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Abstract 

Omission of a carbohydrate-rich breakfast followed by consuming an ad libitum lunch impairs 

evening exercise performance. However, it is unclear if this is due to breakfast omission per 

se, or secondary to lower carbohydrate intake over the day. To test whether impaired evening 

performance following breakfast omission persists when complete dietary compensation 

occurs at lunch, in a randomised cross-over design, eleven highly trained cyclists (age: 25 ± 7 

y, VO2max: 61  5 ml·kg-1·min-1) completed two trials: breakfast (B) and no breakfast (NB). 

During B, participants consumed an individualised breakfast (583±54 kcal; 8-9am) and lunch 

(874±80 kcal; 12-2pm), whilst during NB participants fasted until 12pm and then consumed a 

standardised lunch (1457±134 kcal: 12-2pm). The overall energy (1457±134 kcal) and 

macronutrient profile (carbohydrate: 81.5±0.4%, fat: 5.8±0.1%, protein: 12.7±0.3%) was 

identical in both trials, with timing the only difference. Mean power output during a 20 km 

time trial performed in the evening was ~3% lower in NB compared to B (mean difference 

[95% CI]: -9.1 [-15.3, -2.9] watts, p<0.01 for condition main effect). No differences in heart 

rate, blood glucose or blood lactate concentrations were apparent, but perception of effort 

appeared to be higher in the early stages of the time trial in NB compared to B despite lower 

power output. Impaired high-intensity endurance performance in the evening following 

breakfast omission is related to meal timing rather than carbohydrate intake / availability. 

Provision of an early morning high-carbohydrate meal should be considered to optimise 

evening exercise performance. 
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Introduction 

Prolonged high-intensity endurance exercise depends on both liver and skeletal muscle 

glycogen availability and, as such, provision of adequate carbohydrate intake in the hours prior 

to exercise is recommended as an ergogenic aid (Burke et al., 2011; Burke and Hawley, 2018). 

In agreement, there is evidence that consuming a carbohydrate-rich meal 3-4 hours prior to 

morning or early afternoon exercise increases pre-exercise liver and skeletal muscle glycogen 

availability compared with an extended overnight fast (Chryssanthopoulos et al., 2004; Coyle 

et al., 1985; Shulman et al., 1990). The majority of studies demonstrate that this translates into 

improved performance during prolonged (>60 min) endurance exercise challenges in the 

morning or early afternoon (Chryssanthopoulos et al., 2002; Neufer et al., 1987; Schabort et 

al., 1999; Sherman et al., 1989), and this may be further improved by also supplementing 

carbohydrate during  exercise (Chryssanthopoulos et al., 2002; Wright et al., 1991). 

Carbohydrate-rich breakfast also improves performance during both shorter duration high-

intensity endurance exercise (Galloway et al., 2014; Mears et al., 2018), and during resistance 

exercise (Naharudin et al., 2020, 2019). However, accumulating evidence suggests these 

effects may be psychological (placebo) rather than physiological in origin (Mears et al., 2018; 

Naharudin et al., 2020). Irrespective of the potential mechanisms, current evidence indicates 

morning or early afternoon exercise performance will be optimised by consuming a 

carbohydrate-rich meal several hours prior to the event (Clayton and James, 2016). 

Accordingly, recommendations suggest consumption of between 1-4 g of carbohydrate per 

kilogram of body mass for up to 4-hours prior to exercise (Kerksick et al., 2017).    

Interestingly, aside from a general recommendation to consume a diet rich in carbohydrate 

(Kerksick et al., 2017), less attention has been given to the role of diet in advance of 4-hours 

prior to exercise on the same day. This is somewhat surprising considering exercise 

performance can often commence in the late afternoon or evening (e.g. evening fixtures, and 



evening sessions in sports such as track cycling or athletics). These occasions provide a large 

time window (8-12 hours) to modify and optimise nutrition throughout the day. As an example, 

only limited research has considered the effect of early morning feeding strategies (i.e. 

breakfast) on exercise performance commencing in the late afternoon and evening. 

Intriguingly, two recent studies suggest consuming a high carbohydrate breakfast improves, or 

conversely, omitting the breakfast impairs, exercise performance later in the day (Clayton et 

al., 2015; Cornford and Metcalfe, 2018). In both these studies, participants either consumed or 

omitted a carbohydrate-rich breakfast between 8-9 am and then ate an ad libitum meal at 

lunchtime (Clayton et al., 2015; Cornford and Metcalfe, 2018). This feeding pattern reduced 

total carbohydrate and energy intake prior to late afternoon / evening exercise (4:30 – 6pm), 

ultimately worsening performance of a 60-minute (30-min steady state followed by 30-min 

work capacity) cycling test (Clayton et al., 2015) and a 2000-m rowing time trial (Cornford 

and Metcalfe, 2018).  

The preliminary evidence described suggests that the timing of dietary intake early in the day 

is an important consideration for both prolonged and short duration high-intensity exercise 

performance later in the day, even when lunch is consumed. However, the lower total energy 

and carbohydrate intake reported following omission of breakfast combined with an ad libitum 

lunch in both studies raises the important question of whether exercise performance was 

impaired due to breakfast omission (i.e. meal timing) per se or rather was secondary to the 

lower carbohydrate / energy intake and hence availability.  

To the best of our knowledge, no study has examined exercise performance in the evening 

following consumption or omission of breakfast but with equivalent dietary intake throughout 

the day. Therefore, in the present study we investigated whether the impairment in evening 

high-intensity exercise performance following breakfast omission persists when complete 



dietary compensation is provided at lunch. We hypothesised that omission of a carbohydrate-

rich breakfast would impair exercise performance.   

Methods 

Participants 

Eleven highly trained and competitive triathletes and/or road cyclists (1 female) were recruited 

to take part in this study and completed the full experimental procedures (mean ± SD: age: 25  

± 7 y, height: 1.78  0.05 m, body mass: 74.4  10.0 kg, BMI: 23  2 kg·m-2, VO2max: 61  5 

ml·kg-1·min-1, Wmax: 386  48 W). Participants were recruited from local cycling or triathlon 

teams and were included if they were completing regular cycling-based training and/or 

competition (>4 hours/week) and were self-reported regular breakfast eaters (>50 kcal within 

2 hours of waking on >4 days/week) (Betts et al., 2014). Exclusion criteria included anyone 

<18 or >40 years of age, regular breakfast skippers (not meeting definition of breakfast eater 

above), and anyone with contraindications to high-intensity exercise, including a history of 

chronic cardiovascular or metabolic disease, or high blood pressure during screening (>140/90 

mmHg or resting heart rate >100 bpm). The experimental procedures and requirements were 

explained to all participants, both verbally and in writing, before they gave their informed 

consent to participate. All participants were informed of the study aims but not the study 

hypothesis. The study protocol was approved by the A-STEM departmental ethics committee 

at Swansea University (ref: 2018-142) and the experiment was conducted in accordance with 

the Declaration of Helsinki.  

Pre-experimental procedures 

Prior to the main experiment, all participants attended the lab on two separate occasions. 

During the first visit, measures of height (to the nearest 0.1 cm) and body mass (to the nearest 



0.1 kg) were taken, and then participants completed an incremental cycling test to volitional 

exhaustion on an electronically braked cycle ergometer (Lode Excalibur Sport, Groningen, The 

Netherlands). The test started with a 2-minute warm-up at 50 watts (female) or 75 watts (males) 

and then the resistance subsequently increased by 1 W every 2 seconds until the point of 

volitional exhaustion, which was defined as an inability to maintain a pedal cadence >50 rpm. 

Participants respired through a rubber face mask connected to an online metabolic cart (Jaegar 

Vyntus, Vyaire, IL, USA) for continuous breath by breath measurement of oxygen uptake 

(VO2). Maximal oxygen uptake (VO2max) was calculated as the highest value for a 15-breath 

rolling VO2 that was achieved during the test, whilst maximal power output (Wmax) and 

maximal heart rate were also recorded. At least 3 days later, participants performed a single 

familiarisation session for the 20 km time trial (as 20 km time trial performance is highly 

reproducible in well trained cyclists (Thomas et al., 2012)). The 20 km time trial was completed 

in full using the same protocol as during the main experiments (described below), but with no 

measurements taken or prior nutritional strategies put in place. 

Main Experimental Trials 

Participants took part in a randomised cross-over trial with two experimental conditions: 

breakfast (B); and no breakfast (NB). Each experimental condition consisted of a different 

pattern of dietary intake at breakfast and lunch followed by an assessment of 20 km cycling 

performance that evening between 5 and 7pm (at least 4 and no longer than 5 hours after lunch). 

The timing of lunch and the time trial was standardised within but not between individuals (i.e. 

during each repeated condition, each participant consumed their lunch and completed the time 

trial at a similar time). Each trial was separated by at least 5 and no more than 7 days. On the 

day prior to each trial, and during each trial day, participants were asked to avoid any structured 

exercise (except the time trial) and any consumption of alcohol or caffeine. Nutritional intake 



on the day prior to each trial was not strictly controlled but participants were asked not to 

deviate from their normal dietary patterns.  

Meal provision 

On the evening prior to both trials, participants were provided with weighed food packages for 

the following day to consume at home with clear instructions on intake and timing (with 

explicit instruction to consume nothing other than water ad libitum). Compliance was 

ensured/monitored through regular contact by text / photo message, with participants asked to 

send photo messages to investigators at the start and end of consuming each meal (Martin et 

al., 2009). In the breakfast condition, participants were provided with a standardised 

composition high-carbohydrate breakfast meal (between 8 and 9am) totalling 20% of their 

individually predicted energy requirements (method described below), followed by a 

standardised composition ‘lunch’ meal (between 12 and 2pm) which contained 30% of their 

individually predicted energy requirements. In the no breakfast trial, participants extended their 

overnight fast until 12pm (from 10pm the previous evening), and then consumed a high-

carbohydrate lunch meal containing 50% of their individually predicted daily energy 

requirements. As such, the overall dietary intake, including food items, calorie and 

macronutrient content, were identical between the two trials, with the only difference being the 

timing of intake (Figure 1A).  

Estimated daily energy requirements were calculated from resting metabolic rate (derived from 

the Harris and Benedict equation, revised by Mifflin et al (1990)) which was multiplied by a 

physical activity level of 1.75. The food items provided were typical breakfast items similar to 

those in previous studies (Clayton et al., 2015; Cornford and Metcalfe, 2018) and included corn 

flakes and semi-skimmed milk, plain white bagels and jam, and orange juice (Tesco, UK). This 

provided a macronutrient profile of 81.5±0.4% carbohydrate, 5.8±0.1% fat and 12.7±0.3% 



protein. Water consumption was allowed ad libitum throughout each condition, but participants 

only consumed out of a water bottle that we provided so water intake could be estimated (the 

number of refills was noted by participants). There was no significant difference in estimated 

water intake between trials (B: 3.0±1.3 vs NB: 2.6±0.8 litres, p=0.10).   

Appetite Ratings 

Perceptions of hunger, desire to eat, fullness and prospective food consumption were measured 

at key time points throughout the day using 100mm visual analogue scales (Flint et al., 2000), 

from which a composite appetite score was calculated using the following formula: (desire to 

eat + hunger + (100 - fullness) + prospective consumption) / 4 (Anderson et al., 2002).  Appetite 

ratings were recorded immediately upon waking, immediately post-breakfast, 1 h post-

breakfast, immediately pre- and post-lunch, 1 h post-lunch and pre-exercise.  

20 km time trial 

To examine the effect of the dietary intervention on substrate oxidation, prior to the 20 km time 

trial participants completed a 10-minute steady state exercise phase at 40% of Wmax (1609 

W). Participants wore a rubber face mask connected to a portable breath-by-breath gas analyser 

for measurement of substrate oxidation by indirect calorimetry (Metalyzer 3B, Cortex, Liepzig, 

Germany). Rates of carbohydrate and fat oxidation (g·min-1) and energy expenditure (kJ·min-

1) were calculated from measurements of VO2 and VCO2 using stoichiometric equations 

proposed by Frayn (1983) and subsequently modified by Jeukendrup and Wallis (2005). Breath 

by breath data were smoothed into 1 min averages and the mean rate of oxidation from the final 

5 minutes was used in the statistical analysis. Substrate oxidation data were available for n=9 

due to technical difficulties. This also served as a warm-up for the time trial.  

Immediately following this steady state exercise phase, a 20 km time trial was performed on 

an electronically braked cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands). 



The ergometer was set in linear mode, with the linear factor (L) calculated using the formula 

L= W/(rpm)2 and set to produce a power output equivalent to 75% of their individual maximal 

power output achieved during the VO2max test when cycling at a cadence of 90 rpm. 

Participants could increase their power output by increasing their cadence and vice versa. 

Participants were instructed to complete the distance as quickly as possible and were blinded 

to all relevant performance variables except the distance remaining which was displayed on a 

screen directly in front of them. No verbal encouragement was provided, and no music was 

allowed. Power output was recorded continuously during the test (Lode Ergometry Manager, 

Lode, Groningen, The Netherlands), whilst heart rate and ratings of perceived exertion (RPE) 

were recorded every 2500 metres. As RPE is a psychophysical variable and should be 

interpreted together with the physical stimulus (i.e. power output), we also calculated the ratio 

of power output to RPE as an outcome variable (Sanders et al., 2018). This was calculated by 

dividing the mean power output over each 2500 m of the time trial by the RPE at that equivalent 

time point. A capillary blood sample was obtained using an aseptic technique prior to the warm-

up and then on immediate completion of the 20 km time trial and analysed for glucose and 

lactate concentrations (Biosen C-line, EKF Diagnostics, Cardiff, UK).  

Statistical Analysis  

Sample size was based on the mean and standard deviation of the observed difference in 

evening time trial performance from a previous similar study (Cornford and Metcalfe, 2018), 

we calculated that n=11 participants would provide >80% power to detect an effect size (dz) 

of 0.94 with an alpha of 0.05. All data were analysed using Graphpad Prism 8 for macOS 

(Version 8.4.2, San Diego, CA, USA).  All data were first checked for any substantial deviation 

from a normal distribution using the Shapiro-Wilk test. Several variables showed consistent 

evidence of deviating from a normal distribution, including power output and RPE at several 

points during the time trial, overall time trial performance (average power output) and pre time-



trial blood lactate concentrations. For variables where the only comparison was between 

breakfast and extended morning fasting (e.g. substrate oxidation, time trial performance in 

seconds), then paired sample t-tests were applied for normally distributed variables and 

Wilcoxon matched pairs were applied for non-normally distributed variables. For variables 

with an additional factor of time (e.g. time of day for appetite ratings, and time point during 

the time-trial for power output, heart rate, RPE, and blood glucose and lactate concentrations) 

then data were analysed using a two-way (condition × time) repeated measures analysis of 

variance (ANOVA) regardless of any deviation from a normal distribution (Maxwell and 

Delaney, 2004). If appropriate interaction effects were observed, then post hoc comparisons 

between the same time point in the breakfast and no breakfast trials were made using the Holm-

Sidak stepdown method. Alpha was set at 0.05 and data are presented as means and standard 

deviations unless indicated otherwise.  

Results 

Appetite Responses and Substrate Oxidation 

There was a main effect of time and a condition × time interaction effect for appetite ratings 

throughout the day (both p<0.001). Appetite scores were similar between conditions upon 

waking and immediately prior to lunch, but higher throughout the rest of the morning (i.e. post-

breakfast, all p<0.05), and lower throughout the rest of the afternoon (i.e. post-lunch, all 

p<0.05), in the no breakfast compared with the breakfast condition (Figure 1B). The dietary 

intervention resulted in a shift in substrate oxidation during submaximal steady state exercise 

in the evening: rates of carbohydrate oxidation were higher (1.550.46 vs 1.220.42 g·min-1, 

p<0.05), and rates of fat oxidation were lower (0.550.19 vs 0.760.22 g·min-1, p<0.001) in 

the no breakfast trial compared with the breakfast trial. The rate of energy expenditure during 



the steady state exercise was not significantly different between conditions (B: 47.77.4 vs NB: 

44.87.1 kJ·min-1, p=0.08).  

Effect on 20 km Time Trial Performance 

For power output during the 20 km time trial, there was a main effect of time (p<0.001) and a 

main effect of condition (p<0.01) but no condition × time interaction: mean power output was 

~3% lower during the time trial in the no breakfast condition compared with the breakfast 

condition (28554 vs 29456 W; mean difference [95% CI]: -9.1 [-15.3, -2.9] W; Figure 2A 

and 2B). This corresponded to more time taken to complete the time trial in the no breakfast 

compared with the breakfast condition (1113326 vs 1075294 secs, p=0.02). There was no 

significant familiarisation or order effect on 20 km time trial performance (mean power was 

28148 W during familiarisation vs 28754 W during trial 1 vs 28953 W during trial 2, 

p=0.13).  

Heart Rate and Blood Lactate and Glucose Responses 

There were no differences in the heart rate response during the time trials between the 

conditions (Figure 3A). Blood glucose (B: 4.140.44 vs NB: 4.230.73 mmol/L) and lactate 

(B: 2.110.99 vs NB: 2.370.88 mmol/L) concentrations were similar prior to each time trial. 

Blood glucose (B: 5.470.92 and NB: 4.940.59 mmol/L) and blood lactate (B: 11:522.39 

and NB: 10.992.12 mmol/L) increased following the time trial (both p<0.001 for time main 

effect). The change in blood glucose (B: 1.330.74 vs NB: 0.710.69 mmol/L) and lactate (B: 

9.412.68 vs NB: 8.622.18 mmol/L) concentration during the time trials was not different 

between conditions (both p>0.05 for condition x time interaction effect).  

Ratings of Perceived Exertion 



RPE increased during the course of each of the time-trials (main effect of time: p<0.001) and 

a condition x time interaction effect (p<0.05) suggested the pattern of change over time was 

different between conditions (Figure 3B). Post-hoc analysis suggested limited differences 

between the conditions at specific time points, with higher RPE in the no breakfast trial at the 

2500 m time point only (B: 12.41.7 vs NB: 13.41.1 au, p<0.01). For the ratio of power / 

RPE, there was a significant main effect of time (p<0.001), condition (p<0.01) and a condition 

x time interaction (p<0.001): post-hoc analysis revealed higher power output / RPE early in the 

time trial (2500 m: B: 23.76.3 vs NB: 20.23.7 W/RPE, p<0.001; 5000 m: B: 20.74.5 vs NB: 

19.33.5 W/RPE, p=0.08) with numerical (and statistical) differences becoming negligible 

from 7500 m onwards (Figure 3C).  

 

 

Discussion 

The main finding of the present study is that evening high-intensity endurance exercise 

performance following the omission of a carbohydrate-rich breakfast is impaired even when 

the energy and carbohydrate missed at breakfast is subsequently replaced at lunch. This 

observation is novel and of importance because it indicates the crucial role of early morning 

nutrition, alongside considerations of type and amount, in order to optimise exercise 

performance taking place in the late afternoon or evening. Specifically, this study shows that 

missing or delaying an early morning meal (i.e. breakfast) cannot necessarily be compensated 

for by providing a meal of equal nutritional value later in the day. 

The present work extends the findings of previous studies which have found a decrease in 

evening endurance performance following breakfast omission (Clayton et al., 2015; Cornford 

and Metcalfe, 2018). Firstly, it provides the first evidence to suggest that this effect is due to 



the omission of the breakfast per se and not a result of lower total carbohydrate (or energy) 

intake observed prior to exercise in those earlier studies where lunch was consumed ad libitum 

(Clayton et al., 2015; Cornford and Metcalfe, 2018). Breakfast omission resulted in a decrease 

in mean power output during the time trial of ~9 watts (~3%). This difference in performance 

is of a similar magnitude to that observed in the previous study (where overall energy and 

carbohydrate intake was lower) which employed a 30-min cycling work capacity test in 

recreationally active individuals (Clayton et al., 2015). This study is the first to demonstrate 

that this effect also occurs in highly trained individuals (VO2max >60 ml·kg-1·min-1). Previous 

studies have observed that 20 km time trial performance is very reproducible in highly trained 

cyclists (comparable to our cohort), reporting a typical error for average power of 1.9% and a 

smallest worthwhile change of 1.8% (Thomas et al., 2012). Therefore, the performance 

decrement due to breakfast omission observed in the present study can be considered 

meaningful. An interesting area for further research is to determine the practical relevance of 

the current findings for performance in other ecologically valid settings. Indeed, it is 

noteworthy that the majority of evening performance events involve intermittent games type 

exercise, with physiological demands that are different to the ~20 min cycling time trial that 

was applied in the current study (Krustrup et al., 2006; Mohr et al., 2005). 

The decrease in self-selected power output in the no breakfast trial was evident from the onset 

of the time trial and was maintained throughout. It is noteworthy that the largest numerical 

difference in power output was apparent during the first 2500 m and this was associated with 

both a higher absolute perception of effort and a lower ratio of power output to perception of 

effort in the no breakfast trial at the same time point. It is possible that the difference in pacing 

arose due to either physiological and/or psychological mechanisms. From a physiological 

perspective, our data show that total energy or carbohydrate intake is not a key driver, but it is 

possible that the altered pattern of intake manifests in differences in liver and skeletal muscle 



glycogen availability prior to the evening exercise bout, as well as substrate utilisation during 

exercise.  

The higher rate of carbohydrate oxidation observed during the low-moderate intensity steady 

state exercise in the breakfast omission trial is likely from exogenous carbohydrate and 

indicative of ongoing digestion, absorption and processing of the (large) lunch meal (Hunt et 

al., 1985; Moore et al., 1981). A higher rate of CHO oxidation would be expected to facilitate 

better performance, so either this was not maintained during the time trial (we did not measure 

this to avoid any impact on our primary outcome), or the time trial was too short for the 

alteration in substrate oxidation to overcome the impact of other factors exerting a detrimental 

effect on pacing. The delayed feeding combined with this ongoing gastric emptying may have 

resulted in less skeletal muscle and liver glycogen storage during the no breakfast trial 

compared to the breakfast trial, and hence lower availability at the onset of the time trial. 

Whether these (likely small) differences would explain the poorer performance is unclear. On 

the one hand, the finite availability of glycogen is only thought to become limiting to 

performance over more extended exercise durations (Burke et al., 2011). On the other hand, a 

role for glycogen concentrations in regulating self-selected exercise intensity during a time 

trial has previously been proposed but is far from conclusive (Rauch et al., 2005).   

It is perhaps more likely – on the basis of current evidence – that the observed performance 

difference is due to a psychological effect. Indeed, whilst breakfast omission has previously 

been shown to negatively impact high intensity endurance exercise performance in the morning 

(Galloway et al., 2014), more recent evidence from studies where participants were blinded to 

meal status strongly suggests this is due to a placebo effect (Mears et al., 2018). In the present 

study, participants were aware that, overall, they were consuming an identical diet in both 

conditions, but it remains possible that consuming a meal earlier in the day will still be 

associated with an expectation of better performance and encourage participants to adopt a 



more positive pace during the time trial and ‘tolerate’ a higher power output for the same 

perception of effort, or vice versa. The possibility of the placebo effect of breakfast extending 

to evening exercise performance should be addressed in future studies.  

There are number of other possible extensions of the current study which provide opportunities 

for future research. Firstly, we are in part reliant on self-reported compliance to the dietary 

interventions because they were implemented outside of the laboratory setting, by providing 

participants with individualised food packages to consume at home with strict instructions on 

intake and timing. However, our appetite and crucially, evening substrate oxidation data 

suggests that compliance was high and should partly assuage any concerns due to this element 

of our study design. Our findings should also be considered in the context of a small sample 

size combined with some variation in the observed effect on exercise performance (Figure 

2B). Future laboratory studies should look to replicate our findings and provide additional 

insight by including mechanistic outcomes (e.g. tissue specific and whole-body substrate 

availability) throughout the day. A further limitation of our study is that we did not strictly 

control dietary intake on the day prior to each experimental trial and it is possible that 

participants may have adjusted their dietary intake in anticipation of the upcoming dietary 

restrictions (e.g. increased their energy intake the evening prior to the no-breakfast trial). 

However, it is interesting to note that if participants did consciously or subconsciously increase 

their total energy or CHO intake on the evening prior to the no breakfast compared to the 

breakfast trial, then this hasn’t negated the performance decrement of missing breakfast on the 

trial day (i.e. we still observed the effect). Following on from this, it is noteworthy that our 

proof of principle study involved quite an extreme manipulation of dietary intake and it will be 

interesting to investigate whether less extreme manipulations of nutrient timing, for example 

spacing out the lunch meal over the course of the afternoon, are still associated with an 

impairment of performance. Finally, a strength of our study was that the participants were all 



habitual breakfast consumers (representing the majority of the population) but future work may 

want to determine responses in those that skip breakfast. 

In conclusion, these data show that the impairment in evening high-intensity exercise 

performance following breakfast omission is still observed when complete dietary 

compensation is provided at lunch, indicating that the poorer performance is related to meal 

timing rather than carbohydrate intake / availability. This suggests that providing an early 

morning high-carbohydrate meal should be considered in order to optimise evening exercise 

performance. 
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Figure Legends 

 

Figure 1 Energy intake at breakfast and lunch (A) and appetite ratings across the day (B) during 
the breakfast and no breakfast trials. Energy intake data is presented as mean ± SD, whilst 
appetite ratings are presented as mean ± SEM for visual clarity. * denotes p<0.05 a difference 
between the breakfast and no breakfast trials at that specific time point. 

 

Figure 2 Power output every 2500 m during the 20 km time-trials (A) and the difference in 
mean power output during the time-trial between the breakfast and no breakfast trials (B). 
Power output data is presented as mean ± SD on A and on the left-hand axis of B. Right-hand 
axis on B represents the difference between conditions, presented as the mean ± 95 CI, with 
black dots representing individual participant difference scores (no breakfast trial minus 
breakfast trial i.e. negative data points reflect impaired performance with breakfast). * denotes 
p<0.01 for main effect of condition.  

 

Figure 3 Heart rate (A), RPE (B) and Power / RPE (C) every 2500 m during the 20 km time 
trials. Data is presented as mean ± SD. * denotes p<0.05 for comparison between breakfast and 
no breakfast at that time point.  

 



 



 



 




