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Abstract 

 Replicability of fear conditioning and extinction paradigms has become increasingly 

important for many researchers interested in improving the study of anxiety and trauma 

disorders. We recently illustrated the wide variability in data analysis techniques in this 

paradigm, which we argued may result in lack of replicability. In the current study, we 

resampled data from six of our own fear acquisition and extinction datasets, with skin 

conductance as the outcome. In the resampled and original datasets, we found that effect sizes 

that were calculated using discrepant statistical strategies, sourced from a non-exhaustive 

search of high-impact articles, were often poorly correlated. The main contributors to poor 

correlations were selection of trials from different stages of each experimental phase and use 

of averaged compared to trial-by-trial analysis. These findings reinforce the importance of 

focusing on replicability in psychophysiological measurement of fear acquisition and 

extinction in the laboratory and may guide prospective researchers in which decisions may 

most impact the replicability of their results. 
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Introduction 

Anxiety disorders are characterised by excessive and persistent aversive responses to 

neutral, safe, or ambiguous stimuli (Craske et al., 2009; Grupe & Nitschke, 2013). Similarly, 

deficient learning and retention of fear extinction has been proposed as a primary maintaining 

factor in anxiety and posttraumatic stress (PTSD) disorders (Graham, Callaghan, & Richardson, 

2014; Grupe & Nitschke, 2013; Suarez-Jimenez et al., 2019; Zuj & Norrholm, 2019; Zuj, 

Palmer, Lommen, & Felmingham, 2016). Improved understanding of the underlying 

mechanisms of extinction could aid the development of clinical interventions for anxiety and 

traumatic disorders (Craske, Treanor, Conway, Zbozinek, & Vervliet, 2014; Lebois, 

Seligowski, Wolff, Hill, & Ressler, 2019). 

Recent decades have seen increasingly sophisticated measurements of fear acquisition 

and extinction in the laboratory, with important implications for treatment of anxiety and PTSD 

(Milad & Quirk, 2012; Zuj & Norrholm, 2019). Fear acquisition paradigms model adaptive 

threat learning via contingent pairings of previously neutral conditioned stimuli (CS) and 

innately aversive unconditioned stimuli (US). Fear (or threat) extinction procedures feature 

repeated unreinforced presentation of the conditioned threat stimulus (CS+), leading to 

decreased threat responses and new safety learning that competes with previous threat 

memories (Bouton, 2004). Extinction learning and the subsequent retention of the extinction 

memory can be quantified by comparing the extinguished CS+ and the CS- during the 

extinction and retention phases respectively. Responses during the extinction phase can be used 

to index extinction learning itself, while differences at subsequent testing are argued to reflect 

retention or consolidation of the extinction memory (Lonsdorf et al., 2017; Milad & Quirk, 

2012). 

 Phasic skin conductance responses (SCRs) constitute the most commonly used measure 

of conditioned threat responding (Bach et al., 2018; Lonsdorf et al., 2017; Pittig, Treanor, 
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LeBeau, & Craske, 2018). The amplitude of physiological responding to a threat signal (i.e., 

the CS+) can be compared to the safety signal (i.e., the CS-) to infer extinction. Physiological 

measures – especially SCRs – are notoriously noisy, with large degrees of individual variance 

and biological artefacts (Bach et al., 2018; Boucsein, 2012; Ojala & Bach, 2019). We had 

previously expressed concerns that, due to insufficient power in most studies, slight variations 

on core analytical strategies – such as choice of statistical analysis or removal of trials – might 

result in inconsistent findings in the same paradigm (Ney et al., 2018). The high-impact studies 

that we surveyed in this publication differed in the number and order of trials included in 

analysis, in which trials were averaged, and whether differential responding was used. 

Previously, high heterogeneity in experimental design and analysis of studies examining 

reinstatement effects following extinction was reported (Haaker, Golkar, Hermans, & Lonsdorf, 

2014). More recently, Lonsdorf, Merz, and Fullana (2019) expressed concern that no consensus 

currently exists among fear extinction studies estimating the extinction retention index, which 

is a way of inferring retention of extinction memory relative to responding during acquisition. 

Lonsdorf et al. identified 16 separate analysis strategies and showed that these strategies, 

despite claiming to be measuring a single underlying construct (i.e. extinction retention), were 

in fact partly poorly correlated.  

Research domains that are generally underpowered, have flexible outcomes and are 

evaluated using multiple analytical strategies are at high risk of poor replicability (Ioannidis, 

2005; Simmons, Nelson, & Simonsohn, 2011). In the present study, we sought to examine the 

similarity of results produced by variations in statistical analyses of fear acquisition and 

extinction. Doing so was intended as an extension from Lonsdorf et al. (2019) where only the 

replicability of the extinction retention index was tested. Our aim was to test the replicability 

of the analytical strategies for analysing SCRs during acquisition and extinction learning from 

high-impact studies. To do this, we performed a non-exhaustive literature search to gather 
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several contrasting statistical strategies for similar fear conditioning paradigms. We then 

correlated the effect sizes of different methods obtained in across multiple of our own datasets, 

which we resampled to create a final sample of N=40 datasets. We hypothesised that slight 

variations of analytical strategies would result in weak, non-significant correlational effect 

sizes, despite the methods purportedly measuring the same constructs. 

 

Methods 

Method Selection 

We searched online datasets (PubMed, PsycInfo, Web of Science) for keywords “fear 

acquisition”, “fear conditioning”, “fear extinction”, “skin conductance” and “extinction”. To 

ensure that we obtained a sufficiently influential yet not overwhelmingly large sample, articles 

that had 150 or more citations on Web of Science and were published post-2000 were included 

in the first-pass search. Due to datasets from our lab consisting of within-session CS+/- 

differential acquisition paradigms with SCRs as the primary outcome measure, there were 

several restrictions on the studies that were included. Firstly, we did not include studies that 

had used contextual or additional CS+ manipulations during fear acquisition or extinction 

learning. Second, we only included analyses from day 1 of multi-day paradigms, so long as 

they included both fear acquisition and extinction learning phases in a single session. Finally, 

only studies using SCRs as a primary outcome measure were included, since SCRs are the 

predominant acquisition measure and there has been significant heterogeneity in its scoring 

and reporting. Strategies were separated into three categories. Some studies had focused on the 

difference between SCRs from the acquisition to extinction phase (ACQ-EXT), whereas others 

were either interested in the change of SCRs over the extinction phase (EXTearly-EXTlate) or in 

estimating a gross measure of fear extinction learning during that phase (EXT). We were aware 

of several other articles with fewer than 150 citations that had used unique analysis strategies; 
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these were added to increase the pool of strategies for the ACQ-EXT and EXTearly-EXTlate 

methods (see Table 1).  

 

Datasets 

We used data from six of our own datasets for this analysis (details below). To 

increase the sample size, data were resampled with replacement from the six datasets to 

create an additional 34 datasets of N=60 each. Resampling was performed using the 

Resampling Stats Add-in for Excel v4.0 (Simon, Bruce, & Troiana, 2013). Resampling with 

replacement was preferred to ensure higher variability of the resampled datasets to the 

original datasets. To ensure that resampled datasets would mimic interphase correlations of 

SCRs, we resampled by row; that is, each resample consisted of the entire phase of one 

participant’s CS+ or CS- response (but not both). This ensured that the data would mimic real 

responding as closely as possible without resampling any participant’s entire differential 

response.  

All datasets used either red and blue (datasets 1, 2 and 3) or green and orange (datasets 

4, 5 and 6) circles as CS, presented on a computer screen. In all studies, CS+ and CS- were 

randomised between participants. CS duration was 12s with intertrial intervals of 12-21s 

(M=16s). Each study consisted of three phases: habituation, acquisition and extinction learning. 

Habituation lasted for 4 trials (ie. 4 separate presentations of CS+ and 4 of CS-) and the 

extinction phase consisted of 10 trials. Datasets 1-3 featured 5 acquisition trials, while datasets 

4-6 had 7. For the latter datasets, only the first 5 trials were analysed, so to be consistent with 

datasets 1-3 during analysis and resampling. Although datasets 3-6 were 2-day paradigms, only 

the first day was used so as to be consistent with datasets 1 and 2. Datasets 1-3 had a 100% 

CS-US reinforcement schedule during acquisition, whereas the other datasets had a 62.5% 

schedule.  
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Each of the original datasets had a different group manipulation. For datasets 1-3 (N= 

120, N=56 and N= 79, respectively) participants consisted of PTSD-diagnosed cases, trauma-

exposed cases and non-trauma exposed cases (each dataset had a different manipulation outside 

of this, see publications or Supplementary Material for additional details; Hsu, et al. in prep; 

Ney, et al. in prep; Zuj, et al. 2016). In dataset 4, the group manipulation was sham or anodal 

transcranial direct current stimulation (tDCS) to the dorsal lateral prefrontal cortex prior to or 

following the extinction learning phase (N=80, Ney et al., in prep; Vicario et al. , 2019). In 

dataset 5 the group manipulation was naturally cycling women in the early follicular phase of 

the menstrual cycle compared to women in the midluteal phase and men (N=48, unpublished 

data). In dataset 6 the group manipulation was a laboratory stress induction (the MAST; Smeets, 

et al. 2012) either immediately following acquisition or immediately prior to extinction (N=45, 

Ney, et al. 2018). In all datasets, participants had no neurological or cardiovascular illnesses, 

no history of head injury or loss of consciousness, no drug use, no heavy alcohol use and no 

psychiatric illnesses, other than PTSD in datasets 1-3.  

Given the goals and framework of this study, it is unlikely that variability in data 

collection methods (e.g. reinforcement ratio) or experimental manipulations would affect 

results. This is because the predictor variable in our study is the analysis method itself. As such, 

our primary concern was to produce data that reflected data obtained during real experiments 

wherein any effects observed were the differences between analysis strategies due to all 

datasets being tested by all strategies. 

 

Apparatus and Data Reduction 

In all studies a stimulus isolator (ADInstruments) was attached to the right hand and 

participants were encouraged to choose a US level that was “highly uncomfortable but not 

painful”. The 500 ms electric shock was delivered at CS+ offset during the fear acquisition 
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phase. Galvanic skin conductance was recorded in micro-Siemens (µS) using a 22 mVrms, 75 

Hz constant-voltage coupler (ADInstruments). Electrodes were strapped to the second 

phalanges of the first and third fingers of the left hand. SCRs to the CS+ and CS- were 

preprocessed using the PsPM toolbox v4.2.1 in MATLAB (version 9.7) (Bach & Friston, 2013; 

Bach, Friston, & Dolan, 2013). Using custom coding, we used a peak scoring interval of 0.9-

5s following stimulus onset, given evidence that SCRs peak within a relatively narrow window 

following CS onset (Boucsein, 2012; Sjouwerman & Lonsdorf, 2019). However, this choice 

does not necessarily reflect a standardised latency interval as currently this does not exist (see 

Jentsch et al. 2020; Pineles et al. 2009). In order to remove noise in the data, a bidirectional 

Butterworth filter (1.5Hz low pass; 0.5Hz high pass) was applied to the raw SCR trace. 

 

Statistical Analysis 

 In all analysis strategies, we aimed to test the stimulus × trial × group effects. For some 

methods this meant that the analysis was actually a trial × group, or even phase × group 

interaction, since some methods used differential scores (calculated by subtracting a CS- 

response from the adjacent CS+ response) or averaged responses (either differential or 

CS+/CS- over successive trials, see Table 1). From each analysis we obtained a partial eta 

squared effect size for this interaction. Kendall non-parametric ranked order correlation 

coefficients (Tb) were run on the effect size from each dataset for each of the three categories 

of analysis. Bayes factors and 95% credible intervals were calculated based on each correlation. 

This approach was favoured over p-values due to significant values being easily achieved in 

large sample sizes of simulated data. Further, credible intervals allow more accurate 

interpretation of the possible range of the effect size relative to confidence intervals (Morey, 

Hoekstra, Rouder, Lee, & Wagenmakers, 2016). To ensure that our resampled datasets did not 

bias the data, correlations were run and compared with both the original sample (N=6, see 
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Supplementary Material) and the resampled sample (N=40). All data analyses were conducted 

in Jamovi 1.1.9. Bayesian analyses were conducted using the jsq module. 

 

Results 

Over 5,000 unique articles were identified in the search. Fifteen articles were selected 

as they met the following criteria: over 150 citations, fear conditioning and extinction phases, 

human only, and using skin conductance. Additional articles that had been cited less than 150 

times were also included to increase the number of different methods examined (strategies 3 

and 4 in Acquisition-Extinction, Strategy 2 in Extinction, and Strategy 5 in Extintion-

Extinction, Table 1). Therefore, this is a small, yet exemplary sample of the methods used in 

the fear conditioning literature. 

 As in Lonsdorf, Merz, et al. (2019), we observed a high heterogeneity of analytical 

strategies (Table 1). In Table 1, each strategy is assigned to a category based on how the phases 

were analyses (i.e. comparing acquisition-extinction, extinction as a whole or comparing early 

extinction-late extinction). The study that used each strategy is specified in the rightmost 

column. The differences between these strategies included how many trials were included in 

the study (column 3, Table 1), how many trials from these were included in the analysis 

(column 4, Table 1), whether these trials were averaged or assessed on a trial-by-trial basis 

(column 5, Table 1), whether the CS+/CS- trials were included as a single differential score 

(column 6, Table 1), and what final statistical method was used (column 7, Table 1). Different 

combinations of these variables lead to a potentially wide array of statistical strategies. We 

noted heterogeneity in the number of trials retained during the analysis, regardless of how many 

trials were originally present in the study. There was also inconsistency in whether selected 

trials were averaged or compared on a trial-by-trial basis, as well as whether differential scores 
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were calculated. Resulting statistical analyses were more homogenous, with mixed ANOVAs 

being used across all high-impact studies.  

 

Acquisition-Extinction 

Strategies for the first set of analyses, where change in responding from acquisition to 

extinction learning is assessed, were relatively similar (Table 1). All four strategies used 

average differential scores, and two of the four drew trials from the whole acquisition phase. 

One of the other strategies used the trials from the second half of acquisition, whereas the 

other strategy used the single highest differential response from acquisition. Two of the four 

strategies used the final two trials of extinction learning, one used the last three out of seven 

trials and the final used the first half of extinction trials.  

 

Table 1. Description of different strategies for measuring extinction learning using skin conductance responses 

Analytic 

strategy 

Strategy # # of 

Trials 

Trials 

Included 

Trial 

Analysis 

Stimuli 

Analysi

s 

Analysis Study 

ACQ - EXT Strategy 1 8 

(ACQ)

, 16 

(EXT) 

All 

(ACQ), 

last 2 

(EXT) 

Average Diff Phase×group Graham 

& Milad, 

2013 

 Strategy 2 5 

(ACQ)

, 10 

(EXT) 

Maximu

m 

Response 

(ACQ), 

Last 2 

(EXT) 

Average Diff Phase×group Milad, et 

al. 2010 
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 Strategy 3 8 

(ACQ)

, 7 

(EXT) 

All 

(ACQ), 

last 3 

(EXT) 

Average Diff Phase×group White & 

Graham, 

2016 

 Strategy 4 20 

(ACQ)

, 20 

(EXT) 

Last half 

(ACQ), 

First half 

(EXT) 

Average, 

using 

paired t-

test 

contrasts^ 

Diff Phase×group Grady, et 

al. 2016 

EXT Strategy 1 16 Last 

three-

quarters 

Average CS+, 

CS- 

Group×stim Milad, et 

al. 2009;  

 Strategy 2 5 All Trial-by-

trial 

CS+, 

CS- 

Trial×Group×Stim Zuj, et al. 

2016 

 Strategy 3 16 Last half Average CS+, 

CS- 

Group×stim Garfinkel

, et al. 

2014 

 Strategy 4 10 Last trial One trial Diff Group Schiller, 

et al. 

2010 

 Strategy 5 10 Last 2 Average CS+, 

CS- 

Group×stim Milad, et 

al. 2008 

 Strategy 6 5 All Running 

average# 

Diff Trial×Group Milad, et 

al. 2006 

 Strategy 7 8 First 2 Trial-by-

trial 

Diff Trial×Group Pace-

schott, et 

al. 2013 

EXTearly-

EXTlate 

Strategy 1 6 First half, 

second 

half 

Average CS+, 

CS- 

Phase×Group×Sti

m 

Blechert, 

et al. 

2007 
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 Strategy 2 14 First half, 

second 

half 

Average Diff Phase×Group Michael, 

et al. 

2007; 

Phelps, et 

al. 2004 

 Strategy 3 16 First 

quarter, 

last 

quarter 

Average CS+ Phase×Group Milad, et 

al. 2013 

 Strategy 4 32, 16 First half, 

second 

half 

Average CS+ Phase×Group Soliman 

et al., 

2010; 

Zeidan et 

al., 2011 

 Strategy 5 10 All Linear 

contrast 

CS+, 

CS- 

Trial×Group×Stim Lovibond 

et al. 

(2009); 

Ney, et 

al. (in 

prep) 

ACQ=Acquisition, EXT=Extinction, Diff=Differential, CS+=Conditioned stimulus to the aversive 

unconditioned stimulus, CS-=Conditioned stimulus as a safety signal, Stim=stimulus type (CS+ v. CS-). 

^This study was the only study to use a test other than ANOVA. #Running average score was calculated 

with trials one and two averaged as a single score, trials two and three averaged, and so on 

 

Static Extinction 

For the second set of analyses, we compared strategies from studies assessing extinction 

learning as a static construct (EXT) that could be compared to scores in other trials or studies. 

This group of strategies did not measure change in responding across or within extinction 
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learning phases and instead estimate the gross responding during extinction learning. Four out 

of seven compared CS+ and CS- scores, whereas the other three used differential responding. 

Three used trial-by-trial analyses; though, of these, one used only the first two trials, one used 

all trials, and the final one used a “running average” score, where trials one and two were 

averaged as a single score, trials two and three were averaged, and so on. Three strategies used 

averaged scores, with one using the final quarter of extinction trials, one using the last half and 

one using the last two trials. Strategy 4 used only one trial; this was the last trial.  

 

Early Extinction vs. Late Extinction  

For the final set of analyses, we compared the strategies from studies that assessed 

change in extinction learning across the extinction phase. Trial-by-trial analysis was not 

sufficient to fit to this category, since ANOVA that fits trial as a parameter does not account 

for the order of the trials. Three of the five strategies compared the average of the first half of 

trials to the average of the second half of trials, though one of these strategies used 

differential responses, one only used CS+ scores and the other retained the CS+ and CS- as 

separate scores. One of the strategies assessed, the average CS+ scores in the first quarter of 

extinction to the final quarter of extinction, and the final strategy assessed CS+ and CS- 

separate scores using linear trends across all trials.  

 

Correlations 

Tables 2-4 show Kendall rank correlation coefficient values (Tb) for the three different 

sets of analyses. For strategies comparing acquisition and extinction phases, correlations were 

high between Strategies 1-3 (Table 2). Strategy 4 did not produce reliable results compared to 

the other methods. For strategies producing a static estimate of extinction learning (Table 3), 

correlations were more inconsistent, ranging from Tb=-.062 to Tb=.602. Only seven 
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comparisons between the all combinations of the seven strategies produced correlations that 

were supported by Bayes factors and 95% credible intervals, though some of these were very 

highly supported. The final set of strategies performed similarly to acquisition, with six out of 

ten comparisons of the five strategies producing supported correlations. These correlations 

ranged from Tb=.060 to Tb=.982, with Strategy 1 and Strategy 2 being almost exactly similar, 

but Strategy 5 being dissimilar to all the other strategies.  

 

Table 2. Acquisition – Extinction. Strategy comparisons using Kendall rank correlation coefficient between 
datasets with changes from acquisition to extinction learning phases estimated 
  Strategy 2 Strategy 3 Strategy 4 
Strategy 1 Tb 

BF 
95%CI 

.609 
571814*** 
[.76,.36] 

.794 
1.55E+10*** 
[.90,.52] 

.125 

.4 
[.32,-.09] 

Strategy 2 Tb 

BF 
95%CI 

 .558 
52991*** 
[.71,.31] 

.044 

.2 
[.24,-.16] 

Strategy 3  Tb 

BF 
95%CI 

  .152 
.5 
[.35,-.06] 

N=40 datasets with correlations comparing strategies conducted in all datasets. Tb=Spearman’s R coefficient. 
95%CIs are 95% credible intervals. ***BF>30, **BF>20, *BF>10. 

 

Table 3. Static Extinction. Strategy comparisons using Kendall rank correlation coefficient between datasets 
with a static extinction learning efficacy estimated 
  Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7 
Strategy 1 Tb 

BF 
95%CI 

.047 

.2 
[.25,-.16] 

.488 
2799*** 
[.65,.25] 

.252 
3 
[.44,.03] 

.332 
17* 
[.51,.10] 

.075 

.3 
[.27,-.14] 

.020 

.2 
[.22,-.19] 

Strategy 2 Tb 

BF 
95%CI 

 -.008 
.2 
[.20,-.21] 

-.014 
.2 
[.19,-.22] 

-.010 
.2 
[.19,-.21] 

.602 
408227*** 
[.75,.35] 

.483 
2370*** 
[.65,.24] 

Strategy 3  Tb 

BF 
95%CI 

  .102 
.3 
[.30,-.11] 

.425 
283*** 
[.60,.19] 

.012 

.2 
[.21,-.19] 

.001 

.2 
[.20,-.20] 

Strategy 4 Tb 

BF 
95%CI 

   .371 
51*** 
[.55,.14] 

-.031 
.2 
[.17,-.23] 

-.062 
.2 
[.14,-.26] 

Strategy 5 Tb 

BF 
95%CI 

    -.052 
.2 
[.15,-.25] 

.006 

.2 
[.20,-.21] 

Strategy 6 Tb 

BF 
95%CI 

     .152 
.5 
[.34,-.06] 
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N=40 datasets with correlations comparing strategies conducted in all datasets. Tb=Spearman’s R coefficient. 
BF is the Bayes Factor. 95%CIs are 95% credible intervals. ***BF>30, **BF>20, *BF>10. CIs that do not 
cross zero are bold. 

 

Table 4. Early – Late Extinction. Strategy comparisons using Kendall rank correlation coefficient between 
datasets with changes during extinction learning estimated 

  Strategy 2 Strategy 3 Strategy 4 Strategy 5 
Strategy 1 Tb 

BF 
95%CI 

.982 
4.89E+15*** 

[.97,.67] 

.340 
21** 

[.52,.11] 

.295 
7 

[.48,.07] 

.060 
.2 

[.26,-.15] 
Strategy 2 Tb 

BF 
95%CI 

 .358 
35*** 

[.53,.13] 

.308 
9 

[.49,.08] 

.068 
.2 

[.27,-.14] 
Strategy 3  Tb 

BF 
95%CI 

  .630 
1.53E+6*** 

[.77,.38] 

.080 
.3 

[.28,-.13] 
Strategy 4 Tb 

BF 
95%CI 

   .083 
.3 

[.28,-.13] 
N=40 datasets with correlations comparing strategies conducted in all datasets. Tb=Spearman’s R coefficient. 
95%CIs are 95% credible intervals. ***BF>30, **BF>20, *BF>10. CIs that do not cross zero are bold. 

 

Discussion 

 Previous studies have reported high heterogeneity in the indexation and analysis of 

extinction retention and reinstatement between fear conditioning and extinction paradigms 

(Haaker et al., 2014; Lonsdorf, Merz, et al., 2019; Ney et al., 2018). In this study we 

compared analytical strategies that assessed fear extinction learning in human SCR 

paradigms in several datasets that were resampled from our laboratory’s data. A high degree 

of heterogeneity was found between the strategies, with choices such as which trials to use 

during analysis, whether to use differential scores and whether to average trials or use trial-

by-trial analysis all differing significantly between studies. Using a bootstrapped dataset 

based on six of our own datasets, we found that correlations between the strategies used in 

these studies were usually poor, even though they were intended to estimate similar 

constructs. We found this was true particularly for studies estimating SCRs both statically 

and across extinction learning, though strategies that assessed change between acquisition to 
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extinction phases were relatively reliable. These findings have implications for the reliability 

of psychophysiological studies of fear acquisition and extinction learning. 

 When considering changes in SCRs from acquisition to extinction learning, strategies 

that compared average or maximal differential values during acquisition to average 

differential values at the end of extinction learning were highly correlated, regardless of the 

trials that were included. Strategy 4 of this category, which compared the average differential 

trials from late acquisition to early extinction was poorly correlated with the other strategies. 

We can surmise from this that it is likely that studies that compare different stages of each 

phase from acquisition to extinction may not be comparable. Likewise, during extinction 

learning Strategies 1 and 3 were highly correlated, with the only difference being the 

inclusion of a quarter of the extinction trials. However, when strategies selected from 

different sections of extinction, they were poorly correlated. This was also reflected in the 

early-late extinction category, with Strategies 3 and 4 being significantly correlated. This 

again suggests that analyses during extinction are relatively insensitive to minor variations in 

trial selection, so long as sufficiently large numbers of trials are selected from the same 

quadrants of the phase. Using linear trends rather than omnibus ANOVA resulted in vastly 

different effect sizes. Interestingly, the evidence here also shows that use of differential 

compared to separate CS+/CS- responding may not impact replicability, with high 

correlations observed in both Categories 2 and 3 between studies that used identical 

parameters apart from this. It can therefore be concluded, based on these data and with 

relatively homogenous trial numbers between studies, that selection of trials from contrasting 

segments of paradigm phases and discrepant use of trial-by-trial compared to averaged data 

present the major risks to replicability. 

We have previously made several recommendations that may improve replicability in 

the fear conditioning paradigm (Ney et al., 2018). Here, we maintain that graphing trial-by-
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trial data and increasing sample size are ways to improve replicability and transparency that 

any laboratory should be readily able to implement with minimal effort and resources. 

Similarly, the validity and reliability of research might be improved by any laboratory by 

adopting a multiverse approach, where multiple analyses are conducted on the same data to 

elicit the reliability of reported findings from one approach (Silberzahn et al., 2018; Steegen, 

Tuerlinckx, Gelman, & Vanpaemel, 2016). These approaches rely on increased transparency 

in data reporting and analysis, and we maintain that decisions during data reduction and 

analysis should be reported and justified (Lonsdorf, Klingelhöfer-Jens, et al., 2019; Ney et 

al., 2018). It is also possible that replicability may be achieved by standardisation of 

paradigm design since some analytical choices may be a consequence of nuances of a certain 

type of study (Lonsdorf, Klingelhöfer-Jens, et al., 2019; Lonsdorf et al., 2017; Melinscak & 

Bach, 2020). Hence, standardisation of task design may lead to standardization of analyses.  

Based on the current data, however, we make several specific recommendations that 

may improve replicability. Firstly, future research should recognise that learning between 

early and late stages of an extinction phase are unlikely to be comparable, since differential 

selection of these time periods presented the greatest impairment to replicability in the 

present study. Future studies should aim to specify and further characterise the differences in 

learning that occur in early compared to late extinction trials. Similarly, the cause for 

inadequate replicability between trial-by-trial and averaged data should be systematically 

investigated. It is possible that the failure of these methods to replicate is due to lack of 

power, in which case methods that seek to improve power via experimental design and data 

transformation are highly desirable (Bach & Melinscak, 2020). Conversely, the 

appropriateness of different forms of analysis should be formally investigated, with relevance 

to fear extinction.  
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 A greater understanding of the mechanisms that shape fear extinction learning could 

also be achieved through implementation of computational learning models. Model-based 

analysis has previously been used to characterize dissociable striatal and amygdala 

contributions to fear conditioning (Delgado et al., 2008; Li et al., 2011; Schiller et al., 2008), 

accounting for genetic, affective, and cognitive individual differences in fear learning (Baetu 

et al., 2018; Laing, Burns, & Baetu, 2019), and identifying exaggerated neural prediction 

errors in PTSD symptomology (Homan et al., 2019). Tzovara et al., (2018) recently found 

that both SCRs and pupil responses during conditioning were best explained by a Bayesian 

learning model, though reflected slightly different aspects of learning during the task 

(Tzovara et al., 2018). However, these models, as well as Bayesian learning models that 

parameterize uncertainty (Gershman & Hartley 2015; Tzovara, Korn, & Bach 2018), have 

thus far only been applied to human fear conditioning in a limited way. Computational 

modelling is advantageous because contrasting analytical choices between studies are 

transparently scrutinised, which is the very objective of the open science movement and 

represents the best practices in statistical analysis and experimental design (Adams, Huys, & 

Roiser, 2016; Bach & Melinscak, 2020). Conversely, it is unclear which analytical strategies 

described in this paper are superior, since they have not been explicitly evaluated or 

compared – which ones best reflect the true process of extinction is entirely uncertain. As 

such, we must remain agnostic as to which method here presents as an optimal route for the 

quantification of fear extinction. 

One limitation of the current study is that the level of heterogeneity found here may 

not generalise to other data processing methods, such as model-fitting techniques such as 

PsPM where study power is maximised (Bach & Melinscak, 2020). Further, significant work 

will need to be conducted before standardisation of statistical analyses of this paradigm may 

be achieved; here we have only indicated that systemic issues exist in the current approach. 
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Modelling approaches will also need to be tailored to suit different paradigm designs to 

accommodate parameters such as trial length (Bach & Melinscak, 2020). Finally, due to the 

high heterogeneity of strategies anticipated in a literature search, our included studies were 

generally limited to high-impact publications to provide an exemplary, yet non-exhaustive, 

representation of strategies used in the field. 

In summary, we provide evidence of limited robustness between SCR fear extinction 

studies due to variation in analytical strategy. The highest impact on replicability was 

evidenced by differential trial selection from contrasting halves of extinction learning, as well 

as the use of trial-by-trial compared to averaged analyses. We conclude that, in order to 

enhance reliability, future studies should investigate the differences in extinction learning that 

occurs between early and late extinction phases. We also advocate that model-based 

approaches could be incorporated into analysis of SCRs to improve our knowledge of what 

processes underlying fear extinction are being measured during these paradigms.  
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