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Abstract: We reconsider a one-parameter class of known solutions of the circle compact-

ification of Romans six-dimensional half-maximal supergravity. The gauge-theory duals of

these solutions are confining four-dimensional field theories. Their UV completions consist

of the compactification on a circle of a higher-dimensional field theory that is flowing be-

tween two fixed points in five dimensions. We systematically study the bosonic fluctuations

of the supergravity theory, corresponding to the bosonic glueballs of the dual field theory.

We perform numerically the calculation of the spectrum of excitations of all the bosonic

fields, several of which had been disregarded in earlier work on the subject. We discuss

the results as a function of the one parameter characterising the class of background so-

lutions, hence further extending known results. We show how certain towers of states

are independent of the background, and compare these states to existing lattice literature

on four-dimensional Yang-Mills (pure) gauge theories, confirming the existence of close

similarities.

For the aforementioned analysis, we construct gauge-invariant combinations of the

fields appearing in the reduction to five dimensions of the supergravity theory, and hence

focus on the 32 physical bosonic degrees of freedom. We show explicitly how to implement

gauge-fixing of the supergravity theory. The results of such technical work could be used

to analyse the spectra of other theories proposed in the context of top-down holography.

For example, it could be applied to holographic realisations of composite-Higgs and light-

dilaton scenarios.
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1 Introduction

The study of strongly-coupled, confining theories in four dimensions is notoriously difficult.

Understanding the non-perturbative dynamics of these theories is of vital importance for

particle physics, not only because Quantum Chromo-Dynamics (QCD) is one such theory,

but also because many elegant solutions to the hierarchy problem(s) of the electro-weak

(EW) theory rely on the existence of new strongly-coupled dynamics. The long distance

behaviour of realistic EW models cannot resemble that of QCD, as was the case in tra-

ditional Technicolor models, that have been excluded by experimental data. Examples of

phenomenologically viable proposals yield, at low energy, either a light dilaton or a set of

composite Higgs fields that originate dynamically as pseudo-Goldstone bosons. It is hence
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desirable to study observable quantities that provide information about the underlying

dynamics and might be used to select theories with interesting phenomenology.

The spectrum of physical particles in Yang-Mills theories in D = 4 dimensions consists

of discrete, gauge-invariant bound states, the glueballs, with typical mass O(Λ), where Λ

is the scale that is dynamically generated. These particles appear in correlation functions

of gauge-invariant local operators O built of gluon fields of the theory, e.g.

O ≡ TrFµνF
µν . (1.1)

On quite general grounds, in a confining theory one expects infinite numbers of such glue-

balls, that can be classified by quantum numbers of the Poincaré group (mass and spin),

possibly supplemented by additional, model-dependent quantum numbers. The literature

on the subject includes for instance the reviews in [1, 2], and the detailed lattice studies

in [3–11], besides suggestive ideas on general properties of the glueball spectra (the litera-

ture on which is vast, and deserves being reviewed elsewhere, but see for instance [12–18]).

In more general theories, in which gluons couple to matter fields, the physical particles

result from mixing between operators made purely of glue and other operators with the

same quantum numbers. With some abuse of language, we still refer to such particles as

glueballs.

The study of strongly coupled field theories received a major boost with the advent

of gauge-gravity dualities [19–21] (for a pedagogical introduction see also [22]). Soon after

the earliest studies provided support for the existence of a non-perturbative, weak-strong

duality between some special conformal field theories and higher-dimensional gravity the-

ories, it was also proposed that one can extend the duality to gravity models that provide

the dual description of confining field theories. Most importantly for our purposes, the

dictionary governing the calculations of the holographically renormalised 2-point functions

(see for instance [23, 24]) of relevance to glueball spectra has been established.

Broadly speaking, there are two classes of realisations of such proposal for the dual

of four-dimensional confining theories, depending on the geometric realisation of confine-

ment. Along the original suggestion in [25], by toroidal compactification of supergravities

admitting AdSD backgrounds one may be able to find smooth solutions in which one of the

internal circles shrinks to zero size at a finite value of the radial direction. The spectrum

of glueballs in this case resembles qualitatively what is expected in the case of QCD-like

theories (see for instance [26], and references therein for earlier attempts). In particular,

there are no known examples of this type in which one of the four-dimensional scalar par-

ticles becomes anomalously light, in contrast to what is expected in the presence of dilaton

dynamics. Yet, one must wonder whether such models can be used as the dynamical origin

of more general composite-Higgs models. Addressing this possibility requires computing

the spectrum of the whole physical sector captured by supergravity, including 0-forms,

1-forms and 2-forms in the bosonic sector.

For completeness, we remind the reader of a second class of supergravity backgrounds

modelling the dual of confining gauge theories, that is related to the deformation and reso-

lution of the conifold [27–30], and includes for example refs. [31–34]. In these backgrounds,

the geometry is characterised by the fact that a 2-sphere shrinks at the end of space in
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the radial direction. Variations of these backgrounds show that the scalar glueballs may

include a parametrically light particle [35–38]. A non-trivial example of this has been iden-

tified within a five-dimensional sigma-model system, the background solutions of which

are lifted to D = 10 dimensions to provide the gravity dual of the baryonic branch of the

Klebanov-Strassler system [39, 40]. It would be interesting to compute the spectrum also

of other modes, besides the scalars appearing in the Papadopoulos-Tseytlin ansatz [41],

in all these backgrounds, in order to understand the structure of global symmetries (and

supersymmetries) in detail, for example by considering the consistent truncation in [42, 43].

In order to perform both tasks — namely to start studying composite-Higgs models

in the rigorous top-down holographic approach, but also characterising the full set of sym-

metries of the existing supergravity models yielding dilaton dynamics at low energies —

one must explicitly keep track of gauge invariance in the calculations performed in the five-

dimensional theories with boundaries. In particular, only gauge-invariant modes belong in

the physical spectra. There are a number of subtleties involved in doing so, and with this

paper we contribute to the programme of systematic explorations of the bosonic spectra of

gravity theories dual to confining gauge theories in D = 4 dimensions, by first considering

one of the simplest of the models of the first class: the smooth supergravity backgrounds in

D = 5 dimensions obtained by reduction on a circle of the F4 gauged supergravity theory

in D = 6 dimensions [44]. In the future, we envision applying the process developed in this

paper to other more complicated supergravity theories. In particular, it would be interest-

ing to consider Witten’s model [25] and its extension in [45], by performing a parallel study

of the complete supergravity theory in D = 7 dimensions it belongs to, hence extending

the results of [26].

Extended supergravities admitting supersymmetric anti-de-Sitter solutions in D space-

time dimensions have been classified by Nahm [46] (see also [47]). A special case is the

N = (2, 2), non-chiral, half-maximal (16 supercharges), gauged supergravity in D = 6

dimensions with gauge group SU(2) and F4 superalgebra, predicted in [48] and constructed

by Romans in [44]. It can be obtained from massive type-IIA in D = 10 dimensions [49],

via a consistent warped S4 reduction that preserves an SO(4) symmetry of the internal

space, and breaks half of the supersymmetry [50, 51].1 One of the angles parametrising

the internal manifold enters non-trivially into the expression of the warp factor in the lift

from 6 to 10 dimensions, which vanishes at the equator, so that the internal geometry is

in fact a foliation of 3-spheres, broadly corresponding to the upper hemisphere of S4. We

refer the reader to the literature for details that do not play a central role in this paper.

The scalar manifold of the D = 6, half-maximal, non-chiral theories is described by

one of the following cosets [54, 55] (see also [56, 57]):

O(4, n)

O(n)× SO(4)
× O(1, 1) , (1.2)

where the pure, non-chiral supergravity theory is coupled to n vector multiplets, each of

which contains a vector field, four spin- 1
2 fields and four real scalar fields.2 The compact

SO(4) ∼ SU(2) × SU(2) global symmetry contains the diagonal SU(2) R-symmetry. Such

1Alternative embeddings in Type IIB involve an internal space with less symmetry [52, 53].
2In counting fermionic degrees of freedom, we follow these conventions: because the symplectic Majorana

condition and the chirality condition in D = 6 dimensions can be imposed simultaneously, a single Dirac
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theories have attracted some interest in the context of the AdS6/CFT5 correspondence (see

for instance [58, 59]), of the holographic study of non-trivial renormalisation group flows

(see for instance [60–62]) and of non-abelian T-duality (see for instance [53, 63]).

In this paper, we restrict attention to the n = 0 pure supergravity case, in which the

scalar manifold reduces to R+, and is parameterised by the scalar φ. The field content

consists of the supergravity multiplet: the graviton (propagating (D− 1)(D− 2)/2− 1 = 9

degrees of freedom on-shell), one 2-form ((D − 2)(D − 3)/2 = 6 degrees of freedom), four

vectors (4 × (D − 2) = 16 degrees of freedom), one real scalar, four symplectic Majorana-

Weyl gravitini (4× (D−3)2D/2/4 = 24 degrees of freedom) and four symplectic Majorana-

Weyl spin-1
2 fields (4 × 2D/2/4 = 8 degrees of freedom). This theory admits two distinct

critical points, only one of which preserves supersymmetry, though both are perturbatively

stable.

By compactifying one dimension on a circle one deforms the AdS6 solutions in such

a way as to realise a simple dual description of a four-dimensional confining theory, along

the lines of [25]. Several interesting studies of parts of the spectrum of glueballs of the

dual field theory have been published before (see in particular [45, 64, 65]), in which the

fluctuations of the supergravity backgrounds are computed explicitly.

Following [45], we consider classical backgrounds in which the solutions for φ interpo-

late between the two known, (perturbatively) stable critical points of the D = 6 theory,

while we also compactify one of the space-like coordinates on a shrinking circle. The

solutions provide a one-parameter family of backgrounds that at low energy describe con-

fining four-dimensional dual theories. The one parameter is denoted by s∗ in the following,

and it encodes the parametric separation between the scale of confinement in the dual

four-dimensional theory and the scale of the flow between the two fixed points in the

UV-complete five-dimensional gravity theory. We complete the existing literature by com-

puting the spectrum of all the bosonic modes associated with the fields appearing in the

action in D = 6 dimensions. To do so, we fluctuate all the fields, linearising the resulting

equations of motion and introducing appropriate gauge-invariant combinations. We obtain

new, previously unknown results, and we show that the bosonic modes may be classified

into two distinct groups, characterised by the two very different ways in which the modes

behave as a function of s∗. In the process, we elucidate on the subtleties connected with

gauge-invariance, that are of general applicability to more complicated systems.

The paper is organised as follows. In section 2, we report the six-dimensional action,

and perform its reduction on a circle to five dimensions. We also summarise known results

about the classical solutions of the theory. In section 3, we report on our calculation of

the spectra of fluctuations of all the bosonic (physical) degrees of freedom in the five-

fermion consisting of 2D/2 = 8 complex spinorial components can be decomposed in the sum of 2 left-handed

and 2 right-handed symplectic Majorana-Weyl spinors (making the SU(2) × SU(2) ∼ SO(4) symmetry

manifest) giving a total of four symplectic Majorana-Weyl spinors, each of which can be written as a

quaternionic field. Hence the vector multiplet contains 8 bosonic and 8 fermionic degrees of freedom. We

refer to these theories as N = (2, 2), because each of the four supersymmetries is generated by a symplectic

Majorana-Weyl spinor, which is represented by a quaternion, or equivalently by 4 real components, for a

total of 4 × 4 = 16 supercharges. It might be useful to the reader to notice that half of the supergravity

literature refers to this same theory, with the same amount of supersymmetry, as N = (1, 1).
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dimensional backgrounds of interest. In section 4 we discuss the physical meaning of our

results, and compare them to the literature. In section 5 we outline future work for which

this paper lays the foundations.

Appendix A and B deal, respectively, with general results in four- and five-dimensional

bosonic theories. Appendix A.1 contains some useful conventions about the notation and

some well known results about the treatment of massive vectors in D = 4 dimensions.

Appendix A.2 is a somewhat digressive technical section. We find it useful to remind

the reader how the equivalence of massive 2-form and massive 1-forms in D = 4 dimensions

can be made manifest, and for this purpose we follow [66] (see also [67, 68]), and make

explicit the role of the gauge redundancies in the two formulations, in particular in reference

to the Higgs mechanism. We also comment briefly on what happens in higher dimensions,

on how the dualities between forms of different order affect the Higgs and the soldering

phenomena (see for instance [69]), and on some of the subtleties emerging in the context

of gauged supergravities (see for instance [70] and references therein).

Appendix B.1 contains a summary of material borrowed from [71–75], that describes

and explains the gauge-invariant formalism we adopt in the treatment of scalar and tensor

fluctuations of the five-dimensional backgrounds. Appendix B.2 and B.3 deal with the

gauge-fixing of the bulk and boundary actions of 1-forms and 2-forms, respectively.

2 The model

2.1 Action and formalism of the six-dimensional model

As anticipated in the Introduction, our starting point is the supergravity in D = 6 di-

mensions written by Romans in [44], that can also be obtained as warped reduction on

S4 of the ten-dimensional massive Type-IIA supergravity theory. We label six-dimensional

quantities by hatted Roman indices as M̂ = 0, 1, 2, 3, 5, 6, and adopt the convention in

which the metric has signature mostly plus. The 32 degrees of freedom of the bosonic part

of the six-dimensional action are written in terms of the scalar φ, the metric ĝM̂N̂ , a U(1)

vector AM̂ and its field strength F̂M̂N̂ , three vectors Ai
M̂

transforming on the adjoint of

SU(2) and their field strengths F̂ i
M̂N̂

and the 2-form BM̂N̂ and its field strength ĜM̂N̂T̂ .

We omit topological terms that start at the cubic order in F̂M̂N̂ , BM̂N̂ and F̂ i
M̂N̂

, as they

vanish on the backgrounds of interest and do not enter the (linearised) equations for the

fluctuations, so that the action we consider is given by

S6 =

∫
d6x
√
−ĝ6

(R6

4
− ĝM̂N̂∂M̂φ∂N̂φ− V6(φ)− 1

4
e−2φĝM̂R̂ĝN̂Ŝ

∑

i

F̂ i
M̂N̂

F̂ i
R̂Ŝ

+

− 1

4
e−2φĝM̂R̂ĝN̂ŜĤM̂N̂ĤR̂Ŝ −

1

12
e4φĝM̂R̂ĝN̂Ŝ ĝT̂ Û ĜM̂N̂T̂ ĜR̂ŜÛ

)
,

(2.1)

with3

F̂ i
M̂N̂
≡ ∂M̂AiN̂ − ∂N̂A

i
M̂

+ gεijkA
i
M̂
Aj
N̂
, (2.2)

F̂M̂N̂ ≡ ∂M̂AN̂ − ∂N̂AM̂ , (2.3)

3Complete anti-symmetrisation is normalised so that [n1n2 · · ·np] ≡ 1
p!

(n1n2 · · ·np − n2n1 · · ·np + · · · ).
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ĤM̂N̂ ≡ F̂M̂N̂ +mBM̂N̂ , (2.4)

ĜM̂N̂T̂ ≡ 3∂[M̂BN̂T̂ ] = ∂M̂BN̂T̂ + ∂N̂BT̂ M̂ + ∂T̂BM̂N̂ . (2.5)

The metric has determinant ĝ6, R6 is the corresponding Ricci scalar, ĤM̂N̂ couples the

U(1) vector and 2-form fields, while ĜM̂N̂T̂ is the field strength tensor of the 2-form. We

conventionally fix the units so that the gauge coupling is g =
√

8, and the mass parameter

is m = 2
√

2
3 , while the six-dimensional Newton constant is given by G6 = 1

4π . The potential

for the scalar φ is

V6(φ) =
1

9
(e−6φ − 9e2φ − 12e−2φ) . (2.6)

As we shall see, the six-dimensional potential admits two critical points, a maximum and

a minimum, and there exist solutions that interpolate between the two.

2.2 Reduction from D = 6 to D = 5 dimensions

We compactify one of the external dimensions on a circle and look at the resulting five-

dimensional system; the size of this circle is parameterised by a new dynamical scalar field

χ that appears in the reduced five-dimensional model. We make use of the following ansatz

for the six-dimensional metric:

ds2
6 = e−2χds2

5 + e6χ
(
dη + VMdxM

)2
, (2.7)

where VM is naturally defined as covariant, the five-dimensional index is denoted by M =

0, 1, 2, 3, 5, the sixth (compact) coordinate is denoted by η, and we decompose the SU(2)

vector fields as Ai
M̂

= {Aiµ, Ai5, πi}, where µ = 0, 1, 2, 3 is the four-dimensional index.

Compactifying on the circle, according to ∂6AN = 0 = ∂6BNT , hence retaining only

the zero modes, we find that the action — by ignoring at first the U(1) fields AM̂ and

BM̂N̂ , i.e. by omitting the last two terms in eq. (2.1) — can be rewritten as

S6 =

∫
dη

{
S̃5 +

1

2

∫
d5x ∂M

(√−g5 g
MN∂Nχ

)}
+ · · · , (2.8)

with the five-dimensional action given by

S̃5 =

∫
d5x
√−g5

(R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V(φ, χ)− 1

4
HABg

MRgNSFAMNF
B
RS

)
.

(2.9)

In this reduced model, the sigma-model scalars are Φa = {φ, χ, πi}, the potential in D = 5

dimensions is

V(φ, χ) = e−2χV6(φ) , (2.10)

and the metric tensors for the sigma-model scalars as well as the field strengths {F V , F i}
are given by

Gab = diag
(

2, 6, e−6χ−2φ
)
, (2.11)

HAB = diag

(
1

4
e8χ, e2χ−2φ

)
, (2.12)
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while the field strengths are defined by

F VMN ≡ ∂MVN − ∂NVM , (2.13)

F iMN ≡ ∂MAiN − ∂NAiM + gεijkA
i
MA

j
N + (VM∂Nπ

i − VN∂Mπi) . (2.14)

The last two terms of eq. (2.1) may be rewritten as follows:

S
U(1)
6 =

∫
dηd5x

√−g5

{
− 1

4
H(2)gMRgNSHMNHRS −

1

12
K(2)gMRgNSgTUGMNTGRSU +

− 1

2
G(1)gNSH6NH6S −

1

4
H(1)gNSgTUG6NTG6SU

}
, (2.15)

where H(2) = e2χ−2φ, K(2) = e4χ+4φ, G(1) = e−6χ−2φ, H(1) = e−4χ+4φ, and the decompo-

sition of the tensors in five-dimensional language is governed by the definitions:

HMN ≡ F̂MN +mBMN + (VM∂NA6 − VN∂MA6) +m (B6MVN −B6NVM ) , (2.16)

H6N ≡ Ĥ6N = ∂6AN − ∂NA6 +mB6N = −∂NA6 +mB6N , (2.17)

GMNT ≡ 3∂[MBNT ] − 6V[M∂NBT ]6 , (2.18)

G6NT ≡ Ĝ6NT = ∂6BNT − ∂NB6T + ∂TB6N = ∂TB6N − ∂NB6T . (2.19)

The total derivative term in eq. (2.8) does not affect the equations of motion, and hence

we disregard it, so that the complete five-dimensional action we adopt is

S5 =

∫
d5x
√−g5

(R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V(φ, χ)− 1

4
HABg

MRgNSFAMNF
B
RS

−1

4
e2χ−2φgMRgNSHMNHRS −

1

12
e4χ+4φgMRgNSgTUGMNTGRSU

−1

2
e−6χ−2φgNSH6NH6S −

1

4
e−4χ+4φgNSgTUG6NTG6SU

)
. (2.20)

The 32 bosonic degrees of freedom are now described in the five-dimensional action in

terms of 6 scalar fields, 6 vector fields (3 d.o.f. each), one 2-form field (3 d.o.f.), and the

metric (5 d.o.f.).

2.3 Classical background solutions

We write the ansatz for the five-dimensional metric as

ds2 = e2Adx2
1,3 + dr2 , (2.21)

with the convention that the four-dimensional metric is ηµν = diag (− , + , + , +). The

radial direction is a segment bounded as in r1 < r < r2, with r1 the infra-red (IR) boundary

and r2 the ultra-violet (UV) boundary. These boundaries have no physical meaning: they

are used to introduce regulators in the IR and UV of the dual theory, and should be

removed by sending r2 → +∞ and r1 → ro, where ro is the end of space of the geometry.

The determinant of the background metric is such that
√−g5 = e4A, and, evaluated on the

– 7 –
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background, the vector NM ortho-normalised to the boundary, in this choice of coordinates,

is given by

NM = diag (0 , 1) , NM = gMNN
N = diag (0 , 1) , (2.22)

so that the induced metric is (see appendix B.1)

g̃MN ≡ diag
(
e2Aηµν , 0

)
, (2.23)

while the Gibbons-Hawking term is K = −4∂rA.

Here and in the rest of the paper, we assume that the background classical solutions of

the system in D = 5 dimensions be characterised only by the metric (namely the function

A(r)) and by the background scalars φ(r) and χ(r), and that they depend only on the radial

direction r. All other fields are trivial in the background, and Lorentz invariance is ensured

by the fact that no background function depends on the four-dimensional coordinates xµ.

2.3.1 Fixed point solutions

The scalar potential V6(φ) in the action of the six-dimensional model is shown in figure 1.

It admits the following two critical points:

φUV = 0 → V6(φUV) = −20

9
, (2.24)

φIR = − log(3)

4
→ V6(φIR) = − 4√

3
, (2.25)

which correspond to two distinct five-dimensional conformal field theories; the former CFT

is supersymmetric whereas the latter is not [60]. We chose the labels φIR,UV to reflect the

fact that there exist solutions describing the renormalisation group flow from φUV at short

distances to φIR at long distances, as we will exhibit later. With the same conventions as

in [45] these two AdS6 solutions have curvature radii [62]:

R2
UV = −5[V6(φUV)]−1 =

9

4
, (2.26)

R2
IR = −5[V6(φIR)]−1 =

5
√

3

4
. (2.27)

The mass of the scalar in the AdS6 bulk may be read off in each case as the coefficient of

the term quadratic in φ in an expansion of the potential V6 around its extrema:

V6(φUV) ≈ −20

9
− 8φ2

3
+O(φ3) + . . . , (2.28)

V6(φIR) ≈ − 4√
3

+
8√
3

(φ− φIR)2 +O
(
(φ− φIR)3

)
+ . . . , (2.29)

from which we find

m2
UV = −8

3
, (2.30)

m2
IR =

8√
3
, (2.31)
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Figure 1. The scalar potential V6(φ) of the model in D = 6 dimensions, as a function of the one

scalar field φ.

and hence

m2
UVR

2
UV = −6 , (2.32)

m2
IRR

2
IR = 10 . (2.33)

The scaling dimension ∆ of the operator that in the D-dimensional dual field theory

is connected to a scalar supergravity field in the AdSD+1 can be computed from the mass

m2R2 of the latter via the relation

m2R2 = ∆(∆−D) , (2.34)

from which we can determine the dimension of the boundary operators dual to φ in D = 5

dimensions for each critical point of the scalar potential, to obtain

∆UV = 3 , ∆IR =
1

2

(
5 +
√

65
)
, (2.35)

where in solving the quadratic equation we kept only the largest root in each case.

2.3.2 Simple confining solutions

There exist exact analytical solutions of the equations of motion in D = 5 dimensions with

φ = φ0, where φ0 corresponds to either of the critical point solutions of the scalar potential

in D = 6 dimensions. Defining v ≡ V6(φ0), these solutions are given by [45]

φ = φ0, (2.36)

χ = χ0 +
1

15
log(2)− 1

5
log

[
cosh

(√−5v

2
ρ

)]
+

1

3
log

[
sinh

(√−5v

2
ρ

)]
, (2.37)

A = A0 +
4

15
log(2) +

4

15
log

[
sinh

(√
−5vρ

)]
+

1

15
log

[
tanh

(√−5v

2
ρ

)]
, (2.38)

where we introduced the radial coordinate ρ defined by dρ = e−χdr, χ0 and A0 are two

integration constants, and we fixed another integration constant so that the space ends

at ρ = 0.
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2.3.3 Interpolating solutions

We are mostly interested in a class of solutions for φ, χ and A that smoothly interpolates

between the two confining solutions in section 2.3.2, and are known numerically. Follow-

ing [45], these interpolating solutions form a one-parameter family, characterised by the

choice of a parameter φ̃ that determines the scale at which the flow between the two distinct

CFTs transitions from one to the other.

To obtain the interpolating solutions, the classical equations of motion derived from

the five-dimensional action S5 may be rewritten as follows:4

∂2
ρφ+ (4∂ρA− ∂ρχ)∂ρφ =

1

2

∂V6

∂φ
, (2.39)

∂2
ρχ+ (4∂ρA− ∂ρχ)∂ρχ = −V6

3
, (2.40)

3∂2
ρA+ 6(∂ρA)2 + 2(∂ρφ)2 + 6(∂ρχ)2 − 3∂ρA∂ρχ = −2V6 , (2.41)

3(∂ρA)2 − (∂ρφ)2 − 3(∂ρχ)2 = −V6 . (2.42)

In order to solve the equations numerically, we set up the boundary conditions by

making use of the expansion for φ, χ and A about the end of space at ρ = 0. The one-

parameter family of interest generalises the form of the simple confining solutions in such

a way that φ behaves regularly near the ρ = 0 region, and reads [45]

φ =

(
φ̃−1

4
log(3)

)
−e
−6φ̃

4
√

3

(
3−4e4φ̃+e8φ̃

)
ρ2

+
e−12φ̃

36

(
−12+28e4φ̃−17e8φ̃+e16φ̃

)
ρ4+O(ρ6) , (2.43)

χ = χ0+
1

60
(20 log(ρ)+4 log(2)+5 log(25/3))

−e
−2φ̃

9
√

3

(
sinh(4φ̃)+2

)
ρ2+

5e−4φ̃

162

(
sinh(4φ̃)+2

)2
ρ4+O(ρ6) , (2.44)

A = A0+
1

60
(20 log(ρ)+32 log(2)+5 log(25/3))+

7e−2φ̃

18
√

3

(
sinh(4φ̃)+2

)
ρ2 (2.45)

+
e−4φ̃

324

(
108 cosh(4φ̃)−2

(
20 cosh(8φ̃)+52 sinh(4φ̃)+59

)
+27 sinh(8φ̃)

)
ρ4+O(ρ6) .

By imposing boundary conditions on φ, χ and A (at small ρ) dictated by these IR expan-

sions, and solving the background equations, we obtain the desired family of numerical

solutions. We constrain the parameter φ̃ to take values 0 ≤ φ̃ ≤ 1
4 log(3). Following [45],

in our analysis we adopt the convenient redefinition:

φ̃ =
1

8
log(3)

[
1− tanh

(s∗
2

)]
, (2.46)

4Note that eq. (2.41) is not independent, but can be obtained by differentiating the Hamiltonian con-

straint eq. (2.42) with respect to ρ, and substituting the equations of motions for the scalars φ and χ.
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so that the limits s∗ → +∞ and s∗ → −∞ correspond to the limits φ̃→ 0 and φ̃→ 1
4 log(3),

respectively, thus reproducing the simple confining solutions of the previous section. Fig-

ure 3 in [45] illustrates a sample of solutions built in this way. We verified explicitly that

the six-dimensional backgrounds we use are regular.

3 The mass spectrum of glueballs

In this section we present the main results of our numerical analysis. In section 3.1 we

provide all the equations and boundary conditions obeyed by the physical, gauge-invariant

combinations of fluctuations of the backgrounds of interest. The general expressions for all

the equations, and their derivations in the case of p-forms, can be found in appendix B.

In section 3.2 we tabulate the glueball masses computed by fluctuating the gravity back-

grounds in which φ assumes the constant value characterising each critical point of the

system in D = 6 dimensions, and described in section 2.3.1. In section 3.3 we provide

plots of the mass spectra obtained by numerically solving the fluctuation equations and

boundary conditions derived from background solutions which interpolate between the two

critical points, in terms of the transition scale parameter s∗ introduced in section 2.3.3.

3.1 Equations for the fluctuations

The model defined by the complete five-dimensional action given in eq. (2.20) has a number

of different gauge invariances, in addition to diffeomorphisms: there is the U(1) associated

with the gravi-photon VM , the SU(2) associated with the vectors AiM and pseudo-scalars

πi, as well as the gauge invariance of the two-form BMN and the vector AM , and the U(1) of

the vector B6N and pseudo-scalar A6. As explained in appendix B, these gauge invariances

can be treated separately, due to the fact that all the pseudo-scalars and the p-forms vanish

on the background solutions, and that the computation of spectra only requires retaining

in the action terms up to second order in the fluctuations.

In presenting the equations for the gauge-invariant physical fluctuations to be solved

numerically, we use the rescaled holographic coordinate ρ defined earlier on by ∂r = e−χ∂ρ,

and find it convenient to introduce the physical mass M2 = −q2. The three linearised bulk

equations for the gauge-invariant scalar fluctuations aa = aa(M,ρ) are [45]:

0 =
[
eχDρ(e−χDρ) + (4∂ρA)Dρ + e2χ−2AM2

]
aa − e2χX acac , (3.1)

where

X ac =− e−2χRabcd∂ρΦ̄b∂ρΦ̄
d +Dc

(
Gab

∂V
∂Φ̄b

)
+

+
4

3∂ρA

[
∂ρΦ̄

a ∂V
∂Φ̄c

+Gab
∂V
∂Φ̄b

∂ρΦ̄
dGdc

]
+

16V
9(∂ρA)2

∂ρΦ̄
a∂ρΦ̄

bGbc . (3.2)

The boundary conditions read

e−2χ∂ρΦ̄
c∂ρΦ̄

dGdbDρab
∣∣∣
ρi

= −
[

3∂ρA

2
e−2AM2δcb − ∂ρΦ̄c

(
4V

3∂ρA
∂ρΦ̄

dGdb +
∂V
∂Φ̄b

)]
ab
∣∣∣∣
ρi

.

(3.3)
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The notation in eq. (3.1), eq. (3.2), and eq. (3.3), as well as the origin of the gauge invariant

scalars aa, is discussed in appendix B.1. Here we only remind the reader that these fields

result from the mixing of fluctuations of the sigma-model scalars Φa = {φ, χ, πi} with the

scalar components of the fluctuations of the metric.

The transverse part of the gravi-photon Vµ = Vµ(M,ρ) obeys the bulk equations

0 = Pµν
[
e−χ∂ρ

(
e2AHe−χ∂ρVν

)
+M2HVν

]
, (3.4)

where H = e8χ

4 , Pµν is the projector defined in eq. (A.10), and the boundary conditions are

Pµν ∂ρVν
∣∣
ρi

= 0 . (3.5)

The transverse polarisations of the SU(2) vectors Aiµ = Aiµ(M,ρ) obey the same equations

and boundary conditions as for the gravi-photon, but with the replacement H = e2χ−2φ.

The transverse, traceless part of the tensor fluctuations eµν = eµν(M,ρ) obey the bulk

equations

0 =
[
∂2
ρ + (4∂ρA− ∂ρχ)∂ρ + e2χ−2AM2

]
eµν , (3.6)

and the boundary conditions

∂ρe
µ
ν

∣∣
ρi

= 0 . (3.7)

We now consider the U(1) gauge fields and the components of the 2-form BMN . We

start with the sub-system consisting of B6µ, B65 and A6. For the transverse polarisation

of the vector B6µ = B6µ(M,ρ), the bulk equations are

0 =
[
−M2 − e3χ−4φ∂ρ(e

2A−5χ+4φ∂ρ) +m2e2A−2χ−6φ
]
PµνB6ν (3.8)

subject to the boundary conditions

Pµν ∂ρB6ν

∣∣
ρi

= 0 , (3.9)

having set the constants Di = 0 = Ci in eq. (B.35). To decouple the scalar fluctuations

B65 and A6 we rewrite the equations in terms of a new gauge-invariant field X = X(M,ρ)

defined by

B65 ≡ e−4A+6χ+2φX − 1

m
e−χ∂ρA6 , (3.10)

as explained in appendix B.2. We then obtain the following bulk equation:

0 = ∂2
ρX + (−2∂ρA+ 2∂ρφ+ 5∂ρχ) ∂ρX −

(
−M2e−2A+2χ +m2e−6φ

)
X , (3.11)

subject to the boundary condition

X
∣∣
ρi

= 0 , (3.12)

where we again set Ci = 0 in eq. (B.41), reducing the boundary conditions to Dirichlet.

Finally, we consider the sub-system consisting of Aµ, A5, Bµν and B5µ, following the

procedure outlined in appendix B.3; the six degrees of freedom in this sub-system can
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Spin-0 Spin-1 Spin-2 Spin-0 Spin-1 Spin-0 Spin-1 Spin-1 Spin-1

aa Vµ eµν πi Aiµ X B6ν Xµ Bµν

0.54 1.23 1.00 1.00 0.73 0.60 0.40 1.02 0.66

0.62 1.91 1.65 1.65 1.38 1.35 1.07 1.66 1.34

1.15 2.55 2.28 2.28 2.00 2.00 1.72 2.29 1.98

1.53 3.18 2.90 2.90 2.63 2.64 2.35 2.91 2.60

1.77 3.81 3.53 3.53 3.25 3.27 2.97 3.53 3.22

2.20 3.87 3.89 3.60 3.84

2.39

2.84

3.01

3.48

3.64

Table 1. Masses M of the first few excitations in all 10 towers of states, normalised to the mass of

the lightest tensor mass, computed on backgrounds with φ = φUV = 0. The numerical calculations

are performed by setting the IR cutoff to ρ1 = 0.001, and the UV cutoff to ρ2 = 8. The numerical

solutions are obtained by the midpoint determinant method, computed at the intermediate ρ∗ = 4.

be thought of as describing a massive 2-form Bµν and a massive vector Xµ = Xµ(M,ρ)

defined by

B5µ ≡ e−2A−2χ+2φXµ −
1

m
e−χ∂ρAµ . (3.13)

The bulk equations for the transverse polarisations of Bµν = Bµν(M,ρ) and Xµ are

0 = PµρP νσ
[
M2e−2A + e−5χ−4φ∂ρ

(
e3χ+4φ∂ρ

)
−m2e−2χ−6φ

]
Bρσ , (3.14)

0 = Pµν
[
e−χ∂ρ

(
e−χ∂ρXν

)
− (2∂ρχ− 2∂ρφ)e−2χ∂ρXν + (e−2AM2 −m2e−2χ−6φ)Xν

]
,

(3.15)

and the corresponding boundary conditions are

0 = PµτP νσ∂ρBτσ
∣∣
ρi
, (3.16)

0 = PµνXν

∣∣
ρi
, (3.17)

where we set the parameters Di = 0 = Ei in eqs. (B.57) and (B.61), and hence reduced the

boundary conditions to Neumann and Dirichlet for the 2-form and 1-form, respectively.

3.2 Mass spectra for simple confining solutions

We summarise in tables 1 and 2 our numerical results for the spectra of modes computed,

respectively, for the analytical background solutions with φ = φUV = 0 and φ = φIR =

− log 3
4 . We restrict to the first few such states. The procedure adopted in the numerics

employs the mid-determinant method: for each value of the trial mass squared M2, we

impose independently the IR and UV boundary conditions on the solutions to the linearised

bulk equations, and evolve them to a mid-point ρ∗ in the radial direction ρ. We construct

the matrix of the resulting fluctuations and their derivatives, evaluated at ρ∗, including
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Spin-0 Spin-1 Spin-2 Spin-0 Spin-1 Spin-0 Spin-1 Spin-1 Spin-1

aa Vµ eµν πi Aiµ X B6ν Xµ Bµν

0.62 1.23 1.00 1.00 0.73 1.08 0.82 1.48 1.10

1.44 1.90 1.65 1.65 1.37 1.82 1.54 2.13 1.80

1.53 2.55 2.28 2.28 2.00 2.49 2.19 2.77 2.45

2.11 3.18 2.90 2.90 2.62 3.13 2.83 3.40 3.08

2.20 3.81 3.53 3.53 3.25 3.76 3.46 3.71

2.76 3.87

2.84

3.39

3.48

Table 2. Same as table 1, but with φ = φIR = − log 3
4 .

both the solutions evolved from the IR and from the UV, and compute the determinant.

By varying the trial value of M2, we look for the zeros of this determinant.

We chose values of ρ1 and ρ2 in such a way as to ensure that the results for the spectra

are independent of the position of the regulators. We report as final results the numerical

values of M obtained for the same choices of cut-offs ρi adopted in [45], and we verified

that (for states for which the comparison is possible) our results agree with those in [45].

We also considered negative values of M2: the absence of tachyonic modes supports the

perturbative stability of the solutions, also in the presence of the circle compactification.

In order to facilitate comparison between spectra of states with different spin, and with

results from other papers in the literature, in this paper we normalised the whole spectrum

to the mass of the lightest particle of spin-2 (tensor mode).

3.3 Mass spectra for interpolating solutions

The numerical calculations of the spectra in the more general case in which the function

φ is allowed to evolve between its two critical values follows the same procedure as for

the case in which φ is constant. The only difference is that in this case the background

solutions are known only numerically. We generated a large set of numerical solutions

of the background equations, each of which is characterised by a different value of s∗ as

defined in section 2.3.3, and applied to them the process for calculating the fluctuations.

We show the results in figures 2 and 3, which are obtained by making use of the same

parameters in the numerical calculations as in section 3.2.

Notice that at the furthest left region of each of the individual panels in figures 2 and 3

the numerical solutions are compared to the case s∗ → −∞ computed in section 3.2, while

in the furthest right region they are compared to the case s∗ → +∞. In this way we checked

that indeed the numerical calculations converge to the correct asymptotic values. For a

large value ρ2 = 12 of the UV cutoff, the numerical results do not show any appreciable

difference with the ρ2 = 8 case.
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Figure 2. The spectrum of masses M as a function of the scale s∗, normalised in units of the mass

of the lightest tensor. In all plots, the left and right margins correspond to the spectra computed

from the analytical solutions obtained by deforming the six-dimensional critical points. From top

to bottom, left to right, the spectra of fluctuations of the two scalars χ and φ (blue), tensors eµν
(red) and the gravi-photon Vµ (green). The numerical calculations are performed by setting the

IR cutoff to ρ1 = 0.001, and the UV cutoff to ρ2 = 8. In the midpoint determinant method we

set ρ∗ = 2.

4 Discussion

We start this discussion session with a general observation pertaining to the nature and

properties of the 10 towers of states we analysed in the one-parameter class of models

of this paper. In [45] it was observed that the fluctuations of the scalar that we call χ

have a universal character, in the sense that they appear in a large class of supergravity

backgrounds, and their masses are not sensitive to specific details. Evidence collected in

this paper extends this observation to the fluctuations of the graviton and of the gravi-

photon that, as shown in figure 2, are unaffected by the background choice within the

one-parameter class of classical background solutions we studied. All these modes descend

from the reduction on a circle of the six-dimensional graviton.

We compare our results to those in the literature for related backgrounds. The earliest

analysis we found in the literature of the mass spectrum within this class of models is

restricted to only the three universal towers discussed above, for which the results are

summarised in table 1 of [64]. The authors considered only the background for which

φ = 0 (or equivalently, in our notation, s∗ → −∞), hence allowing only the deformation

of the dual CFT that is described within the gravity theory by the compactification of the

direction η, but without flowing between the fixed points. In figure 4, the blue, green, and
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Figure 3. The spectrum of masses M as a function of the scale s∗, normalised in units of the mass

of the lightest tensor. In all plots, the left and right margins correspond to the spectra computed

from the analytical solutions obtained by deforming the six-dimensional critical points. From top to

bottom, left to right, the spectra of fluctuations of SU(2) adjoint pseudo-scalars πi (pink), the SU(2)

adjoint vectors Aiµ (brown), U(1) (pseudo-)scalar X obtained as gauge-invariant combination of A6

and B65 (grey), the U(1) transverse vector B6µ (purple), the U(1) transverse vector Xµ (black) and

the massive U(1) 2-form Bµν (cyan). The numerical calculations are performed by setting the IR

cutoff to ρ1 = 0.001, and the UV cutoff to ρ2 = 8, and in the midpoint determinant method we

set ρ∗ = 2.

red dashed lines show the numerical results from [64] (three leftmost columns), compared

with ours in the same background (middle three columns) as well as in the background

in which φ assumes the value of the IR fixed point of the dual five-dimensional gauge

theory (three rightmost columns). The three sets are in agreement, within the numerical

resolution, for all three towers of universal states. Compared to [64], in this work we show

explicitly that these masses are independent of s∗.

The backgrounds with s∗ → −∞ have also been analysed in [65], that reports on a

larger set of modes that includes six towers of states, two of which (one of the spin-0 and
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Figure 4. Masses of two scalars associated with χ and φ (blue), scalar adjoint of SU(2) πi (pink),

U(1) scalar X obtained as gauge-invariant combination of A6 and B65 (grey), gravi-photon Vµ
(green), vectorial adjoint of SU(2) Aiµ (brown), U(1) vectorial B6µ (purple), U(1) vector Xµ gauge-

invariant combination of B5µ and Aµ (black), U(1) 2-form Bµν (cyan), and tensorial (red) fluctua-

tions, for the model obtained from the circle compactification of the D = 6 supergravity theory, as

computed in [64] (short dashed), by the authors of [65] (dotted, black) and by us (continuous and

long dashed). In our calculation, we retain one extra scalar mode compared to [64], corresponding

to fluctuations of φ, the spectrum of which depends on the value of φ0. The three towers in the

middle (continuous) of the figure are the spectrum obtained for φ = φUV = 0 (see also table 1),

while the three rightmost towers (long-dashed) are the spectrum for φ = φIR = − 1
4 log(3) (see also

table 2). In the calculations, we fixed ρ1 = 0.001 and ρ2 = 8. Notice that the spectrum from [65]

contains six towers: three of them agree with [64] as well as us, one agrees with the vector SU(2)

fields from our calculation, one scalar is degenerate with the tensor, and agrees with our SU(2)

adjoint scalars πi, up to small numerical discrepancies.

the spin-2) happen to be degenerate in mass. These six towers are reported in our figure 4,

on the three left-most columns, as dotted black lines. The three universal states agree both

with the calculation in this paper and that in [64]. Two of the towers in [65] are obtained by

fluctuating a RR 1-form, which yields one tower of pseudo-scalar and one of vector modes.

The resulting towers agree within the numerical resolution with our results for the SU(2)

triplets, both in the case of the scalar and of the vector (barring the three-fold degeneracy,)

but not with any of the states in the system formed by the (massive) U(1) vector and the

2-form. Our analysis extends the results to the whole one-parameter family of solutions:

these two towers of masses once again show no appreciable dependence of the background

chosen, as shown by the two top panels of figure 3.

We performed also the calculation of the spectrum of the system given by the six-

dimensional massive 2-form and the U(1) six-dimensional vector, for which our results for
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the four towers of modes are shown in the four bottom panels of figure 3, a calculation

which has not been previously attempted. These states show a non-universal behavior: the

fact that the mass term depends on φ affects the spectrum in a visible way, with all four

towers becoming heavier when the background has non-trivial φ.

Another significant difference with ref. [65] appears in the scalar sector: we do not find

the heavy tower of scalar states described there, but rather an additional tower of scalar

states that starts at moderately light values. It corresponds mostly to fluctuations of φ,

the mass of which depends appreciably on the value of s∗, as shown by the first panel of

figure 2. We observe that φ is the only scalar field in the supergravity action in D = 6

dimensions, and that the ten-dimensional dilaton Φ is a non-trivial function of φ and of the

warp factors appearing in the lift, which in general depend also on one of the coordinates

of the internal space [51]. There is hence no other state in the six-dimensional supergravity

that can be matched to the heavy scalar tower in [65].

Because of the fact that the supergravity models we discussed are dual to field theories

which resemble Yang-Mills theories in D = 4 dimensions, at least at large distances, in

particular in reference to the physics of confinement, it is illustrative to compare with lattice

calculations. We restrict the comparison to the results for the three universal towers, for

two main reasons. In the first place, Yang-Mills gauge theories in D = 4 dimensions are

entirely characterised by one dynamical scale, and there is no quantity that can be naturally

associated with the parameter s∗, hence forcing us to exclude from the comparison all the

states that show a dependence on s∗ in their masses (see figures 2 and 3). Also, as there

is no SU(2) global symmetry in Yang-Mills theories in D = 4, there is no comparison to

make for the SU(2) triplets (both the pseudo-scalar and the vector), and we must exclude

these two towers.

The semi-classical calculations performed in the context of gauge-gravity dualities are

expected to correspond to the large-N limit of a field theory. For SU(N), we compare to

the extrapolation to large N that has been performed in [8]. For Sp(2N) and SO(N) gauge

theories, such a systematic study has not been performed yet, and we rely on the largest N

for which data is available, namely Sp(4) from [11] (which is locally isomorphic to SO(5)).

An additional difficulty of a technical nature emerges when comparing to lattice data:

at finite lattice spacing, the continuum rotation group is broken to a discrete subgroup,

which in the case of cubic lattices as in [8] and [11] is the octahedral group. The corre-

spondence between spin J and the five irreducible representations A1, A2, E, T1 and T2 is

non-trivial,5 and we report it in table 3, which we borrow from [8].

It is customary also to classify states in terms of the eigenvalues ±1 of parity P and

charge-conjugation C, so that each lattice state can be assigned to one of 20 possible

irreducible representations RPC , with the caveat that in the case of Sp(4), for which all

representations are pseudo-real, C = +1 for all states.

In figure 5 we compare the three towers of universal states identified in this paper

with the corresponding lattice states obtained by extrapolating SU(N) to N → +∞, taken

5There is a discrepancy in the conventions used in [8] and [11], where the roles of T1 and T2 are

interchanged. Here, we follow the conventions and notation of the former.
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R A1 A2 E T1 T2

J

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1

Table 3. Subduced representations R of the octahedral group in terms of the continuum represen-

tations J of the rotational group, from [8].

from figure 20 in [8]. The grey boxes have sizes determined by the statistical error. The

systematic errors, particularly in the extrapolation to large N , are unknown. Having

normalised the states so that the lightest tensor from supergravity agrees with the E++

lattice state, the lightest spin-0 and spin-1 states we computed are just outside of the 1σ

error bars taken from the lattice.

We also compare to the Sp(4) calculation from [11], that in figure 5 is represented

by the dots (with statistical errors shown). The scalar states from the supergravity and

lattice results are close to each other, but outside the error bars. Compared to the SU(N)

case, the discrepancy has opposite sign, which might be an indication of the fact that

the systematics of the large-N extrapolation are not negligible, and of the fact that Sp(4)

might still be far from the large N limit. Future measurements of the spectra with larger

Sp(2N) groups will help clarify this point. Notice that the spin-1 states cannot be directly

compared, suggesting that in the supergravity calculation the Sp(2N) dual might require

orbifolding the internal space (along the lines of [76]), in a way that would remove part of

the spectrum, including this tower of states.

We conclude the comparison with lattice data with an additional comment, mostly

driven by the numerical results. It is somewhat intriguing to observe that the scalar SU(2)

triplet states in the top-left panel of figure 3 are approximately degenerate with the tensor

state, and this is a feature that is not dissimilar to what the lattice data show. Yet,

interpreting these states as representative of the pseudo-scalar glueballs would require to

include in the comparison also the associated triplet of vectors, which are significantly

lighter than any other spin-1 states on the lattice, suggesting that this observation is

probably just due to accidental circumstances.

In order to perform the calculations presented in this paper, we addressed explicitly

some technical subtleties related with gauge invariance in the presence of p-forms. This

technical work is of general relevance, as it sets the ground for future work, and we decided

to report upon it in appendix B, which also contains extensive discussions. In particular, in

the treatment of p-forms we show explicitly the boundary-localised terms that are required

for holographic renormalisation. As long as we are interested only in the composite states

of the theory and their masses, omitting such terms does not alter the results, and this is

what we restricted our attention to, in the main body of the paper. Yet, in case one is

interested in computing the full 2-point functions (in particular the decay constants), such
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Figure 5. Masses of glueballs from lattice results compared to the three towers of universal results

in this paper. Lattice results for SU(N), extrapolated to N → +∞ are taken from figure 20

in [8], are labelled left-to-right A++
1 , A+−

1 , · · · , the discrete lattice quantum numbers RPC , are

represented by the shaded grey rectangles, and are normalised with respect to the E++ state as

MRPC/ME++ . Lattice results for Sp(4) are taken from [11], in which case all states have C = +,

and are represented by the black dots (with error bars). Notice that we interchanged the T1 and T2
labels, to be consistent with the conventions in [8]. The three universal towers are: the fluctuations

of the scalar χ (blue), the tensors (red), and the gravi-photon (green). We do not commit to a choice

of which tower of spin-1 states in the lattice results should be identified with the gravi-photon. We

normalise the supergravity masses to the mass of the lightest tensor, so that all three data sets

agree on the lightest E++ state.

terms must be included. Furthermore, there are finite ambiguities in the definition of the

subtractions that are implicit in the use of the localised terms as counter-terms to remove

divergences of the theory in the r2 → +∞ limit. There is a subtle connection between

these and the possibility of weakly gauging the global symmetries of the dual field theory,

which would alter the spectra we computed by reinstating the presence of massless modes

which in our analysis are not part of the physical spectrum.

We conclude with another remark. Notice that we did not compute the string ten-

sion. It is known that the models considered here provide a description of confinement in

terms of a linear potential between static quark sources, and that this can be computed

by considering the lift to D = 10 dimensions and then computing the minimal surface

described by open strings with end points localised at the UV boundary, along the usual

prescriptions of gauge-gravity duality [77, 78]. However, because the warp factors in the

lift involve non-trivially one of the internal angles, in the case of solutions with finite s∗,

the resulting system requires solving a non-trivial system of coupled equations [45]. Since
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the results are of limited interest for our present purposes, we leave this problem for future

studies.

5 Conclusions and outlook

The models we discussed in this paper provide controllable examples of gravity duals of

confining four-dimensional theories that reproduce semi-quantitatively the features of con-

fining Yang-Mills gauge theories. We studied the spectrum of fluctuations of gravity and

p-forms with p = 0, 1, 2, by explicitly working out the general Rξ gauge for all the forms

and focusing only on gauge-invariant states, as a function of the parameter s∗ governing the

renormalisation group flow in the higher-dimensional field theory that the current models

descend from.

Both the comparison to other supergravity duals, as well as lattice calculations, confirm

that the class of background solutions studied in this paper exhibits several qualitative

features that make its dual resemble closely the confining dynamics of Yang-Mills theories

in D = 4 dimensions, in spite of the fact that the microscopic theories dual to these

supergravity backgrounds are different from that of Yang-Mills. All bound states are

characterised by the same scale, including states that carry non-trivial SU(2) and U(1)

global quantum numbers. A subset of the particles have masses that do not depend on the

details of the background, and in particular on the parameter s∗, suggesting that they are

only sensitive to the confinement mechanism, and not the details of the complete model.

Conversely, we find explicit evidence of states the masses of which increase when s∗ is

non-trivial.

It would be interesting to perform similar calculations in models with different dy-

namics, that are relevant for light dilaton dynamics or composite-Higgs physics. Among

the former, background geometries related to the conifold, such as the baryonic branch of

the Klebanov-Strassler system, are of interest. The study of the spectrum of vectors and

pseudo-scalar particles within the consistent truncations of [42, 43] would provide useful

information to better understand the complete symmetry (and supersymmetry) structure

of the theory.

In the composite-Higgs context, it would be interesting to find supergravity back-

grounds encompassing one of the patterns of spontaneous symmetry breaking that are

employed for model-building purposes. This would substantially differ from the models in

which global symmetry and symmetry-breaking are described in terms of a set of extended

objects treated in probe approximations, along the lines of what is done in the D3−D7 [79]

or D4−D8 [80] systems, which is more closely related to the treatment of mesons in gauge

theories with quenched matter fields.

It would then be interesting to perform the calculations exemplified in this paper for

such a case. Besides completing the literature on a specific class of supergravity duals of

QCD-like (or Yang-Mills-like) theories, this paper sets the stage for potentially exciting

future studies, in which the background of the supergravity dual already contains a ge-

ometric realisation of symmetry breaking with potential implications for model building.
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An example could be based upon the construction in [62], which includes the coupling to

vector multiplets in the six-dimensional theory.
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A Massive vectors in D = 4 dimensions

We summarise in this first appendix some known results and conventions about the notation

we adopt in D = 4 dimensions, for the main purpose of keeping track of minus signs and

factors of 2, but also in order to facilitate direct comparison with the intermediate results

outlined for the D = 5 dimensional case.

All the individual relations exhibited in appendix A.1 can be found in standard text-

books, but we find it useful to collect them all in one place, written with consistent con-

ventions. Appendix A.2 provides an equivalent description of the same physics, as we

generalise the analysis and results from [66], for the main purpose of exhibiting explicitly

the role of gauge invariance in the different formulations of the same theory.

A.1 About four-dimensional spontaneously broken U(1) gauge theories

In D = 4 dimensions, with space-time signature {− , + , + , +}, a weakly coupled, spon-

taneously broken U(1) gauge theory is described by the Lagrangian density

L0 = −1

4
FµνF

µν − 1

2
(∂µπ +mAµ) (∂µπ +mAµ) , (A.1)

where Fµν ≡ ∂µAν − ∂νAµ is the field strength tensor of the vector field Aµ, while π is a

pseudo-scalar field and m the mass. The U(1) transformations are

π → π +mα , Aµ → Aµ − ∂µα , (A.2)

for α a generic function of the coordinates xµ. Both Fµν and ∂µπ+mAµ are gauge invariant

for any value of m.

The customary quantisation procedure requires the introduction of the path integral

that depends on source terms that we collectively and schematically denote by J , but do

not write explicitly:

Z[J ] ≡ N0

∫
DAµDπei

∫
d4
x (L0+Lg.f.+sources) . (A.3)

– 22 –



J
H
E
P
0
2
(
2
0
1
9
)
1
0
1

The gauge-fixing part of the Lagrangian is chosen to be

Lg.f. = − 1

2ξ
(∂µAµ + ξmπ) (∂νAν + ξmπ) , (A.4)

so that the Lagrangian density becomes

L0 + Lg.f. = −1

4
FµνF

µν − 1

2
m2AµA

µ − 1

2ξ
(∂µAµ)2 +

−1

2
∂µπ∂

µπ − 1

2
ξm2π2 − ∂µ [mπAµ] . (A.5)

The total derivative can be ignored, and the classical equations for vectors and (pseudo-)

scalars decouple from each other. One Fourier transforms to momentum-space, by making

use of the following relations:6

ψ(xµ) ≡
∫

d4q

(2π)2
eiqµx

µ
ψ̃(qµ) , (A.6)

δ(4)(qµ) ≡
∫

d4x

(2π)4
eiqµx

µ
. (A.7)

We drop the˜in the Fourier-transformed functions throughout the paper.

One then rewrites the functional Z[J ], generator of all the correlation functions, as

Z[J ] ≡ N0

∫
DAµDπei

∫
d4
q (L̃0+ L̃g.f.+sources) , (A.8)

with

L̃0 + L̃g.f. = −1

2
Aµ(−q)q2PµνAν(q)− 1

2
m2Aµ(−q)ηµνAν(q)− 1

2ξ
Aµ(−q)qµqνAν(q) +

−1

2
q2π(−q)π(q)− 1

2
ξm2π(−q)π(q) . (A.9)

In this expression, there appears the tensor

Pµν(q2) ≡ ηµν − qµqν

q2
, (A.10)

that obeys the transversality relation qµP
µν = 0. The relations Pµν + qµqν

q2
= ηµν , and

PµνP σ
ν = Pµσ, imply that Pµν and qµqν

q2
are, respectively, the projectors on the transverse

and longitudinal polarisations.

The propagator for the vectors in the general Rξ-gauge reads

(DF )µν =
−i

q2 +m2

(
ηµν − qµqν

q2

)
+

−i
q2/ξ +m2

qµqν

q2
, (A.11)

and satisfies the equation

iδ ρ
µ =

[
−
(
ηµν − qµqν

q2

)(
q2 +m2

)
− qµqν

q2

(
q2 + ξm2

) 1

ξ

]
(DF )ν

ρ . (A.12)

6With this convention the Fourier transform and its inverse have the same normalisation, in contrast

with the more commonly used convention.
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The propagator for the (would-be) Goldstone boson π is

Dπ =
−i

q2 + ξm2
, (A.13)

where the numerator is −i rather than i because of the signature {−,+,+,+}. The propa-

gator of the longitudinal part of the vectors can be obtained from the one of the transverse

parts by replacing q2 → q2/ξ, and furthermore its poles coincide with those of the Goldstone

propagator, for any ξ. Only the transverse part of the vector propagator is ξ-independent.

In textbooks, the choice ξ = 1 is referred to as Feynman gauge, in which the propagator

of the vectors is proportional to ηµν , while ξ = 0 is the Landau gauge, in which all vectors

are transverse. The unitary gauge is obtained by setting ξ → +∞, so that only physical

degrees of freedom remain.

A.2 2-forms in D = 4 dimensions

In D = 4 dimensions, a massless 2-form is equivalent to a massless 0-form (a scalar),

while a massive 2-form is equivalent to a massive 1-form (a vector). We follow closely

the discussion in ref. [66] (see also [67, 68]), and generalise it in this appendix to show the

equivalence explicitly, by highlighting both the role of the gauge redundancies in the various

formulations of the same theory, and also the peculiarities of the four-dimensional case. We

conclude by briefly mentioning some of the subtleties appearing in higher dimensions. We

assume the metric(s) to be flat, and we restrict attention to the U(1) theory. In the non-

abelian case some partial derivatives have to be generalised to covariant derivatives, the

field-strengths transform as tensors, rather than being invariant, and furthermore, one has

to keep track of the Faddeev-Popov ghosts, none of which significantly affect the results.

We start from eq. (A.1) in appendix A.1, by defining the 2-forms Bµν and B̃µν :

∂µπ +mAµ ≡
1

2
εµνρσ∂

νBρσ ≡ ∂νB̃µν . (A.14)

These definitions introduce a gauge invariance, as we could replace

Bµν → Bµν − 2∂[µαν] , (A.15)

with αµ a vectorial function of the coordinates xµ, without affecting either B̃µν or the

combinations ∂µπ +mAµ. We will return to this point later on.

The trivial functional identities

1 = N1

∫
DI ′µνei

∫
d4
x I′µνI′µν , (A.16)

1 =

∫
DB̃µν

∣∣∣∣det

(
∂

m

)∣∣∣∣ δ
(
Aµ +

1

m
∂µπ −

1

m
∂νB̃µν

)
(A.17)

= N2

∫
DB̃µν δ

(
Aµ +

1

m
∂µπ −

1

m
∂νB̃µν

)
,
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allow for the rewriting of eq. (A.3) as follows:

Z[J ] = N
∫
DAµDπDI ′µνDB̃µνδ

(
Aµ +

1

m
∂µπ −

1

m
∂νB̃µν

)
×

× ei
∫

d4
x I′µνI′µν ei

∫
d4
x (L0+Lg.f.+sources) , (A.18)

where N = N0N1N2 is a J-independent (divergent) normalisation.

By performing the integral over Aµ — hence making use of the δ-function to replace

Aµ — the dependence on π disappears from L0(π,Aµ) = L0(B̃µν):

L0(B̃µν) = − 1

4m2

[
∂µ∂

αB̃να − ∂ν∂αB̃µα
] [
∂µ∂ᾱB̃ν

ᾱ − ∂ν∂ᾱB̃µ
ᾱ

]
− 1

2
∂αB̃µα∂

ᾱB̃µ
ᾱ

≡ −Fµν [B̃]2 − 1

2
∂αB̃µα∂

ᾱB̃µ
ᾱ . (A.19)

This is a consequence of the fact that L0 depends only on the gauge-invariant combinations

∂µπ + mAµ and Fµν . Conversely, in the gauge-fixing part, because B̃µν is antisymmetric,

one sees that ∂µ∂νB̃µν = 0, and hence one finds that Lg.f.(π,Aµ) = Lg.f.(π):

Lg.f.(π) = − 1

2ξ

(
− 1

m
∂µ∂µπ + ξmπ

)2

. (A.20)

The equation of motion derived from eq. (A.20) reproduces the on-shell condition for the

(pseudo-)scalar field π — which in Fourier space reads (q2 + ξm2)π = 0. The inte-

gral over π amounts to another redefinition of the overall normalisation constant N ′ =

N
∫
Dπei

∫
d4
xLg.f. , and one finds

Z[J ] = N ′
∫
DI ′µνDB̃µνei

∫
d4
x (I′µνI′µν+L0+sources) . (A.21)

The difficulty at this point is represented by the appearance of kinetic terms with four

derivatives in eq. (A.19), which superficially would lead to potential violations of causality.

Following [66], one performs the change of variable

I ′µν ≡ µ̂Iµν + Fµν(B̃) , (A.22)

and arrives at

Z[J ] = N ′
∫
DB̃µνD(µ̂Iµν)ei

∫
d4
xLI+sources , (A.23)

where the Fµν [B̃]2 term cancelled, while the Lagrangian density is (up to a total derivative)

LI = −1

2
∂νB̃µν∂

ρB̃µ
ρ + µ̂2IµνIµν +

2µ̂

m
∂νIµν∂ρB̃µ

ρ . (A.24)

Notice that µ̂ has dimension of a mass, as do the two 2-forms Iµν and B̃µν . The four-

derivative term has been traded for the doubling of the tensor-field content. One then

diagonalises the system of tensors, a process that we show in detail.
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After rotating according to

B̃µν = cos θ Gµν + sin θ Hµν , (A.25)

Iµν = − sin θ Gµν + cos θHµν , (A.26)

with tan(2θ) = 4µ̂
m , and then rescaling the resulting fields according to

G̃µν =
cos(θ)√
cos(2θ)

Gµν , (A.27)

H̃µν = − sin(θ)√
cos(2θ)

Hµν , (A.28)

the resulting Lagrangian density is given by

LI = −1

2
∂νG̃µν∂

ρG̃µρ +
1

2
∂νH̃µν∂

ρH̃µ
ρ + (A.29)

+µ̂2 cos(2θ)
(
G̃µν , H̃µν

)( tan2 θ 1

1 1
tan2 θ

)(
G̃µν

H̃µν

)
.

The 2-forms have kinetic terms with opposite signs. With our choice of metric signature,

the kinetic term of H̃µν is compatible with causal propagation.

The final step consists of diagonalizing the mass terms. Because the kinetic term is

the matrix diag (−1 , 1), the transformation involves hyperbolic functions

G̃µν = coshβWµν + sinh β Kµν , (A.30)

H̃µν = sinh βWµν + coshβ Kµν , (A.31)

and the condition for the mass term to be diagonal is satisfied by demanding that

β =
1

2
log(cos(2θ)) , (A.32)

so that finally the Langragian density is given by

LI =
1

2
∂αKµα∂

ᾱKµ
ᾱ −

1

2
∂αWµα∂

ᾱWµ
ᾱ +

m2

4
KµνK

µν . (A.33)

At this point, the parameter µ̂ has disappeared, and there is no mixing present between

Kµν and Wµν . The latter is unstable, but only provides another factorised contribution

to the normalisation of the path integral, barring some subtleties in the definition of the

sources that we do not report here (but see [66]). The path integral is then

Z[J ] = N ′′
∫
DKµνe

i
∫

d4
xLK + sources , (A.34)

where the action of the massive 2-form Kµν , with mass m is

LK =
1

2
∂αKµα∂

ᾱKµ
ᾱ +

m2

4
KµνK

µν . (A.35)
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We can go back now and reconstruct the analogue of the second identity in eq. (A.14),

by further redefining the 2-form Bµν via the relation:

Kµν ≡
1

2
εµνρσ

(
Bρσ +

1

m
Fρσ

)
≡ 1

2m
εµνρσHρσ , (A.36)

with

Fρσ ≡ ∂ρAσ − ∂σAρ , (A.37)

and Aµ an Abelian gauge field. Because F is exact, it is also closed, and hence

∂αKµα =
1

2
εµαρσ∂

αBρσ (A.38)

is independent of Aµ. As anticipated just after eq. (A.14), this is a manifestation of the

fact that Bµν is defined up to a gauge transformation with parameter(s) Aµ, which extends

the original U(1) gauge invariance of eq. (A.1).

By making use of the identities

εµνρσε
µν

ρ̄σ̄ = −2 (ηρρ̄ησσ̄ − ηρσ̄ησρ̄) , (A.39)

εµνρσε
µ
ν̄ρ̄σ̄ = −ηνν̄ηρρ̄ησσ̄ + ηνν̄ηρσ̄ησρ̄ + ηνρ̄ηρν̄ησσ̄ + (A.40)

−ηνρ̄ηρσ̄ησν̄ − ηνσ̄ηρν̄ησρ̄ + ηνσ̄ηρρ̄ησν̄ ,

eq. (A.35) can be rewritten by trading Kµν for Bµν and Fµν , so that

LK = − 1

12
GµνρG

µνρ − 1

4
HµνHµν . (A.41)

This Lagrangian in D = 4 dimensions for flat space and sigma-model metrics is adopted in

higher dimensions (see for example eq. (B.49), later in appendix B.3), to describe 2-forms

fields. The field-strength Gµνρ of Bµν is completely anti-symmetrised:

Gµνρ = 3∂[µBνρ] = ∂µBνρ + ∂ρBµν + ∂νBρµ . (A.42)

The Lagrangian density for m = 0 consists of the simple kinetic term for a massless scalar

(dual to Bµν) and a massless U(1) gauge boson Aµ, while the coupling in the mass term

reinstates gauge invariance when m 6= 0. Quantisation then requires the integration over

both Aµ and Bµν , and to introduce appropriate gauge-fixing terms.

Summarising, in D = 4 dimensions, one can use equivalently any of the three La-

grangian densities in eq. (A.1), or eq. (A.35) or eq. (A.41), and describe exactly the same

physics. The three have different gauge symmetries: there is no invariance in eq. (A.35),

while eq. (A.1) is invariant under a U(1) transformation with a parameter α and eq. (A.41)

has a gauge invariance parametrised by a vector as in eq. (A.15). As such, quantisation

requires different path integrals and different gauge-fixing terms. In particular, it is usually

convenient in D = 4 to use eq. (A.1), so that one has to write only 0-forms and 1-forms,

while ignoring higher-order forms.
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In higher dimensions, one might try to generalise this line of argument. For example,

if the number of dimensions is D = 2p+1, a massive p-form can be written in terms of two

massless p-forms soldered together by a first-order differential operator that introduces the

mass term (see for example [69] for a nicely pedagogical discussion). But the equations

of motion of the p-forms involve their duals, because the mass terms are written with the

completely anti-symmetric tensor εµ1···µD .

For example, in D = 5 dimensions a massless 2-form is dual to a massless 1-form

(each propagating 3 physical degrees of freedom). It is tempting to think of the massive

2-form (6 degrees of freedom) as the result of soldering the two massless 2-forms dual to

two massless 1-forms, and hence try to write the Lagrangian just in terms of vectors. But

the soldering term requires the dualisation of one of the forms, and hence the result is that

we must either keep track in the action of bilinear terms involving both the forms and their

duals, or write the theory in terms of one 1-form and one 2-form, and then apply the Higgs

mechanism, which is what we do in this paper, as is shown explicitly in appendix B.3.

In the broad context of gauged supergravities, for which we refer the reader to [70] and

references therein, similar considerations are in fact enforced on rather general grounds.

B Bosonic fields in D = 5 dimensions

In this appendix, we collect general results about the treatment of scalar and p-form fields

coupled to gravity in D = 5 dimensions, of relevance to this paper. We emphasise the role

of gauge invariance in the discussion of the fluctuations on a given sigma-model background

coupled to gravity. Appendix B.1 contains the treatment of the sigma-model scalar and

tensor fluctuations, while in appendix B.2 and appendix B.3 we treat p-forms.

The separate treatment of these sectors hinges on the assumption that only the metric

and the sigma-model scalar fields acquire non-trivial profiles in the bulk, and the fact that

one only needs to retain terms up to second order in the fluctuations in order to compute

spectra. As a result, the treatment of diffeomorphism invariance can be performed inde-

pendently (in appendix B.1) from that of the gauge invariance inherent in the formulation

of theories with p-forms (in appendix B.2 and B.3). We will form gauge-invariant combi-

nations of the various fluctuations, the equations of motion and boundary conditions for

which will give us the spectrum.

B.1 About sigma-models coupled to gravity in D = 5 dimensions

We start from the conventions we adopt for gravity. The Christoffel symbol is

ΓPMN ≡
1

2
gPQ (∂MgNQ + ∂NgQM − ∂QgMN ) , (B.1)

the Riemann tensor is

R Q
MNP ≡ ∂NΓQMP − ∂MΓQNP + ΓSMPΓQSN − ΓSNPΓQSM , (B.2)

the Ricci tensor is

RMN ≡ R P
MPN , (B.3)
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and finally the Ricci scalar is

R ≡ RMNg
MN . (B.4)

The covariant derivative with respect to gravity for a (1, 1)-tensor takes the form

∇MTPN ≡ ∂MT
P
N + ΓPMQT

Q
N − ΓQMNT

P
Q , (B.5)

and can be generalised to any tensor.

Much in the same way, the sigma-model connection descends from the sigma-model

metric Gab — with a, b = 1 , · · · , n the indexes in the n-dimensional scalar manifold — as

follows

Gdab ≡
1

2
Gdc (∂aGcb + ∂bGca − ∂cGab) . (B.6)

The sigma-model Riemann tensor is7

Rabcd ≡ ∂cGabd − ∂dGabc + GebdGace − GebcGade , (B.7)

while the sigma-model covariant derivative is

DbX
d
a ≡ ∂bX

d
a + GdcbXc

a − Gc abXd
c , (B.8)

in terms of the sigma-model derivative ∂b = ∂
∂Φb

.

The space being bounded, and consisting of a five-dimensional manifold and two (four-

dimensional) boundaries, we need the induced metric, which is given by

g̃MN ≡ gMN −NMNM , (B.9)

in terms of the vector NM ortho-normal to the boundary, and satisfies the defining prop-

erties:

gMNN
MNN = 1 , g̃MNN

N = 0 . (B.10)

The vector NM is oriented to point outwards from the boundary. The extrinsic curvature

is computed in terms of the symmetric tensor

KMN ≡ ∇MNN = ∂MNN − ΓQMNNQ (B.11)

and is given by K ≡ g̃MNKMN .

The action in D = 5 dimensions is then written to agree with the conventions in [75]:

S5 =

∫
d4xdr




√−g5

[
R

4
+ L5

]
+
∑

i=1,2

δ(r − ri)(−)i
√−g5

[
K

2
+ Li

]
 . (B.12)

7Notice that the only difference in the conventions for the two Riemann tensors is the reversed ordering

in which one writes the indexes.
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The matter Lagrangian density in the bulk is given by

L5 = −1

2
Gabg

MN∂MΦa∂NΦb − V(Φa) , (B.13)

while Li are boundary-localised contributions to the scalar part of the action.

We begin by reviewing the gauge-invariant formalism developed in [71–75] (to which

the reader is referred for details) that allows for the computation of the scalar and tensorial

parts of the spectrum. We start by expanding the scalar fields as

Φa(xµ, r) = Φ̄a(r) + ϕa(xµ, r) , (B.14)

where ϕa(xµ, r) are small fluctuations around the background solution Φ̄a(r). Decomposing

the metric according to the Arnowitt-Deser-Misner (ADM) formalism [81], we write

ds2
5 =

(
(1 + ν)2 + νσν

σ
)

dr2 + 2νµdxµdr + e2A(r) (ηµν + hµν) dxµdxν , (B.15)

hµν = eµν + iqµεν + iqνε
µ +

qµqν
q2

H +
1

3
δµνh, (B.16)

where eµν is transverse and traceless, εµ is transverse, and the four-dimensional indices µ,

ν are raised and lowered by the boundary metric η. We treat ν(xµ, r), νµ(xµ, r), eµν(xµ, r),

εµ(xµ, r), H(xµ, r), and h(xµ, r) as small fluctuations around the background metric deter-

mined by the warp factor A(r).

Under infinitesimal diffeomorphisms ξM (xµ, r), the fluctuations transform as

δϕa = ∂rΦ̄
aξr , δν = ∂rξ

r , δH = 2∂µξ
µ , δh = 6∂rAξ

r , (B.17)

δνµ = ∂µξr , δεµ = Pµνξ
ν , δeµν = 0 , (B.18)

where we have neglected terms higher than linear order in the fluctuations themselves.

After forming the gauge-invariant (under diffeomorphisms) combinations (in addition to

the gauge invariant variable eµν)

aa = ϕa − ∂rΦ̄
a

6∂rA
h , (B.19)

b = ν − ∂r
(

h

6∂rA

)
, (B.20)

c = e−2A∂µν
µ − e−2Aq2h

6∂rA
− 1

2
∂rH , (B.21)

dµ = e−2APµνν
ν − ∂rεµ , (B.22)

the linearized equations of motion decouple into different sectors according to spin. For

the tensorial fluctuations eµν , one obtains the equation of motion
[
∂2
r + 4∂rA∂r − e−2A(r)q2

]
eµν = 0 , (B.23)

and boundary condition

∂re
µ
ν

∣∣
ri

= 0 . (B.24)
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Together, eqs. (B.23)–(B.24) allow one to compute the tensor part of the spectrum. The

equation of motion for dµ is algebraic, and hence does not lead to a spectrum of composite

states. The equations of motion for b and c are also algebraic, and can be solved in terms

of aa. Using this, the equations of motion for the scalar fluctuations can be written as

0 =
[
D2
r + 4∂rADr − e−2Aq2

]
aa + (B.25)

−
[
Va|c −Rabcd∂rΦ̄b∂rΦ̄

d +
4(∂rΦ̄

aVb + Va∂rΦ̄b)Gbc
3∂rA

+
16V∂rΦ̄a∂rΦ̄

bGbc
9(∂rA)2

]
ac ,

and the boundary conditions as

2e2A∂rΦ̄
a

3q2∂rA

[
∂rΦ̄

bDr −
4V∂rΦ̄b

3∂rA
− Vb

]
ab − aa

∣∣∣
ri

= 0 . (B.26)

Here, Va|b ≡ ∂Va
∂Φb

+ GabcVc, and the background covariant derivative is defined as Draa ≡
∂ra

a + Gabc∂rΦ̄bac. Eqs. (B.25) and (B.26) allow us to compute the scalar part of the

spectrum.

Let us make a couple of comments about the boundary conditions for the tensors and

scalars, reported in eq. (B.24) and eq. (B.26). In order to make the variational problem

well-defined, one introduces boundary-localised actions, consisting of the Gibbons-Hawking

term for gravity, as well as an action for the scalar fields that is fixed by consistency

requirements up to a term that is second order in the fluctuations. Taking the latter to be

a boundary mass term for the fluctuations of the scalars, in the limit of infinite mass, one

obtains the boundary condition ϕa = 0, which becomes eq. (B.26) when written in terms

of the gauge-invariant variable aa. This boundary condition ensures that the subleading

modes are retained, as the IR (UV) cutoffs are taken towards the end-of-space (boundary),

in agreement with the standard prescription in gauge-gravity duality. The same is true for

the tensorial modes when eq. (B.24) is imposed in the IR (UV).

In order to calculate the renormalised two-point function, and obtain the spectrum

from the location of its poles, a complete treatment making use of holographic renormal-

isation is necessary. It is possible to make the argument that the prescription outlined

above captures the correct location of the poles, at least for M2 = −q2 > 0. The counter-

terms are provided by a boundary action that is a functional of the boundary values of the

bulk fields and derivatives thereof with respect to the boundary coordinates. Correlation

functions are computed by differentiating with respect to the boundary values of the fields,

and taking the limit of the UV cutoff r2 → ∞. The contribution of the counter-terms to

the finite part of the renormalised two-point function is hence a polynomial function, and

does not shift the location of the poles.

B.2 Vectors in D = 5 dimensions

A U(1) theory in D = 5 dimensions can be described by supplementing the sigma-model

coupled to gravity by the following action:

S(1)
5 =

∫
d4xdr

√−g5

{
−1

4
H FMNFRS g

MR gNS+ (B.27)

−1

2
G (∂Mπ +mAM ) gMN (∂Nπ +mAN )

}
,
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where G and H are the sigma-model geometric factors, and depend on the background

scalars Φa, while m is a symmetry-breaking parameter, and FMN ≡ 2∂[MAN ] = ∂MAN −
∂NAM . The vector (1-form) AM and (pseudo-)scalar (0-form) π obey the U(1) transfor-

mation rules:

π → π +mα , AM → AM − ∂Mα , (B.28)

where α is a function of the space-time coordinates.

We decompose the fields in terms of four-dimensional quantities, in analogy with what

is done in the ADM formalism applied to gravity. The fields A5 and π both behave as

Goldstone bosons, the former as a consequence of the Kaluza-Klein decomposition, the

latter in connection with the breaking of the U(1) in D = 5 dimensions. A combination of

the two provides the longitudinal components for the infinite tower of massive vector states.

Another combination remains in the spectrum, as a whole tower of massive pseudo-scalar

particles.

After some algebra, in particular after Fourier-transforming in four dimensions, and

performing some integrations by parts, we can rewrite the action as follows

S(1)
5 =

∫
d4qdr



−

1

2
H Aµ(−q) q2PµνAν(q) − 1

2
He2Aq2A5(−q)A5(q)

−1

2
Aµ(−q)ηµν

[
−∂r

(
He2A∂rAν(q)

)]

+
∑

i=1,2

(−)iδ(r − ri)
[
−1

2
He2AAµ(−q)ηµν∂rAν(q)

]

−1

2

[
iqµAµ(−q)∂r

(
He2AA5(q)

)
+ (q ↔ −q)

]
(B.29)

+
∑

i=1,2

(−)iδ(r − ri)
[

1

2
iHe2AqµAµ(−q)A5(q) + (q ↔ −q)

]

−1

2
m2Ge4AA5(−q)A5(q)− 1

2
π(−q)∂r

[
−Ge4A∂rπ(q)

]

+
∑

i=1,2

(−)iδ(r − ri)
[
−1

2
Ge4Aπ(−q)∂rπ(q)

]

−1

2
π(−q)∂r

[
−mGe4AA5(q)

]

−1

2
A5(−q)

[
mGe4A∂rπ(q)

]

+
∑

i=1,2

(−)iδ(r − ri)
[
−1

2
mGe4Aπ(−q)A5(q)

]
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−1

2
Ge2A

[
q2π(−q)π(q) +m2ηµνAµ(−q)Aν(q)

]

− 1

2
mGe2A [−iqµπ(−q)ηµνAν(q) + (q → −q)]



 .

Because of the presence of the boundaries, we also add generic boundary-localised

kinetic terms for the vector in the form

S(1)
D =

∫
d4xdr

∑

i=1,2

(−)iδ(r − ri)
√−g5Di

{
−1

4
g̃MN g̃RSFMRFNS

}
(B.30)

=

∫
d4qdr

∑

i=1,2

(−)iδ(r − ri)
{
−1

2
Diq

2Aµ(−q)PµνAν(q)

}
,

and for the pseudo-scalar as in

S(1)C =

∫
d4
xdr

∑

i=1,2

(−)iδ(r−ri)
√−g5

{
−1

2
Ci [∂µπ+mAµ] g̃µν [∂νπ+mAν ]

}
(B.31)

=

∫
d4
qdr

∑

i=1,2

(−)iδ(r−ri)
{
−1

2
Cie

2A [qµπ(−q)+imAµ(−q)] ηµν [qνπ(q)−imAν(q)]

}
.

The four constants Di and Ci are exhibited for completeness: they enter the process of

holographic renormalisation, and we comment about them at the end of this appendix.

The action contains mixing terms between the vector and pseudo-scalar. We hence

add the following bulk gauge-fixing term

S(1)
ξ =

∫
d4qdr

{
−H

2ξ

[
qµAµ(−q) +mi

ξ

H
Ge2Aπ(−q) + i

ξ

H
∂r
(
He2AA5(−q)

)]
×

×
[
qνAν(q)−mi

ξ

H
Ge2Aπ(q)− i ξ

H
∂r
(
He2AA5(q)

)]}
, (B.32)

as well as the boundary-localised gauge fixing terms

S(1)
M =

∫
d4qdr

∑

i=1,2

(−)iδ(r−ri)
{
− 1

2Mi

[
qµAµ(−q)−iMiHe

2AA5(−q)+imMiCie
2Aπ(−q)

]
×

×
[
qνAν(q)+iMiHe

2AA5(q)−imMiCie
2Aπ(q)

]}
.

(B.33)

The gauge-fixing parameter ξ is in general a function of the radial direction r: because the

fifth dimension is a segment, the U(1) in five dimensions gives rise to an infinite tower of

U(1) gauge theories in four dimensions, each of which is spontaneously broken, and each of

which could in principle be gauge-fixed independently. For simplicity, we set ξ to a constant.

The boundary-localised (dimensionful) gauge-fixing parameters Mi are independent of the

bulk dynamics, and again their arbitrariness corresponds to the arbitrariness in gauge fixing

the boundary U(1). We make the choice Mi = ξ
Di

, so that the action of the longitudinally
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polarised part of the vectors can be obtained from the transverse one by replacing q2 →
q2/ξ, as in the D = 4 case discussed in appendix A.1. We find the action of the spin-1

fields to vanish on-shell when imposing the equations of motion and boundary conditions,

which we list as follows:

[
q2H − ∂r

(
He2A∂r

)
+m2Ge2A

]
PµνAµ(q, r) = 0 , (B.34)

[
He2A∂r + q2Di +m2Cie

2A
]
PµνAν(q, r)

∣∣
r=ri

= 0 , (B.35)
[
q2

ξ
H − ∂r

(
He2A∂r

)
+m2Ge2A

]
qµqν

q2
Aµ(q, r) = 0 , (B.36)

[
He2A∂r +

q2

ξ
Di +m2Cie

2A

]
qµqν

q2
Aν(q, r)

∣∣∣∣
r=ri

= 0 . (B.37)

The equations for the (pseudo-)scalars A5 and π look significantly more complicated,

until one exploits gauge-invariance by introducing the following re-definitions:

A5 ≡
1

m

(
mX

e4AG
− ∂rπ

)
, (B.38)

π ≡ Y +
m∂rX

q2e2AG
. (B.39)

The equations for the physical (gauge invariant) scalar field X decouples from Y . The two

obey the following equations of motion and boundary conditions:

[
∂2
r +

(
−2∂rA−

∂rG

G

)
∂r +

(
−e−2Aq2 − m2G

H

)]
X(q, r) = 0 , (B.40)

[Ci∂r + G ]X(q, r)|r=ri = 0 , (B.41)
[
∂2
r +

(
2∂rA+

∂rH

H

)
∂r +

(
−e−2A q

2

ξ
− m2G

H

)]
Y (q, r) = 0 , (B.42)

[
He2A∂r +

(
Di

ξ
q2 +m2Cie

2A

)]
Y (q, r)

∣∣∣∣
r=ri

= 0 . (B.43)

The equations for the gauge-dependent Y are identical (up to an inconsequential multiplica-

tive factor) to those obeyed by the longitudinal polarisations of the vectors qµqν

q2
Aν(q, r).

In this paper we are interested only in computing the physical spectrum of states

appearing as isolated poles in the 2-point functions involving operators of the dual field

theory. This can be obtained by taking functional derivatives of the bulk action evaluated

on-shell, with respect to properly defined (and properly normalised) boundary-localised

sources (see for instance [23, 24]). In doing so, one comes to realise that for asymptotically-

AdS backgrounds the divergences can be cancelled by the counter-terms Di and Ci.

The procedure we follow is superficially very different, but in fact yields the same

results. By imposing the IR and UV boundary conditions on the differential equations, and

hence over-constraining the system, one finds a discrete set of q2 corresponding to the zeros,

rather than the poles, of the relevant correlation functions, and hence the process seems to
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differ from the one of physical interest by a Legendre transform. Yet, because we are setting

Ci = 0 = Di, and hence keeping divergent additive contributions (polynomial in q2) to the

2-point functions, by solving the equations for finite regulators ri, and afterwards taking

the physical limits and removing the regulators, the results we obtain for the spectrum

exactly coincide with the isolated poles of the physical correlator.

B.3 2-forms in D = 5 dimensions

The discussion in appendix B.2 generalises non-trivially to higher-order p-forms. For a

2-form BMN one defines the field-strength

GMNT = 3∂[MBNT ] = ∂MBNT + ∂NBTM + ∂TBMN , (B.44)

having made use of the anti-symmetry of BMN . Under the gauge transformation

BMN → BMN − 2∂[MαN ] , (B.45)

with αM a vector depending on the coordinates, GMNT is invariant. One then proceeds in

a similar way as in the case of the 1-form and 0-form in appendix B.2: by introducing a

1-form transforming with a shift under the transformation in (B.45)

AM → AM +mαM , (B.46)

with m a constant, one finds that a gauge-invariant 2-form is given by

HMN = FMN +mBMN , (B.47)

where FMN = 2∂[MAN ]. This procedure generalises the Higgs mechanism to p-forms in

D dimensions. The process that eventually leads to the equations of motion for the fluc-

tuations, boundary conditions, and (four-dimensional) spectrum of physical states mimics

what is done for 1-forms in appendix B.2. We report it in detail, highlighting some impor-

tant subtleties.

The action to be added to the sigma-model coupled to gravity takes the form:

S(2)
5 =

∫
d4xdr

√−g5

{
−1

4
H gMRgNS HMNHRS + (B.48)

− 1

12
K gMR gNS gTUGMNTGRSU

}
,

where H and K are functions of the background values of the sigma-model scalars Φa.

After Fourier-transforming all the fields, the action can be written as follows.

S(2)
5 =

∫
d4qdr



−

1

2
He2A [∂rAµ(−q) +mB5µ(−q)] ηµν [∂rAν(q) +mB5ν(q)]

−1

2
Hq2e2AA5(−q)A5(q)
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−1

2
He2A [iA5(−q) (qµ∂rAµ(q) +mqµB5µ(q)) + (q ↔ −q)]

−1

2
HAµ(−q) q2PµνAν(q) (B.49)

−1

4
Hm2Bµν(−q) ηµρηνσ Bρσ(q)

−1

2
Hηµν [imqρBρµ(−q)Aν(q) + (q ↔ −q)]

−1

4
Bµν(−q) ηµρηνσ [−∂r (K∂rBρσ(q))]

+
∑

i=1,2

(−)iδ(r − ri)
[
−1

4
KBµν(−q) ηµρηνσ ∂rBρσ(q)

]

−1

2
KB5µ(−q) q2Pµν B5ν(q)

−1

2
Kηµν [−iqρ∂rBρµ(−q) B5ν(q) + (q ↔ −q)]

− 1

4
Ke−2ABµν(−q) q2 PµρP νσ Bρσ(q)



 .

Notice that Bµν(−q) PµρP νσ Bρσ(q) = Bµν(−q)
(
ηµρηνσ − 2 q

µqρ

q2
ηνσ
)
Bρσ(q).

Besides the bulk action, we also add boundary-localised kinetic terms:

S(2)E =

∫
d4
xdr

∑

i=1,2

(−)iδ(r−ri)
√−g5

{
− 1

12
EiKg̃

µσ g̃ντ g̃ρωGµνρGστω

}
(B.50)

=

∫
d4
qdr

∑

i=1,2

(−)iδ(r−ri)
{
−1

4
Bµν(−q)

(
ηµρηνσ−2

qµqρ

q2
ηνσ
)
e−2AKEiq

2Bρσ(q)

}
,

S(2)D =

∫
d4
xdr

∑

i=1,2

(−)iδ(r−ri)
√−g5

{
−1

4
DiHg̃

µσ g̃ντHµνHστ
}

(B.51)

=

∫
d4
qdr

∑

i=1,2

(−)iδ(r−ri)
{
−1

4
DiH [qµAν(−q)−qνAµ(−q)+imBµν(−q)] ηµρηνσ×

×[qρAσ(q)−qσAρ(q)−imBρσ(q)]

}
.

The parameters Ei and Di play the analogous role of the boundary-localised counter-terms

introduced when dealing with 1-forms in appendix B.2.

The decomposition in four-dimensional language of the original fields leads to A5 be-

having as a pseudo-scalar, Aµ and B5µ behaving as vectors and Bµν being a 2-form. We

want to eliminate mixing terms between forms of different orders, by adding bulk and

boundary gauge-fixing terms:

S(2)
Ξ ,2 =

∫
d4qdr

{
−e

2AK

2Ξ

[
e−2AqρBρµ(−q) + i

Ξ

K
∂r (KB5µ(−q)) + i

Ξ

K
mHAµ(−q)

]
×

×ηµν
[
e−2AqσBσν(q)− i Ξ

K
∂r (KB5ν(q))− i Ξ

K
mHAν(q)

]}
, (B.52)
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S(2)
N ,2 =

∫
d4qdr

∑

i=1,2

(−)iδ(r − ri)
{
−Ke

2A

2Ni
ηµν×

×
[
e−2AqρBρµ(−q)− iNiB5µ(−q) + im

DiHNi

K
Aµ(−q)

]
× (B.53)

×
[
e−2AqσBσν(q) + iNiB5ν(q)− imDiHNi

K
Aν(q)

]}
,

S(2)
ξ,1 =

∫
d4qdr

{
−K

2ξ

[
qµB5µ(−q)− iξme2AH

K
A5(−q)

] [
qνB5ν(q) + iξme2AH

K
A5(q)

]
+

−H
2ξ

[
qµAµ(−q) + i

ξ

H
∂r
(
He2AA5(−q)

)] [
qνAν(q)− i ξ

H
∂r
(
He2AA5(q)

)]}
,

(B.54)

S(2)
M,1 =

∫
d4qdr

∑

i=1,2

(−)iδ(r − ri)
{
− H

2Mi

[
qµAµ(−q)− ie2AMiA5(−q)

]
× (B.55)

×
[
qνAν(q) + ie2AMiA5(q)

]}
.

The first two such terms decouple the 2-form from lower-order forms, by exploiting the

vectorial part of the gauge invariance (the transformations controlled by the αµ parameter).

The parameter Ξ is a generic function of r, but for simplicity we choose it to be a constant,

while we fix the boundary-localised Ni to obey the relation Ni = Ξ/Ei. There is an

additional residual gauge symmetry, that allows one to remove mixing of the vectors B5µ

and Aµ with the pseudo-scalar A5 by adding the last two gauge-fixing terms controlled by

ξ and Mi.

The final result of the exercise for the 2-forms is that the bulk equations and boundary

conditions for the transverse polarisations read

[
Kq2e−2A − ∂r (K∂r) +Hm2

]
PµρP νσBρσ(q, r) = 0 , (B.56)

[
KEiq

2e−2A +K∂r +DiHm
2
]
PµρP νσBρσ(q, r)

∣∣
r=ri

= 0 , (B.57)

while the longitudinal components obey equations obtained by the replacement q2 → q2/Ξ.

For the transverse polarisations of Aµ and B5µ, we define the generalised U(1) gauge

invariant field Xµ via the relation

B5µ ≡
1

m

(
mXµ

e2AH
− ∂rAµ

)
, (B.58)

and its complementary (transverse) field Yµ via

Pµ
νAν ≡ Yµ +

m∂rXµ

q2H
. (B.59)

By making use of the equations of motion for Aµ, the equations for the physical vector Xµ

decouple and hence read:
[
∂2
r −

∂rH

H
∂r +

(
−e−2Aq2 −m2H

K

)]
Xµ(q, r) = 0 , (B.60)
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subject to the boundary conditions
[
∂r +

1

Di

]
Xµ(q, r)

∣∣∣∣
r=ri

= 0 . (B.61)

The equations for Yµ are then

[
∂2
r +

∂rK

K
∂r +

(
−e−2A q

2

Ξ
−m2H

K

)]
Yµ(q, r) = 0 , (B.62)

subject to the boundary conditions

[
∂r +

(
e−2Aq2

Ni
+
Dim

2H

K

)]
Yµ(q, r)

∣∣∣∣
r=ri

= 0 . (B.63)

By choosing Ni = Ξ/Ei we see that the equations and boundary conditions for Yµ explicitly

depend on the generalised U(1) gauge-fixing parameter choice Ξ, and furthermore that the

bulk equations and boundary conditions for Yν are identical to those of the transverse

PµρP νσBρσ, up to the replacement q2 → q2

Ξ . This is the analogue of what we found in the

case of a spontaneously broken ordinary U(1) in appendix B.2: the transverse components

of the vector Yµ are Higgsed into Bµν and provide it with the 2 additional polarisations

that turn it from a massless 2-form (dual to a scalar, with 1 d.o.f.) into a massive 2-form

(dual to a massive vector, with 3 d.o.f.).

In order to decouple the equations of the longitudinal polarisations of the vectors, we

slightly modify the definition of XL
µ and Y L

µ according to

BL
5µ ≡

1

m

(
mXL

µ

e2AH
− ∂rALµ

)
, (B.64)

ALµ ≡ Y L
µ + ξ

m∂rX
L
µ

q2H
, (B.65)

where the suffix L indicates the component projected along qµ. The final equations and

boundary conditions read as follows:

0 =

[
∂2
r −

∂rH

H
∂r +

(
−e−2A q

2

ξ
−m2H

K

)]
XL
µ (q, r) , (B.66)

0 =

[
∂r +

1

Di

]
XL
ν (q, r)

∣∣∣∣
r=ri

, (B.67)

0 =

[
∂2
r +

∂rK

K
∂r +

(
−e−2A q

2

ξΞ
−m2H

K

)]
Y L
µ (q, r) , (B.68)

0 =

[
∂r +

(
e−2Aq2

ξNi
+
Dim

2H

K

)]
Y L
µ (q, r)

∣∣∣∣
r=ri

, (B.69)

where we have made use of the replacement Mi = ξ
Di

, thanks to which these equations are

identical to those of the transverse polarisations, except for the replacement q2 → q2

ξ . In

particular, this confirms that none of the longitudinally-polarised vector fields is physical.
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Finally, the scalar sector contains only A5, and has been decoupled from all other

fields. The bulk equation is

0 =

(
q2

ξ
+m2e2AH

K

)
A5(q)− ∂r

[
1

H
∂r
(
He2AA5(q)

)]
, (B.70)

subject to the boundary conditions

0 =
1

Di
A5(q) +

1

He2A
∂r
[
He2AA5(q)

]∣∣∣∣
r=ri

, (B.71)

where once more we have chosen Mi = ξ
Di

. We conclude by observing that the scalar

He2AA5 obeys identical equations of motion and boundary conditions as qνXL
ν , as expected.

In summary, the physical masses can be computed by looking at the transverse po-

larisation of the 2-form Bµν , and at the gauge-invariant combination Xµ of the transverse

polarisations of Aµ and B5µ. All other fields — the longitudinal polarisations of Bµν , the

gauge dependent combination Yµ of the transverse polarisations of the vectors, both of the

XL
µ and Y L

µ combinations of the longitudinal polarisations of the vectors, and the pseudo-

scalar A5 — are unphysical and gauge-dependent remnants of the Higgs mechanism in the

generic Rξ gauge.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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