameters have been significantly 

improved. However, as the cubic stiffness is dominant in dynamics of the system at the vicinity of 

the resonant frequency, the linear stiffness has not been optimized to a very accurate value. The 

optimized parameters are used to regenerate the nonlinear response of the cantilever beam. 

Figure 25 compares the simulated nonlinear response with the numerically regenerated ones 

obtained from the nonlinear models identified using the EDSM technique and the optimization 

method. The identified nonlinear model obtained from optimization method is shown to be more 

accurate than the identified model of the EDSM technique.  

 

 

Figure 25- Simulated/measured response at DOF 9 compared with the regenerated response obtained from 
nonlinear models identified using the EDSM technique and the optimization-based framework. 
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To verify the reliability of the model identified using the optimization-based framework, the 

simulated/measured responses of the system at three measured, namely DOFs 1, 5, and 9, are 

compared with the regenerated response using the optimized parameters. Figure 26 illustrates 

the comparison between the simulated and regenerated response at DOFs 1, 5, and 9. Although 

the optimization was performed using only DOF 9, the identified model is capable of estimating 

the response at the other degrees of freedom.  

 
 

 

Figure 26- Comparison between the simulated/measured response at DOFs 1, 5, and 9 and the regenerated response 
obtained from nonlinear model identified using the optimization method. 
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6 Conclusion 

This paper has investigated the sensitivity of the identification using the Equivalent Dynamic 

Stiffness Mapping (EDSM) technique to noise in measured data and various types of error such 

as expansion error, modelling error, and the error due to neglecting the higher harmonics in the 

response of nonlinear systems. For this purpose, a theoretical study has identified the structural 

nonlinearities of two nonlinear systems (a discrete three-DOF Duffing system and a cantilever 

beam with a nonlinear restoring force applied to the tip of the beam) considering the presence of 

all the aforementioned sources of inaccuracy (noise and error).  First, the accuracy of the EDSM 

technique in the identification of nonlinear elements has been verified by applying the method to 

two example nonlinear systems. Afterwards, numerical simulation of the two systems has been 

performed in MATLAB and the simulated data has been used to investigate the effect of the 

presence of noise in the simulated/measured data, expansion error in the estimation of the 

unmeasured coordinates, modelling error in the updated underlying linear model, and the error 

due to neglecting the higher harmonics in the nonlinear response of the system, on the outcome 

of the identification process. The nonlinear response of the system has been regenerated using 

the identified parameters with the presence of the sources of error and the generated response 

was compared with the simulated response in the absence of any noise or error. According to the 

results, although the EDSM technique is capable of identifying accurately the nonlinear elements 

in the absence of any source of inaccuracy, it has been demonstrated that this method is very 

sensitive to sources of inaccuracy and would result in significant errors in the model of the 

nonlinear system. Finally, the nonlinear force of the system with a cantilever beam was identified 

utilizing an optimization framework using the results of EDSM technique as the initial parameter 

estimate for the optimization process. Minimizing the difference between the 

measured/simulated and estimated nonlinear responses of the system at one of the measured 

coordinates was set as the objective function of the optimization process. The validity of the 

results of the optimization method was verified by comparing the response at other measured 

DOFs. Using the optimization method, one may avoid the inaccuracy resulting from expansion 

methods or the effect of higher harmonics. The comparison between the estimated and measured 

responses illustrates that the optimization method is able to identify the nonlinear system and 

regenerate the measured/simulated nonlinear response. 
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