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Abstract  13 

The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method 14 

(DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal 15 

cells covered by a single solid particle was given. The treatment of situations where a nodal cell is covered by two or 16 

more solid particles is seldom discussed. It is found that some numerical instability can occur for such situations due 17 

to an inappropriate computation of the weighting function in the IMB formulation. This work presents an enhanced 18 

treatment that can resolve the issue and validates it using some benchmark tests. Furthermore, to avoid the extra 19 

costs associated with the treatment and simplify the complicated procedure introduced, a simplified IMB scheme is 20 

proposed. The accuracy of both enhanced and simplified IMB schemes are validated by test cases including single 21 

particle sedimentation, two-particle drafting-kissing-tumbling phenomenon and multiple-particle sedimentation. 22 

Then, the robustness of both schemes is examined and discussed using a specially designed flow past cylinders test. 23 

The simplified IMB scheme is proved to be robust and sufficiently accurate, and simpler and more effective than the 24 

enhanced scheme.  25 
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List of symbols 30 

if  is the fluid density distribution function in the ith direction; 31 

x  is the coordinate of the current lattice node; 32 
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i
e

 
is the velocity vector in the ith direction at the lattice node;  33 

t  is the current time; 34 

C is the lattice speed; 35 

h  is the lattice spacing; 36 

t is the time step for LBM; 37 

iΩ is a collision operator;  38 

τ  is the relaxation time; 39 

( , )eq

if x t   is the equilibrium density distribution functions of fluid particles; 40 

i  is the weighting factor in the ith direction; 41 

u  is the physical fluid velocity; 42 

ρ  
is the macroscopic fluid density; 43 

P  is the fluid pressure; 44 

  is the fluid viscosity; 45 

Ma is the Mach number; 46 

maxu  is the maximum magnitude of the velocity;  47 

Lu is the fluid velocity in lattice system; 48 

m  is the mass of a solid particle; 49 

I  is the moment of inertia of a solid particle; 50 

c  is the damping coefficient; 51 

a  is the acceleration of a solid particle; 52 

θ   is the angular acceleration of a solid particle;  53 

c
F  is the contact force between two particles; 54 

c
T  is the torque caused by contact forces;  55 

f
F  is the hydrodynamic force applied to a solid particle; 56 

f
T  is the torque caused by hydrodynamic forces; 57 
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sN is the sub-cycling number within a LBM time step;  58 

DEMt  is the time step of DEM; 59 

i
F  is a body force term; 60 

kB  is the weighting function of solid particle k ; 61 

k  is the ratio of the nodal cell area covered by the particle k  to the total cell area; 62 

total  is the summation of 
k ; 63 

S

i is an additional collision term used for calculating hydrodynamic forces;  64 

S
U  is the velocity of a solid particle; 65 

 66 

 67 

 68 

1 Introduction 69 

The fluid-particle interaction is frequently encountered in various disciplines. Typical problems can be found in 70 

blood flow [1], piping erosion [2], fluidized bed [3], sand production [4] and many other particle-laden flow 71 

phenomena [5,6]. The computational fluid dynamics coupled with the discrete element method (CFD-DEM) has 72 

been widely employed to investigate such problems. From the viewpoint of the coupling process, CFD-DEM can be 73 

divided into two categories: the coarse-mesh technique [7,8] and the direct simulation [9,10]. In the former, a coarse 74 

fluid mesh in which each cell can accommodate about ten particles in the 2D case is adopted, but the hydrodynamic 75 

forces including drag, lift and pressure gradient forces acting on particles need to be calculated by semi-empirical 76 

equations. The latter direct numerical simulation approach, on the other hand, requires a very fine fluid mesh, whose 77 

size should be much smaller than the particles size, so that the hydrodynamic forces can be directly calculated by 78 

various immersed boundary methods. Obviously, the direct numerical simulation is of higher accuracy but more 79 

computationally expensive in general.  80 

As an alternative to the conventional CFD, the lattice Boltzmann method (LBM) [11] based on the statistical 81 

mechanics has attracted considerable attention since 1990s due to its meso-scopic nature, easy to handle complex 82 

boundary conditions, and the explicit form of the time integration. Meanwhile, the collision process of fluid and 83 

solid particle nodes only occurs locally which makes LBM natural to be parallelized. Therefore, as a direct 84 

numerical simulation technique, the coupled discrete element and lattice Boltzmann method (DEM-LBM) becomes 85 

more and more popular for problems involving fluid-particle interactions [12-14].  86 

Over the past three decades, several coupling schemes have been proposed to couple DEM and LBM. The modified 87 

half-way bounce-back method was the first attempt to simulate fluid-particle suspension in the frame of LBM in 88 
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1994 [15]. The hydrodynamic force was calculated by momentum exchange. This method was straightforward in 89 

modeling fluid-particle systems [2,16]. However, because of the step-wise boundary representation of solid particles, 90 

obvious oscillation of hydrodynamic forces computed by this method can be observed. To overcome the step-wise 91 

boundary profile, an interpolation-based approach [17,18,45] was developed, in which the solid boundary was 92 

represented by several boundary points. The density distribution functions of a boundary point before collision can 93 

be interpolated by its surrounding nodes and the density distribution functions after collision can be determined by 94 

momentum exchange. Finally, the density distribution functions of a fluid node can be interpolated from the solid 95 

boundary points and other surrounding fluid nodes. It is reported, however, that the no-slip boundary at the solid 96 

boundary is not always satisfied. 97 

To solve this problem, the immersed boundary method (IBM) proposed in CFD by Peskin in 1977 [19] was 98 

introduced to LBM by Feng and Michaelides [20]. The basic idea of the IBM is to treat the particle boundary as a 99 

deformable body with high stiffness and represented by a set of discrete boundary nodes. The no-slip condition at 100 

the fluid-particle interface is satisfied by calculating the velocity of particle boundary points through interpolating 101 

fluid velocities on neighboring nodes. Then, momentum exchange and direct forcing-based IBM [21,22] were 102 

proposed. It is reported, however, that in this IBM-LBM the non-slip boundary condition is not fully enforced due to 103 

the explicit nature of forcing term formulation. Then, Wu and Shu [23] improved the IB-LBM using an implicit 104 

force density formulation where an unknown velocity correction is prescribed. This implicit scheme can enforce no-105 

slip boundary at the fluid-solid interface but requires complex matrix inversion and a higher computational memory 106 

requirement. Recently, Dash et al. [24] proposed an implicit flexible forcing IBM by combining the implicit IB-107 

LBM with a fixed multi-direct forcing IBM [25]. Instead of a fixed iteration number in the fixed multi-direct forcing 108 

IBM, a flexible sub-iteration for the velocity correction is terminated when the convergence limit is satisfied. 109 

However, oscillation of hydrodynamic forces can be found in this flexible implicit IBM, especially in flows with 110 

large Reynolds number [26].  111 

To eliminate the obvious oscillation of hydrodynamic forces observed in the modified half-way bounce-back 112 

method, an immersed moving boundary (IMB) [27], also called the partially saturated method, was proposed. In this 113 

method, a weighting function associated with a nodal solid area was introduced to smoothly represent the boundary 114 

profile of a solid particle. In addition, to maintain the local collision characteristics, an additional collision term for 115 

nodes fully or partially covered by solid particles was introduced to the standard collision operator in LBM. Based 116 

on the momentum conservation, the hydrodynamic forces applied to the solid particle can be determined from the 117 

additional collision term. Because of its more accurate representation of the particle boundary, enhanced 118 

computational stability and reasonable efficiency, the IMB has been widely used in the coupled DEM-LBM 119 

technique where thousands of particles immersed in fluid can be modeled without difficulties [28].  120 

The coupled DEM-LBM was first proposed by Cook et al. in 2000 [12,29]. In this seminal work, the IMB scheme 121 

was adopted to couple DEM and LBM, and particle suspension and erosion problems were simulated. Another 122 

classical work by Feng et. al. [30] developed an efficient DEM-LBM coupling framework where some key 123 

computational aspects, including the sub-cycling time integration, turbulent models and variable conversion between 124 
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the physical system and computational lattice system were provided and discussed in depth. Later, polygons or other 125 

general shaped solid particles were introduced into DEM-LBM [31, 32] in conjunction with IMB. Owen et al. [33] 126 

proposed a contact buffer to approximately consider the lubrication force between two particles so that the 127 

instability can be alleviated when two particles intersect at the same fluid nodal cell. Besides, different approximate 128 

methods, like cell decomposition and polygon approximation, were discussed for the calculation of a nodal solid 129 

area. Leonardi et al. [34] incorporated the non-Newtonian fluid model into the framework of DEM-LBM coupled by 130 

IMB. Later, the two-relaxation-time model was implemented into DEM-LBM and a modified weighting function for 131 

IMB was proposed to eliminate the relaxation time dependency of hydrodynamic forces [35]. In the same year, a 132 

searching algorithm for efficiently identifying boundary nodes was reported by Wang et al. [36], and the fast 133 

computation of a nodal solid area was proposed by Jones and Williams [37]. A more efficient searching algorithm 134 

and a Gaussian integration for calculating a nodal solid area were developed to improve the computing efficiency of 135 

DEM-LBM in our latest work [38,39]. Applications of this hybrid DEM-LBM-IMB technique can be found in 136 

hydraulic fracture [13,40], sand production [41,42], soil erosion [5], liquefaction [43] and immersed granular 137 

column collapse [44], to name a few. 138 

Although a contact buffer was proposed in [33] to alleviate the instability issue when a nodal cell is covered by two 139 

or more particles, which is termed the multiple-covered node in what follows, it is insufficient to completely resolve 140 

the issue when particles move in relatively-large velocity in practical computation. This may result in the ratio of the 141 

total area of solid particles at the multiple-covered node to the nodal area exceeding 1.0. Consequently, a negative or 142 

extremely large weighting function can be encountered in the IMB and subsequently causes instability in LBM. To 143 

the best of the authors’ knowledge, a detailed treatment of IMB in DEM-LBM for the situation where particles may 144 

overlap has not been reported. The current work aims at eliminating the instability issue of IMB encountered in 145 

multiple-covered nodes by introducing a special modification of the weighting function concerned. Then, to reduce 146 

the complexity and extra computing costs involved in the procedure, a simplified IMB scheme is proposed to model 147 

general fluid-particle systems. Only 2D cases are considered in the current work. 148 

 149 

2 Coupled DEM and LBM 150 

2.1 Lattice Boltzmann method 151 

The lattice Boltzmann method is a modern numerical approach in computational fluid dynamics. In LBM the fluid 152 

domain is divided into regular lattices and the fluid phase is represented by a group of (imaginary) fluid particle 153 

packages resided at each lattice node (see Fig. 1). Each fluid particle package includes several fluid particles, such as 154 

the two-dimensional model with 9 fluid particles (so-called D2Q9). The fluid flow can be achieved through 155 

resolving the particle collision and streaming processes, and the lattice Boltzmann equation is used to solve the 156 

streaming and collision processes of fluid particles. Primary variables of LBM are the so-called fluid density 157 

distribution functions, which are portions of the fluid density, associated with the fluid particles. Both mass and 158 

momentum of fluid particles are characterized by the fluid density distribution functions. The detailed introduction 159 

of LBM can be referred to [11].  160 

http://en.wikipedia.org/wiki/Boltzmann_equation
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Fig. 1 Schematic of LBM with D2Q9 model  

 161 

The lattice Boltzmann equation considering a body force is given by 162 

                                     ( , ) ( , )i i i if x t t t f x t F t      
i

e                                                        (1) 163 

where 
if  is the fluid density distribution function in the ith direction; x and 

i
e are the coordinates and velocity vectors 164 

at the current lattice node (see Fig. 1); t  is the current time; 
iF  is body force term. The 9 velocity vectors 165 

( , 0,8i 
i

e ) in the D2Q9 model are defined as 166 

(0,0)
0

e  167 

( -1) ( -1)
(cos ,sin ) (i 1,...,4)

2 2

i i
C

 
 ie                                          (2) 168 

(2 -9) (2 -9)
2 (cos ,sin ) (i=5,...,8)

4 4

i i
C

 
ie  169 

in which C is the lattice speed and is related to the lattice spacing, h , and the time step, t , by 170 

/C h t                                                                               (3) 171 

iΩ in Equation (1) is a collision operator. In the adopted Bhatnagar-Gross-Krook (BGK) [11] model, 
iΩ  is 172 

characterized by a relaxation time τ  and the equilibrium density distribution functions ( , )eq

if x t  of fluid particles at a 173 

certain velocity:  174 

( , ) ( , )eq

i i i

t
f x t f x t




     

                                                               (4) 175 

In this work, the D2Q9 model is adopted, and ( , )eq

if x t  are defined as: 176 
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2

2 4 2

3 9 3
(1 ( ) - ) ( 0,...,8)

2 2

eq

i if i
C C C

       i ie u e u u u                                        (5) 177 

where 
i  are the weighting factors: 178 

36

1
ω,

9

1
ω,

9

4
ω 5,6,7,81,2,3,40                                                       (6) 179 

The corresponding fluid velocity u  is  180 

8

i

i 1

ρ f


 iu e                                                                          (7) 181 

where ρ  
is the macroscopic fluid density and given by 182 

8

i

i 0

ρ f


                                                                            (8) 183 

The fluid pressure is given by  184 

2

SP C ρ                                                                          (9) 185 

In the application of LBM, it is more convenient to choose   and h  as two independent parameters, then the time 186 

step, t , can be computed by 187 

21
( )

2 3

h
t 


                                                                       (10) 188 

where   is the fluid viscosity. 189 

It is obvious from Equation (10) that   should be greater than 0.5, and Equation (9) indicates that the 190 

incompressibility of the fluid is not exactly enforced. The LBM can be viewed as a ‘penalty-based’ method that 191 

allows a limited degree of compressibility to occur where the ‘speed of sound’ in the fluid acts as a penalty value. 192 

The compressibility error is measured by the (numerical) Mach number ( Ma ) 193 

maxu
Ma

C
                                                                         (11) 194 

where 
maxu  is the maximum magnitude of the velocity in the fluid domain.  195 

In the practical simulation, a dimensionless lattice system is utilized to improve the computing efficiency. The 196 

conversion between physical quantities and those in the lattice system can be found in [30]. In the lattice system, the 197 

time step is equal to 1, and the fluid velocity 
Lu  is scaled: 198 

L
C


u

u                                                                            (12) 199 

 200 
2.2 Sub-cycling coupling algorithm 201 
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In DEM the movement of each particle is updated by Newton’s second law: 202 

m c m   
c f

a v F F g                                                             (13)  203 

I  c fθ T T                                                                         (14)  204 

where m and I  are respectively the mass and the moment of inertia of a solid particle, c  is the damping 205 

coefficient, a  and θ  are, respectively, the acceleration and angular acceleration of the particle; 
c

F  and 
c

T  are, 206 

respectively, the contact forces and corresponding torques; 
f

F  and 
f

T  are the hydrodynamic force and the 207 

corresponding torque. The lubrication force is not considered in this work. 208 

The normal contact force is simulated by a linear spring model and the shearing force is calculated by the Coulomb 209 

friction model. Details of the contact model used in this work can be found in the work [30]. The time integration of 210 

DEM is achieved by the central difference method.  211 

When coupling DEM with LBM, a sub-cycling time integration algorithm is employed. In general the time step of 212 

the DEM system is smaller than that of LBM. Therefore, in one LBM time step t , 
sN sub-steps of DEM 213 

simulations will be performed:  214 

 s

DEM

t
N

t

 
  

 
                                                                 (15) 

215 

where 
DEMt  is the time step of DEM, and     denotes an integer round-off operator. 216 

2.3 Immersed moving boundary scheme 217 

 

 

a. Simple case b. Complex case 

Fig. 2 Diagram of IMB scheme 
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In the immersed moving boundary scheme [27], a solid particle is represented by the solid (lattice) nodes which are 218 

located within the particle. A solid node is called interior if its linked nodes are all solid nodes, while if a solid node 219 

has at least one linked fluid node, it is called a solid boundary node. A fluid node having at least one link to a solid 220 

node is defined as the fluid boundary node. Thus, there are four types of node in the IMB scheme: interior solid node, 221 

solid boundary node, fluid boundary node and normal fluid node, which are respectively marked in yellow, red, 222 

green and blue in an illustrative diagram of IMB in Fig. 2a. Each node is assigned a square cell of h × h (when using 223 

the lattice units, h = 1), called the nodal cell, and the node is located in the centre of the cell. 224 

In order to retain the advantages of LBM, namely the locality of the collision operator and the simple linear 225 

streaming operator, an additional collision term, S
i , for the boundary nodes covered partially or fully by a solid 226 

particle is introduced to the standard collision operator of LBM. The modified collision operator [27] for resolving 227 

the fluid-solid interaction is given by 228 

1 1 1

(1 )[ ( , ) ( , )] (1 )
n n n

eq S

i k i i k k i

k k k

t
B f x t f x t B t B

   


           i

F                          (16) 229 

where 
i

F  is a body force term, 
kB  is the weighting function of solid particle k that depends on the local solid ratio230 

k  which is defined as the ratio of the nodal cell area covered by the particle to the total cell area (see Fig. 2a); n is 231 

the number of particles covering the current nodal cell at x . 232 

In some previous coupling schemes [2,15,16], the surface of a circular particle is represented by stepwise lattices, 233 

which is neither accurate nor smooth unless a sufficiently small lattice spacing is used. More seriously, when the 234 

particle is in motion, its boundary nodes will continually change, but in an ‘on–off’ fashion, which has serious 235 

implications in the computed interaction forces. It should be highlighted that compared to other coupling schemes 236 

mentioned in Introduction, the IMB scheme could smoothly represent the solid boundary during movement due to 237 

the incorporation of the weighting function 
kB . 238 

 239 

In the original IMB, the weighting function can be either in a linear form of the solid ratio 240 

k kB                                                                                 (17) 241 

or in a nonlinear form as  242 

( 0.5)

(1 ) ( 0.5)

k

k

k

tB

t








  


                                                              (18) 243 

When the lattice nodal cell is fully covered by fluid, 0k  , the corresponding weighting function 0kB  ; When 244 

the nodal cell is fully occupied by a solid particle, 1k   and 1kB  . This relation works only for the lattice node 245 

covered by a single solid particle. However, if a node is covered by multiple particles (see Fig. 2b), the weighting 246 

function should be different from Equation (18) and this complex situation was not mentioned in the literature 247 

[12,27,30,39]. Take the solid node marked by the red point in Fig. 2b for an example, the nodal cell marked by a red 248 

box is intersected by two particles. To satisfy the aforementioned relation between the solid ratio   and the 249 
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weighting function B , the weighting function 
kB  of each solid particle intersecting with the lattice nodal cell 250 

should be defined as  251 

( 0.5)

(1 ) ( 0.5)

k

k

total

tB

t








  


                                                         (19) 252 

where 253 

1

n

total k

k

 


                                                                    (20) 254 

Now when 0total  , 
1

0
n

k

k

B


 ; 1total  , 
1

1
n

k

k

B


 .  255 

Note that when the ratio of the total area of solid particles at the node to the nodal area 
total  exceeds 1, 

kB  should 256 

be defined as follows so that the summation of 
kB will not exceed the limit 1. 257 

k
k

total

B



                                                                       (21) 258 

 259 

The additional collision term is based on the bounce-back rule for the non-equilibrium part 260 

( , ) ( , ) ( , ) ( , )S eq eq

i i i i if x t f x t f f      SU u                                     (22) 261 

where 
S

U  is equal to the velocity of the solid particle (see Fig. 2a) and u  is the velocity of the fluid at the node. It 262 

should be highlighted that the selection of 
S

U  is only valid for the node occupied by one solid particle. When 263 

multiple solid particles are present at this nodal cell, 
S

U should be the averaged velocity, defined as 264 

S

1

n
k

k

k

total







S

U

U
                                                                     (23) 265 

The resultant hydrodynamic force and torque exerted on each solid particle can be calculated by 266 

 ( )s

f k i i

k i

Ch B  F e                                                         (24) 267 

   ( ) ( )s

f P k i i

k i

Ch x x B    T e                                          (25) 268 

Here the summation is over all nodes occupied by the solid particle under consideration.  269 
 270 
The implementation of the above mentioned IMB scheme for nodes covered by multiple solid particles is not 271 

straightforward. The total number of solid particles presented in these nodal cells should be known before the 272 

relaxation of these nodes and the calculation of hydrodynamic forces applied to the corresponding solid particles. In 273 

addition to this added complexity, the computational CPU cost, which is one of the deficiencies of DEM-LBM, will 274 

further increase. From the latest report by Yang et al. [44] and our previous experience, when the size ratio of the 275 

(mean) particle diameter to the lattice spacing is greater than or equal to 20, numerical results are found insensitive 276 
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to the weighting function. To avoid the complicated treatment for special cases and expensive computational costs, 277 

we propose a simplified IMB as follows  278 

(1 )[ ( , ) ( , )] (1 )eq S

i k i i k k i

t
B f x t f x t B t B




         iF                              (26) 279 

In this simplification, the summation 
1

n

k

k

B


  of the weighting functions in Equation (16) is replaced by 
kB . In the 280 

actual implementation, the relaxation of both fluid and solid boundary nodes is performed under the loop of solid 281 

particles. 
kB is taken to be the weighting function of an arbitrary solid particle that is intersecting with the nodal cell, 282 

for instance, the particle with the greatest ID. The hydrodynamic force and corresponding torque applied to the solid 283 

particle can be computed by Equations (24) and (25). However, to comply with the principle of momentum 284 

conservation, the weighting function used here should be Equation (18) rather than (19) and (21). Now there are 285 

three different IMB schemes which are compared in Table 1. Their performance in terms of accuracy and 286 

computational cost will be examined in the next section. 287 

 288 

Table 1 Comparison of different IMB schemes 289 

 Collision operator Weighting function Solid velocity 

Original IMB Equation (16) 
Equation (17) for linear 

Equation (18) for nonlinear 
- 

Enhanced IMB Equation (16) 
Equation (17) for linear 

Equations (19-21) for nonlinear 
Equation (23) 

Simplified IMB Equation (26) 
Equation (17) for linear 

Equation (18) for nonlinear 
- 

 290 

 291 
3 Numerical examples and validations 292 

In this section, a series of numerical tests with increasing complexity are carried out to validate and compare the 293 

three different forms of the weighting function. First, the extensively-investigated single particle sedimentation is 294 

modelled using both linear and nonlinear weighting functions. Then, two-particle drafting-kissing-tumbling (DKT) 295 

phenomenon is performed to further validate the accuracy of the weighting functions for the enhanced and 296 

simplified IMB. Next, a multiple-particle sedimentation case is used to check the applicability and accuracy of the 297 

enhanced and simplified IMB. Finally, a special flow past cylinders case, where two moving particles behind a 298 

stationary cylinder may have a large overlap, is further carried out to demonstrate the robustness of the proposed 299 

schemes.   300 

3.1 Single particle sedimentation 301 

This benchmark is the most commonly used to validate the accuracy of IMB in DEM-LBM simulations. A 302 

stationary solid particle with diameter 0.25 cm is located at the position (1 cm, 4 cm) in a tube 2 cm width and 6 cm 303 
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height at the beginning of simulation. The densities of the solid particle and the fluid are respectively 1.25 g/cm3 and 304 

1.0 g/cm3. The kinematic velocity of the fluid is 10-5 m2/s. In the simulation, the relaxation time 0.65 is selected and 305 

the lattice spacing (h) is 0.01 cm so that the ratio (25) of the particle diameter to the lattice spacing is greater than 20 306 

which is the minimum value for an accurate simulation in DEM-LBM. The time step for LBM and DEM has the 307 

same value 10-5 s. Due to the gravity force, the particle will move downward. Because the simplified IMB and 308 

enhanced IMB are the same for simulating a single particle, only the linear and nonlinear weighting functions 309 

proposed in [27] are, respectively, employed and compared with the result obtained by the direct numerical 310 

simulation of CFD [45].  311 

  

a. Variation of particle vertical position b. Variation of particle vertical velocity 

 312 

 

c. Comparison of variation of hydrodynamic forces 

Fig. 3 Comparison of particle position, velocity and hydrodynamic forces simulated by 

linear and nonlinear weighting functions 

 313 

Figures 3a and 3b compare the variation of both vertical position and velocity of the solid particle over time, 314 

respectively. It is found that the motion of the particle obtained by both linear and nonlinear weighting functions is 315 
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the same and matches the CDF simulation [45] in Figure 3a. A slight difference between the velocity of the CFD 316 

and IMB simulations can be observed. Because the hydrodynamic force in the CFD simulation is not available, only 317 

the hydrodynamic forces obtained by both linear and nonlinear weighting function are compared in Figure 3c. They 318 

are almost the same except after the particle collides with the bottom boundary. From this benchmark, there seems 319 

no obvious difference between the linear and nonlinear weighting functions in the IMB scheme. 320 

3.2 Two-particle DKT simulation 321 

To check the accuracy of the simplified IMB and further compare the accuracy of the linear and nonlinear weighting 322 

functions in the enhanced IMB, the well-known DKT phenomenon is selected as the second benchmark test. A 323 

rectangular box of size 2 cm by 8 cm is filled with water. The fluid density and kinematic viscosity are 1.0 g/cm3 324 

and 10-6 m2/s respectively. Initially, two particles with the same diameter (0.2 cm) and density (1.01 g/cm3) are 325 

placed, respectively, at positions (1.0 cm, 7.2 cm) and (1.0 cm, 6.8 cm). The relaxation time and lattice spacing (h) 326 

are selected as 0.65 and 0.01 cm. The time step of LBM is 5 × 10-4 s and the sub-cycling number (
sN ) of DEM 327 

within one LBM time step is 47. Lattices around particles are shown in Figure 4. To simulate the lubrication force, a 328 

contact buffer (0.3h) is adopted in our code and the contact stiffness between solid particles is 107 N/m. These two 329 

particles will fall under gravity force. Then, a well-known drafting-kissing-tumbling phenomenon should be 330 

observed, but only in the simulation using the nonlinear weighting function.  331 

 

Fig. 4 Comparison of fluid velocities and particle positions at different time instants for linear (a) and 

nonlinear (b) weighting functions  



 14 

Figure 4 shows the instantaneous particle positions and the velocity contours of the fluid flow at different time 332 

instants. In the legend, the magnitude of the fluid velocity in the lattice system is given, because the maximum fluid 333 

velocity in the lattice system is the Mach number which measures fluid compressibility. As the Mach number is 334 

smaller than 0.1, the simulation can be regarded as reliable. It is found that the linear weighting function cannot 335 

recover the DKT process, though it works well for the single particle case. In contrast, the enhanced IMB with 336 

nonlinear weight function and our simplified IMB succeed in simulating the intended phenomenon. Figure 5 depicts 337 

the vertical and horizontal variations of the particle positions and compares them with some existing results obtained 338 

by different IBM simulations [20,21]. It can be seen that almost no difference in the particle position is observed 339 

between the enhanced IMB with the nonlinear weight function and the simplified IMB, and both are similar to the 340 

result of [21]. Then, the high-order results, velocity and hydrodynamic forces, of the two particles obtained by 341 

different IMB schemes are compared in Figures 6 and 7. A slight difference in the vertical velocity and the 342 

hydrodynamic force can be seen, but an obvious difference in the horizontal hydrodynamic forces can be observed 343 

when the top particle approaches the other one.  344 

It should be highlighted that in the current DEM-LBM development most researchers only use the single particle 345 

sedimentation as the quantitative benchmark, and this DKT case proves that the single particle sedimentation may be 346 

insufficient to validate different IMB schemes. In addition, comparison of hydrodynamic forces obtained from 347 

different coupling schemes may tell more story than the commonly used position and velocity. However, 348 

hydrodynamic forces were seldom given in the literature. Our recent work [26] reported that some IBM schemes are 349 

capable of obtaining smooth profiles of particle position and velocity but unexpected oscillation of computed 350 

hydrodynamic forces can be found.  351 

  

a. vertical position b. horizontal position 

Fig. 5 Variation of particle positions in DKT (P1 - top particle; P2 – bottom particle) 
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a. Variation of vertical velocity b. Variation of horizontal velocity 

Fig. 6 Variation of particle velocities in DKT 

  

a. Variation of vertical hydrodynamic forces b. Variation of horizontal hydrodynamic forces 

Fig. 7 Variation of hydrodynamic forces applied to particles in DKT 

3.3 Multiple-particle sedimentation 352 

To further examine the applicability of the enhanced and simplified IMB schemes for problems with potential 353 

multiple-covered nodes, the multiple-particle sedimentation of particles with two different sizes are carried out, in 354 

which the particles can be in contact with each other. The diameters of white and black particles are respectively 0.2 355 

cm and 0.3 cm, and their contact stiffness and density are respectively 107 N/m and 3.0 g/cm3. The fluid density and 356 

kinematic viscosity are respectively 1.0 g/cm3 and 10-5 m2/s. The relaxation time and lattice spacing are selected as 357 

0.501 and 0.01 cm, respectively. The time step for LBM and DEM has the same value 3.33 × 10-7 s. The no-slip 358 

boundary is applied to the four boundaries. At the beginning all the particles are stationary and they start to fall 359 

under gravity.  360 
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Fig. 8 Contour of fluid velocity and position of particles of multiple-particle sedimentation at different time instants 

 361 
 362 

 

Fig. 9 Abnormal variation of fluid density at node (217,30) over time 

 363 

 364 
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Figure 8 shows the snapshots of the velocity contour of the fluid and the distribution of the solid particles at 365 

different time instants. Again, the magnitude of fluid velocity in the lattice system is given here and in the other 366 

examples below. During the sedimentation process, many particles collide with others, and the multiple-covered grid 367 

nodes are encountered. Figure 9 shows the abnormal variation of fluid density at node (217, 30) before the 368 

simulation using the original IMB crashes. With the enhanced IMB, the instability of original IMB can be resolved. 369 

Detailed discussion on instability of the original IMB scheme will be given in the next section. Both the enhanced 370 

and simplified IMB can successfully simulate this problem. 371 

 372 

  

a. Vertical position of particles b. Horizontal position of particles 

Fig. 10 Comparison of particle positions over time 

  

a. Variation of vertical velocity of particles b. Variation of horizontal velocity of particles 

Fig. 11 Comparison of particle velocities over time 

 373 

 374 
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 375 

  

a. Comparison of vertical hydrodynamic forces  b. Comparison of horizontal hydrodynamic forces 

Fig. 12 Comparison of hydrodynamic forces applied to solid particles 

 376 

To quantitatively compare the two schemes, the time histories of positions, velocities and hydrodynamic forces of 377 

two randomly selected particles in red (5th and 25th) are given in Figures 10 to 12. Similar to the finding in the DKT 378 

simulation, the position profiles of the two particles are almost the same. Differences between their velocities and 379 

hydrodynamic forces can be observed when particles are in contact with others. This example further indicates that 380 

the velocity and, especially, hydrodynamic force should be examined as quantitative validations. Overall, the 381 

simplified and enhanced IMB schemes are in good agreement for this test case. 382 

3.4 Special flow past cylinders 383 

This test case is a specially designed flow past cylinders problem consisting of three white particles representing 384 

three fixed cylinders, and two black particles departing from each other first and then moving vertically towards 385 

each other with the same fixed speed (0.0003 cm/s). A pressure gradient between the left inlet and the right outlet is 386 

achieved by specifying two different densities at the inlet and outlet ( 31000.1 /in kg m  and 31000 /out kg m  ). 387 

The diameter of all particles is 20 cm, and their contact stiffness and density are 106 N/m and 3.0 g/cm3. The fluid 388 

density and kinematic viscosity are 1.0 g/cm3 and 10-5 m2/s. The time step for LBM and DEM has the same value 389 

0.03 s. The relaxation time and lattice spacing are selected as 0.6 and 1 cm, respectively. This test is designed to 390 

examine the stability issue of the enhanced IMB and the robustness of the simplified IMB. 391 

In the first stage (t <= 3333s), the two black particles depart from each other until they are in (slight) overlap with a 392 

white cylinder. In a later stage, the two back particles will move toward each other until they are fully overlapped. 393 

Thus some multiple-covered nodes are expected to be encountered. 394 

Figure 13 shows the velocity contour of the fluid flow at different time instants obtained by the simplified IMB.  395 

Smooth and stable fluid flow patterns are observed here.  396 
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Fig. 13 Contour of fluid velocity at different time instants 

 397 
 398 
 399 

  

Fig. 14 Fluid velocity profiles at the outlet at different 

time steps 
Fig. 15 Time histories of hydrodynamic force (particle 2) 

Figure 14 quantitatively compares the velocity profiles at the outlet for four time instants by the enhanced and 400 

simplified IMB schemes. It is found that the velocity profiles from the two schemes match very well. Next, the time 401 

histories of the hydrodynamic force applied to particle 2 by both enhanced IMB and simplified IMB are examined 402 

and showed in Figure 15. A generally very good agreement except for a few points between the enhanced IMB and 403 
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the simplified IMB can be seen. It should be highlighted that when two particles start overlapping with each other, it 404 

will result in the total area of solid particles at some nodes exceeding the nodal area, which could cause the stability 405 

issue if Equation (21) is not adopted in the original IMB. However, the simplified IMB is free of this issue. The 406 

mechanism of instability of the original IMB will be explained and discussed in detail in the next section. The 407 

robustness of both enhanced and simplified IMB schemes has been demonstrated by this special test case. 408 

 409 
4 Discussions 410 

In most existing IMB references, the treatment of multiple-covered nodes is seldom reported. Normally, two or more 411 

particles can intersect with one node, but overlap between particles should not happen at a node in reality. However, 412 

in DEM simulations, particles may be in overlap even if the lubrication is accounted for in a fluid-particle system 413 

due to the penalty-based contact treatment nature of DEM and its coupling with the fluid solver. In DEM, a small 414 

overlap is allowed and used to calculate contact forces between particles in contact. Besides, in a fluid-particle 415 

system involving strong coupling, due to the explicit time integration used in DEM, a relatively large overlap could 416 

occur when hydrodynamic forces are much higher than contact forces. This may result in the total area of solid 417 

particles at some nodes exceeding the nodal cell area. Consequently, the denominator in Equation (19) may become 418 

an extremely small value, leading to a negative or extremely large weighting function and subsequently causing 419 

instability in LBM.  420 

  

Fig. 16 Snapshot of an instable case with LBM 

mesh  

Fig. 17 Abnormal variation of density at the selected 

multiple-covered node 

 421 

Take the special flow past cylinders in Section 3.4 for example, Figure 16 shows the snapshots of a case where an 422 

instable simulation using Equation (19) is encountered when the ratio of the total area of solid particles to the nodal 423 

area exceeds 1.0 in some nodes. The abnormal variation of the density at the selected node marked in red is given in 424 

Figure 17. Theoretically, the density should be around 1000 kg/cm3, but a negative and extremely large value (over 425 
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40000) can be observed in the simulation due to the multiple-covered node in the original IMB. This issue can be 426 

overcome by the treatment of the weighting function in Equation (19) for the multiple-covered situations, and the 427 

proposed form in Equation (21) is a feasible solution. Furthermore, to make the velocity field of the fluid smooth, 428 

the fluid velocity of a multiple-covered node is the solid ratio weighted average from all the related solid particles 429 

(See equation (23)). It should be noticed that the linear form of the weighting function is free of such a stability 430 

problem. 431 

Although the DEM-LBM-IMB technique has been extensively investigated in the past 20 years, the validation of 432 

accuracy is mainly performed based on fluid-stationary particle cases or single particle sedimentation. In this work, 433 

it is found that these simple cases are insufficient to validate the accuracy of DEM-LBM-IMB. At least, the DKT 434 

case or other complex simulations should be established as additional benchmarks. In addition, in most of DEM-435 

LBM work only velocities and positions of solid particles are compared. This is found insufficient to examine the 436 

accuracy and stability of an IMB scheme, and the hydrodynamic force is shown to be a better quantity for validation 437 

in this work.  438 

Finally, the computational efficiency of the enhanced IMB and the simplified IMB are compared. Table 2 presents 439 

the computational costs for the 3 test cases. For the DKT and the special flow past cylinders example where only a 440 

few movable particles are involved, the simplified IMB can only save very limited computing time. With the 441 

increase of particles number as in the multiple-particle sedimentation, the percentage of the saved time increases.  442 

Although the computational efficiency is not significantly improved, the simplified IMB is much easier to be 443 

implemented than the enhanced IMB in the framework of DEM-LBM. It avoids the complicated treatment of the 444 

weighting function and additional loops over all particles, and there is no need to identify and counter multiple-445 

covered nodes.  446 

Table 2 Computational cost of simulations using IMB and simplified IMB 447 

 DKT Flow past cylinder 
Multiple-particle 

sedimentation 

Enhanced IMB 188 s 254 s 8617 s 

Simplified IMB 186 s 249 s 8183 s 

Saved time 1.1% 2.0% 5.0% 

 448 

5 Conclusions 449 

This work has presented and analyzed an instability issue of DEM-LBM-IMB for multiple-covered nodes, where 450 

several particles may intersect with one lattice nodal cell. An enhanced IMB formulation has been proposed to 451 

resolve the issue. Another contribution of this work is the development of a simplified but general IMB scheme to 452 

overcome issues encountered in the original IMB, and to avoid the complicated treatment of the weighting function 453 

and related additional loops over particles. Validations of the enhanced and simplified IMB methods have been 454 

carried out using a series of numerical tests with increasing complexity. The following conclusions can be drawn. 455 
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1) The instability of the original IMB stems from a possible very small denominator in the nonlinear form of the 456 

weighting function in IMB for a moving multiple-covered particle. This may happen when the total area of solid 457 

particles at a multiple-covered node exceeds the nodal cell area, leading to an extremely large weighting function 458 

and subsequently causing large/negative fluid density distribution functions.  459 

2) An enhanced IMB with a special treatment of the weighting function and using the averaged velocity for a 460 

multiple-covered particle is proposed. Its accuracy and stability are demonstrated by the tests.  461 

3) To simplify the code implementation, a simplified IMB scheme is further proposed. It is proved to be, to a certain 462 

degree, more efficient with a reasonable accuracy than the enhanced IMB.  463 

4) For the validation of stability of the DEM-LBM method with various coupling schemes, the hydrodynamic force 464 

of a particle, which is a high-order quantity compared to particle position and velocity, is more important and should 465 

be examined.  466 

 467 
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