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3He beam spin-echo experiments have been used to study surface morphology, molecular and
atomic surface diffusion, phonon dispersions, phason dispersions and phase transitions of ionic liq-
uids. However, the interactions between 3He atoms and surfaces or their adsorbates are typically
isotropic and weak. To overcome these limitations, one can use molecules instead of 3He in surface
spin-echo experiments. The molecular degrees of freedom, such as rotation, may be exploited to
provide additional insight into surfaces and the behaviour of their adsorbates. Indeed, a recent ex-
periment has shown that ortho-hydrogen can be used as a probe that is sensitive to the orientation
of a Cu(115) surface [Godsi et al., Nat. Comm. 8, 15357 (2017)]. However, the additional degrees of
freedom offered by molecules also pose a theoretical challenge: a large manifold of molecular states
and magnetic field-induced couplings between internal states. Here, we present a fully quantum me-
chanical approach to model molecular surface spin-echo experiments and connect the experimental
signal to the elements of the time-independent molecule-surface scattering matrix. We present a
one-dimensional transfer matrix method that includes the molecular hyperfine degrees of freedom
and accounts for the spatial separation of the molecular wavepackets due to the magnetic control
fields. We apply the method to the case of ortho-hydrogen, show that the calculated experimental
signal is sensitive to the scattering matrix elements, and perform a preliminary comparison to ex-
periment. This work sets the stage for Bayesian optimization to determine the scattering matrix
elements from experimental measurements and for a framework that describes molecular surface
spin-echo experiments to study dynamic surfaces.

ar
X

iv
:1

90
6.

04
84

6v
2 

 [
ph

ys
ic

s.
at

om
-p

h]
  2

7 
M

ay
 2

02
0



I. INTRODUCTION

A major thrust of recent experimental work has been to achieve control over the longitudinal motion of
atomic and molecular beams [1–8]. Controlled beams can be used for a variety of applications, ranging from
loading molecules into traps [9–11], to measuring cross sections for molecular scattering with extremely high
energy resolution [12–15], to precision spectroscopy [16–18], to controlled chemistry [19]. The development
of methods for the initial state selection and control over both the longitudinal and transverse motion of
molecular beams has also paved the way for matter-wave interferometry [20–22], nano-lithography [23–
25] and precision studies of molecule-surface scattering. Although molecule-surface collisions have been a
subject of numerous studies [26–29], combining the latest advances in molecular beam control with surface
scattering experiments opens opportunities for probing new regimes of molecule-surface energy exchange
and obtaining detailed information about surface properties. This is well exemplified by 3He spin echo
(HeSE) experiments [30–33] aiming to probe the structure of surfaces, as well as quantum matter adsorbed
on surfaces, by scattering a beam of 3He in superpositions of nuclear spin states off a surface and observing
the perturbation of the resulting interferometry signal. Analogous to neutron spin echo experiments [34, 35],
HeSE experiments have been shown to detect the impact of gravity (on the energy scale of ≈ 10 neV) on the
kinetic energy of atoms in the beam [30]. When used to study surfaces, HeSE experiments can be classified as
a subset of quasi-elastic helium atom scattering experiments [26]. Surface-sensitive HeSE experiments [31–
33] have been used to study surface morphology [36], molecular and atomic surface diffusion [32, 33, 37–41],
inter-adsorbate forces [38, 42], phonon dispersions [32, 33, 43], phason dispersions [44], structures and phase
transitions of ionic liquids [45] and friction between adsorbates and surfaces [46–48]. HeSE experiments
have provided information about potential energy surfaces [32, 33, 49] and surface-adsorbate interactions
[32, 33, 50] and are frequently combined with microscopic calculations to both test theory and gain insight
into surface-adsorbate interactions [39, 51, 52].

The use of 3He as probe particles in HeSE experiments can sometimes be limited by the weak interaction
strength between 3He and surfaces or their adsorbates. In addition, 3He offers no internal degrees of free-
dom to absorb energy or induce anisotropic interactions. Therefore, an important recent goal has been to
extend surface spin-echo experiments to molecular beams [53]. Molecules offer rotational degrees of freedom
and anisotropic, state-dependent interactions, which could be exploited to gain new insights into surface
dynamics. For example, it was recently shown that ortho-hydrogen (oH2) can be used as a sensitive probe of
surface morphology [53]: the experiment was able to discern how the interaction between an oH2 molecule
and a Cu(115) surface depends on the orientation of the rotational plane of the hydrogen molecule relative
to the surface. In addition, one could exploit the transfer of rotational energy from the probe molecules to
surface adsorbates (or vice versa) in order to study the relative effects of the rotational and translational
motion on the dynamics of the adsorbates. However, the increased complexity of molecules (compared to
3He atoms) makes the analysis of the spin-echo experiments complicated and requires one to account for
the interplay of the translational, nuclear spin and rotational degrees of freedom in strong magnetic fields of
differing orientations, in addition to the molecule-surface scattering event.

Surface spin-echo experiments with molecules involve passing a molecular beam through a series of mag-
netic fields to control molecular wavepackets before and after the scattering event. A proper analysis of the
resulting experimental signal must be based on (i) the solutions of the time-dependent Schrödinger equation
accounting for the development of entanglement between the translational motion and the internal states of
molecules in the beam, as the beam transverses the magnetic fields of the spin-echo apparatus; (ii) the de-
scription of the molecule-surface scattering events in the relevant frame of reference by the scattering matrix
involving all relevant molecular states. This is a challenging task because the potential energy surfaces for
molecule-surface interactions are difficult to compute with sufficient accuracy [54–60], the calculations of the
cross sections for molecule-surface scattering are extremely time consuming [61, 62] and because the orienta-
tion and strength of magnetic fields necessarily change throughout the spin-echo apparatus. An alternative
formulation can be developed to treat the molecule-surface scattering matrix elements as varying parame-
ters to be determined from the experimental interferometry signal by one of the algorithms used in optimal
control theory [63–68] or reinforcement machine learning designed to solve the inverse problem [69, 70]. In
order for such a formulation to be practical, it is necessary to develop a rigorous method for the description
of molecular dynamics inside the spin-echo apparatus, before and after the molecular wavepackets interact
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with the surface. This method must be efficient to allow for multiple feedback control loops, be accurate
to ensure the proper description of interferometry dynamics and integrate rigorously the surface scattering
matrix amplitudes into the resulting output signal.

In this paper, we exploit the transfer matrix method [71, 72] to develop such a theoretical framework.
The transfer matrix method [71, 72] has been applied in various fields, such as for solving the 2D Ising
model in statisical mechanics [73], calculating reflection and transmission coefficients in optics [74] and
mesoscopic quantum transport [75], determining photonic bandstructures [76], and examining the tunnelling
of a molecule through potential barriers [77, 78]. The general and efficient framework we present can be used
to analyze the coherent propagation of closed shell molecules through a series of static magnetic fields with
different magnitudes and orientations, as well as through one or more scattering events.

We apply this framework to surface-sensitive interferometry experiments that use closed shell molecules
to study static surfaces. Specifically, we develop a fully quantum mechanical model of surface-sensitive
molecular hyperfine interferometry experiments by deriving a one-dimensional transfer matrix method that
includes the internal hyperfine degrees of freedom of the probe molecules and that accounts for the eigenbasis
changes between local regions of the magnetic field. We account for the experimental geometry with rotation
matrices and describe the molecule-surface interaction with a scattering transfer matrix (a transformed
version of the standard scattering matrix).

The method is applied to an oH2 hyperfine interferometry experiment. By comparing the theoretical results
with experimental measurements, we illustrate the importance of integrating over the velocity distribution
of molecules in the beam. We further show that information about the scattering matrix elements is encoded
in the experimental signal. In particular, we demonstrate that the experimental signal is sensitive to the
magnitude and phase of the diagonal elements of the scattering transfer matrix. We also show that the signal
is sensitive to scattering events that change the projection quantum numbers of the molecular hyperfine
states. Such dynamical processes are described by scattering transfer matrices with non-zero diagonal and
off-diagonal matrix elements. This sets the stage for determining, in part or in whole, the scattering transfer
matrix elements of a particular molecule-surface interaction by comparing the computed and experimentally-
measured signals.

Finally, we compare our method with a semi-classical method, which is described briefly in the supple-
mentary material of Ref. [53] for oH2 and in more detail in Ref. [79] for spin 1/2 particles. Within this
semi-classical method, the internal molecular degrees of freedom are treated quantum mechanically, while
the centre of mass degree of freedom is treated classically. Through this comparison, we demonstrate that
the present method can be extended to study dynamic, instead of static, surfaces by surface spin-echo
experiments with molecules.

The remainder of this manuscript is organized as follows. In Section II, we describe a generic molecular
hyperfine interferometry experiment. We then discuss, in Section III, the molecular state after the state-
selecting magnetic lens. In Section IV, we time-evolve the molecular state and integrate the result over the
length of the detection window to obtain the relationship between the system eigenstates and the detector
current. To obtain the system eigenstates, we derive and apply, in Section V, a transfer matrix formalism
that includes internal degrees of freedom. We also discuss the rotation and scattering transfer matrices used
to account for the apparatus geometry and the molecule-surface interaction, respectively. In Section VI, we
demonstrate the application of this theoretical framework to the case of oH2, illustrate the need to integrate
over the velocity distribution, illustrate the sensitivity of the calculated signal to various features of the
scattering transfer matrix and perform a preliminary comparison with experiment. We compare the method
of the present manuscript to the semi-classical method discussed by Godsi et al. [53] in Section VII. Section
VIII concludes the work.

II. DESCRIPTION OF A MOLECULAR HYPERFINE INTERFEROMETRY EXPERIMENT

A surface-sensitive molecular hyperfine interferometer uses a beam of molecules to probe various surface
properties. To do this, a set of magnetic fields are used to simultaneously manipulate the internal hyperfine
states of the probe molecules and create a spatial superposition of molecular wavepackets. These wavepackets
sequentially impact the sample surface and scatter in all directions. A second set of magnetic fields collects
the molecules scattered in a narrow solid angle. This second set of magnetic fields further manipulates the
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molecular wavepackets, partially recombining them and allowing for molecular self-interference. Wavepackets
with particular hyperfine states are then passed into a detector. A schematic of the experiment is depicted
in Figure 1. We now discuss the different stages of the experiment in more detail.

The beam source must produce a continuous (or pulsed) beam of molecules with a sufficiently narrow
velocity profile, mean velocity suitable for a particular experiment, sufficiently high flux, and a density low
enough to ensure that the molecules are non-interacting. One current apparatus [53] uses a supersonic
expansion to produce such a beam. One can also envision experiments with slow molecular beams produced
by extraction (sometimes with hydrodynamic enhancement) from a buffer-gas cooled cell [9] or with molecular
beams controlled by electric-field [80] or magnetic-field deceleration [81]. Deceleration provides control over
the mean velocity and narrows the velocity spread [1], which could be exploited for novel interferometry-based
applications.

The experiment selects molecules in particular hyperfine states by employing a magnetic lens whose mag-
netic field has a gradient in the radial direction. A cylindrically-symmetric field gradient is used to ensure
sufficient molecular flux. The lens focusses molecules with low-field seeking states and defocusses molecules
with high-field seeking states, allowing for purification of the molecular beam. After the lens, a unique
quantization axis for the internal states is developed by using an auxiliary field that adiabatically rotates
all magnetic moments until they lie along a single direction perpendicular to the beam path. The end of
this auxiliary field is a strong dipolar field aligned along the z direction that defines the quantization axis.
Hexapole magnets can be used as a magnetic lens as their magnetic field gradients are sufficiently cylindri-
cally symmetric [53, 82, 83]. More details about the internal states of the molecules immediately after the
magnetic lens can be found in Section III.

Solenoids whose magnetic fields are parallel to the beam propagation path are used to manipulate the
molecular hyperfine states. These solenoids are helically-wrapped wire coils whose corresponding magnetic
fields are generated by an electric current passing through each coil. These solenoids are labelled as the
control fields in Figure 1. Arbitrary magnetic field profiles can be obtained by changing the solenoid winding
patterns and/or using multiple successive solenoids.

The hyperfine states of a molecule change energy as the molecule enters a magnetic field. These changes
to the hyperfine energy levels cause simultaneous changes in the molecular momenta, as the total energy is
conserved. That is, when molecules enter a solenoid, molecules in low-field seeking states slow down and
those in high-field seeking states speed up. Furthermore, because the direction of the magnetic field in a
control field is not along the z axis, the molecules are in a superposition of hyperfine states, with respect
to the quantization axis defined by the magnetic field. Thus, the differences in momenta cause the different
components of each molecular wavepacket to spatially separate as the wavepacket traverses the solenoid.
Upon exiting the solenoid, the components of each wavepacket return to their original momenta, but remain
spatially separated. That is, each wavepacket is now in an extended spatial superposition.

Each of these spatially separated wavepacket components comprise a superposition of the field-free hy-
perfine states. The exact superpositions of each wavepacket component, as well as the spatial separations
between the components, depend on the magnetic field profile of the first branch. Each of the wavepacket
components sequentially impacts the sample surface and scatters in all directions. However, the experiment
only captures those molecules that pass through a particular solid angle. While a current experiment [53]
fixes the angle between the two branches, one can in principle explore many different scattering geometries
by varying both the angle between the two branches of the apparatus and the orientation of the sample.

After scattering, the collected molecules enter another set of control fields in the second branch of the
apparatus. The hyperfine states again change in energy and momenta. In a helium-3 spin echo experiment,
if the second magnetic field profile is identical but opposite in direction to the magnetic field profile of
the first branch, the spatially separated wavepacket components realign (to first order) as they traverse
the magnetic field(s), producing a spin echo. This allows the wavepacket components to interfere with
each other. Interestingly, it has recently been shown [79] that echoes are also produced when the device
operates with the fields in the same direction. With an arbitrary hyperfine Hamiltonian, such a realignment
is only partial, though still useful. Experiments can be performed that explore either this spin-echo region
or different relationships between the two magnetic field profiles, which may allow for a variety of insights
about the sample surface. For example, the two field profiles can be different or the field magnitudes can
be varied simultaneously, keeping B1 = −B2. These different regimes of operation may produce different
echoes, which can be collectively analyzed to provide more insight into molecule-surface interactions.
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Additionally, as the spatially separated wavepacket components hit the surface sequentially, rather than
simultaneously, any temporal changes in the surface that are on the time scale of the impact-time separation
can differentially impact the phases of each wavepacket component. This may result in different interference
patterns or even loss of coherence. This loss of coherence is the basis for the sensitivity of HeSE measurements
to surface motion [84]. Here, as in the recent experiment by Godsi et al. [53], we focus on surfaces whose
dynamics are either much faster or much slower then the molecule-surface or wavepacket-surface interaction
times. Note, however, that the current framework is suitable for extension to interaction regimes where the
surface dynamics are comparable to these time scales.

After leaving the last solenoid of the second branch, the wavepackets pass through another auxiliary field
that begins with a strong dipolar field in the z′ direction. The auxiliary field then adiabatically connects
magnetic moments aligned along the quantization axis to the radial direction of the final hexapole lens.
This hexapole lens then focusses wavepackets with low-field seeking hyperfine states into the ionization
detector and defocusses the rest. Finally, the ionization detector produces a current that is proportional to
the molecular flux into the detector port. We describe how to calculate the molecular flux that enters the
detector port in Section IV and the related transfer matrix formalism in Section V.

Analyzing the detector current as a function of the magnetic field profiles, the apparatus geometry, and the
sample orientation can provide information about the interaction of the molecules with the sample surface.
We discuss one possible analysis scheme in Section VI.

Sample

θ

Beam 
Source

Magnetic 
Lens

Detector

Magnetic 
Lens

Control
Fields

Control
Fields

𝐳

𝐱

𝐳′𝐱′

Auxiliary Field Auxiliary Field

Figure 1. A generic molecular hyperfine interferometer consists of a beam source (green), magnetic lenses (dark blue),
auxiliary fields (light blue), control fields (purple), the sample (hatched rectangle) in an ultra-high vacuum chamber,
and the detector (red). See Section II for more details on each component. The arrows and dashed line indicate the
direction and path of the molecular beam, which is initially along the +x direction and then along the −x′ direction
after scattering. The two branches of the apparatus are separated by an angle θ. z and z′ denote the direction of the
quantization axes before and after scattering, respectively. This definition of the quantization axes has been chosen
to match the experiment by Godsi et al. [53] and to simplify rotating the quantization axes in the transfer matrix
method. The y and y′ axes are identical and point into the page.

A. Molecular Hyperfine Hamiltonian

In principle, the only requirement for a molecular species to be suitable for molecular hyperfine interferom-
etry is that the molecule have internal degrees of freedom whose energies are magnetic-field dependent. Such
a requirement could be fulfilled by the presence of a nuclear spin, a rotational magnetic moment, or even an
electronic spin. In practice, however, if the energy dependence on the magnetic field is too weak relative to
the kinetic energy, state selection and state manipulation is difficult. On the other hand, if the dependence
is too strong, the molecules may be difficult to control. Given these restrictions, we deem molecules that
have a closed shell and are in an electronic state with zero orbital angular momentum to be most suitable
for molecular hyperfine interferometry. In this case, the dominant interactions induced by magnetic fields
are due to the nuclear magnetic spins of the molecules.
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The hyperfine states of such a closed shell molecule with zero orbital angular momentum arise from
coupling between the nuclear spin and the rotational degrees of freedom. Interactions of these hyperfine
states with a magnetic field arise from the response of the nuclear and rotational magnetic moments to the
external magnetic field. We assume that the hyperfine Hamiltonian, also referred to here as the Ramsey
Hamiltonian [85], is of the following form:

ĤR( ~B) = U
(
Î2, Ĵ2, Î · Ĵ, I, J

)
+ V

(
Î2, Î · ~B, I, ~B2

)
+Q

(
Ĵ2, Ĵ · ~B, J, ~B2

)
, (1)

where ~B is the vector of the external magnetic field, assumed to be uniform across the molecule; Î and Ĵ
are the nuclear spin and rotational angular momentum operators, respectively; I and J are the nuclear spin
and rotational angular momentum quantum numbers, respectively; U contains all spin-rotational couplings

(such as Î · Ĵ or Î2Ĵ2); V contains all interactions of the nuclear spins with the magnetic field (such as Î · ~B);

and Q contains all interactions of the rotational angular momentum with the magnetic field (such as Ĵ · ~B).

Both V and Q are assumed to be proportional to positive powers of | ~B|.
At large magnetic fields, V and Q dominate, making the eigenbasis |ImIJmJ〉, where mI and mJ are the

projections of the angular momenta ~I and ~J onto the external magnetic field direction, respectively. At zero
field, ĤR is diagonalized by |IJFM〉, where F̂ = Î + Ĵ is the total angular momentum operator and M is

the projection of ~F onto a chosen quantization axis. At intermediate fields, the eigenbasis is a function of the
magnetic field and can be represented as a superposition of either |IJFM〉 or |ImIJmJ〉 states. Note that

M is a good quantum number at all field strengths. We call an eigenstate of ĤR a Ramsey state, which we
denote as |R〉 and which has the energy ER. The number of eigenstates of ĤR is NR, such that 1 ≤ R ≤ NR.

We treat the apparatus as a one dimensional system and account for the actual geometry by rotating the
basis of the hyperfine states at the appropriate locations (see Section V B). The total Hamiltonian can thus
be written as

Ĥ(x) =
p̂2

2m
+ ĤR( ~B(x)) (2)

where p̂ is the centre of mass momentum operator, m is the molecular mass, and x is the position of the

molecule in the apparatus. The magnetic field ~B(x) is now spatially dependent, reflecting the magnetic field
profiles of the two branches of the apparatus.

In principle, the total Hamiltonian should incorporate molecule-surface interaction terms, such as the
molecule-surface interaction potential. However, instead of treating the molecule-surface interactions ex-
plicitly, we include the interactions effectively through the use of a scattering transfer matrix (see Section
V C). This allows us to separate the details of the molecule-surface interaction from the propagation of the
molecules through the apparatus. We can then treat the molecular propagation analytically while allowing
for the scattering matrix to be determined by the level of theory practical for a particular system. Even
more importantly, this approach allows us to treat the scattering matrix elements as free parameters that
can be determined by fitting the calculated signal to an experimental signal. For the present manuscript,
we treat the scattering matrix elements as arbitrary parameters, focussing primarily on the development of
a theoretical formalism to describe the molecular propagation. We choose particular values for the scatter-
ing matrix elements only when we apply the formalism specifically to oH2 (Section VI). We also assume
that the surface is static on timescales relevant to the experiment, such that the scattering matrix is time
independent.

The system eigenstates |ER〉 are defined by the total Hamiltonian (2) through Ĥ |ER〉 = E |ER〉. Note
that the system eigenstate |ER〉 is NR degenerate and that any linear combination of these states with the

same label E is also an eigenstate of Ĥ. This degeneracy occurs as, while the NR different Ramsey states
may have different energies, the kinetic energy can always be selected to maintain the same total energy. For

the sake of convenience, we choose the orthonormal basis to be that defined by ĤR( ~B(x)) |ER〉 = ER |ER〉
for x ≤ 0−. The zero of x is defined to be immediately after the magnetic lens, while y± ≡ limδ→y± δ. We use
these limit definitions as we will deal with discontinuities in the magnetic field when working with the transfer
matrix formalism (Section V). As an example of the use of this notation, the statement that both one-sided
limits are equal at the point x (i.e. lima→x− f(a) = limb→x+ f(b)) can be written as f(x−) = f(x+).
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The above definition of |ER〉 produces, for all x, a unique labelling of the system eigenstate |ER〉 by
the total energy E and the internal state R, where R is a Ramsey state in the high magnetic field located

immediately after the magnetic lens (i.e. at x = 0−). Note that, because of this definition, ĤR( ~B(x)) |ER〉 6=
ER |ER〉 for x ≥ 0+; that is, the system eigenstates are superpositions of the local Ramsey states for x ≥ 0+.
This unique labelling of the system eigenstates is valid for all x as the eigenstate wavefunctions have a
well-defined phase relationship throughout the entire apparatus. See Section V A for more details on the
specifics of this phase relationship.

III. IMPACT OF THE MAGNETIC LENS ON THE MOLECULAR STATES

The magnetic lenses are designed to focus molecules with certain hyperfine states either onto the sample
or into the detector. The remaining molecules are either defocussed or insufficiently focussed and contribute
significantly less to the experimental signal. Roughly, high-field seeking states are defoccussed, some of the
low-field seeking states are well focussed and the rest of the low-field seeking states are partially focussed.
The actual proportions of each hyperfine state in the molecular beam must be measured or calculated from
simulation. These magnetic lenses typically use large magnetic fields and large magnetic field gradients to
perform this focussing [82, 83].

In general, magnetic lenses may take different forms, but we will consider lenses that have one key feature:
the internal degrees of freedom of the outgoing molecular wavepackets are decohered in the high-magnetic
field basis (i.e. |ImIJmJ〉). More precisely, we assume that the wavepacket exiting the magnetic lens is a
mixed state of the form:

ρ0 =
∑
R0

PR0 |ΨR0k0〉 〈ΨR0k0 | , (3)

where

|ΨR0k0
〉 =

∫
dr ψR0k0

(r) |rR0〉 ; (4)

ψR0k0
(r) ≡ 〈r|ΨR0k0

〉 is the wavefunction of a molecule in state |R0〉; ρ0 is the initial (time t = 0) density

matrix; |rR0〉 ≡ |r〉 |R0〉; |r〉 is an eigenstate of the position operator; |R0〉 is an eigenstate of ĤR( ~Blens);
~Blens is a high magnitude, z-aligned magnetic field; k0 is the experimentally-determined mean wavenumber of
the wavepacket; and PR0

is the probability that the hyperfine statevector of the molecule is |R0〉. Note that

ρ0 is diagonal in |R0〉 but not in |r〉 (or |k〉, the momentum basis). Also, ~Blens = ~B (x = 0−) corresponds to
the final portion of the auxiliary field (i.e. a strong, z aligned, dipolar field), not the field inside the hexapole
magnet itself (see Section II).

That such a form of the wavepacket is valid follows from the work by Utz et al. [86]. The authors show that
the two wavepackets arising from a spin– 1

2 particle passing through a Stern-Gerlach apparatus are quickly
decohered with respect to one another, even before they separate spatially. That is, the quantum dynamics
themselves cause decoherence between the spin degrees of freedom (but not the spatial); a measurement or
coupling to an external bath is not required. This decoherence occurs as the large magnetic field gradients
cause a rapid oscillation in the off-diagonal terms of the extended Wigner distribution. That is, the phase
relationship between the spin-up and spin-down components oscillates heavily in both the position and
momentum bases, destroying coherence.

Given that the magnetic lenses we consider act like a Stern-Gerlach apparatus for the molecular hyperfine
states, it is reasonable to assume that the internal hyperfine degrees of freedom will also decohere. Thus,
we need only determine the values of PR0 for a specific magnetic lens. These can be found via semi-classical
calculations [53, 87], may be measured experimentally [87] or may potentially be determined by solving the
full 3D Schrödinger equation within the lens.

The mean velocity v0 and velocity spread σv of the molecules in the molecular beam can be measured
experimentally [53]. Both of these values are determined from the position and profile of scattering peaks
obtained from the scattering of the probe molecules by appropriate sample surfaces [53]. We assume that the
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initial wavefunction of a molecule ψR0k0(r) is Gaussian and is characterized by k0 ≡ mv0/~ and σk ≡ mσv/~,
where m is the mass of the molecule. More precisely,

ψR0k0
(r) =

∫
dk

1

(2πσ2
k)

1
4

e
− (k−kR0

0 )
2

4σ2
k

eikr√
2π

=
√
σk

(
2

π

) 1
4

eik
R0
0 re−r

2σ2
k (5)

where kR0
0 is taken to be k0. Though kR0

0 may in fact depend slightly (on the order of ppm) on R0, we show

later that the experimental signal is insensitive to small changes in kR0
0 .

IV. WAVEPACKET PROPAGATION AND SIGNAL CALCULATION

The primary measured value of the experiment is a current that is proportional to the molecular flux
entering the detector. This measured current is a function of the magnetic fields, the scattering geometry,
and the surface properties. The molecular flux entering the detector can be calculated as the product of
the molecular flux incident to the apparatus and the probability that a molecule entering the apparatus will
successfully pass through the apparatus and be detected. It is this probability of detection Pdetection that is
sensitive to the experimental parameters and surface properties. Note that the incident molecular flux could
be either continuous or pulsed, as long as the density is low enough that the molecules can be considered
non-interacting.

As the detector has a finite time-response, the probability of detection is given by

Pdetection =
1

τ

∫ t2

t1

dt〈Ĉ(t)〉, (6)

where t1 and t2 are the initial and final times of the detection window τ = t2 − t1, and 〈Ĉ(t)〉 is the

expectation value of the detector measurement operator Ĉ. This expectation value is given by

〈Ĉ(t)〉 = Tr ρ̂(t)Ĉ, (7)

where ρ̂(t) ≡ Ûρ0Û
† =

∑
R0
PR0
|ΨR0k0

(t)〉 〈ΨR0k0
(t)| is the time evolved density matrix, Û ≡ e−i

Ĥ
~ t is the

time evolution operator, ρ0 is the density matrix (3) at t = 0, and |ΨR0k0(t)〉 ≡ Û |ΨR0k0〉.
Given that the detector consists of a magnetic lens that focusses molecules with particular states into a

measuring apparatus, such as an ionization detector [53], and that the internal degrees of freedom of these
molecules are decohered by the second magnetic lens (see Section III), we can model the detector with a
diagonal operator

Ĉ =
∑
RD

∫
dx cRD (x) |xRD〉 〈xRD| (8)

The matrix elements of Ĉ are the probabilities cRD (x) of detecting, at position x, a molecule whose internal

state is a high-field eigenstate |RD〉 of ĤR. Note that cRD (x) = 0 for x < xD, the detector position.
Using the time evolution operator, we determine the time-dependence of the density matrix ρ(t) to be

ρ(t) =
∑
R0RR′

∫
dE

∫
dE′ PR0

e−
i
~ (E−E′)tαERk0R0

α∗E
′R′

k0R0
|ER〉 〈E′R′| , (9)

where αERk0R0
≡
∫

dr ψR0k0
(r)Φ∗ERR0

(r) is the overlap between the initial wavefunction ψR0k0
(r) and the system

eigenstate wavefunction ΦERR0
(r) ≡ 〈rR0|ER〉.
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We can evaluate 〈Ĉ(t)〉 by inserting a resolution of the identity
∑
RD

∫
dr |rRD〉 〈rRD|, where ĤR( ~B(x)) |RD〉 =

ERD |RD〉 for x ≥ x+
D and xD is the starting location of the detector (see Figure 2). In other words, |RD〉 is

a Ramsey state in the strong dipolar magnetic field of the detector auxiliary field. The result is

〈Ĉ(t)〉 =
∑

RD,R′D

∫
dr

∫
dr′ 〈r′R′D| ρ(t) |rRD〉 〈rRD| Ĉ |r′R′D〉 (10)

where we have evaluated the trace in the |r′R′D〉 basis and

〈r′R′D| ρ(t) |rRD〉 =
∑
R0RR′

∫
dE

∫
dE′ PR0

e−
i
~ (E−E′)tαERk0R0

α∗E
′R′

k0R0
ΦERR′D

(r′)Φ∗E
′R′

RD (r). (11)

We emphasize that R and RD are indices of different sets of Ramsey states, i.e. 〈R|RD〉 6= δRRD , unless the
magnetic fields at the first magnetic lens (x = 0−) and the detector magnetic lens (x = x+

D) happen to be
identical.

We also have

〈rRD| Ĉ |r′R′D〉 =
∑
R′′D

∫
dz cR′′D (z)δ(r − z)δRDR′′Dδ(r

′ − z)δR′DR′′D

= cRD (r)δ(r′ − r)δR′DRD (12)

which, when inserted with Eqn. (11) into Eqn. (10), results in

〈Ĉ(t)〉 =
∑
R0RR′

∫
dE

∫
dE′ PR0e

− i
~ (E−E′)tαERk0R0

α∗E
′R′

k0R0

(∑
RD

∫
dr ΦERRD (r)Φ∗E

′R′

RD (r)cRD (r)

)
. (13)

The initial wavepacket is almost entirely confined to the region r ≤ 0−, as ψR0k0
(r) has a Gaussian

profile (5) with spatial width on the order of 10 Å (as determined from the measured velocity distribution
for oH2 [53]). Thus, we can evaluate αERk0R0

≡
∫

dr ψR0k0
(r)Φ∗ERR0

(r) if we know ΦERR0
(r) for r ≤ 0−. Given

the definition of the eigenstate |ER〉, discussed in Section II A, we show in Section V A that ΦERR0
(r) =

ARe
irkERδRR0

for r ≤ 0− (cf. Eqn. (34)), where kER ≡
√

2m(E−ER)

~ (cf. Eqn. (23)). Combined with the
definition (4) of ψR0k0

(r),

αERk0R0
≈
∫

dr δRR0A
∗
R

√
σk

(
2

π

) 1
4

e
i
(
k
R0
0 −k

ER
)
r
e−r

2σ2
k

= δRR0
ΓERk0R0

(14)

where ΓERk0R0
= A∗R

(2π)
1
4√

σk
e
− (kER−kR0

0 )
2

4σ2
k . Thus,

〈Ĉ(t)〉 =
∑
R0

∫
dE

∫
dE′ PR0

e−
i
~ (E−E′)tΓER0

k0R0
Γ∗E

′R0

k0R0

(∑
RD

∫
dr ΦER0

RD
(r)Φ∗E

′R0

RD
(r)cRD (r)

)
, (15)

where we have performed the sums over R and R′.
If the detection window t2 − t1 is large enough that the entire wavepacket passes through the detection

region defined by cRD (z) we have

Pdetection =
1

τ

∫ t2

t1

dt〈Ĉ(t)〉 ≈ 1

τ

∫ ∞
−∞

dt〈Ĉ(t)〉

=
∑
R0

∫
dE

∫
dE′ PR0

2π~
τ
δ (E − E′) ΓER0

k0R0
Γ∗E

′R0

k0R0

(∑
RD

∫
dr ΦER0

RD
(r)Φ∗E

′R0

RD
(r)cRD (r)

)

=
∑
R0

∫
dE PR0

∣∣∣ΓER0

k0R0

∣∣∣2(∑
RD

∫
dr

2π~
τ

∣∣∣ΦER0

RD
(r)
∣∣∣2 cRD (r)

)
, (16)
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where 2π~
τ δ (E − E′) = 1

τ

∫∞
−∞ dte−

i
~ (E−E′)t.

Physically, one can see that the probability of detection is proportional to the overlap
∣∣∣ΓER0

k0R0

∣∣∣2 of the

initial wavepacket and a system eigenstate multiplied by the overlap
∫

dr 2π~
τ

∣∣∣ΦER0

RD
(r)
∣∣∣2 cRD (r) of the same

system eigenstate and the detection region, as expected.

Substituting for
∣∣∣ΓER0

k0R0

∣∣∣2 and given that

ΦER0

RD
(r) ≡ 〈rR0|ER〉

= eikRD r 〈RD|ER0〉
≡ eikRD rβER0

RD

for r ≥ x+
D (cf. Eqn. (34)), we have

Pdetection =
∑
R0

PR0 |AR0 |
2
∫

dE
(2π)

1
2

σk
e
− (kER0−kR0

0 )
2

2σ2
k

∑
RD

cRD
2π~
τ

∣∣∣βER0

RD

∣∣∣2 (17)

where cRD ≡
∫

dr cRD (r) and βER0

RD
≡ 〈RD|ER0〉, the projection of the system eigenstate |ER0〉 onto the

detector eigenstate |RD〉 at x+
D. For the purposes of comparing to experiment, only the dependence of

Pdetection on the experimental parameters is needed, not its absolute value. Also, the value of AR0
= 1 as

ARe
irkER ≡ 〈rR0|ER0〉 = eirk

ER

(for r ≤ 0−) because of the specific definition of the system eigenstates (see
Section II A). Additionally, one can see that Pdetection is not sensitive to minor (on the order of ppm) changes

in kR0
0 as σk ∝ k0 in experiment [53]. Finally, in Eqn. (17), only βER0

RD
is dependent on the magnetic fields,

the scattering geometry, and the surface properties. It is thus sufficient to work with the following equation:

Pdetection ∝
∑
R0

PR0

∫
dE e

− (kER0−k0)
2

2σ2
k

∑
RD

cRD

∣∣∣βER0

RD

∣∣∣2 (18)

To determine the values of βER0

RD
, we derive and apply the transfer matrix method with internal degrees

of freedom (Section V).

V. TRANSFER MATRIX FORMALISM WITH INTERNAL DEGREES OF FREEDOM

The transfer matrix method as applied in quantum transport turns the solution of the time-independent
Schrödinger equation of a 1D system into a product of matrices [71]. Pedagogical introductions can be found
in Refs. [71, 72, 75]. The present problem has two unique features: (i) the propagating molecules have many
internal degrees of freedom which may be mixed as the molecule transitions from one local field to another
and (ii) molecules change their propagation direction after scattering by the surface. Problem (i) is addressed
in Section V A, while (ii) is addressed in Section V B. The impact of scattering on the internal degrees of
freedom is accounted for by using a scattering transfer matrix (Section V C).

The transfer matrix formalism we present in Section V A is similar to the mixed multicomponent transfer
matrix formalism described in [88] and can be viewed as an extension and application of the transfer matrix
formalism used in the study of molecular tunnelling [77, 78]. The formalism combines transfer matrices
that incorporate the internal molecular degrees of freedom of a composite particle [77, 78] with eigenbasis
changes between regions of the external potential. Similar eigenbasis changes have been employed in the
transfer matrix formalism used in the envelope function approximation, which is used to calculate electronic
properties in abrupt semi-conductor heterostructures [89]. We further extend the transfer matrix formalism
in Sections V B and V C to account for the impact of scattering on the molecules and their relevant internal
degrees of freedom.
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Detector

First Branch Second Branch

Sample

State Selector

Figure 2. Generic field profile of a molecular hyperfine interferometry experiment. The actual magnetic field profiles
of the experiment are approximated by N + 2 regions of length Li and constant magnetic field ~Bi (black line). The
true field profile is asymptotically approached as N → ∞. We assume large magnetic fields in the regions of the
state selector (large arrow) and the detector (eye), which, when combined with the dephasing discussed in Section
III, allows us to neglect propagation in the selector and detector regions. That is, the exact locations of x0 and
xD are unimportant as long as x0 is in the high-field region of the state selector, xD is in the high-field region of
the detector, and all propagation is treated coherently between the two points. The initially Gaussian wavepacket
propagates from x−0 along the first branch to the sample surface (cross) at xS then, after scattering, propagates along
the second branch to x+D. The two branches are separated by an angle θ. The vertical axis indicates the magnitude

of the magnetic field | ~B| (the direction is not depicted for clarity), with | ~B| = 0 indicated by the grey solid line. |Ri〉
denotes the set of eigenstates of ĤR( ~Bi), Eqn. (1), in each region.

A. Propagation and Discontinuity Matrices

We first break up the arbitrary magnetic field profiles of the apparatus into rectangular regions of constant
field, as shown in Figure 2. We then solve the Schrödinger equation for a single eigenstate in a single region
of constant field. Subsequently, we determine the impact of the boundary conditions that exist at the
discontinuity between two regions of constant field. Using these solutions, we determine matrices that
describe the spatial dependence of the eigenstate wavefunction coefficients within a region of constant field
(propagation matrices) and matrices that describe how these coefficients change across the discontinuity
between two regions of constant field (discontinuity matrices). Note that while we derive these matrices for
molecules whose internal degrees of freedom are described by the Ramsey Hamiltonian (1), the formalism is
not limited to this Hamiltonian.

Within a region of uniform magnetic field, the Ramsey Hamiltonian ĤR is constant, which allows us to
derive the propagation matrix that includes the internal degrees of freedom. We begin by expanding a system
eigenstate |ER̃〉 as

|ER̃〉 =
∑
R

∫
dx ΦER̃R (x) |xR〉 , (19)

where ΦER̃R (x) ≡ 〈xR|ER̃〉, we define |xR〉 ≡ |x〉 |R〉, and |R〉 is one of the NR Ramsey states of a molecule in

some magnetic field ~B. Note that ~B is not necessarily the local magnetic field ~Bloc of the current region and

thus |R〉 is not necessarily an eigenstate of ĤR( ~Bloc) at this point. Also, the eigenstates |ER̃〉 are labelled by

their energy E and a particular Ramsey index R̃, such that ĤR(
˜
~B) |ER̃〉 = ER̃ |ER̃〉, with

˜
~B an arbitrarily

chosen magnetic field.
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Using Eqn. (19), the Schrödinger equation with the total Hamiltonian (2) can be shown to be (Appendix
A):

− ~2

2m

∂2

∂x2
ΦER̃R0

(x) = ΦER̃R0
(x)E −

∑
R

HR
R0RΦER̃R (x), (20)

where HR
R0R

= 〈R0| ĤR( ~Bloc) |R〉. Eqn. (20) is in general difficult to solve because of the coupling of the

internal degrees of freedom by ĤR( ~Bloc). However, if we choose the eigenbasis of the internal degrees of

freedom to satisfy ĤR( ~Bloc) |R〉 = ER |R〉 (that is, |R〉 is now a Ramsey state of a molecule in the local

magnetic field ~Bloc), the equations decouple and we obtain

∂2

∂x2
ΦER̃R (x) = −2m

~2
(E − ER) ΦER̃R (x). (21)

The solution is

ΦER̃R (x) = ARe
ikRx +BRe

−ikRx, (22)

where AR and BR are R-dependent coefficients and

kR ≡
√

2m (E − ER)

~
. (23)

As per the single channel transfer matrix method [71], given that ΦER̃R (x+ ∆x) = ARe
ikRxeikR∆x +

BRe
−ikRxe−ikR∆x, we can collect the AR and BR coefficients into a 2NR-dimensional coefficient vector

~φx = (A1, A2, ..., ANR,B1, B2, ..., BNR)
T

and write

~φx2 = Πx2−x1
~φx1 , (24)

where Πx is the 2NR × 2NR propagation matrix

Πx ≡

[⊕
R

eikRx

]
⊕

[⊕
R

e−ikRx

]

=



eik1x

. . . 0
eikNRx

e−ik1x

0
. . .

e−ikNRx


, (25)

where ⊕ denotes the direct sum.
Following the derivation of Ref. [71], we can determine how the coefficients transform across a step dis-

continuity in the magnetic field. Using the propagation matrix (25) and a relabelling of the coordinate
system, we can always set the discontinuity to appear at x = 0. Given that Eqn. (20) applies everywhere,

the coefficients ΦER̃R (x) and their derivatives are continuous across the discontinuity (i.e. ΦER̃R (x) ∈ C1(x)),

for each value of R. However, the coefficients are only known when |R〉 is an eigenstate of ĤR( ~Bloc), which

differs on each side of the discontinuity (that is, ~B(0−) 6= ~B(0+)). Note that the wavevector |ER̃〉 is the same

everywhere in the system. Thus, by writing the wavevector |ER̃〉 in the two different bases corresponding to

the eigenstates of ĤR on each side of the field, we see that the coefficients at a specific value of x are related
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by a basis transformation:

|ER̃−〉 = |ER̃+〉∑
R−

∫
dx ΦER̃R− (x) |xR−〉 =

∑
R+

∫
dx ΦER̃R+ (x) |xR+〉

∑
R−R+

∫
dx ΦER̃R− (x) 〈R+|R−〉 |xR+〉 =

∑
R+

∫
dx ΦER̃R+ (x) |xR+〉

=⇒ ΦER̃R+ (x) =
∑
R−

ΦER̃R− (x) 〈R+|R−〉 , (26)

where |ER̃±〉 is the wavevector written in the basis of |R±〉, |R±〉 are the eigenstates of ĤR( ~B(0±)) on the
left (−) and right (+) sides of the discontinuity at x = 0, respectively, and

∑
R+ |R+〉 〈R+| was inserted in

the third line (recall that |xR−〉 ≡ |x〉 |R−〉). The values 〈R−|R+〉 are recognized as the matrix elements

SR−R+ of the matrix SR
+

R− whose columns are the eigenstates of ĤR( ~B(0+)) written in the |R−〉 basis.

Since ΦER̃R (x) ∈ C1(x) for each value of R separately, we can equate the two limits limx→0∓ ΦER̃R+ (x) and

the two limits of the derivative limx→0∓
∂
∂xΦER̃R+ (x). Solving the resultant equations for the coefficients AR+

and BR+ , we obtain (Appendix B):

AR+ =
∑
R−

S∗R−R+∆+
R+R−AR− +

∑
R−

S∗R−R+∆−R+R−BR− (27)

BR+ =
∑
R−

S∗R−R+∆−R+R−AR− +
∑
R−

S∗R−R+∆+
R+R−BR− (28)

where S∗R−R+ ≡ 〈R+|R−〉, ∆±R+R− ≡
1
2

(
1± kR−

kR+

)
, kR± ≡

√
2m(E−ER±)

~ , and ER± ≡ 〈R±|ĤR( ~B(0±))|R±〉.

There areNR such sets of equations, one for each value ofR+. Working again with ~φx = (A1, A2, ..., ANR,B1, B2, ..., BNR)
T

,
one can write the matrix equation

~φx+ = K~φx− , (29)

where x∓ indicates the location just before (−) or just after (+) the discontinuity located at x and K is the
2NR × 2NR discontinuity matrix

K ≡

(
SR

+

R−

†
◦∆+ SR

+

R−

†
◦∆−

SR
+

R−

†
◦∆− SR

+

R−

†
◦∆+

)
(30)

where ◦ denotes the element-wise Hadamard product, such that (SR
+

R−

†
◦∆±)R+R− ≡ S∗R−R+∆±R+R− . This

matrix allows one to calculate the coefficients of the wavefunction as one moves from one region of constant
magnetic field to another through a discontinuity. Thus, if one breaks up any magnetic field profile into a
series of constant regions separated by discontinuities, one can systematically approach a perfect description
of the propagation of a molecule with internal degrees of freedom through a magnetic field of arbitrary profile
through repeated application of K and Πx. Furthermore, this approach is not restricted to molecules moving
through magnetic fields. Many other types of quantum objects moving in a single dimension with internal
degrees of freedom that couple to an external static potential can also be analyzed in this way.

The above analysis indicates that one needs to keep track of 2NR components to build up the eigenstates
of the system exactly. However, for the current application in mind, one only needs NR components as the
magnetic fields typically change the linear molecular momentum by such a small amount that the amplitudes
BR of the reflected part of the wavefunction are negligible. That is, any backscattering of the molecules by
the magnetic fields is negligible and can be ignored.
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For example, a typical velocity of the oH2 molecules in the experiment of Ref. [53] is vH2 = 1450 m/s.
This corresponds to the kinetic energy EH2 = 1

2mH2v
2
H2

= 5.31 × 109 kHz. The data reported by Ramsey
[85] indicates that the maximum energy change for the hyperfine states of oH2 at 500G is approximately
-2550 kHz. The experiment of Ref. [53] has magnetic fields up to about 1000G. For such fields, the energy
changes are approximately linear, so we expect the maximum change in energy to be ∆E ≈ −5100 kHz.
In the field-free region before the discontinuity, kR− ≈ mH2

vH2
/~ and after the discontinuity in the field,

kR+ ≈
√

2mH2(E −∆E)/~, as per Eqn. (23). Then, |∆−R+R− | ≈ 2.4 × 10−7 and |∆+
R+R− | ≈ 1, making K

approximately diagonal and illustrating the decoupling of the forward and backward channels under typical
experimental conditions.

We thus only need to keep track of the AR components, which correspond to the forward-propagating
momenta. We can define a new coefficient vector

~ψx ≡ (A1, A2, ..., ANR)
T
. (31)

The corresponding NR ×NR propagation Px and discontinuity D matrices are

Px ≡
⊕
R

eikRx

=

e
ik1x 0. . .

0 eikNRx

 (32)

D ≡ SR
+

R−

†
◦∆+

≈ SR
+

R−

†
, (33)

where the matrix elements of SR
+

R−

†
are S∗R−R+ ≡ 〈R+|R−〉, ĤR( ~B(0±)) |R±〉 = ER± |R±〉, 0± indicates the

position just to the left (−) or right (+) of the discontinuity, and kR is defined as in Eqn. (23). Specifically, D

changes the basis of the vector ~ψx from |R−〉 to |R+〉. That is, ~ψx is always in the eigenbasis of ĤR( ~B(x)).
Finally, given that BR ≈ 0, the eigenstate coefficients are now

ΦER̃R (x) = ARe
ikRx. (34)

Given that a generic transfer matrix M has the property MσzM
† = σz[71], the decoupling of the forward

and backward channels implies that the forward channel matrix MF (composed of a product of Px and D
matrices) is now unitary.

B. Rotation Matrices

Scattering by the sample surface changes both the propagation direction and the internal states of the
molecule. To take into account the change in the direction of the propagation path when applying the transfer
matrix formalism, we need only change the orientation of the quantization axis. However, to address the
impact of scattering on the internal states, we need to apply a scattering matrix that is written with respect
to a particular reference frame (which is often a sample-fixed frame, see Section V C). Thus, instead of just
rotating the quantization axis from the first branch to the second branch (to account for the change in the
direction of propagation), we need to first rotate from the initial reference frame (xyz in Figure 1) to the
reference frame of the scattering matrix. Then, after applying the scattering matrix, we need to rotate from
the scattering matrix reference frame to the final reference frame (x′y′z′ in Figure 1). To perform these

rotations coherently, we apply NR×NR rotation matrices R(φ,Θ, χ) to ~ψx, where φ, Θ, and χ are the Euler
angles in the ZY Z convention (with Y and Z being the axes of a space-fixed frame; see Ref. [90]). In this
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way, we can account for both specular and non-specular scattering geometries and for various orientations
of the sample surface.

To change the orientation of the quantization axis, we perform passive rotations on the state vector ~ψx.

These passive rotations modify the basis of ~ψx, but leave the physical state unchanged. For example, if we
were to assume that the only impact of scattering was to change the propagation direction, we would need
to perform a passive rotation of the state vector about the y axis by the angle θ to account for a change of
angle θ in the propagation direction (for the definition of the axes shown in Figure 1). We would perform

this rotation by applying the equivalent active rotation of angle −θ to ~ψx; that is, by using the matrix
R(0,−θ, 0).

For the general case, we work with the rotation matrices R(φ,Θ, χ), whose matrix elements, when written

in the |R〉 eigenbasis of ĤR( ~Bloc) where ~Bloc is the local magnetic field, are:

RR(φ,Θ, χ) ≡
[
〈R′| R̂(φ,Θ, χ) |R〉

]
=

[ ∑
FMF ′M ′

〈R′|F ′M ′〉 〈F ′M ′|R̂(φ,Θ, χ)|FM〉 〈FM |R〉

]
= SRFM

†
RFM (φ,Θ, χ)SRFM , (35)

where |FM〉 ≡ |IJFM〉 is an angular momentum state with total angular momentum F , z axis projection
M , total nuclear spin angular momentum I and total rotational angular momentum J ; the subscripts of RR

and RFM denote the basis of the matrix representation, |R〉 and |FM〉, respectively; SRFM is the matrix

whose columns are the eigenstates |R〉 written in the |FM〉 basis, R̂(φ,Θ, χ) is the rotation operator (with
the same ZY Z convention mentioned above) and

RFM (φ,Θ, χ) =
[
δFF ′D

F
M ′M (φ,Θ, χ)

]
=
[
δFF ′e

−iφM ′dFM ′M (Θ)e−iχM
]
, (36)

where DF
M ′M (φ,Θ, χ) are the Wigner D-matrices and dFM ′M (Θ) are the Wigner small d-matrices [90]. Note

that RFM (φ,Θ, χ) is diagonal in F , because of conservation of angular momentum, but not diagonal in M
[90]. Thus, one must be careful to also perform a passive rotation on the local magnetic field vector if rotations
are performed in a region with non-zero field. Typically, however, the sample chamber is magnetically
shielded.

We also note that the rotation may impact how to appropriately match the boundary conditions between
the eigenstate immediately after rotation and the eigenstate at the start of the second branch. As the
propagation matrices Px (32) are defined with respect to the momentum, which may be positive or negative,
it is important to choose the sign of the momentum that results in the probability current flowing in the
same direction as the molecular propagation. For example, using the axis definitions in Figure 1, +kR is
chosen for the first branch and −kR for the second branch.

C. Scattering Transfer Matrices

Scattering by the sample surface can involve many complex phenomena that may change the internal
state, the momentum, and the total energy of the scattering molecule. For the present manuscript, we
focus on scattering processes that conserve the total energy of the molecules. Energy-conserving scattering
may, however, include transfer of energy between the internal and translational degrees of freedom. Such
scattering processess are described by a general, non-diagonal scattering matrix in the basis of the molecular
states.

The interactions of the molecules with the sample surface can be phenomenologically described with the
total scattering transfer matrix. This matrix is the 2NR×2NR matrix Σ̃ that relates the wavefunctions on the
“left” side of the scattering event to those on the “right” (as opposed to the scattering matrix, which relates
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the incoming wavefunctions to the outgoing). However, because the initial wavepacket (5) does not contain
any negative momentum states, the magnetic fields of the solenoids do not cause significant backscattering
(Section V A), and the detector only detects molecular flux in the forward scattering direction, we need only

work with the NR × NR matrix Σ ≡ PfwdΣ̃P†fwd, where Pfwd is an NR × 2NR projection matrix onto the
forward scattering states. We define Σ in the |ImIJmJ〉 basis, where the |ImIJmJ〉 states are themselves
defined with respect to the quantization axis that is normal to the surface sample. We choose this basis to
relate to scattering calculations, which are frequently carried out in the |JmJ〉 basis with a quantization axis
normal to the sample surface. In principle, however, any suitable set of Ramsey states |RΣ〉 could be chosen
as the basis for the scattering transfer matrix and any suitable quantization axis could be chosen, to take
advantage of relevant symmetries.

In general, the scattering transfer matrix elements ΣImIJmJI′m′IJ′m′J are functions of the incident energy

E, the outgoing energy E′, the incident momentum ~k, and the outgoing momentum ~k′. As we are restricting
ourselves to iso-energetic processes, E = E′. Also, Eqn. (23) defines the magnitudes of the momentum before
and after the scattering event. This leaves the scattering transfer matrix elements as functions of only energy
and the four angles that define the scattering geometry. These angles are: (1) the angle between the two
branches, (2) the angle between the surface normal and the scattering plane, (3) the angle between the first
branch and the projection of the surface normal on the scattering plane, and (4) the azimuthal angle of the
sample. The scattering plane is the plane defined by the two branches of the apparatus.

Given that the experiment only probes a single scattering direction at a time (see Section II and Figure 1),
the scattering transfer matrix will not, in general, be unitary. This incorporates state-dependent loss channels
into the formalism. Additionally, the scattering transfer matrix is, in general, time-dependent. Here, we
assume that the time-scales of the surface dynamics are significantly different from the molecule-surface or
wavepacket-surface interaction time-scales and assume Σ to be time-independent.

Because Σ is defined with respect to the surface normal, we use rotation matrices to appropriately change

the basis of ~ψ before and after applying the scattering transfer matrix. We ensure that the total rotation
corresponds to the change in propagation direction induced by scattering off of the sample surface and that
the quantization axis is again coplanar with the two branches of the apparatus.

The scattering transfer matrix elements for a specific molecule-surface interaction can be determined from
scattering calculations [53, 91]. Alternatively, they can be treated as free parameters and determined from
the experimental measurements by solving the inverse scattering problem. Such a problem can potentially
be solved efficiently using machine learning based on Bayesian optimization [69, 92].

D. Calculation of Eigenstate Coefficients

To determine the dependence of the probability of detection (18) on the magnetic fields and the surface

properties, we must determine the coefficients βER0

RD
. This can be done by multiplying the initial coefficient

vector ~ψER0
x0

(31) of a system eigenstate |ER0〉 by a succession of transfer matrices to obtain the final

coefficient vector ~ψER0
xD ≡

(
βER0

1 , βER0
2 , · · · , βER0

NR

)T
:

~ψER0
xD = SRDRN

†
M2MΣM1

~ψER0
x0

, (37)

where M1 and M2 describe the propagation through the first and second branches of the apparatus, respec-

tively, MΣ describes the scattering, and SRDRN
†

changes the basis of the coefficient vector to the eigenbasis

|RD〉 of ĤR( ~B(x+
D)) at the location of the detector xD. The M matrices are defined as

M1 = PLnSRnRn−1

† · · ·PL2S
R2

R1

†
PL1S

R1

Rini

†
(38)

MΣ = SRnFM
†
RFM (α′, β′, γ′)ΣFMRFM (α, β, γ)SFMRn

†
(39)

M2 = PLNSRNRN−1

† · · ·PLn+1
S
Rn+1

Rn

†
(40)
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where Rini refers to the eigenbasis |Rini〉 of ĤR( ~B(0−)) at the initial location of the wavepacket; Ri refers to

the eigenbasis |Ri〉 of ĤR( ~Bi) in region i of the apparatus, as depicted in Figure 2; FM refers to the |IJFM〉
basis where ~F ≡ ~I+ ~J and M is the projection on the local z axis; α, β, and γ are the Euler angles that rotate
the reference frame of the first branch (xyz in Figure 1) onto the reference frame of the scattering transfer
matrix, whose quantization axis is normal to the sample surface (see Section V B and Section V C); α′, β′,
and γ′ are the Euler angles that rotate the scattering transfer matrix reference frame onto the reference
frame of the second branch (x′y′z′ in Figure 1); Li is the signed length of region i, as depicted in Figure 2;
the sign of Li indicates the direction of propagation with respect to the local x or x′ axis; N is the total
number of regions between x0 and xD (see Figure 2); n is the number of regions between the initial position

of the wavepacket x0 = 0 and the sample position xS ; ΣFM ≡ SFMRIJ
†
ΣSRIJFM

†
is the scattering transfer matrix

written in the |IJFM〉 basis; RIJ ≡ ImIJmJ ; and Σ is the scattering transfer matrix in the |ImIJmJ〉
basis. Note the product of the two rotation matrices RFM (α′, β′, γ′) ·RFM (α, β, γ) = RFM (φ,Θ, χ), where
φ, Θ, and χ are the Euler angles that rotate the reference frame xyz onto the frame x′y′z′ (see Figure 1).
All of the Euler angles mentioned above are in the ZY Z convention, with Y and Z being the axes of a
space-fixed frame and as per the convention defined in Ref. [90]. Note also that while the scattering transfer
matrix Σ is written here in the |ImIJmJ〉 basis, other suitable bases |RΣ〉 may be used (see Section V C),

where RΣ refers to an arbitrary set of Ramsey states. In such a case, ΣFM ≡ SFMRΣ

†
ΣSRΣ

FM

†
. Also, note that

the propagation matrices PLi (32) are defined with momentum +kR if the molecular propagation is in the
direction of the local x or x′ axis or, conversely, with the momentum −kR if the molecular propagation is in
the opposite direction of the local x or x′ axis (see Section V B).

By defining a matrix ΨE
xi ≡

(
~ψE1
xi ,

~ψE2
xi , · · · , ~ψ

ENR
xi

)
, all NR×NR coefficients βER0

RD
can be simultaneously

obtained from

ΨE
xD = SRDRN

†
M2MΣM1Ψ

E
x0

= SRDRN
†
M2MΣM11NR

, (41)

where ΨE
x0
≡ 1NR because of the specific definition of the system eigenstates (see Section II A). Using

Eqns. (38–41), we can obtain βER0

RD
, and thus Pdetection (18), as functions of the magnetic field profile, the

scattering matrix elements, and the scattering geometry.

VI. APPLICATION TO ORTHO-HYDROGEN

The theoretical framework described in Sections II through V connects the scattering transfer matrix
elements ΣImIJmJI′m′IJ′m′J to the experimentally observed signal, which is proportional to Pdetection (18).
By changing the magnetic field profiles in the two arms of the apparatus, one can obtain information about
how the scattering affects various hyperfine states. To illustrate our theoretical framework and to demonstrate
the impact of the scattering transfer matrix on the experimentally observed signal, we consider a beam of
rotationally cold oH2 and a simplified apparatus that contains only a few regions of constant magnetic field,
as depicted in Figure 3.
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𝜃 =
𝜋

4

𝐁1 𝐁2

𝐳

𝐱

Variable0G 0G 0G 0G

𝐳′

𝐱′

Detector

First Branch Second Branch

Sample

Variable1000G

State Selector

Field Magnitude: 1000G

1m20cm 30cm 30 cm 20cm1mRegion Length:

Figure 3. A magnetic field profile that approximates the true magnetic field profile of an experiment using oH2. We
combine this approximate field profile with the transfer matrix formalism to calculate the observed signal. Bi refers
to the different magnetic field vectors of the control fields. z′ and x′ refer to the new coordinate system defined to
align with the second branch of the apparatus (see Figure 1). The sample is located at the cross in the centre of the
diagram. The surface normal of the sample is assumed to bisect the angle between the two branches of the apparatus.
The propagation direction is x before scattering and −x′ after scattering. The angle between x and −x′ (i.e. the
angle between the two arms of the apparatus) is θ = 45◦. B1 is directed along x and B2 is directed along −x′, as
per the arrows. The fields just after the state selector and just before the detector are directed toward the z and z′

directions, respectively and as per the arrows. Additional computational parameters not shown above can be found
in Appendix C.

A. Rotationally Cold Ortho-Hydrogen Hyperfine Hamiltonian

The Hamiltonian describing the relevant internal degrees of freedom of rotationally cold oH2 is [85]:

ĤR
oH2

( ~B)

h
= −αÎ · ~B − βĴ · ~B − cÎ · Ĵ +

5d

(2J − 1)(2J + 3)
[3(Î · Ĵ)2 +

3

2
Î · Ĵ − Î2Ĵ2] (42)

where, for simplicity, we have neglected magnetic shielding of the nuclear and rotational magnetic moments

by the molecule and diamagnetic interactions of the molecule with the magnetic field; ~B is the local magnetic
field; Î is the nuclear spin operator; Ĵ is the rotational angular momentum operator; α ≡ µI

hI ≈ 4.258 kHz;
β ≡ µJ

hJ ≈ 0.6717 kHz; c ≈ 113.8 kHz; d ≈ 57.68 kHz; I = 1 is the total nuclear spin angular momentum in
units of ~; J = 1 is the total rotational angular momentum in units of ~; µI is the nuclear magnetic moment
of a single nucleus; and µJ is the magnetic moment due to molecular rotation. The first two terms describe
the interaction of the nuclear and rotational magnetic moments with the external magnetic field, the third
term describes the nuclear spin-rotational magnetic interaction [85, 93, 94], and the terms proportional to d
describe the magnetic spin-spin interaction of the two nuclei [85, 93, 94].
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Figure 4. Upper Panels: Calculated and experimental signals close to the spin echo condition versus the magnetic field
of the second coil |B2|. Lower Panels: Fourier amplitudes of the upper panels versus the generalized gyromagnetic
ratio γ. For panels (a), (b), (d), and (e), the field profile is depicted in Figure 3; B1 = 440 gauss; the scattering
transfer matrix Σ = 19 and is constant for all energies; and the signal is sampled at a rate of 300 points per 20 gauss.
Panels (a) and (d) only include a single velocity (or, equivalently, a single value of energy) in Eqn. (18) while panels
(b) and (e) include the full integral. For the experimental data shown in panel (c), B1 = 437 gauss, the sample was the
(111) surface of Cu and the signal was sampled every 0.065 gauss (a sampling rate of ∼308 points per 20 gauss). Panel
(f) shows data for oH2 scattering off of Cu(111) (blue full circles) and Cu(115) (red open circles). All experimental
data was obtained from Godsi et al. [53].

B. Experiment and Observables

While there are many possible experimental protocols, we focus on the full interferometer mode used by
Godsi et al. [53]. The experiment is performed by initiating a continuous flux of oH2 molecules through the
apparatus and measuring the current of the ionization detector while varying the first and second control
fields (B1 and B2 in Figure 3).

In particular, B1 is set to a specific value while B2 is varied around the point −B1 (i.e. about the spin-
echo condition). In principle, B2 could also be set to vary around +B1, where spin echoes have also been
observed [79], but we choose to vary B2 about −B1 to match the relevant experiment by Godsi et al. [53].
This variation of the magnetic fields results in oscillatory curves of the detector current versus B2, as shown
in Figure 4 (a–c). These oscillations reflect the interference pattern that occurs when the various wavepackets
recombine after passing through the final control field (see Section II). This interference pattern contains
information about how the individual hyperfine states of the molecule interact with the sample surface.

The x directed magnetic fields of a solenoid changes the energies of all of the NR = 9 hyperfine states and
induces all

(
NR

2

)
= 36 possible transitions. The frequencies of these transitions depend on the magnitude

of the magnetic fields. By changing the magnitude of the second magnetic field, we are able to probe the
rates of change of these transition frequencies with the magnetic field: the (generalized) gyromagnetic ratios

γij(B) =
∣∣∣dfij(B)

dB

∣∣∣, where fij ≡ 1
h∆Eij =

Ei−Ej
h , and Ei is the energy of Ramsey state i [53]. The Fourier

transforms of the oscillatory curves that give these gyromagnetic ratios are shown in Figure 4 (d–f). To
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obtain these results, we assumed that the surface normal of the sample lies in the scattering plane defined
by the two branches and bisects the angle defined by the same two branches, such that α′ = α = γ′ = γ = 0,
β = 3π/8 and β′ = −5π/8, where β+β′ = −π/4 = −θ (see Eqn. 39 and Figure 3). Given this geometry and
the axis definitions (Figure 3), the propagation matrices are defined with +kR in the first branch and −kR
in the second. We also assume that the scattering transfer matrix is the identity matrix and is independent
of energy, i.e. we assume for the present calculation that the only impact of scattering is the change of
propagation direction, as modelled with rotation matrices (Section V B).
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Figure 5. 2D Fourier amplitude plots formed by the concatenation of spectra plots (such as Figure 4 (d-f)) for various
values of the magnetic field of the first solenoid B1. Colour indicates the Fourier amplitude. For the theory plots,
the field profile is depicted in Figure 3; the scattering transfer matrix Σ = 19 and is constant for all energies; B2

was varied from −(B1 − 10 gauss) to −(B1 + 10 gauss); the signal was sampled at a rate of 300 points per 20 gauss;
and all data with a value less than 10−3.5 has been replaced with 10−3.5 for clarity. For the experimental plot, the
sample was the (111) surface of Cu; all data with a value of less then 10−8 has been replaced with 10−8 for clarity;
the dashed lines indicate transitions identified by Godsi et al. [53]; and the data was obtained from Godsi et al. [53].

The location of each feature in the spectra is reflective of a gyromagnetic ratio and is independent of
the molecule-surface interactions, being only a function of the hyperfine energy level structure of oH2. The
relative height of each feature, however, is dependent on the molecule-surface interactions, as exemplified
in the experimental spectrum shown in Figure 4 (f). From Figure 4, one can see that integrating over the
velocity distribution is important to produce the spin-echo effect and to bring the observed signal closer to
experiment.

A different spectrum can be obtained for every possible value of B1 and then combined to form a 2D
map of the generalized gyromagnetic ratios and their contributing amplitudes as a function of B1, as shown
in Figure 5. This protocol is equivalent to observing the scattering of molecules with different internal
hyperfine states as different values of the magnetic field in the first branch produce different superpositions
of the hyperfine states. One can clearly see both the magnetic field-dependence of the gyromagnetic ratios,
the impact of integrating over the velocity distribution, and the stark similarities and differences between
the experimental and theory plots.

We now examine the sensitivity of the calculated signals to various changes in the scattering transfer
matrices. Figures 6 and 7 demonstrate the impact of random variations of the scattering transfer matrix
Σ on the oscillatory plots (for B1 = 440 gauss) and their spectra, respectively. For simplicity, we keep the
matrix elements of Σ independent of energy.

The first row of each figure (labelled RP, Random Phases) reflects the impact of differing phases imparted

to each hyperfine state after scattering. Specifically, Σ =
⊕9

i=1 e
iθi is a diagonal unitary matrix whose nine

phases θi are randomly chosen from a uniform distribution of width 2π. Such a form of scattering would
result from purely elastic scattering where the different hyperfine states probe the surface for different lengths
of time (i.e. each state penetrates to a different depth or encounters a resonance with a different lifetime).
Significant differences in the relative peak amplitudes can already be seen at this point, indicating that the
calculated signal is sensitive to these phases.

The second row of each figure (labelled RDA, Random Diagonal Amplitudes) reflects the impact of

differing state losses due to scattering. Specifically, Σ =
⊕9

i=1Ai is a diagonal matrix whose diagonal
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elements are randomly chosen from a uniform distribution on the interval [0, 1). This form models the
impact of different losses of each hyperfine state to different scattering directions, reactions with the surface,
or adsorbtion to the surface. Again, significant changes are observed, indicating sensitivity to these features.

The third and fourth rows (respectively labelled ROM, Random Orthogonal Matrices, and RUM, Ran-
dom Unitary Matrices) probe the impact of inelastic (projection mImJ -changing) scattering on the calculated
signal. For the third row, Σ is an orthogonal matrix randomly drawn according to the Haar measure on
O(9), while Σ is a unitary matrix randomly drawn according to the Haar measure on U(9) for the fourth
row of each figure. Here, randomly drawing according to the Haar measure can be understood as analogous
to drawing from the “uniform distribution” over the space of possible matrices [95]. The orthogonal matrices
model inelastic scattering where no relative phase changes occur, while the unitary matrices model inelastic
scattering where relative phase changes do occur. In both cases, there is no loss of total population during
scattering. Clearly, the calculated signals are also sensitive to inelastic scattering events, both with and
without relative phase changes. Finally, we can see that the number of peaks in the signal between 430 and
450 gauss varies as a function of the scattering matrix (compare the RDA and RUM plots in Figure 6, for
example).
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Figure 6. Calculated signals close to the spin echo condition as functions of the magnetic field of the second coil
|B2|. The field profile is depicted in Figure 3; B1 = 440 gauss; and the signal was sampled at a rate of 300 points per
20 gauss. Each of the plots was created with identical parameters, except for the scattering transfer matrices Σ. The
scattering transfer matrices are identical for all energies and are randomly chosen for each plot as follows. First row
– Random Phases (RP): Σ =

⊕9
i=1 e

iθi is a diagonal unitary matrix whose nine phases θi are randomly chosen from

a uniform distribution of width 2π. Second row – Random Diagonal Amplitudes (RDA): Σ =
⊕9

i=1Ai is a diagonal
matrix whose diagonal elements are randomly chosen from a uniform distribution on the interval [0, 1). Third Row –
Random Orthogonal Matrices (ROM): Σ is an orthogonal matrix randomly drawn according to the Haar measure
on O(9). Fourth Row – Random Unitary Matrices (RUM): Σ is a unitary matrix randomly drawn according to the
Haar measure on U(9). Here, randomly drawing according to the Haar measure can be understood as analogous to
drawing from the “uniform distribution” over the space of possible matrices [95].
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Figure 7. Fourier transforms of the signals shown in Figure 6 as functions of the generalized gyromagnetic ratio γ.
The panel labels are described in the figure caption to Figure 6 .

VII. COMPARISON WITH A SEMI-CLASSICAL METHOD

The present approach is fully quantum mechanical, while, in their Supplemental Material, Godsi et al. [53]
have described a semi-classical method for calculating Pdetection that they used to model the propagation
of oH2 in their molecular hyperfine interferometer (see Ref. [79] for the case of spin 1/2 particles). This
semi-classical method treats the internal degrees of freedom of the molecules quantum mechanically and
the centre-of-mass motion classically. As a result, the momentum changes induced by the magnetic field
are ignored and every internal state is described as propagating at the initial velocity v0 of the molecule.
The internal degrees of freedom are treated by applying the time evolution operator for the time period
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ti ≡ Li
v0

spent in each magnetic field of length Li. That is, the propagation is calculated in the molecular
reference frame with a time-dependent Hamiltonian. Here, we compare the results of the semi-classical and
fully-quantum approaches for oH2.

We compare the two methods under conditions close to the original application of the semi-classical method
to flux-detection measurements [53]. We work with a field profile as shown in Figure 3, but with the second
arm assumed to be of zero length and B2 = 0. The field B1 is varied. For the sake of comparison, we also
set the state selector and detector fields in the transfer matrix method to 100 000 gauss so that the basis
changes performed by the transfer matrix method out of and into these regions match well the Clebsch-
Gordon transformation from |mImJ〉 to |Fm〉 and its inverse, as used by the semi-classical method. Note
that the off-diagonal elements of the full discontinuity matrix K (30) are still only ∼10−5 at 100 000 gauss,
such that their neglect still does not invalidate our fully quantum formalism at these large field strengths.
We also retain the rotation from the first branch to the second branch and set the scattering matrix to 19.
To maximize sensitivity of the comparison, we use only a single velocity when calculating Pdetection in both
methods. All other parameters, including the state selector and detector relative state probabilities ηmImJ
and κmImJ , are as per Appendix D. This allows for a test that includes all incoming and outgoing states
and their relative phases at experimentally relevant conditions.

The signals Pdetection (B1) are calculated from B1 to B1 + 10 gauss for various values of B1. We include
1500 datapoints in these ten-gauss intervals. The calculated signals are compared between the two methods
by calculating their relative absolute difference at identical conditions. This produces a relative absolute
difference at each of the 1500 magnetic field points. We then calculate the maximum, mean, and median
relative absolute difference over the ten-gauss interval. Figure 8 shows how these maximum, mean, and
median values vary as a function of B1. At low fields, there is no significant dependence on the magnetic field
and the relative absolute difference is below the expected experimental error. This lack of dependence on B1

is possibly due to some residual numerical error present in the implementation of one or both methods, which
masks any underlying field-dependence. At approximately 460 gauss, however, the error begins to increase
with the magnetic field until it saturates at approximately 46 000 gauss at a relative absolute difference of
approximately one. This increase in error as a function of magnetic field points to a systematic difference
between the two methods.
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Figure 8. Maximum, median, and mean relative absolute difference between the calculated signals obtained by the
semi-classical method discussed in the Supplementary Material of Godsi et al. [53] and the present method, for various
values of the controlling magnetic field. See Section VII for a description of the semi-classical method and the field
profiles used. The relative absolute difference between the calculated signals is calculated point-by-point as a function
of the magnetic field. The mean, median, and maximum values are then calculated over the magnetic field interval
spanned by the calculated signal. The calculated signal is sampled at a rate of 1500 points per 10 gauss; the magnetic
field varies from B1 to B1 + 10 gauss for each calculated signal; a single velocity was included in the calculations; the
scattering transfer matrix Σ = 19 and is constant for all energies. All other parameters are listed in Appendix D.
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To illustrate the difference between the two approaches in more detail, we plot the Fourier transforms of the
calculated signals at various magnetic field strengths in Figure 9. At field strengths below 1000 gauss, little
difference is observed. At higher field strengths, the feature locations agree, while the Fourier amplitudes
differ. The feature locations are determined by the eigenvalues of the Hamiltonian, identical in both methods,
while the amplitudes are a function of the relative phases and amplitudes of the wavefunction components.
These amplitudes and phases are expected to differ between the two methods at sufficiently high fields
because of the approximations made in the semi-classical method.

In particular, the semi-classical method accounts for most of the relative phase and amplitude changes
induced by the controlling magnetic fields. It does this by time-evolving the internal state vector for times
that correspond to the time ti spent in each magnetic field by a molecule moving at its unchanged initial
velocity. However, the semi-classical method ignores the small changes in the molecular velocity caused by
the magnetic fields. These changes to the velocity modify the time spent in each magnetic field for each
individual component of the internal state vector. Thus, ti should depend on the internal state |R〉. It is
not immediately clear how to include these state-dependent velocity changes into the semi-classical method,
however.

At low fields, these velocity changes and the dependence of ti on |R〉 are negligible and the fully quantum
calculations agree with the semi-classical results to at least 0.1% for fields below 1000 gauss. However,
this agreement can only be expected to occur for surfaces that do not change between the surface-impact
events of the spatially-separated wavepacket components (discussed in Section II). The maximum temporal
separation between these impact events, caused by the velocity changes, varies from a few to several hundreds
of picoseconds. Many surfaces do change on this timescale, as has been measured in several helium-3 spin
echo experiments [32, 33, 37, 38]. In other words, the semi-classical method cannot be used to probe the
dynamics of surfaces, while the method presented in this manuscript opens the possibility to account for the
surface dynamics with molecular scattering experiments.
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Figure 9. Fourier amplitudes of the calculated signals at various magnetic field values computed with the semi-
classical method discussed in the Supplementary Material of Godsi et al. [53] (orange) and the present method (blue)
as functions of the generalized gyromagnetic ratio γ. The calculation conditions are identical to those of Figure 8.

VIII. CONCLUSION

In this paper, we have developed a theoretical framework for simulating a surface-sensitive molecular
hyperfine interferometer. The approach treats the interferometer as an effective one-dimensional system,
accounting for the real experimental geometry by rotating the quantization axis of the hyperfine states at
the scattering point. The time evolution of the molecular states is described fully coherently and accounts for
the mixing of the hyperfine states and momentum changes induced by the magnetic fields in the experiment.
The present approach is fully quantum mechanical and includes a full description of the internal-state-
dependent spatial superpositions imposed on the molecular wavepackets by the controlling magnetic fields.
This opens the possibility for a description of molecular scattering experiments that aim to probe surface
dynamics on the picosecond to hundreds of picosecond time scale. To build the framework, we have derived
and implemented a transfer matrix formalism that accounts for the internal (hyperfine) degrees of freedom
of molecules and that allows for efficient computation of the experimental signal.

In the present work, the molecule-surface interaction is accounted for by a scattering transfer matrix (a
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transformed version of the scattering matrix) that is suitable for the description of experiments where the
surface changes either much more slowly or much more quickly than the molecule-surface or wavepacket-
surface interaction times (i.e., the molecule-surface scattering event does not involve energy transfer between
the surface and the molecule). The extension to arbitrary surface dynamics (currently under investigation)
requires a time-dependent scattering transfer matrix that reflects the underlying time-dependence of the
molecule-surface interaction potential. Such a formalism would naturally incorporate energy transfers be-
tween the surface and the molecule during the scattering event. We have demonstrated, using the specific
case of oH2, how the different features of the time-independent scattering transfer matrix, such as the phases
of the diagonal elements, impact the experimental signal. In addition, we have shown that the experimental
signal is sensitive to off-diagonal scattering matrix elements describing collisions that change the projection
quantum numbers of the molecular hyperfine states without energy transfer between the molecule and the
surface.

The present approach also sets the stage for solving the inverse scattering problem in molecular hyperfine
interferometry by means of machine learning approaches, such as Bayesian optimization [69, 92]. For example,
one can use the results of the transfer-matrix computations presented here to train Gaussian process models of
the predicted experimental signal [92]. The difference between the experimental observations and the results
of the transfer-matrix computations can then be minimized by varying the scattering matrix elements, as
described in our previous work [69]. The results of Bayesian optimization will determine the properties of
the scattering matrix elements compatible with a given experimental measurement. These scattering matrix
properties can then be used to gain physical insight into molecule-surface interactions and surface properties.
They can also be used to test approximations used in ab initio calculations.

The formalism presented here is general to all closed-shell molecules and is flexible to describe various
experimental setups. It can be used to explore various experimental protocols and evaluate their effectiveness
at determining various molecule-surface interactions and surface properties. Thus, this paper provides the
theoretical framework necessary to interpret a wide range of molecular hyperfine interferometry experiments,
which are poised to apply molecular beam techniques to provide new information about molecule-surface
interactions, surface morphologies, and surface dynamics.
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Appendix A: Schrödinger Equation for Eigenstate Coefficients

Using Eqn. 19, the time-independent Schroödinger equation is

Ĥ |ER̃〉 = E |ER̃〉 (A1)

K̂ |ER̃〉 =
(
E − ĤR

)
|ER̃〉∑

R

∫
dx ΦER̃R (x)K̂ |xR〉 =

∑
R

∫
dx ΦER̃R (x)

(
E − ĤR

)
|xR〉

∑
R

∫
dx ΦER̃R (x) 〈x0R0| K̂ |xR〉 =

∑
R

∫
dx ΦER̃R (x) 〈x0R0|

(
E − ĤR

)
|xR〉 (A2)

where Ĥ is the total Hamiltonian (2) in the current region, K̂ ≡ p̂2

2m , we use ĤR as a shorthand for ĤR( ~Bloc),
and the last line was multiplied by 〈x0R0|.

The different terms can be evaluated as

〈x0R0| K̂ |xR〉 = δR0R 〈x0|
∫

dk
~2k2

2m
|k〉 〈k|x〉

=

∫
dk

2π
δR0R

~2k2

2m
eik(x0−x), (A3)

〈x0R0|E |xR〉 = δR0Rδ(x− x0)E, (A4)

〈x0R0| ĤR |xR〉 = δ(x− x0)HR
R0R, (A5)

where |k〉 is a momentum state with wavenumber k, and m is the mass of the molecule. The additional

factor of (2π)
−1

in Eqn. (A3) comes from 〈x|k〉 ≡ (2π)
− 1

2 eikx. After inserting these three equations into
Eqn. (A2) and evaluating most of the sums, we obtain∫

dx

∫
dk

2π

~2k2

2m
eik(x0−x)ΦER̃R0

(x) = ΦER̃R0
(x0)E −

∑
R

HR
R0RΦER̃R (x0) (A6)

Noting that k2eikx0 = − ∂2

∂x2
0
eikx0 and

∫
dk
2π eik(x0−x) = δ(x0 − x), we obtain Eqn. (20) after the relabelling

x0 → x.
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Appendix B: Coefficient Relations Across a Discontinuity

Since ΦER̃R (x) ∈ C1(x) for a specific value of R and given Eqn. (26), we get the defining equations for the
continuity of the wavefunction as

lim
x→0−

ΦER̃R+ (x) = lim
x→0+

ΦER̃R+ (x)

lim
x→0−

∑
R−

ΦER̃R− (x)S∗R−R+ = lim
x→0+

ΦER̃R+ (x)

lim
x→0−

∑
R−

S∗R−R+

(
AR−e

ikR−x +BR−e
−ikR−x

)
= lim
x→0+

AR+eikR+x +BR+e−ikR+x [Eqn. (22)]

AR+ +BR+ =
∑
R−

S∗R−R+ (AR− +BR−) , (B1)

where S∗R−R+ ≡ 〈R+|R−〉, kR± ≡
√

2m(E−ER±)
~ , and ER± ≡ 〈R±|ĤR( ~B(0±))|R±〉. There are NR such

equations, one for each value of R+.
Correspondingly, the defining equations for the continuity of the first derivative of the coefficients are

lim
x→0−

∂

∂x
ΦER̃R+ (x) = lim

x→0+

∂

∂x
ΦER̃R+ (x)

lim
x→0−

∑
R−

∂

∂x
ΦER̃R− (x)S∗R−R+ = lim

x→0+

∂

∂x
ΦER̃R+ (x)

lim
x→0−

∑
R−

S∗R−R+

∂

∂x

(
AR−e

ikR−x +BR−e
−ikR−x

)
= lim
x→0+

∂

∂x

(
AR+eikR+x +BR+e−ikR+x

)
[Eqn. (22)]

lim
x→0−

∑
R−

S∗R−R+ikR−
(
AR−e

ikR−x −BR−e−ikR−x
)

= lim
x→0+

ikR+

(
AR+eikR+x −BR+e−ikR+x

)
AR+ −BR+ =

∑
R−

S∗R−R+

kR−

kR+

(AR− −BR−) , (B2)

Solving Eqns. (B1) and (B2) for the coefficients AR+ and BR+ , we obtain Eqns. (27) and (28).

Appendix C: Computational parameters used for the application to ortho-hydrogen

We take the mean velocity v0 = 1436.14 m s−1 and the velocity spread to be 4 % FWHM. When performing
the integral of Eqn. (18), we take a k-space grid spacing ∆k = 1× 104 cm−1 and integrate from −7σk to
+7σk, where σk is the Gaussian width in momentum space as defined in Section III. For the magnetic field
profile and the angles between the two branches of the apparatus, see Figure 3. The relative probabilities
used for the state selector probabilities PR0

and the detector coefficients cRD are given in Table I.
Where applicable, the parameters above were chosen to match those in the supplementary information

of Godsi et al. [53], apart for the relative probabilities in Table I. The relative probabilities in Table I were
obtained from improved semi-classical calculations of the molecular propagation through the magnetic lens
[53, 87].
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Table I. Relative probabilities of the state selector ηmImJ and the detector κmImJ . The state selector probabilities
PR0 are calculated as PR0 = PmImJ ≡ ηmImJ /

∑
mImJ

ηmImJ and the detector coefficients cRD are calculated as

cRD = cmImJ ≡ κmImJ /
∑
mImJ

κmImJ .

mI 1 1 1 0 0 0 -1 -1 -1
mJ 1 0 -1 1 0 -1 1 0 -1
ηmImJ 0.0095 0.0138 0.0187 0.0416 0.0436 0.0606 0.3997 0.9015 1.0
κmImJ 0.0611 0.08 0.1027 0.3834 0.5705 0.8425 1.0 0.9422 0.7209

Appendix D: Computational parameters used for the comparison with the semi-classical method

We take the mean velocity v0 = 1436.14 m s−1. The relative probabilities used for the state selector
probabilities PR0

and the detector coefficients cRD are given in Table II. Where applicable, the parameters
were chosen to match those in the supplementary information of Godsi et al. [53].

Table II. Relative probabilities of the state selector ηmImJ and the detector κmImJ , as used in the comparison to
the semi-classical method of Godsi et al. [53]. The state selector probabilities PR0 are calculated as PR0 = PmImJ ≡
ηmImJ /

∑
mImJ

ηmImJ and the detector coefficients cRD are calculated as cRD = cmImJ ≡ κmImJ /
∑
mImJ

κmImJ .

mI 1 1 1 0 0 0 -1 -1 -1
mJ 1 0 -1 1 0 -1 1 0 -1
ηmImJ 1.0000 0.9755 0.7901 0.1465 0.1111 0.0738 0.0343 0.0299 0.0258
κmImJ 1.00 0.96 0.93 0.53 0.42 0.37 0.21 0.19 0.16
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