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Abstract: 

Herein, a focused ion beam (FIB) system is used to fabricate a micron-sized all-solid-

state fluoride ion cell from a bulk battery for in situ transmission electron microscopy (TEM) 

testing. The bulk battery is based on a La0.9Ba0.1F2.9 solid-state electrolyte with a 

nanocomposite of Cu/C as a cathode and a nanocomposite of MgF2, Mg, La0.9Ba0.1F2.9 and C 

as an anode. The evolution of the morphology, structure, and composition of the electrodes and 

their interfaces with the electrolyte is characterized using a transmission electron microscopy 

(TEM) during in situ electrochemical cycling. The high-resolution transmission electron 

microscopy (HRTEM) micrographs and scanning transmission electron microscopy-energy 

dispersive X-ray (STEM-EDX) analysis of the cathode-electrolyte interface reveal the 

expected formation of CuF2 phase during charging. During cycling, grain growth of Cu in the 

cathode ingredients and Cu diffusion from the cathode into the electrolyte are observed in 

addition to void formation.  
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1. Introduction: 

Over the last decades, great efforts have been exerted to develop efficient approaches 

to produce energy from renewable sources and to develop suitable energy storage systems. 

Rechargeable batteries are currently one of the most promising energy storage systems. They 

are investigated for a wide variety of applications such as electric vehicles (EV) and hybrid 

electric vehicles (HEV) [1,2], uninterrupted power supply (UPS) systems [3], grid stabilization 

[2], portable and soft electronics [4,5], and spacecraft[6]. So far, the main focus has been on 

lithium-ion batteries (LIBs) because of their high gravimetric and volumetric energy 

densities[7,8]. However, the application of LIBs is limited because of their environmental 

requirements, safety risks, and the high cost. Moreover, lithium could run out in the near future 

owing to the optimistic EV/HEV production scenarios and the low availability of lithium 

sources [9]. Besides, some applications like EV require longer battery lifetimes and higher 

power and energy density than offered by present LIBs [10,11]. Therefore, huge efforts are 

currently exerted to find alternative batteries to reach the required energy density and 

application properties. Apart from this, alternative battery technologies based on anions or 

cation chemistries such as Clˉ [12,13], Fˉ [14–18], Mg⁺ [19,20] and Na⁺ [21–23] have been 

investigated. Fluoride ion batteries appear as one promising candidate as they offer high 

theoretical energy densities more than 5000 Wh.L-1, (50% above the theoretical capacity of the 

Li-air cell) [24]. Moreover, fluorine has a high natural abundance and, hence, a comparably 

low cost. Recently, the principle of a secondary battery based on a fluoride ion shuttle has been 

demonstrated [14]. However, fluoride ion batteries are currently limited to operate at elevated 

temperatures like 150 ˚C and above as the electrolytes have only high ionic conductivity at 

high temperatures [17,25,26]. Currently, fluoride ion batteries are at an early stage of 

development and large improvements are needed to meet the requirements for reliable long-

term operation. Normally, understanding the fundamental behavior of the materials during the 
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electrochemical reaction is essential to optimize different performance aspects such as energy 

density, power density, elevated operating temperature, safety, cycle life, and self-discharge 

rate. For this purpose, the characterization of a battery at various stages i.e., before, during, and 

after cycling is critical. Although ex situ characterization of battery materials is an important 

step to understand their structure and reaction products, it only allows characterizing specific 

individual states of various samples. Therefore, ex situ studies leave many open questions about 

kinetics, ion-interaction and cell-degradation mechanisms, in addition to relaxation processes 

during transfer and analysis affecting the observed structure [27]. In contrast, real-time 

observation of phase transformations, morphological, structural and compositional variations 

during electrochemical cycling becomes indispensable to identify the intermediate metastable 

phases and understand the side reactions. Currently, major attempts are made to perform in situ 

studies using characterization techniques at various length scales, (e.g. optical microscopy 

[28,29], scanning electron microscopy (SEM) [30,31], TEM [32,33], X-ray diffraction [34,35], 

neutron diffraction [36,37], and Raman spectroscopy [38,39]). Among these techniques, TEM 

is the only characterization tool that provides direct structural, compositional and 

morphological information with up to atomic resolution. As the materials used in fluoride ion 

batteries are generally stable under the electron beam, all-solid-state rechargeable fluoride ion 

batteries are a good model system for in situ electrochemical studies inside the TEM. In the 

present work, a Cu/La0.9Ba0.1F2.9/MgF2 full cell has been investigated by in situ TEM 

electrochemical cycling to study the underlying processes providing a detailed understanding 

of the variations of the morphology, structure, and composition at the interfaces. Here, an 

optimized FIB preparation technique [15] has been employed to prepare micron-sized cells 

from the all-solid-state bulk fluoride ion battery.  
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2. Experimental procedures 

2.1 Materials synthesis 

The bulk battery was prepared using a composite of Mg, MgF2, C, and La0.9Ba0.1F2.9 as 

an anode, a composite of Cu and C as a cathode and La0.9Ba0.1F2.9 as a solid electrolyte. The 

cathode and anode composites were prepared by ball-milling of the corresponding compounds 

[26], while the tysonite-type La0.9Ba0.1F2.9 electrolyte was prepared by ball milling of LaF3 and 

BaF2 [14]. The weight ratio of the anode material was 20% Mg, 20% MgF2, 10% carbon black, 

and 50% La0.9Ba0.1F2.9. The weight ratio of the cathode material was 90% Cu and 10% carbon 

black. Cu has been chosen as cathode material because of the high theoretical capacity of the 

Cu/CuF2 couple (528 mAh g-1 [40]) and the high potential vs. Mg/MgF2 (2.71 V). Mg metal is 

sensitive to surface oxidation, even when stored under Ar, and hence, rapid performance 

degradation occurs when used as anode [26]. However, the poor reactivity and the low ionic 

conductivity of MgF2 prevents its direct use as an anode. Therefore, a mixture of Mg and MgF2 

was used to enhance the reactivity [26,41]. Moreover, adding the electrolyte and carbon to the 

electrode was necessary to ensure both ionic and electronic conductivity as the pure metal 

fluorides are insulators and poor ionic conductors.  

2.2 FIB fabrication of micron-sized battery systems 

The initial all-solid-state battery was assembled by compacting the powders of the 

anode, electrolyte, and cathode in layers forming a pellet of 7 mm diameter (Figure S1 a, 

Supplementary Data). To enable FIB cross-section preparation across the 

anode/electrolyte/cathode within one TEM lamella, the starting battery pellet was repressed at 

5 GPa using 8 mm dies to reduce the electrolyte thickness to around 20-30 µm and to reduce 

the porosity thus strengthening the lamella mechanically (Figure S1 b, Supplementary Data). 

Enabling a nearly uniform electrolyte thickness throughout the pellet is challenging but it can 

be achieved by careful distribution of the starting powder layers. As detailed in Ref [15], a FIB 
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(FEI Strata 400S) was used to mill a micron-sized cell of approximately 70 × 35 × 8 µm3 from 

the bulk battery (Figure S2 a, Supplementary Data). Hence, the areas of interest around the 

electrode-electrolyte interfaces were thinned to electron transparency (Figure S2 b, 

Supplementary Data). An Omniprobe 200 micromanipulator was used to place the micron-

sized cell on a MEMS-based electro-contacting device (Protochips Inc.). Finally, the micron-

sized cell was contacted using local Pt-deposition between the electrical contacts of the MEMS 

device and the anode/cathode to enable the electrochemical biasing.  

2.3 Electrochemical measurements 

Before carrying out the in situ TEM studies, a bulk sample of the same battery system 

(Cu//La0.9Ba0.1F2.9//Mg+MgF2) has been cycled ex situ by applying a current density of ±4 

mA⸳g-1 at an elevated temperature of 150 ˚C, where the capacity evolution upon 20 cycles has 

been obtained [26]. Moreover, in the present work, a micron-sized Cu/LaBaF/MgF2 full cell 

was cycled ex situ in a high vacuum of approximately 10-7 mbar at room temperature (RT). The 

cell was charged by applying a voltage sweep from 0 to 3.5 V over 4h. Subsequently, 

discharging was performed by sweeping the voltage from 3.5 V to 0 V over 4 h. 

For in situ studies, another micron-sized Cu/LaBaF/MgF2 full cell was studied in situ 

inside the Titan 80-300 TEM (FEI Company) using an Aduro single tilt sample holder 

(Protochips Inc.) and a Keithley 2611A source meter. The electrochemical measurements were 

performed by cyclic voltammetry (CV) at RT. The micron-sized full cell was charged by 

applying a voltage sweep from 0 V to 3.5 V over 2 h. Then, the voltage was held at 3.5 V for 

30 min to enable TEM investigation. Afterward, discharging was performed by sweeping the 

voltage from 3.5 V to 0 V over 2 h. Using the same conditions, a second cycle was started. 
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3. Results & discussion: 

3.1  Electron beam effects on the micron-sized battery 

The electron microscopic imaging and spectroscopy provide significant information 

about the chemical composition and micro/nanostructure of materials with high spatial 

resolution. However, the electron beam of the electron microscope may also cause undesirable 

changes in the surface or the bulk structure of the specimen under investigation. Therefore, 

before preparing the sample for the in situ TEM studies, the as-prepared components of the 

fluoride ion battery were investigated to study the electron beam effect on the materials. The 

results confirmed that the fluoride ion battery materials are stable under the normal operation 

conditions, so that standard TEM techniques can be used for imaging and analytical TEM of 

the fluoride ion battery components.  

Besides, the effect of the electron beam current on the measured current in the 

electrochemical circuit was measured by positioning the electron beam in the TEM on the 

electron transparent thinned areas, the thick areas, and the Pt contacts. For these measurements, 

a DC voltage between 0 and 180 mV was applied to the micron-sized battery and the 

corresponding areas illuminated by an electron beam with a current of 9.16 nA. The thickness 

of the thin and thick areas was approximately 100 nm and 6 µm, while the thickness of the Pt 

contacts was around 4 µm. The measured current of the electron beam adding to the charging 

was approximately 0.5 nA, 1-2 nA and 1-1.5 nA on the electron transparent area, the thick area 

and the Pt contacts, respectively. These currents are negligible compared to the operating 

currents of the fluoride ion battery.  

All of the above indicates that the all-solid-state fluoride battery is a suitable system for 

the in situ TEM electrochemical measurements. 
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3.2 Electrochemical study  

The cell voltage vs. current for the ex situ charging and discharging of the micron-sized 

full cell is shown in Figure 1. During the voltage sweep, the current slowly increased until it 

reached a first maximum around 2 V. This peak can be attributed to the formation of copper (I) 

oxide [26], probably due to residual oxygen present in the electrolyte and electrodes from the 

bulk sample preparation and/or the carbon black added to the cathode composite. A second 

maximum starting from around 2.77 V and continuing to 3.2 V was observed, which can be 

attributed to the formation of copper (II) fluoride. That potential is slightly higher than the 

theoretical potential of 2.71 V for the Cu/CuF2 redox couple vs. Mg/MgF2, which can be 

attributed to the polarization and, potentially, due to the small number of grains, each with 

different diffusion/reaction rates depending on the grain and boundary orientation. During 

discharging, the reverse reaction, the formation of copper (0) from the copper (II) fluoride, was 

observed. In addition, during charging at around 3 V a slight short-circuit developed adding an 

ohmic behavior to the cyclic voltammetry, which is visible by the increased baseline 

conductivity between 3.2 and 3.5 V during charging and discharging. At 2.85 V during 

discharging, the short-circuit increased and the I-V curve only shows an ohmic behavior. The 

Cu2O formation is irreversible so that no counterpart to the oxide formation at around 2V is 

observed during discharging [26]. Considering the area of the CV measurement corresponding 

to the Cu/CuF2 formation, the reaction is fairly complete, based on the measured conversion 

charge.  

Figure 2 shows the cell voltage vs. current for the 1st in situ charging/discharging and 

the 2nd charging of the micron-sized full cell. The basic redox steps observed during charging 

are comparable to the ex situ investigation of the micron-sized full cell mentioned above. 

Similar potentials were also observed ex situ for the corresponding Cu/La0.9Ba0.1F2.9/CeF3 full 

battery system [26]. The electrochemical potential of Mg2+ and Ce3+ is very similar, -2.372 V 
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and -2.336 V respectively. This confirms that the in situ analysis of the fluoride ion batteries 

yields comparable results to the ex situ analysis, providing a chance to study the fundamental 

processes in detail in situ. However, unfortunately, this time the charging curve is on top of 

strong leakage current due to a short circuit between cathode and anode, probably due to higher 

residual contamination during FIB preparation compared to the cell studied ex situ. 

Nevertheless, the two peaks in the charging curve indicate that the electrochemical reaction is 

still occurring. During the holding period at 3.5 V, the current initially slightly decreased and 

then suddenly jumped from ~33 µA to ~100 µA indicating a stronger short circuit formed in 

the cell, which may be due to Pt migration from the contacts [42]. Therefore, a strong self-

discharge has to be expected during the further cycling of the cell. During discharging, the 

current is dominated by a short circuit, but a slight peak around 2.7 V can be seen, indicating 

some electrochemically driven discharging of the cell. During the second charging, no 

characteristic CV peaks could be observed, but the micron-sized cell fractured at the cathode-

electrolyte interface at a voltage where the electrochemical reaction occurs. If this is due to the 

short-circuit or due to limited reversibility is unclear. However, in the ex situ studies of the bulk 

battery, the capacity faded very strongly from 390 mAh g-1 to only 33 mAh g-1 after the first 

discharge [26], suggesting that only a very limited reaction should be overserved during the 

second charging. Nevertheless, the fracture around 3.1-3.5 V suggests that some 

electrochemical reactions still occurred, presumably causing the fracture because of the 

volumetric expansion of Cu during fluorination.  

 

3.3 STEM and SEM analysis  

STEM images of the cathode-electrolyte interface before cycling, after the first cycle, 

and after a failure during the second cycle are shown in Figure 3. From the STEM images, one 

can see that the Cu/C cathode contains nanocrystalline Cu surrounded by carbon black. The Cu 
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crystallite size is in the range of 40-250 nm. Comparing the STEM images of the cathode before 

and after the 1st cycle reveals some coarsening of the Cu. Also, void formation in the cathode 

is visible, to some extent after the first cycle and more pronounced after failure. CuF2 formation 

was confirmed by HRTEM (Figure 7), providing direct proof that the electrochemical reaction 

occurred despite the short-circuits. Finally, a new phase can be seen as a bright line at the 

interface, identified from the EDS data as Mo enrichment at the interface. This Mo 

contamination can be attributed to the usage of the Mo TEM grid during FIB sample 

preparation. In contrast, on the anode side, no significant changes were observed in the thin 

area of the anode-electrolyte interface (Figure S3, Supplementary Data).  

The morphological changes are more pronounced at the thick part of the cathode (Figure 

4c,f). The new phase at the interface is clearer compared to the thin area. Moreover, the new 

phase and the Cu particles are slightly protruding from the cathode due to the local volume 

change during charging. The volumetric change in the cathode due to the fluorination of Cu 

forming CuF2 [26] is also leading to the fracture at the interface to the electrolyte (Figure 4f). 

The fracture is particularly noticeable in these in situ samples as the porosity was reduced 

compared to bulk batteries cycled ex situ, thus providing less free volume to compensate for 

the volumetric changes. 

On the anode side, some volumetric changes are visible as small cracks in the 

Mg/MgF2/C composite and at the interface with the electrolyte (Figure 4a, d). However, more 

noticeable, the surface of the cycled anode (Figure 4d) is remarkably different from the pristine 

anode (Figure 4a). After cycling, the anode surface is covered by small particles in agreement 

with previously reported ex situ results where “snowflake-like” particles were formed on the 

anode surface [43,44]. It was found that these particles are MgF2 sticking out of the anode 

surface [43–45]. The formation of these particles on the anode surface has been suggested to 

be the result of the low ionic conductivity of the electrolyte, leading to preferential fluoride 
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migration on the surface [46]. If the MgF2 formation on the anode surface is due to fast fluoride 

ion migration on the surface, this would significantly impact the in situ TEM measurements, 

where the surface to volume ratio of the electron transparent regions is extreme. In addition to 

the 20x reduced electrode thickness compared to the bulk battery, surface migration could 

partially explain why it is possible to cycle the micron-sized fluoride ion cell at RT, whereas 

elevated temperatures are needed to increase the conductivity sufficiently for the bulk battery. 

However, we did not observe any MgF2 formation on the surface of the electron transparent 

part of the cell (only on the thicker part), which suggests that the formation of the surface 

decoration requires a more complex explanation.   

 

3.4 STEM-EDX analysis  

The STEM-EDX map of a cross-section of an as-prepared cathode-electrolyte interface 

is shown in Figure S4 (Supplementary Data). Even though the cathode consists of 90 wt% 

copper and 10 wt% carbon black, the oxygen map reveals significant amounts of oxygen in the 

cathode, which anti-correlates with the copper concentration. The origin of oxygen in the 

cathode materials is attributed to the carbon black, whereas the copper particles do not show 

significant oxidation. Small amounts of oxygen can also be observed in the electrolyte, which 

is more stable against oxidation. The La, Ba, and F maps reveal the good homogeneity of the 

electrolyte. The STEM-EDX map of the cathode-electrolyte interface after failure is shown in 

Figure 5. The migration of fluorine into the Cu/C cathode can be observed from the fluorine 

distribution. Moreover, the diffusion of Cu into the electrolyte can also be seen. The strong 

volumetric change accompanying the Cu/CuF2 reaction [26] probably led to Cu diffusion into 

the pores of the electrolyte to compensate for the volume change. 

From the thick part of the sample right next to the area investigated in situ, a fresh thin 

area was prepared at the cathode-electrolyte interface after cycling to investigate potential 
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thickness effects during in situ cycling. The morphological changes observed in this thick part 

and the thin area that investigated in situ are comparable, confirming that the sample thickness 

does not significantly influence the morphological changes observed in situ even though 

surface effects might change the fluoride ion conductivity. A STEM-EDX map from this area 

is shown in Figure 6. The fluoride migration into the Cu/C cathode can be seen more clearly 

compared to the initially thinned area. HRTEM imaging further confirmed the formation of 

CuF2. Similar to the thin part, diffusion of Cu into the electrolyte was also observed in the thick 

part of the sample, presumably due to the effects of the volumetric changes associated with the 

fluorination [47]. In addition, the formation of Cu oxide may lead to an inhomogeneous 

distribution of the current density through the cathode and hence, a localized overheating that 

favors void formation. Moreover, the molybdenum map reveals Mo enrichment at the 

electrolyte/electrode interface, which could be a failure mode due to impurities. 

 

3.5 TEM and HRTEM study 

BF-TEM imaging is used to determine the particle size in the Cu/C cathode and to 

investigate the cathode-electrolyte interface before cycling (Figure S5a, Supplementary Data). 

The TEM images reveal that the Cu/C cathode material consists of nano-particles 40-250 nm 

in size while the electrolyte consists of denser and smaller nano-particles. The small particle 

size and fine mixture of the electrode materials are essential for the electrochemical 

performance of the cell as a high contact area and good ion and electron diffusion pathways 

are required for a fast and complete conversion reaction [48–50]. HRTEM micrographs have 

been used to characterize the crystal structure of the cathode materials. Figure S5b in the 

Supplementary Data shows a HRTEM micrograph and the corresponding Fast Fourier 

Transform (FFT) of cathode material of the as-prepared cell. The HRTEM micrograph 

confirms the high crystallinity of the cathode and the presence of Cu. The lattice spacings of a 
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Cu particle measured from the FFT are in good agreement with the tetragonal phase of copper 

metal (a = b = 2.892 Å, c = 2.708 Å, α = β = γ = 90.0) [ICSD-248435].  

TEM and HRTEM micrographs of the Cu/C cathode after failure and the corresponding 

FFTs are shown in Figure 7(a, b, c), confirming the presence of CuF2 after cycling. The 

measured lattice spacings fit well to the monoclinic phase of copper (II) fluoride (a = 3.309 Å, 

b = 4.569 Å, c = 5.362 Å, α = 90.0, β = 121.11, γ = 90.0) [ICSD-9788]. In addition to CuF2 

formation, the presence of Cu2O is confirmed by HRTEM as was expected from the CV peak 

at around 2 V. The lattice spacings of the Cu2O crystal are in good agreement with cubic copper 

(I) oxide (a = b = c = 4.27 Å, α = β = γ = 90.0) [ICSD-173982]. Furthermore, BF-TEM images 

of the cathode-electrolyte interface after failure are shown in Figure 8(a, b, c). The images 

reveal the formation of spherical-particles at the interface (Figure 8a) in addition to amorphous 

carbon (Figure 8c). The formation of voids and spherical-particles would fit the hypothesis that 

the localized overheating has occurred due to an inhomogeneous current density in the cathode, 

as a result of Cu oxide and fluoride formation and their inhomogeneous distribution within the 

conductive matrix. These spherical-particles were confirmed by HRTEM to be copper (II) 

fluoride, (Figure 8b).  

 

4. Conclusion: 

Electrochemical cycling of a secondary fluoride ion cell 

(Cu+C//La0.9Ba0.1F2.9//MgF2+Mg+La0.9Ba0.1F2.9+C) has been performed in situ inside a TEM. 

The CV peaks measured during the in situ studies occurred at voltages comparable to ex situ 

TEM studies. The structural and morphological studies of the cathode after cycling showed the 

fluoride migration into the cathode composite forming copper (II) fluoride. However, in 

addition, copper (I) oxide was formed during charging, which might have caused localized 

overheating and, hence, the formation of voids and spherical-particles. The micron-sized cell 
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fractured at the cathode-electrolyte interface during the second in situ charging as a result of 

the volumetric changes associated with the CuF2 formation and limited free volume available 

to compensate the volume changes. Cracks and voids formation were observed both in the thin 

and thick part of the sample thus confirming that these effects are not just due to the thin film 

setup for in situ TEM. Moreover, Cu diffusion from the composite cathode into the electrolyte 

was observed, presumably associated with the volumetric changes and some porosity of the 

electrolyte.  

In summary, reliable in situ TEM analysis is possible for all-solid-state fluoride ion 

battery systems with a setup closely resembling bulk solid-state cells. However, the 

development of a good fluoride electrolyte with high ionic conductivity at RT, preventing 

oxidation of the electrode materials, and optimizing the porosity and pore size distribution of 

the electrodes and electrolyte are essential to enhance the performance of the fluoride ion 

battery to meet the requirements for the new applications.  
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