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Abstract: Landslide susceptibility mapping is considered to be a prerequisite for landslide prevention
and mitigation. However, delineating the spatial occurrence pattern of the landslide remains a
challenge. This study investigates the potential application of the stacking ensemble learning
technique for landslide susceptibility assessment. In particular, support vector machine (SVM),
artificial neural network (ANN), logical regression (LR), and naive Bayes (NB) were selected as base
learners for the stacking ensemble method. The resampling scheme and Pearson’s correlation analysis
were jointly used to evaluate the importance level of these base learners. A total of 388 landslides and
12 conditioning factors in the Lushui area (Southwest China) were used as the dataset to develop
landslide modeling. The landslides were randomly separated into two parts, with 70% used for
model training and 30% used for model validation. The models’ performance was evaluated using
the area under the receiver operating characteristic (ROC) curve (AUC) and statistical measures.
The results showed that the stacking-based ensemble model achieved an improved predictive accuracy
as compared to the single algorithms, while the SVM-ANN-NB-LR (SANL) model, the SVM-ANN-NB
(SAN) model, and the ANN-NB-LR (ANL) models performed equally well, with AUC values of 0.931,
0.940, and 0.932, respectively, for validation stage. The correlation coefficient between the LR and
SVM was the highest for all resampling rounds, with a value of 0.72 on average. This connotes that
LR and SVM played an almost equal role when the ensemble of SANL was applied for landslide
susceptibility analysis. Therefore, it is feasible to use the SAN model or the ANL model for the study
area. The finding from this study suggests that the stacking ensemble machine learning method is
promising for landslide susceptibility mapping in the Lushui area and is capable of targeting areas
prone to landslides.

Keywords: landslide susceptibility; stacking ensemble learning; Lushui

1. Introduction

Landslides are severe natural disasters and are responsible for losses of life and property [1].
In 2018, approximately 105 deaths and direct economic losses of US$212 million were caused by
landslides along with other disasters in China (http://www.cigem.cgs.gov.cn). To reduce these harmful
impacts, an assessment of slope conditions must be performed. Landslide susceptibility mapping is an
efficient method to identify vulnerable areas, and is used to carry out early risk assessments [2].

Numerous approaches, including the heuristic and physical-based methods, have been applied
for landslide susceptibility mapping in the last few decades, and their advantages and disadvantages
are well summarized in previous studies [3-5]. Heuristic methods usually fail to provide a
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quantitative evaluation of the spatial likelihood of landslide occurrence [6]. Physical-based methods
are characterized by computing requirements and high costs for collecting necessary data, and are
not suitable for large-scale susceptibility mapping [7]. Recently, machine learning methods have
been shown to be effective to address the issue of landslide spatial prediction [8]. Relevant work has
focused on logistic regression (LR) [9,10], the fuzzy logic method [11,12], maximum entropy (ME) [13],
artificial neural network (ANN) [14-16], Bayesian network [3], naive Bayes (NB) [17], support vector
machine (SVM) [18-20], classification and regression tree [21,22], and logistic model tree [23], etc.
Machine learning algorithms treat landslide-related conditions as input to predict where landslides
are probably to occur without the constraint of statistical assumptions. Specifically, state-of-the-art
machine learning techniques such as SVM and ANN are the most popular landslide modeling methods.
They have achieved promising predictive capability for landslide modeling and are usually used as
benchmarks to test novel methods [24,25]. NB and LR have also been widely employed for landslide
susceptibility mapping as they are easily implemented [2]. Yet, there is still no general agreement on
which method is better because the single or simple hypothesis space of learning algorithms shows
difficulties in meeting all case scenarios, as the used data change [26].

Modeling of landslide susceptibility still faces challenges due to the complex nonlinear relationship
between conditioning factors and landslide occurrences [27]. Achieving higher accuracy is the focus for
landslide susceptibility assessment. More recently, the ensemble machine learning method has proved to
be able to provide an improved solution for landslide susceptibility modeling [28]. Ensemble methods
can expend the hypothesis space of the fitting function, thus providing better prediction than the
single algorithms [29,30]. In general, the single algorithm used to constitute ensemble is called the
“base learner” algorithm and can be homogeneous or heterogeneous. Several landslide studies have
investigated meta-learning techniques for assembling homogeneous base learners [25,31-36]. In these
studies, the bagging [37], boosting [38,39], random forest [40], and rotation forest [41] were most widely
applied. Additionally, combination schemes based on heterogeneous landslide models were also
applied for landslide susceptibility mapping successfully, such as ANN-Bayes analysis [42], ANN-fuzzy
logic [43], combinations based on linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), LR, and ANN [44]; the combination of the statistical index and adaptive neuro-fuzzy inference
system [45]; and combinations based on ANN, MaxEnt, and SVM [24]. Exploring novel ensemble
modeling methods is of significance for landslide susceptibility assessment.

In this paper, for the first time the stacking ensemble method based on multiple machine learning
algorithms was used to conduct landslide susceptibility mapping in the Lushui area, southwest China.
The method has a two-level structure including the heterogeneous base learners at the base level
and the meta-learner at the high level. It is worth mentioning that the advantages of the stacking
method have been explored in different disciplines. Wang et al. [46] stated that the stacking-based
credit scoring model obtained an improved predictive performance over base learners with respect to
the average accuracy and error. Another example is a study of flood frequency analysis where the
ANN with stacking outperformed both the standalone ANN and the combination of ANNSs using
the averaging strategy [47]. In this work, four machine learning algorithms, namely, SVM, ANN, LR,
and NB, were selected as candidate base learners of the stacking ensemble method to predict the spatial
landslide susceptibility.

Furthermore, a strategy of evaluating the importance level for stacking ensemble method
components is presented. The strategy was achieved by using the resampling strategy and Pearson’s
correlation analysis methods. We firstly constructed an initial ensemble model comprised of four
machine learning algorithms. Then a series of estimation points of performance for each base learner
was obtained via resampling strategy. The scatter of these point pairs reflected their correlations,
which could be measured using the Pearson’s correlation coefficient. The strong correlated base
learners were treated as inappropriate components and could be eliminated from the initial ensemble
model. The performance of ensemble models including remaining base learning algorithms was
compared with the initial ensemble model to verify this strategy. This strategy was used to construct a
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proper stacking ensemble machine learning model for a realistic case: Lushui area, southwest China,
where landslides occur frequently.

The structure of the paper is as follows. Section 2 gives a description of the study area. Section 3
presents the data and methodology used in this study. Sections 4 and 5 provide the results and
discussion, respectively, and conclusions are given in the last section.

2. Study Area

Lushui is a subordinate Autonomous County of Yunnan Province in Southwest China, located
between the longitudes of 98°34” E and 99°09’ E and the latitudes of 25°33’ N and 26°32’ N, with a total
area of approximately 3100 km? (Figure 1). Topographically, the Nujiang River Grand Canyon runs
through the whole area from north to south. The elevation ranges from 740 m to 4160 m, and increases
from the middle of the canyon to both sides. Areas with the slope angle between 15° and 35° account
for 59.7% of the study area, and areas with slopes over 40° cover 13.2%. The region has a tropical
monsoon climate, with an annual average temperature of approximately 15.1 °C. The rainy season
extends from May to October each year, and the rainfall during the rainy season accounts for 70%
of the total annual rainfall. The largest daily rainfall can reach to 105.3 mm during the rainy season.
The annual average rainfall is approximately 1200 mm. The surface runoff of the study area mainly
consists of the Nujiang River system and its tributaries.
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Figure 1. Geographical position of the study area and landslide inventory map.

Geologic units in the study area range from Precambrian to Quaternary and include metamorphic,
igneous, and sedimentary rocks as well as unconsolidated sediments (Figure 2). The oldest
geological units are represented by the Proterozoic Gaoligongshan (Ptgl) and Chongshan (Ptch)
groups, which widely appear in the eastern part of the study area and along the area west of Nujiang
Fault. Strata from the Paleozoic (Pz) to Mesozoic (Mz) outcrop in the area east of the Nujiang
Fault. The youngest Quaternary sediments consisting of alluvial and pluvial deposits are widely
distributed in the terrace of the Nujiang River, and are the major slope-forming materials. Knowledge
of geology is critical because different rock types and sediments have different physical hardness,



Appl. Sci. 2020, 10, 4016 40f21

interlayer structures, and weathering and erosion resistance, and those properties are related to slope
susceptibility. In particular, soft clay or other phyllosilicate minerals are highly plausible causes
of landslide occurrence, while the rocks or sediments with strong mechanical strength and good
weathering resistance usually have a better inhibiting effect on slope deformation. In this study,
the geological unit was reclassified into seven engineering rock groups (ERGs) according to the
lithology, structure, hardness, and weathering degree of the rocks. Table 1 gives a detailed description
for the ERGs.

Table 1. Description of the engineering rock groups (ERGs).

ERG Code Lithology
1. Layered, massive hard Ptgll, Ptglz, Ptch!, Ptch?, Migmatite, granulite, gneiss, and mylonite
metamorphic rock Ptch3 intercalated with mica schist, quartzite

ghiiy:‘;e;’si?gz;(iﬁg mudstone, Osp, S11, P1b Mudstone, shale, and sandstone
Chert limestone, argillaceous limestone,

3. Layered karst medium hard €3s, Spr, Dohy, D3d, C1x,  oolitic limestone, argillaceous strip

carbonate rock Cip, P1d, Tohl, Toh?, limestone, biological limestone, limestone,
T3nn dolomite, lime dolomite, and dolomitic

limestone
Glutenite, sandstone, siltstone,

4. Layered hard sandy mudstone Diw, Cad, Jom, and mudstone intercalated with marlite

> .Mass.1 ve, hard extrusive rock B Amygdaloidal basalt intercalated with lens

with veins

6. Massive hard intrusive rock Y, v, Bu Granite, gabbro, and diabase

7. Loose and semi-cemented rock 0 Fine sand, gravel, clay, and silt

dominated by gravel and sand

Note: Ptgl! and Ptgl? are the lower and upper members of the Proterozoic Gaoligongshan group (Ptgl); Ptch!,
Ptch?, and Ptch? are the lower, middle, and upper members of the Proterozoic Chongshan group (Ptch); e3s is the
Late Cambrian Shahechang formation; O3p is the Late Ordovician Shangpupiao formation; Sir and S,r are the
Early and Middle Silurian Renheqiao formation; Diw is the Early Devonian Wangjiacun formation; D, hy is the
Middle Devonian Heyuanzhai formation; D3d is the Late Devonian Dazhai formation; C;x and C;p are the Early
Carboniferous Xiangshan and Pumengian formations; C3d is the Late Carboniferous Dingjiazhai formation; P;b and
P;d are the Early Permian Bingma and Daaozi formations; Toh! and T,h? are the lower and upper members of
the Middle Triassic Hewanjie formation; Tznn is the Late Triassic Nanniuba formation; Jom is the Middle Jurassic
Mengjia formation; Q is the Quaternary.

Lushui County is one of the key monitoring zones for geo-hazards in Yunnan Province. A complex
geographic and geological setting and seasonal heavy rain make the area prone to geo-hazards.
For example, on 5 July 2018, falling rocks induced by a landslide nearby a road of Chenggan hit running
cars and directly caused three deaths, with seven injured. On 3 October 1997, unwise mining activities
at the Shiganghe disturbed the unstable strata located on a fracture zone, triggering slope sliding and
causing 23 deaths and economic losses of US$2.5 million. Landslides have caused huge damage in this
area, prompting the urgent need for effective regional landslide susceptibility mapping.
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Figure 2. Geological map of the study area.

3. Data and Methodology

3.1. Spatial Database

Landslide modeling is mainly based on the assumption that landslides will more likely to occur
in the future under similar conditions that led to past landslides [2]. Therefore, the landslide inventory
plays a fundamental role in landslide susceptibility assessment. The field surveys from 2014 to
2016 by the Department of Nature Resources of Yunnan Province are the major sources of landslide
inventory data used in this study. A total of 388 landslide locations were identified in the study area,
and were mainly distributed in the middle area of Lushui County, especially along the Nujiang River
Grand Canyon and important traffic lines. Those recorded landslides mainly belonged to soil slopes,
varying from 80 m? to 600,000 m? in plane area. Overall, 66.8% had a slide depth <10 m and 94.04%
were classified as being small to medium-sized (<100 x 104 m3). Since most of the landslides were
small enough against the working scale, their location information could be represented as point
features [48,49]. Subsequently, the landslide inventory map of the study area was generated by plotting
the centroids of those landslides (Figure 1).

Landslide occurrence is the result of the negative synergy of various topographical, geological,
and hydrological as well as anthropogenic features [50]. The preparation of conditioning factors used
for landslide modeling is a crucial step. According to the condition of the study area and the mechanism
of landslide occurrence, twelve landslide-related factors were considered firstly: elevation, slope angle,
slope aspect, plan curvature, profile curvature, ERG, land use, distance to roads, distance to rivers,
distance to faults, annual rainfall, and normalized difference vegetation index (NDVI). Those factors
were collected from various available sources. Specifically, the digital elevation models (DEMs) were
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derived from a digital contour map (at the scale of 1:10,000) with an equidistance of 5 m. We identified
five geomorphic factors including elevation, slope angle, slope aspect, plan curvature, and profile
curvature, with a resolution of 100 m. The road network, river network, and land use were acquired
from the data of the Second Detailed Land Investigation Nationwide of China (on a county scale) that
was provided by the Department of Nature Resources of Yunnan Province. The distance to roads and
distance to rivers were then generated by buffering the road network and river network, respectively.
Geological factors played an indispensable part in landslide susceptibility analysis [51]. The ERG
and distance to faults were considered as important geological factors which were collected from a
regional geological map at the scale of 1:100,000. The types of ERGs reflect different physical and
mechanical properties of rocks that are related to the failure mechanism. The integrity of rock and
slope is usually influenced by distance to the faults. The NDVI map used in this study was constructed
based on the Landsat 8 OLI imagery with a resolution of 30 m (http://www.gscloud.cn). Rainfall is
generally regarded as a causative factor for the slope movement [52]. In this work, the Yunnan Digital
Village Website (http://www.ynszxc.net) was used to collect the annual average rainfall for each village
in Lushui County, from which the annual rainfall map of the whole study area was then produced
through the Kriging interpolation. Finally, all landslide conditioning factor layers were resampled into
310,604 raster cells with the same pixel size of 100 m X 100 m to unify the data scale for further analysis
(Figure 3).
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Figure 3. Landslide conditioning factors (a) Elevation, (b) Slope angle, (c) Slope aspect, (d) Plan
curvature, (e) Profile curvature, (f) ERG, (g) Land use, (h) Distance to roads, (i) Distance to rivers,
(j) Distance to faults, (k) Annual rainfall, (I) Normalized difference vegetation index (NDVI).

3.2. Preparation of Training and Validation Datasets

Landslide spatial prediction can be treated as a binary classification problem, where landslides and
non-landslides represent positive cases and negative cases, respectively [53]. It is usually recommended
that an equal number of negative and positive cases should be prepared [54]. To select representative
negative cases, K-means clustering was used to determine non-landslides from extensive landslide-free
areas. Accordingly, the information of all non-landslide grid units was imported to SPSS 22 software,
and those grid units were classified into 388 categories by using the K-means clustering function.
The nearest unit of each category to the clustering center was taken as a negative case because the
distance of clustering represents the extent of approximation to a category [55]. The calculated 388
non-landslide locations are shown in Figure 4a. Then, landslides and non-landslides were randomly
divided into two parts with a same configuration (70% for training and 30% for validation) (Figure 4b).
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Figure 4. (a) Locations of the selected non-landslide; (b) Distributions of the training dataset and
validation dataset. DEM: digital elevation model.
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3.3. Importance Analysis of Landslide Conditioning Factors

Many studies have suggested that the importance of landslide conditioning factors should be
evaluated because factors with noise or poor quality may jeopardize landslide spatial prediction
results [5,23]. With the purpose of assessing the landslide susceptibility in the study area, we prepared
twelve conditioning factors in the initial step. Considering that the contribution of each factor to the
landslide occurrence may not be equal, the information value (IV) evaluation method was utilized
in this step to detect the factors appropriate for modeling. The IV is known as an effective feature
selection method in the field of credit risk scorecards [56,57], which is designed to describe the ability
of an input variable to distinguish whether a target variable occurs or not. A higher IV value indicates
the variable is more important. The IV can be calculated using the following equations:

ni1/m

IV(x;) = (nin/m —njp/np) In 0/ 1o

@

N
V(x) = ) TV (x) )
i=1
where 1, is the total number of the landslide pixels, n is the total number of the non-landslide pixels,
n;1 is the number of landslide pixels in the class x; of variable x, and n;y is the number of landslide
pixels in the class x; of variable x.

The prepared landslide conditioning factors contain continuous variables (e.g., elevation) and
discrete variables (e.g., land use). The IV analysis implemented by R software can automatically split
continuous variables into several intervals based on supervised discretization [58,59]. The parameter p
(minimum allowing percentage of samples per interval) was set as 0.01 to control the discretization.

3.4. Modeling Methods

The stacking ensemble method was first introduced by Wolpert [60]. Unlike most existing ensemble
learning methods, stacking uses meta-learning skill to combine different types of algorithms [61].
The structure of stacking consists of two levels, namely level-0 and level-1, and the outputs of multiple
base learners (level-0) are combined by the meta-learner (level-1). The simple sketch of the stacking
structure constructed in this study is shown in Figure 5. The base learners were served by SVM,
ANN, LR, and NB. These machine learning methods are commonly used for landslide susceptibility
modeling [20,24,62,63]. As for the meta-learner, LR was applied following the suggestions of previous
research [64,65].

Level-0

V)

Yoy,
- Prcd,‘c tion Level-1
Input Output Landslide
Factors L giction LR susceptibility
==
o
&%
A0

Figure 5. Stacking-based ensemble framework for landslide susceptibility modeling. SVM: support
vector machine; ANN: artificial neural network; LR: logical regression; NB: naive Bayes.



Appl. Sci. 2020, 10, 4016 90f 21

3.4.1. Support Vector Machine

The support vector machine (SVM) is a binary classifier based on the structural risk minimization
principle [66], which takes advantage of the quadratic optimization technique to calculate the optimum
separating hyperplane between datasets with a maximum margin on either side. In this way, two
different classes of points can be separated as far as possible. The classification function of the SVM
can be expressed as a set of constrains as below:

1
minimize 3 llw|? 3)

subject to : y;(wx;—b) >1 Vx; 4)

where w is an n-dimensional vector normal to the optimum hyperplane, b is bias, and y; is the classified
variable (landslide and non-landslide) which belongs to set {1, —1}.

The radial basis function (RBF) kernel trick is usually recommended for the case where the
classification task is non linearly separable [67,68]. In this work, the SVM with the RBF kernel
was utilized.

3.4.2. Artificial Neural Network

The artificial neural network (ANN) is a calculating algorithm that attempts to simulate the
method of biological brain neurons to process information [69]. The error backpropagation algorithm
(BP) is probably the most popular ANN algorithm [70]. The process of BP ANN includes forward
propagation of signal and backward propagation of error. The initial connection weights used to pass
the units in previous layer forward to the units in next layer are randomly set, and then recursively
adjusted according to the back-propagating error discrepancies between the computed and desired
results until the error discrepancies of the network reach a satisfactory threshold or are minimized.

3.4.3. Logistic Regression

Logistic regression (LR) tries to fit the most suitable regression model to describe the relationship
between several independent variables and the dependent variable [71]. The output of the LR is an
approximate logarithmic probability of real classification, which is actually a value transformed from
the result of linear regression by the logarithmic function [72]. The calculation of the LR is shown

as follows: )

P= 1+ e—(Bo+BlJC1+Bzx2+...+Ban)

©)

where p is the probability of the landslide occurrence, 1 represents the number of landslide conditioning
factors, By is a constant which represents the intercept of the fitting model, and B;(i = 0,1...1I) are the
regression coefficients.

3.4.4. Naive Bayes

Naive Bayes (NB) is a statistical classifier based on the Bayesian theorem [73]. To simplify the
calculation of the posterior probability of observed cases in training data, the NB assumes that each
attribute independently affects the classification results [74]. Landslide spatial prediction using NB can
be expressed as following equation:

yng = P(yi) H P(xiy;) (6)
i1

where P(y;) is prior probability of target class y; (landslide), and P(xi| y;) is the conditional probability
of each attribute.
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3.4.5. Ensemble Modeling

Once all base learning algorithms are prepared, they are integrated into a whole framework
using the stacking method. Suppose the initial dataset D consists of examples d; = (x;, y;), where x;
indicate landslide conditioning factors, and y; indicates corresponding classifications (landslide or
non-landslide). i € [1,N], where N represents the total number of the modeling dataset. Base learning
algorithms such as SVM, ANN, LR, and NB are denoted as L; (t = 1,2,3,4). Firstly, the dataset D is
repeatedly divided into two disjoint subsets; one is used to train base learning algorithms to generate
level-0 classifiers, noted as h;:

W =L(D-d)¥i=1,2-- ,N; Vt=1,2,3,4 (7)
The remaining examples are used to make predictions (z;) through trained classifiers:
zi = hy(x;) ®)

These outputs from level-0 classifiers along with their true classification comprise a new dataset
D’ = ((zit, zit, - -+ ,zit), yi), and are then fed to level-1 to train the meta-learner (LR). Thus, LR can
assemble the classification results of base learners to produce the final prediction for new cases:

Yy = LR(h1(x), ha(x), h3(x), ha(x)) )

Based on four single candidate algorithms and the stacking technique, the initial ensemble model
was constructed, denoted as the SVM-ANN-NB-LR (SANL).

3.5. Resampling Strategy and Correlation Analysis

In statistical learning, an experiment with the purpose of comparing and ranking several algorithms
in terms of a certain performance measure is referred to as a benchmark experiment. The resampling
strategy is usually utilized to generate point estimations for the performance, which allows for an
observation on the performance distribution of an algorithm on resampled subsets [75]. In this work,
resampling was used as a pretreatment method for evaluating the correlation between candidate
algorithms (Figure 6).

Resampling Correlation analysis
Subset ; gl ¥ |l ewt | 2
Zloaw | 2w | 2]
Subset , ; : 7
Tainin; NB [ NB
C 2 Subset 5 i
dataset 2 - -
g 2 2| a2l Bgl
Subset ; ACC; IACC- IACCw ACC-] = |
5 i 2 ”[ - SVM_ SVM IR

Figure 6. The flowchart of the resampling strategy and correlation evaluation. ACC: accuracy.

To be specific, when an ensemble model was simulated and constructed in the training stage,
the training data could be randomly divided into ten folds to test single base learners. Each fold
data was used to produce a prediction by a base learner, and then its prediction accuracy on this
fold was recorded. This processing was repeated with n rounds. In other words, n x 10 different
subsets with the same size were randomly resampled from the initial training data, and thus n x 10
accuracy values were obtained for each base learner. In this study, we setn as 2, 3, and 4 to produce
20 resamples, 30 resamples, and 40 resamples, respectively. Recalling the processing of resampling, for
each resampled subset, four base learners produced prediction in parallel. As resampling proceeded,
a series of point estimates of prediction accuracy was derived. Thus, the correlation between base
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learners could be measured according to the variation degree of those prediction accuracy pairs over
the change of subset.

Pearson’s correlation analysis is considered as an effective method to estimate the linear correlative
degree between variables [76]. Therefore, the correlation between those base learners was measured
using Pearson’s correlation coefficient (PCC) in this study. The PCC between two base learners L; and
L; is defined as below:

cov(ACC;, ACC;))

PCC(Li, L) = (10)

\/var(ACCi) X W”(ACC]')

where cov(ACCl-, ACC j) is the covariance, and ACC; and ACC; are respectively the predictive accuracy
sets of L; and L;. var(ACC;), and var(ACC j) are respectively the variance of ACC; and ACC;.

4. Results

4.1. Selection of Conditioning Factors

The IV evaluation method was carried out to analyze the importance of landslide conditioning
factors, and the results are presented in Table 2. It can be observed that the distance to roads gained
a highest IV value of 3.329 among all factors, followed by elevation (2.694), land use (1.136), NDVI
(1.0894), distance to faults (0.733), ERG (0.396), slope angle (0.176), profile curvature (0.105), slope aspect
(0.065), annual rainfall (0.052), distance to rivers (0.050), and plan curvature (0), respectively. This result
indicates that distance to roads was the most important factor responsible for landslide susceptibility
assessment in the study area. Previous studies emphasized the role of roads, as excavation activities
and removal of vegetation during road constructions usually disturb natural terrain and interfere
with slope stability [32]. In addition, the effect of faults can never be neglected in landslide analysis.
The integrity of rock in the neighboring area of faults is disturbed by fault activities, which makes it
prone to weathering and benefits to landslide [77]. Cracks and joints induced by faults also contribute
to the enrichment and infiltration process of rainwater and groundwater. It should be noted that the
spatial variation of plan curvature fails to distinguish the landslide-prone areas effectively. Therefore,
plan curvature was eliminated from landslide modeling owing to its incompetence.

Table 2. Information value (IV) analysis of landslide conditioning factors.

Conditioning al Number's of Numbers o.f IV of IV of
Factors asses Lanflshde Non- L.andshde Classes Factors
Pixel Pixel
0-67.26 144 27,281 0.408
67.26-179.97 115 35,161 0.180
Distance to roads 179.97-430.47 75 51,765 0.003
(m) 430.47-803.09 32 45,260 0.036 3.329
803.09-2048.00 19 70,570 0.261
2048.00-2556.69 3 16,078 0.108
>2556.69 0 64,101 2.333
740.00-1043.67 88 12,262 0.334
. 1043.67-2138.90 271 105,623 0.254
Elevation (m) 13690 2389.03 25 35,515 0.025 2.694
2389.03-4160.00 4 156,816 2.081
Residential area 36 1951 0.233
Forest 146 247,017 0.315
Grassland 20 26,894 0.018
Land use Farmland 33 3918 0.138 1.136
Bare land 131 28,544 0.319
Engineering land 2 169 0.010

Other 20 1723 0.103
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Table 2. Cont.

Conditioning Numbel:s of Numbers o.f IV of IV of
Factors Classes Lanflsllde Non- L.andshde Classes Factors
Pixel Pixel
-1-0.12 10 28,751 0.087
0.12-0.35 97 19,308 0.282
0.35-0.58 144 50,805 0.168
NDVI 0.58-0.75 62 38,833 0.006 1.089
0.75-0.89 38 39,805 0.008
0.89-1 37 132,714 0.539
0-583.52 226 101,844 0.148
Distance to 583.52-1782.99 125 83,965 0.009 0.733
faults(m) 1782.99-2317.76 18 18,050 0.004 ’
>2317.76 19 106,357 0.572
1 131 110,304 0.001
2 0 335 0.007
3 104 63,313 0.017
ERG 4 36 26,766 0.001 0.396
5 52 21,698 0.042
6 30 81,418 0.226
7 35 6382 0.103
0-6.22 18 5105 0.035
° 6.22-21.27 126 63,154 0.054
Slope angle (*) 21.27-32.86 156 121,863 0.000 0-176
>32.86 88 120,094 0.086
. —-16.00-0.04 106 130,893 0.068
Profile curvature —0.04-26.53 282 179,323 0.037 0.105
° 0-302.33 358 262,403 0.007
Slope aspect (%) >302.33 30 47,813 0.057 0.065
Annual rainfall 773.87-1210.57 292 202,052 0.015
(mm) 1210.57-1419.27 96 108,164 0.037 0.052
Distance to rivers 0-272.17 199 124,775 0.027
(m) 272.17-2566.56 189 185,441 0.023 0.050
Plan curvature —-28.56-20.05 388 310,216 0.000 0.000

4.2. Appropriateness Evaluation for Base Learners

The appropriateness of a base learner to the ensemble was evaluated mainly through the correlation
analysis. However, in order to verify the improved role of the stacking-based ensemble, the performance
of its single counterparts integrated into the whole ensemble framework still needed to be presented.
In the stage of resampling, a series of predictive accuracies were recorded for each base learner as the
subset was constantly sampled. To observe the accuracy distribution, a density curve was created
by plotting the accuracy value on the x-axis and the corresponding frequency of the accuracy on the
y-axis. Figure 7 shows the density curves for all base learners in terms of 20, 30, and 40 resamples,
respectively. In general, it is preferable to use a specific value to describe a model’s performance. Thus,
the mean accuracy (MACC) was used to quantify the performance of base learners against the ensemble.
Regarding the 20 resamples, the ANN showed the highest MACC with a value of 84.20%, followed by
the SVM (83.92%), NB (82.63%), and LR (81.00%), respectively. In the case of 30 resamples, the highest
MACC was also achieved by the ANN (84.49%), followed by the SVM (84.01%), NB (82.36%), and LR
(81.26%), respectively. As for 40 resamples, the results showed a similar ranking, as the ANN gained
the highest MACC value of 84.38%, followed by the SVM (83.92%), NB (82.68%), and LR (81.17%),
respectively. Consistently, the results demonstrated the ANN had a slightly better performance than
the SVM, NB, and LR.
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Figure 7. Density curves of base learners (a) on 20 resamples, (b) on 30 resamples, (c) on 40 resamples.
MACC: mean accuracy.

The scatter-plot matrix of the accuracy belonging to corresponding pairs of base learners is shown
in Figure 8. This allowed for a pair-wise comparison to base learners. The correlation between base
learners is an estimation of how closely the scatter points of the accuracy lie to the straight line.
Visual inspection of Figure 8 shows that the scatter belonging to the pair of SVM and LR was roughly
linear. The PCC provided a quantitative measure for this correlation, and its result revealed that the
highest correlated pair was the SVM and LR regardless of 20, 30, or 40 resamples, with PCC values of
0.75,0.73, and 0.68, respectively. The mean of PCC (MPCC) reached to 0.72, which was considered as a
value indicating a strong correlation. The remaining pairs were weakly or not highly correlated, with
MPCC values of 0.37, 0.33, 0.59, 0.47, and 0.42 for NB/SVM, NB/LR, NB/ANN, SVM/ANN, LR/ANN,
and LR/SVM, respectively. On average, pairs that contained the NB had the lowest PCCs.
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Figure 8. Scatter-plot matrixes of base learners (a) on 20 resamples, (b) on 30 resamples, (c) on
40 resamples. PCC: Pearson’s correlation coefficient.

If highly correlated base learning algorithms are considered to be inappropriate components
in ensemble modeling, they should be excluded from the initial ensemble model. According to the
PCC results, the LR and SVM were separately eliminated from the SANL model to produce the
SVM-ANN-NB (SAN) model and the ANN-NB-LR (ANL) model. Furthermore, in order to verify the
weakly correlated base learners are good candidates, the NB was also removed from the SANL model,
and the SVM-ANN-LR (SAL) model was further constructed. As a result, a total of four ensemble
models were prepared for the experiments and their performances were evaluated and compared.

4.3. Landslide Susceptibility Assessment Using Ensemble Modeling

As the main goal of this study is to examine the “optimal” ensemble on the basis of available
candidates for landslide susceptibility assessment, the susceptibility maps of the study area are
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developed mainly using four ensemble models. Once ensemble modeling was successfully
implemented, landslide conditioning factors were fed into the model to produce predictions for
the whole area. Thus, each pixel in the study area was allocated a unique landslide susceptibility index
(LSI). The higher the index value, the more susceptible the location. Those values were then categorized
into five levels, namely, very low, low, moderate, high, and very high by using the geometrical
interval classification technique in ArcGIS 10.2 software. Inspection of Figure 9 shows that a similar
distribution pattern of landslide susceptibility was gained for various models, especially for the SAN
model and the ANL model. All ensemble models were in accordance with the in that areas with
very high susceptibility classes were mainly distributed near the Nujiang River Grand Canyon where
strong tectonic breaks disturb the terrain, and that the developed road system in conjunction with
low vegetation coverage in low-elevation areas further promoted slope instability. Clay-bearing rocks
(e.g., mudstones and shales) and sediments play an important role in slope sliding as they contribute to
the infiltration process [24]. Additionally, carbonate rocks are likely to be located in highly vulnerable
areas because they are prone to weathering which damages slope stability. The visual inspection of the
geological map indicates that landslides were related to these negative geologic conditions.
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Figure 9. Landslide susceptibility mapping using (a) SVM-ANN-NB-LR (SANL), (b) SVM-ANN-NB
(SAN), (c) ANN-NB-LR (ANL), (d) SVM-ANN-LR (SAL).

Statistical results on the percentage of landslide pixels (PL) and the percentage of pixels in a
susceptibility class (PC) are summarized in Table 3. Regarding the SANL model, 69.85% of the
total landslides were located in the very high class that accounted for 16.80% of the total study area,
whereas 83.76% of the total landslides occurred in the very highly susceptible areas (22.90%) using
the SAN model. As for ANL and SAL models, 79.38% and 57.73% of the total landslides fell into
very highly vulnerable classes, while very high classes occupied 21.82% and 11.80% of the total study
area, respectively.

Table 3. Landslide density analysis on landslide susceptibility maps. LD: landslide density; PC:
percentage of pixels in a susceptibility class; PL: percentage of landslide pixels.

SANL SAN ANL SAL
PC(%) PL(%) LD PC(%) PL(%) LD PC(%) PL(%) LD PC(%) PL(%) LD
Very low 35.60 0.00 0.00 36.16 0.00 0.00  36.79 0.00 0.00 27.81 0.26 0.01

Class

Low 13.32 0.77 0.06  13.24 0.52 0.04 1247 0.52 0.04 20.84 0.52 0.02
Moderate 8.13 2.06 0.25 7.89 2.06 0.26 7.88 2.32 0.29 7.20 1.55 0.21
High 26.14 27.32 1.05  19.82 13.66 0.69  21.04 1778 085  32.35 39.95 1.23

Very high 16.80 69.85 416 2290 8376  3.66  21.82 7938 364 11.80 57.73  4.89

Furthermore, the reliability of landslide susceptibility mapping was evaluated using landslide
density (LD) analysis. LD is expressed by a ratio of PL and PC [2]. It can be observed from Table 3 that
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LD values consistently increased from very low susceptibility level to very high susceptibility level for
all ensemble models, indicating the developed landslide susceptibility assessment was reasonable.

4.4. Performance Evaluation of Landslide Models

The model evaluation was performed using both the training set and validation set. The former
shows the model’s fitting skill and the latter reflects its generalization ability. The accuracy (ACC),
Kappa coefficient (K), and the receiver operating characteristic (ROC) curve technique were employed
as performance metrics in this study. The ACC is the ratio of landslide and non-landslide grid cells
that are correctly predicted, while the K measures the reliability of a constructed model. As for the
ROC curve, it is a popular method to evaluate the performance of the landslide model [78,79]. The area
under the ROC curve (AUC) value is the area under the ROC curve, and a higher AUC value indicates
the model is better.

The overall performance is shown in Table 4 and Figure 10. All ensemble models performed well
in goodness of fit as well as generalization ability. Note that the SANL model, the SAN model, and the
ANL model yielded almost equal values with respect to the ACC, K, and AUC, but in detail the SAN
model (with the ACC, K, and AUC values of 86.95%, 0.739, and 0.951) and the ANL model (with the
ACC, K, and AUC values of 86.58%, 0.732, and 0.944) gained slightly better goodness of fit than the
SANL model (with ACC, K, and AUC values of 86.40%, 0.728, and 0.945, respectively). The SAL model
had a relatively lower performance especially in generalization ability, with values of 82.33%, 0.647,
and 0.886 for ACC, K, and AUC, respectively, on the validation set.

Table 4. Performance evaluation of landslide models. AUC: the area under the receiver operating
characteristic (ROC) curve; K: Kappa coefficient.

On the Training Stage On the Validation Stage
Models
ACC (%) K AUC ACC (%) K AUC
SANL 86.40 0.728 0.945 85.34 0.707 0.931
SAN 86.95 0.739 0.951 85.34 0.707 0.940
ANL 86.58 0.732 0.944 85.34 0.707 0.932
SAL 84.93 0.699 0.927 82.33 0.647 0.886
=7 @ =71 ™
;{ = }E o
— SANL,AUC=0945 —— SAN, AUC=0951 — SANL, AUC=0931 —— SAN, AUC=0.940
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Figure 10. ROC analysis of four ensemble models (a) on the training dataset, (b) on the validation
dataset. SE: standard error of the AUC; CI: confidence interval of the AUC; p: significance level.
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5. Discussion

Landslide susceptibility mapping aims to detect the vulnerable areas potentially threatened by
landslide geo-hazards. Over the years, advancements in computer technology, the development
of machine learning methods, the availability of multi-source data such as GIS data and remote
sensing data, and the accessibility of convenient software have facilitated the conduction of landslide
susceptibility assessment. In this context, how to improve the accuracy of assessment results has become
the main concern of researchers [5]. Recently, ensemble techniques have proved to be able to provide
a more accurate solution in landslide susceptibility modeling. In this work, we attempted to use a
meta-learning method, namely the stacking ensemble method, to integrate multiple different algorithms.
When the predictive accuracy was used as the measure, the ensemble of the SVM-ANN-NB-LR was
found to be superior to all single algorithms. The advantage of stacking is reflected in that the two-level
framework can learn more classification information, and meta-learner in the high level is capable of
correcting bias generated in the former level [80,81]. In this study, the stacking ensemble model showed
improved performance against their components, and can be considered as a promising method for
landslide susceptibility mapping.

In general, combining several algorithms enables an ensemble model to gain better
performance [29]. However, is it necessary to use all of them to constitute the ensemble when
multiple predictors are available? For landslide susceptibility modeling, this needs to be investigated.
In the field of machine learning, Zhou [82] introduced the concept of the selective ensemble, that is,
making appropriate choices from multiple solutions and then combining those selected solutions to
obtain the final decision. Similarly, Zeng et al. [83] proposed the selecting base classifiers on bagging
(SBCB) algorithm, which proved to be superior to the original bagging method. Determining suitable
base learning algorithms is important to examine the “optimal” landslide susceptibility assessment
when ensemble modeling is the case. Rossi et al. [44] found the combination of LDA-QDA-LR
had a better generalization capability than the combination of LDA-QDA-LR-ANN because the
ANN overfitted the landslide information in the training stage. Chen et al. [24] investigated the
SVM, ANN, and ME accompanied by their possible ensembles of ANN-SVM, ANN-ME, SVM-ME,
and ANN-ME-SVM for landslide susceptibility mapping. They concluded that synergic interaction
of two best single models, namely the SVM and ANN, constituted a stronger bond compared with
remaining modeling methods. The ensemble models containing the ME showed moderate performance
due to the underperformance of the ME model. This result is quite consistent with a gully erosion
modeling study which reported that single models with good performance such as SVM and ANN
played an improver role in ensemble modeling, while the relatively weak model (e.g., ME) acted as a
depriver [84]. A powerful model tends to add positive properties to subordinate models. To put it in
another way, the outperformance of the ensemble depends mainly on good components. Therefore,
the best base learner, e.g., the ANN used in this study, should be included in ensemble modeling to
maintain the outperformance. In contrast, the base learner with a relatively poor performance that may
play a reducer role seems to be inappropriate for constituting the ensemble. However, all base learners
used in this study achieved good predictive accuracies. Here, “slightly weak” is a relative concept; the
threshold for positive synergy among base learners may be difficult to determine [24]. In addition, it is
also questionable to explain the extremely similar behaviors between the SAN model and the ANL
model only judged by the component’s performance, because removing SVM or LR from the initial
ensemble of the SVM-ANN-NB-LR has an equal effect in the case where the SVM outperformed the LR.

To address this issue, we introduced a resampling scheme and correlation analysis for estimating
the correlation between base learners within the ensemble. When constituting the ensemble, it is
desirable that the predictions produced by base learners be weakly correlated as the similar predictions
may not contribute to the ensemble performance. In this study, the PCC values under different
resampling times (with the 20, 30, and 40 times, respectively) showed a high correlation between the
SVM and LR. This result means the SVM generates very similar or even the same predictions as the LR
for ensemble modeling in most cases, reducing the effect of assembling predictions. In other words,
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the SVM and LR played an equal role in the ensemble of SVM-ANN-NB-LR, which led to similar
performances between the SAN model and the ANL model, as well as similar distribution patterns of
developed susceptibility maps. In fact, the SANL model also behaved similarly to the SAN model and
the ANL model. We argue that the performance evaluation for the candidate used for composing the
ensemble is important but may not be conclusive, because all base learners yielded good predictive
accuracies in this work. In this case, a correlation analysis is helpful to determine eligible candidates
for “optimal” landslide ensemble modeling. We further verified this by removing the NB from the
SANL model, and it was found that the SAL model underperformed the other ensemble models.
The correlation analysis showed pairs containing the NB had the lowest PCC on average results.
The decreased performance of ensemble modeling after excluding the NB indicated that weakly or not
highly correlated candidates should be included in the ensemble. Overall, our results suggest that the
candidates serving as base learners should be skillful but diverse, allowing the ensemble method to
determine how to combine the best solutions from base learners for performance refinement [85,86].

However, some limitations should be noted. When it comes to such geologic factors as modeling
input, we considered the physical and mechanical properties of engineering rock groups alone without
taking into account geologic factors such as the angle of rock bedding and the orientation of bedding
relative to slope direction that are related to slope failure. As detailed knowledge of geology is critical
for landslide susceptibility studies, we will focus more on these important geologic factors and examine
their effect in the future work.

6. Conclusions

Landslide modeling in this study mainly served two goals: (1) to investigate the stacking ensemble
technique for landslide susceptibility assessment; and (2) to set a strategy to determine appropriate
combinations when multiple candidates were available in ensemble learning. Before modeling, the IV
evaluation was carried out for feature selection. It was found that of the initially prepared factors,
eleven of them, namely distance to roads, elevation, land use, NDVI, distance to faults, ERG, slope
angle, profile curvature, slope aspect, annual rainfall, and distance to rivers, were finally identified as
inputs for ensemble modeling. The performance evaluation showed that the stacking ensemble-based
susceptibility mapping procedure could make full use of the advantages of various individual models
and achieve an improved prediction accuracy, indicating that stacking was also a promising method
for landslide susceptibility mapping. Moreover, the resampling strategy and Pearson’s correlation
analysis were jointly used to test the correlation between base learners. The SVM and LR were highly
correlated within the ensemble of the SANL, which resulted in the similar behaviors of the SANL
model, the SAN model, and the ANL model. This result implies highly correlated candidates may be
inappropriate for being combined in an ensemble prediction. As a result, the use of the SAN model
or the ANL model instead of the SANL model is feasible for landslide susceptibility mapping in the
study area. The findings and analysis from this study present the advantages of the stacking ensemble
method, and provide an accessible way to select good candidates for ensemble modeling, which may
be helpful for future landslide susceptibility studies.
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