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Abstract

Distribution of financial returns defined by the existing GARCH models usu-

ally focus on the overall features such as the location, scale, skewness and kur-

tosis of the distribution. When using such GARCH models for expected

shortfall (ES) estimation, it is difficult to consider specific information about

the tails (such as the shape of the tails of the distribution), resulting in possible

bias in ES estimation. We propose a quantile function threshold GARCH

model to overcome some of the limitations of existing models. The model

allows us to use the information including the skewness and tail shape of the

distribution and the structure changes in the volatility of financial returns to

obtain ES estimates. Our results show that the proposed model outperforms

the benchmark models, confirming that tail shape of the distribution also plays

an important role in ES estimation.
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1 | INTRODUCTION

There are two commonly used risk measures in finance:
Value-at-Risk (VaR) and expected shortfall (ES). By defi-
nition, VaR measures the conditional quantile of the dis-
tribution of financial returns, while ES measures the
conditional expectation of loss given that the loss is
beyond the VaR level. Both measures have some limita-
tions. For example, VaR ignores any loss beyond the VaR
level, it is not a coherence risk measure; it may provide
mislead information to rational investors who wish to
maximize expected utility, and it is hard to use when
investors want to optimize their portfolios, etc.; while ES
needs very large history to see extreme events and it is
hard to be back-tested by using actual breaches etc. See,
for example, Artzner et al. (1997,1999), Acerbi and

Tasche (2002) and Yamai and Yoshiba (2002) and refer-
ences therein.

Since the work of Artzner et al. (1997,1999), ES has
become a more and more popular financial risk measure
and, like VaR, it has also been used widely nowadays in
practice. In this paper, we focus on ES. Various estima-
tion methods for conditional ES can be found in the liter-
ature. Recently, Nadarajah et al. (2014) gave an excellent
review on the estimation methods for ES, in which more
than 150 references were discussed.

The majority of the estimation methods for ES are
parametric in the sense that they are estimated by using a
parametric model that defines the conditional distribution
of returns. For example, Standard GARCH (denoted by S-
GARCH) models of Engle (1982) and Bollerslev (1986) are
not only popular for estimating volatility but also often
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used for studying VaR of returns, see, for example, Poon
and Granger (2003). ES can then be calculated easily from
the distributions defined by the S-GARCH models.

Recently, in addition to the normal distribution, other
standard distributions have also been used for the inno-
vation term of the S-GARCH models in order to capture
various important features of financial data, which
include the skewed t-distribution, normal-inverse Gauss-
ian distribution (NIG), skewed generalized error distribu-
tion (GED), generalized hyperbolic distribution (GHYP)
and Johnson's SU distribution (JSU), see, for example,
Socgnia and Wilcox (2014), Necula (2009), Önalan (2010),
Theodossiou (2015), Corlu and Corlu (2015) and refer-
ences therein. For convenience, we call the skewed t-,
NIG, skewed GED, GHYP and JSU distributions as stan-
dard distributions in order to distinguish them from the
distribution that we will introduce later in the paper.

S-GARCH models have some limitations. For example,
they assume that only the magnitude and not the positivity
or negativity of unanticipated excess returns affect the volatil-
ities of financial returns. To overcome the limitations of S-
GARCH models, alternative models such as threshold
GARCH (T-GARCH) models have been developed in the lit-
erature. For example, Glosten et al. (1993) proposed a T-
GARCH model, the so-called GJR-GARCH model,
Zakoian (1994) also proposed a threshold GARCH model,
denoted by T-GARCH, and Nelson (1991) developed the
exponential GARCH model, denoted by E-GARCH. More
recently, Yang and Chang (2008) considered a double-thresh-
old GARCH model and Yu et al. (2010) extended the CAV-
iaR idea (Engle and Manganelli, 2004) to T-GARCH and
mixture-GARCH models in order to take into account possi-
ble nonlinearity and structural changes in the VaR process.
These T-GARCH models can also be defined by using the
standard distributions. An excellent review on threshold time
series models in finance was given by Chen et al. (2011).

It is worth noting that GARCH models (including
S-GARCH and T-GARCH) were originally developed for
the conditional volatility of financial returns, which mea-
sures the stability of financial returns with respect to the
average returns. The distribution of returns defined by
GARCH models often mainly focuses on the overall fea-
tures such as location, scale, skewness and kurtosis of the
distribution. When using GARCH models for ES estima-
tions, specific information about the tails such as tail
shape of the distribution cannot be taken into account,
leading to possible bias in ES estimation. Hence, we may
ask: is it safe to use such GARCH models for the estima-
tion of conditional ES? An answer to this question is
obviously very important for financial risk management,
but to our best knowledge, there exists a gap in the litera-
ture because not much work can be found in the litera-
ture to address this research question.

Our main contribution to the literature is that we pro-
pose a novel quantile function model in order to address
this research question. We illustrate our approach by
focusing on the T-GARCH model of Yu et al. (2010)
because it gives a more general formulation for T-
GARCH models, it includes the S-GARCH models as a
special case, and it also allows us to take account of struc-
tural changes in the volatility of financial returns. One of
the advantages of the proposed model is that it allows us
to obtain ES estimates by using the information not only
on the overall features but also on the tail shape of the
distribution, which provides a means for filling the gap in
the literature.

On the other hand, for model estimations, apart from
the maximum likelihood estimation (MLE) method,
Bayesian approach for GARCH models has often been
used recently in the literature. For example, Bauwens
and Lubrano (2002) studied option pricing with asym-
metric GARCH models by using a Bayesian method;
Ausín and Galeano (2007) considered a Bayesian estima-
tion of the Gaussian mixture-GARCH models; a Bayesian
method for estimating volatility asymmetries with a class
of tree structured multivariate GARCH models was pro-
posed by Dellaportas and Vrontos (2007); and Jensen and
Maheu (2013) proposed a Bayesian approach to semi-
parametric multivariate GARCH modelling. More
recently, Virbickaite et al. (2015) gave an excellent review
on Bayesian inference methods for GARCH models. It is
worth noting that the above-mentioned Bayesian estima-
tion methods are generally based on the likelihood func-
tions defined by density functions.

For our proposed model, two main difficulties are
involved in the model estimation. One is that the delay
parameter and multiple thresholds also need to be esti-
mated, and the other is that the likelihood function of
the model parameters is defined by quantile functions. It
is worth noting that estimating a T-GARCH model with
multiple thresholds and a delay parameter is difficult if
the MLE method is used. Hence, in this paper, we use a
Bayesian approach and propose a MCMC estimation
method for parameter estimation in order to facilitate the
use of the proposed model for ES estimation. As the like-
lihood function of the model parameters is defined by
quantile functions, our MCMC algorithm also illustrates
how a quantile function model could be estimated by
using a Bayesian approach, which could be viewed as our
another contribution to the literature.

We further conducted an empirical study on six finan-
cial return series in this paper, which allows us to gain
some insight into the performance of our model and other
models regarding the estimation of ES. In fact, our results
show that the proposed model outperforms all benchmark
models considered in this paper, which confirm that the
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information about the tail shape of the conditional distri-
bution of returns also plays a crucial role in the estimation
of ES. Hence, such information should not be ignored
when estimating ES of financial returns.

The paper is organized as follows. Section 2 introduces
our quantile function T-GARCH model and Section 3 dis-
cusses the estimation method. Section 4 provides some
details about the benchmark models and evaluation
methods for ES estimates. Results on the empirical study
are given in Section 5. Finally, some concluding discus-
sions are given in Section 6. Moreover, proofs of Proposi-
tions are given in Appendices A–D, G, and H, the prior
density functions and detailed MCMC algorithm are given
in Appendices 5 and 6, and some tables about the BIC
values of the estimated models, the results about the cover-
age probabilities of the VaR estimates and the evaluation
results about the ES estimates are given in Appendix I.

2 | QUANTILE FUNCTION T-
GARCH MODEL

Consider the general -regime T-GARCH model

yt = εt
ffiffiffiffi
ht

p
,

ht =
XJ
j=1

α0j +
Xp j

i=1

αijy
2
t− i +

Xq j

ℓ=1

βℓjht−ℓ

 !
I γ j−1 ≤ yt−d < γ j

� �
,

ð1Þ

where I(�) is the indicator function, the regime number J
and the delay parameter d are positive integers, the γj's
are real numbers (thresholds) such that − ∞ =
γ0 < γ1 < � � � < γJ − 1 < γJ = ∞, and pj ≥ 0 and qj ≥ 0
define the order of the model. Moreover, α0j > 0, α jð Þ

i ≥0,
βℓj≥ 0. The εt's are assumed to be i.i.d. with mean 0 and
variance 1. Liu et al. (1997) proved that, under some reg-
ularity conditions, there exist stationary and ergodic solu-
tions satisfying model (1). It is worth noting that in this
paper we assume the delay parameter d�D = {1,…, d0},
where, by following Yu et al. (2010), we let d0 = 3.

As discussed in Section 1, if the innovation term εt
follows a standard distribution, then the conditional ES
estimates obtained from Model (1) may be biased. Hence,
our approach here is to identify a new distribution for the
innovation term so that not only the overall shape of the
distribution but also specific features about the tails can
be taken into account.

Freimer et al. (1988) and Fournier et al. (2007) discussed
the generalized Lambda distributions, denoted by GLD,
that can be a good candidate for our model because GLD
can accurately approximate many commonly used distribu-
tions such as normal, log-normal, Weibull, t-, F- and

skewed t-distributions as well as many others. Moreover, it
contains two parameters that control the skewness of the
distribution and that also determine the relative weights of
the tails. In other words, the skewness of the distribution is
modelled as a result of tail shape and not as an independent
feature of the distribution (Gilchrist, 2000). Therefore, a
model defined by the GLD is more robust to model specifi-
cation errors and it is certainly worth considering this distri-
bution for the estimation of ES of financial returns.

It is worth noting that the GLD has been used in the
finance literature. For example, Corrado (2001) used the
GLD for option pricing, Lee (2003) showed that the GLD
provides a good model for spot exchange rates, Tarsitano
(2004) used the GLD to model income data, and Corlu
and Corlu (2015) studied the performance of GLD in cap-
turing the leptokurtic and skewed behaviour of exchange
rate returns. To our best knowledge, the GLD has not
been used to define a T-GARCH model for the estimation
of ES in the finance literature.

Hence, to make use of the GLD for our model, we
first let εt = {et − μ(θ)}/σ(θ), where et follows the GLD
with mean μ(θ) and variance σ(θ)2, and θ is a vector of
parameters of et. It is seen that εt is a standardized GLD.
Due to the general popularity of order (1, 1) for GARCH
models in finance, we let pj = qj = 1 in the rest of this
paper. Then in this case, model (1) becomes

yt =
ffiffiffiffi
ht

p
εt =

ffiffiffiffi
ht

p
et−μ θð Þð Þ=σ θð Þf g,

ht =
XJ
j=1

α0j + α1jy
2
t−1 + β1jht−1

� �
I γ j−1 ≤ yt−d < γ j

� �
:

ð2Þ

Model (2) says that the conditional distribution of yt is
a scaled standardized GLD and the conditional volatility
of yt is again defined by

ffiffiffiffi
ht

p
.

It is worth noting that the GLD is defined by a qua-
ntile function, which can be expressed by Qgld(τ, θ) =
μgld + sgldQ(τ, η), where τ � (0, 1),

Q τ,ηð Þ= τη1 −1
η1

−
1−τð Þη2 −1

η2
, η1 < 0,η2 < 0, ð3Þ

and θ = (μgld, sgld, η) is the parameter vector of the GLD,
in which η = (η1, η2), μgld is the location of the GLD
and sgld is the scale of the GLD. Hence, function (3)
defines the GLD with location 0 and scale 1. Moreover, η
controls the skewness of the distribution: if η1 = η2 then
the distribution is symmetric, otherwise it is skewed. Fur-
thermore, 1/(−η1) and 1/(−η2) also determine the relative
weights of left and right tails respectively. Hence, both
skewness and tail shape of the distribution are controlled
by η.
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As the GLD is used for the innovation term of our
model, it is reasonable to consider the GLD with location
μgld = 0 and scale sgld = 1 for et. Hence, we let et follows
the GLD defined by Q(τ, η) given by (3). For model (2) to
be well defined, we need to show that et has finite mean
and variance, which can be seen from the following
result.

Proposition 1 Suppose et follows the GLD defined by
(3). Then

μ ηð Þ =E etð Þ= 1
η2 + 1

−
1

η1 + 1
,

σ ηð Þ2 =E e2t
� �

−μ ηð Þ2

=
1
η21

1
2η1 + 1

−
1

η1 + 1ð Þ2
 !

+
1
η22

1
2η2 + 1

−
1

η2 + 1ð Þ2
 !

−
2

η1η2
B η1,η2ð Þ− 1

η1 + 1ð Þ η2 + 1ð Þ
� �

,

ð4Þ

in which B η1,η2ð Þ= Ð 10 τη1 1−τð Þη2dτ . Moreover, let Ω1 =
[−1/2+m0,−m0], Ω2 = [−1+m0,−1/2−m0] and Ω3 =
[−M,−1−m0], where M is a fixed very large
positive number and m0 is a fixed very small positive
number, then both μ(η) and σ(η) are finite on
[3
i,j=1 Ωi ×Ω j

� �
.

See Appendix A for a proof. Note that we let M = 1020

and m0 = 10−20 in this paper to make the parameter
space as large as possible and that B(η1, η2) can be calcu-
lated numerically. As both μ(η) and σ(η) are finite on
[3
i,j=1 Ωi ×Ω j

� �
, model (2) is well defined. Furthermore,

we have the following result.

Proposition 2 Suppose yt follows model (2), where et fol-
lows the GLD defined by (3). Let Qyt τjyt−1,β,η,γ1,dð Þ
be the conditional quantile function of yt and
let Qεt τ,ηð Þ be the quantile function of εt. Then
we have

Qyt τjyt−1,β,η,γ1,dð Þ=
ffiffiffiffi
ht

p
Qεt τ,ηð Þ,

ht =
XJ
j=1

α0j + α1jy
2
t−1 + β1jht−1

� �
I γ j−1 ≤ yt−d < γ j

� �
,

ð5Þ

where Qεt τ,ηð Þ= Q τ,ηð Þ−μ ηð Þf g=σ ηð Þ, β = (α0j, α1j, β1j, j =
1,…, J) and yt = (yt,…, y1).

See Appendix B for a proof. Hence, it follows from
Proposition 2 that Model (5) can be expressed by

Qyt τjyt−1,β,η,γ,dð Þ=
ffiffiffiffi
ht

p Q τ,ηð Þ−μ ηð Þ
σ ηð Þ

	 

,

ht =
XJ
j=1

α0j + α1jy
2
t−1 + β1jht−1

� �
I γ j−1 ≤ yt−d < γ j

� �
,

ð6Þ

which is well defined on the parameter space
�Ω = fαij,β1j,γ j,ηv,d j 0< α0j <M,0≤ α1j,β1j ≤ a<1,0≤ α1j
+ β1j ≤ a<1,γ j�R,η�[3

ℓ1,ℓ2 = 1 Ωℓ1 ×Ωℓ2ð Þ, i=0,1, j = 1,…,
J−1,d�Dg . Model (6) says that conditional distribution
of yt is a scaled standardized GLD with mean 0 and vari-
ance ht, and the skewness and tail shape of the condi-
tional distribution of yt are jointly controlled by η1 and η2.
Moreover, given model (6), the ES can be estimated by
using Proposition 3 below.

Proposition 3 Suppose yt follows Model (6). Then the
conditional expected shortfall of yt at level τ, denoted
by EStτ, is given by:

EStτ =

ffiffiffiffi
ht

p
τσ ηð Þ

τη1 + 1−τ

η1 η1 + 1ð Þ +
1−τð Þη2 + 1− 1−τð Þ

η2 η2 + 1ð Þ

( )
if τ≤ 0:5

ffiffiffiffi
ht

p
1−τð Þσ ηð Þ

τ−τη1 + 1

η1 η1 + 1ð Þ +
1−τð Þ− 1−τð Þη2 + 1

η2 η2 + 1ð Þ

( )
if τ>0:5:

8>>>>><
>>>>>:

ð7Þ

See Appendix C for a proof.
Clearly, to obtain the conditional ES estimates, we

first need to know how to estimate the model parameters,
which we discuss in the next section.

3 | ESTIMATION METHOD

3.1 | Likelihood function

Various methods have been developed in the literature
in order to estimate GLD models. For example, the
method of moment was proposed by Karian et al.
(1996), the method of least squares was discussed by
Ozturk and Dale (1985), the method of percentiles was
developed by Karian and Dudewicz (1999), a starship
estimation method was proposed by King and
MacGillivray (1999), the MLE method was discussed
by Gilchrist (2000) and a two-step procedure that com-
bines the method of moment or percentile and the
MLE to fit the GLD to data was developed by Su
(2007a). Su (2007b) also pointed out that the MLE
method not only is more efficient but also tends to
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produce GLD that has closer first four moments to the
data analysed.

For our model, to write out the likelihood function of
the model parameters, we first need to note that the rela-
tionship between the density function f(y) of a random
variable Y and its quantile function y = Q(τ) is given by f
(y) = (d(Q(τ))/dτ)−1. Moreover, it follows from model (6)
that, for each yt there exists τt � U(0, 1) such that
yt =Q τt,ηð Þ ffiffiffiffi

ht
p

. Then, the likelihood of the observed
returns yT, conditional on the initial observations yd0 , is
given by

π yT jβ,η,γ,dð Þ=
YT

t= d0 + 1

ffiffiffiffi
ht

p
Q0 τt,ηð Þ
σ ηð Þ

� �−1

=
YT

t= d0 + 1

σ ηð Þffiffiffiffi
ht

p
τη1−1
t + 1−τtð Þη2−1

n o

where σ(η) is given by (4).
However, it is very difficult to use the above estima-

tion methods for the proposed model because of the
thresholds and the delay parameter involved in the vola-
tility process. Hence, we propose a MCMC estimation
method for the parameters which requires us to derive
the posterior density function of β, γ, η and d.

3.2 | Posterior distribution

It follows from the Bayesian theorem that the posterior
density function of β, γ, η and d is proportional to the
product of the likelihood of observed returns and
the prior density function of the parameters. Let
π(β, η, γ, d| yT) and π(β, η, γ, d) be the posterior and
prior density functions respectively. Then, conditional
on yd0 , we have

π β,γ,η,djyTð Þ/ π yT jβ,γ,η,dð Þπ β,η,γ,dð Þ

=
YT

t= d0 + 1

σ ηð Þffiffiffiffi
ht

p
τη1−1
t + 1−τtð Þη2−1

n oπ β,η,γ,dð Þ: ð8Þ

Proposition 4 Let Ω= α0j,α1j,β1j,γ j,ηv,d jm0 ≤ α0j <M,
n

0≤ α1j,β1j ≤ a<1,0≤ α1j + β1j ≤ a<1, γ j�R,η�[3
ℓ1,ℓ2 = 1

Ωℓ1 ×Ωℓ2ð Þ, i=0,1, j=1,…,J −1,d�Dg. If π(β, η, γ, d)
is a well-defined density function on Ω, i.e., the
integral of π(β, η, γ, d) on Ω is finite, then the pos-
terior density function (8) is also well defined
on Ω.

See Appendix D for a proof. It is seen that the differ-
ence between �Ω and Ω is in the range of values that α0j
can take. As m0 is very small, this difference can be safely
ignored from a practical point of view, but the proof in
Appendix D shows that it guarantees that the posterior
distribution is well defined on Ω, which is important for
the parameter estimations using a MCMC method.

3.3 | Prior distribution

In practice, it is reasonable to assume that the thresholds
γj � (ymin, ymax) for all possible j, where ymin = min{y1,
…, yT} and ymax = max{y1, …, yT}. To simplify the calcula-
tions, we let the prior density function π(β, γ, η, d) =
π(β)π(γ)π(η)π(d), where γj is uniformly distributed on
(ymin, ymax), d is uniformly distributed on D, and αij, β1j
and −ηv follow a log-normal distribution truncated on
the parameter space Ω. Clearly, the prior distribution is
well defined on the parameter space of the posterior
distribution.

The detailed formulas for the prior density function
are given in Appendix E, where the σij's, s1j's and λv's are
the corresponding scale parameters, which measure the
strength of the prior information: large (small) values
represent weak (strong) prior information used in the
parameter estimation.

In this paper, we deliberately let σij = s1j = λv = 2.
This means that, for example, the standard deviation

(SD) of αij is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ

2
ij eσ

2
ij −1

� �r
=54:1, which is very

large. Hence, the results obtained in this paper are robust
to the choice of π(β, γ, η, d).

3.4 | MCMC algorithm

One of the basic MCMC methods is the Metropolis-Has-
tings algorithm (see for example, Gamerman and Lopes,
2002, and Geyer, 2011). In this method, we first generate
a candidate parameter value from a chosen distribution
and then we accept this proposed value as the next
parameter value with a known probability. By repeating
the two steps multiple times, we produce a sequence of
parameter values that form a Markov chain in the param-
eter space Ω, whose equilibrium distribution is the poste-
rior distribution of the parameters; see for example,
Brooks (1998) and O'Hagan and Forster (2004).

For our method, we let β, γ, η and d be the current
parameter values, and β', γ', η' and d' the proposed values.
Appendix F shows the detailed steps of our MCMC
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algorithm. Hence, after a burn-in period, we may collect
posterior samples of parameters from the Markov chain
generated by our MCMC algorithm, based on which the
model parameters can be estimated, and hence, condi-
tional ES estimates at a given level can be obtained.

It is seen from Appendix F that our estimation
method can handle multiple thresholds and the delay
parameter easily and has no difficulties in handling the
complex structure of the parameter space. However, it is
worth noting that, in the MLE method, a grid search pro-
cedure for the threshold and delay parameter usually
needs to be used, which becomes impractical when the
number of thresholds is greater than one.

4 | BENCHMARK MODELS AND
EVALUATION OF ES ESTIMATES

4.1 | Benchmark models and ES
estimations

There are many models in the literature that have been
used to estimate ES, see Nadarajah et al. (2014). For the
purpose of this study, we selected our benchmark models
as follows.

First, note that our model is a parametric model that
is related to a GARCH model. Hence, our main bench-
mark models are also chosen to be parametric. Specifi-
cally, we use S-GARCH, GJR-GARCH, E-GARCH and T-
GARCH models as our benchmark models, for which the
models of order (1, 1) are defined by yt = σtεt, where σt is
given below:

S-GARCH(1,1) model: σ2t =ω+ α jε2t−1 + β jσ
2
t−1.

E-GARCH(1,1) model: ln σ2t
� �

=ω+ α1εt−1 + γ1 jεtð
−1j−Ejεt−1jÞ+ β1ln σ2t−1

� �
.

GJR-GARCH(1,1) model: σ2t =ω+ α1ε2t−1 + γ1It−1ε2t−1

+ β1σ
2
t−1 , where It− 1 = 1 if εt− 1≤ 0 and It− 1 = 0

otherwise.
T-GARCH(1, 1)) model: σt = ω + α1(| εt − 1| −η1εt − 1)

+ β1σt − 1.

Moreover, the innovation term of each GARCH
model is assumed to follow any one of the following stan-
dard distributions, that is, the skewed t-, NIG, skewed
GED, GHYP and JSU distributions, resulting in 20 bench-
mark GARCH models in total. These distributions were
chosen because they are able to capture much more com-
plicated data structures of financial returns and have
become more and more popular distributions in the
finance literature. It is seen that, apart from the S-
GARCH models, all other models are able to deal with
the asymmetric impact of positive and negative returns.

As these benchmark GARCH models are parametric,
a detailed formula for ES estimation can be derived for
each model. However, rather than doing this for each
model, we give a general formula for ES in a quantile
function form in Proposition 5 for all benchmark
GARCH models.

Proposition 5 For the above benchmark GARCH models,
the conditional expected shortfall at the τ0th level is
given by

EStτ0 =

σt
τ0

ðτ0
0
Qεt vð Þdv if τ0 ≤ 0:5

σt
1−τ0

ð1
τ0

Qεt vð Þdv if τ0 > 0:5,

8>>><
>>>:

where Qεt vð Þ is the quantile function of the innovation
term of the models.

See Appendix G for a proof. Note that EStτ0 given in
Proposition 5 can now be estimated by using the statisti-
cal software R.

It is worth noting that our proposed model is also a
quantile-based model. Recently, Taylor (2008) proposed
an exponentially weighted quantile regression method
(denoted by E-QR) for VaR and ES. This method is also
quantile-based but it is semi-parametric because it does
not assume a distribution when estimating VaR. Hence
we choose the E-QR model as our another benchmark
model. For the E-QR model, the conditional VaR can also
be estimated by using the statistical software R and the
conditional ES estimates can then be obtained by using
the formulas (13) and (14) in the paper of Taylor (2008).

Finally, we compare our ES estimates with those
obtained from the empirical estimation method. This is
the simplest non-parametric method, according to which,
the ES can be estimated as the average of the observed
returns that are smaller (or larger) than the empirical
τ0th quantile of the returns if τ0 ≤ 0.5 (or τ0 > 0.5).

4.2 | Evaluation of ES estimates

We follow the suggestions of McNeil and Frey (2000) to
back-test our ES estimates. First, we define the standard-
ized residuals, denoted by rt. Specifically, for our model,
we let rt = yt− ÊStτ0

� �
=
ffiffiffiffi
ĥt

p
, and for the benchmark

GARCH models, we let rt = yt− ÊStτ0
� �

=σ̂t , where ÊStτ0 is
the estimated conditional ES of yt at level τ0 and

ffiffiffiffi
ĥt

p
and

σ̂t are the estimated conditional volatilities from our
model and the benchmark GARCH models respectively.
Then, we have the following result.
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Proposition 6 For model (6), let Rt = yt−EStτ0ð Þ= ffiffiffiffi
ht

p
and for the benchmark GARCH models, let
Rt = yt−EStτ0ð Þ=σt . Then under these models, the
corresponding Rt are i.i.d. random variables and
E Rtjyt ≤VaRtτ0ð Þ=0 if τ0≤ 0.5 and E Rtjyt≥VaRtτ0ð Þ
=0 if τ0 > 0.5.

See Appendix H for a proof. We further define the
exceedance residuals by r1t = rt;yt ≤ ^VaRtτ0 ,1≤ t≤T

� �
if

τ0≤ 0.5, and r2t = rt;yt≥ ^VaRtτ0 ,1≤ t≤T
� �

otherwise.
Then, following the suggestions of McNeil and Frey (2000),
we used the Ljung-Box test for zero autocorrelation in {rt},
and the Bootstrap method (see, for example, Efron and
Tibshirani, 1993) for the zero mean of {rjt}, where j = 1, 2.
A rejection on the null of either of the tests suggests that
the models used for ES estimation may not be satisfactory,
and hence the ES estimates could be biased.

For the E-QR model, we do not have the estimates for
the volatility process. Hence, we follow the work of Tay-
lor (2008) and calculate the standardized residuals by
rt = yt− ÊStτ0

� �
= ^VaRtτ0 , where ^VaRtτ0 is the estimated

τ0th conditional quantile of yt. Then we again use the
Bootstrap test for the exceedance residuals and the

Ljung-Box test for the standardized residuals in order to
evaluate the dynamic properties of the ES estimates.

For the empirical method, we define rt as we did for
the E-QR model because the sample SD can be seriously
affected by extreme returns. Similarly, the Bootstrap and
Ljung-Box tests are also used for zero mean and iid of the
residuals respectively.

5 | EMPIRICAL STUDY

We conducted an empirical study on six daily stock
returns, denoted by xt. They are: the French CAC40 (2/1/
2004–October 19, 2011) (see Yahoo Finance, 2019a), the
German DAX30 (2/1/2004–2/11/2011) (see Yahoo
Finance, 2019b), British FTSE100 (2/1/2004–November
28, 2011) (see Yahoo Finance, 2019c), Japanese
Nikkei225 (2/1/2004–1/3/2012) (see Yahoo Finance,
2019d), the US Nasdaq (2/1/2004–8/12/2011) (see Yahoo
Finance, 2019e) and the US S&P500 (2/1/2004–8/12/
2011) (see Yahoo Finance, 2019f). Each sample period
consists of 2000 daily returns and covers the financial cri-
sis period between 2008 and 2009.

FIGURE 1 Time series

plots of the data, where the first

part of the data (before the

lighter vertical line) in each plot

corresponds to the first moving

window of 1,000 days
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Figure 1 shows the time series plots of the data and
Table 1 provides some summary statistics about the data.
It is seen that the average returns in the observation
periods are slightly negative and standard deviations of
the returns are similar. Moreover, all returns are only
slightly skewed as all skewness statistics are between
−0.5 and 0.5 or very close to them. However, the excess
kurtosis for all returns is very high. Table 1 suggests that
the overall shape of the distribution of returns is slightly
skewed with heavy tails.

We adopted a moving window approach, suggested
by Kuester et al. (2006), for model estimations. Specifi-
cally, we defined a moving window Wt = {xt, …, xt + 1000

− 1}, where t = 1, …, 1000. Hence, each moving window
contains 1,000 observations. The first part of the data
(before the lighter vertical line) in each plot of Figure 1
corresponds to the first moving window W1 of 1,000 days.
Note that we did not estimate the conditional mean of
the returns by following the common practice (see Poon
and Granger, 2003). Hence, we let yℓ = xℓ−�x , where
xℓ�Wt and �x is the mean of the 1,000 in-sample returns

in Wt, and the parameter estimation methods were
applied to yℓ.

Due to the popularity of T-GARCH models with two
regimes in the finance literature, in this empirical study,
we let J = 2 in model (6). Note that the benchmark
threshold GARCH models also have two regimes. We
checked BIC values of the benchmark GARCH models
with various orders. We found that the minimum value
of BIC always corresponds to a model of order (1, 1). See
Tables 4-6 in Appendix I. Hence, all relevant models used
in this empirical study have order (1, 1) for comparison
purposes.

In this study, we consider the conditional ES esti-
mates at the following six levels: 1%, 2.5%, 5%, 95%, 97.5%
and 99%. Hence, for each return series and on each mov-
ing window, 20 benchmark GARCH models, 1 empirical
model and 6 E-QR models (one for each level) were esti-
mated, resulting in 162 estimated benchmark models on
each moving window as we considered six return series
in total. For illustration purposes, the estimated parame-
ters of our models corresponding to W1 and W350 are

TABLE 1 Summary statistics of

the data
CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 S&P500

Mean −0.006 −0.005 −0.002 −0.007 −0.010 −0.007

SD 0.640 0.628 0.561 0.648 0.692 0.604

Skewness 0.037 0.016 −0.146 −0.204 −0.571 −0.303

Kurtosis 7.663 7.277 8.199 6.444 9.312 9.872

TABLE 2 The estimated parameters derived using the returns in W1 and W350, respectively

CAC40 α01 α11 α02 α12 β11 β12 η1 η2 γ1 d

W1 0.192 0.142 0.082 0.118 0.128 0.183 −0.009 −0.009 −0.166 2

W350 0.207 0.239 0.021 0.103 0.383 0.729 −0.010 −0.009 −0.230 1

DAX30 α01 α11 α02 α12 β11 β12 η1 η2 γ1 d

W1 0.171 0.126 0.085 0.138 0.198 0.169 −0.010 −0.009 −0.036 2

W350 0.250 0.251 0.021 0.100 0.219 0.735 −0.010 −0.009 −0.250 1

FTSE100 α01 α11 α02 α12 β11 β12 η1 η2 γ1 d

W1 0.109 0.215 0.055 0.154 0.196 0.222 −0.010 −0.008 −0.151 1

W350 0.110 0.203 0.033 0.131 0.630 0.685 −0.009 −0.009 −0.181 1

NASDAQ α01 α11 α02 α12 β11 β12 η1 η2 γ1 d

W1 0.188 0.079 0.118 0.084 0.178 0.126 −0.009 −0.009 −0.019 2

W350 0.028 0.176 0.008 0.064 0.809 0.859 −0.010 −0.009 −0.139 1

NIKKEI225 α01 α11 α02 α12 β11 β12 η1 η2 γ1 d

W1 0.270 0.224 0.112 0.046 0.189 0.270 −0.010 −0.008 −0.165 1

W350 0.401 0.244 0.039 0.159 0.216 0.644 −0.009 −0.009 −0.221 1

S&P500 α01 α11 α02 α12 β11 β12 η1 η2 γ1 d

W1 0.110 0.164 0.063 0.088 0.161 0.159 −0.010 −0.009 −0.063 2

W350 0.012 0.197 0.011 0.048 0.790 0.867 −0.009 −0.008 −0.016 1
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given in Table 2, where W350 contains observations in the
2008–2009 financial crisis period. It is seen that the vola-
tility persistence of all six return series is much stronger
during the financial crisis period. It is worth noting that
the estimates of η1 and η2 are very similar, which suggests
that the conditional distribution of the returns is only
slightly skewed. Moreover, the absolute value of η1 and η2
are small, suggesting that the conditional density func-
tion of the yt has heavy tails on both sides and that both
tails have similar shapes.

For each moving window Wt, the conditional ES
estimates at a given level can be calculated by using
Proposition 3 for our model and those discussed in Sec-
tion 4 for the benchmark models. Hence, when t takes
values from 1 to 1,000, we obtain one-day-ahead post-
sample ES estimates for the next 1,000 days at a given
level.

Figure 2 shows the one-step-ahead conditional ES
estimates at levels 1%, 5%, 95% and 99% for the last
1,000 days of the six return series by using our model.
Clearly, the dynamics of the ES processes are similar to
those of the returns.

Before checking the ES estimates, we check the cover-
age probability of ^VaRtτ0 at six quantile levels, that is, let
τ0 equal to 1%, 2.5%, 5%, 95%, 97.5% and 99% respectively.
The MSE value between the true levels of τ0 and the
corresponding estimated coverage probabilities of ^VaRtτ0

provides a simple measure about the performance of a
model in studying VaR: A good model corresponds to a
smaller value of MSE. The MSE values for all models are
given in Table 7 in Appendix I. Clearly, all models per-
formed similarly well in studying VaR, which suggests
that the proposed model is compatible with the bench-
mark models on this aspect and which also provides
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FIGURE 2 One-step-ahead

conditional 1% (lower red), 5%

(lower black), 95% (top black)

and 99% (top red) ES estimates

for the last 1,000 days, obtained

from our model. The grey curves

are the observed returns [Colour

figure can be viewed at

wileyonlinelibrary.com]
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some supports to the use of the benchmark models in
studying VaR for financial data.

However, it is worth noting that a model that per-
forms well in estimating VaR may not perform well in
estimating ES because the estimation of VaR ignores
important information regarding the tails of the

underlying distributions, but that of ES does not. Hence,
we now check how these models perform regarding the
estimation of ES for financial returns. We back-test the
ES estimates at the six levels. Tables 8 to 13 in Appendix
I show the p-values of the Ljung-Box (LB) test for the
standardized residuals and the Bootstrap test for the

TABLE 3 Number of rejections in the ES back-tests (Ljung-Box and Bootstrap) for all models at levels 1%, 2.5%, 5%, 95%, 97.5%

and 99%

Our model

CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total
(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)
(0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 1)

E-QR CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total

(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)

(0, 1) (0, 3) (0, 2) (0, 2) (1, 2) (0, 1) (1, 11)

Empirical CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total

(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)

(1, 0) (0, 0) (1, 0) (1, 0) (1, 0) (1, 0) (5, 0)

S-GARCH CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total

(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)

Skewed t- (0, 0) (2, 1) (0, 0) (0, 0) (0, 2) (1, 6) (3, 9)

Skewed GED (0, 4) (0, 5) (0, 5) (0, 6) (0, 6) (0, 6) (0, 32)

NIG (0, 4) (0, 5) (0, 5) (0, 6) (0, 5) (0, 6) (0, 31)

HGYP (0, 4) (0, 4) (0, 6) (0, 5) (0, 5) (0, 6) (0, 30)

SJU (0, 4) (0, 5) (0, 6) (0, 6) (0, 5) (0, 6) (0, 32)

GJR-GARCH CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total

(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)

Skewed t- (0, 0) (0, 0) (0, 0) (0, 2) (0, 1) (2, 6) (2, 9)

Skewed GED (0, 5) (0, 5) (0, 6) (0, 6) (0, 5) (0, 6) (0, 33)

NIG (0, 5) (0, 5) (0, 6) (0, 6) (0, 6) (3, 6) (3, 34)

HGYP (0, 5) (0, 5) (0, 6) (0, 5) (0, 6) (1, 6) (1, 33)

SJU (0, 6) (0, 5) (0, 6) (0, 6) (0, 6) (2, 6) (2, 35)

E-GARCH CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total

(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)

Skewed t- (0, 0) (0, 0) (0, 0) (0, 0) (1, 1) (0, 3) (1, 4)

Skewed GED (0, 6) (0, 6) (0, 6) (0, 6) (1, 4) (0, 5) (1, 33)

NIG (0, 6) (0, 5) (0, 6) (0, 6) (1, 5) (0, 6) (1, 34)

HGYP (0, 6) (0, 5) (0, 6) (0, 6) (0, 5) (0, 5) (0, 33)

SJU (0, 6) (0, 5) (0, 5) (0, 6) (1, 5) (1, 6) (2, 33)

T-GARCH CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 SP500 Total

(L, B) (L, B) (L, B) (L, B) (L, B) (L, B) (L, B)

Skewed t- (0, 0) (0, 0) (0, 0) (0, 0) (0, 4) (1, 5) (1, 9)

Skewed GED (0, 6) (0, 5) (0, 5) (0, 6) (0, 4) (0, 5) (0, 31)

NIG (0, 6) (0, 5) (0, 6) (0, 6) (0, 4) (0, 5) (0, 32)

HGYP (0, 6) (0, 6) (0, 6) (0, 6) (1, 5) (6, 6) (7, 35)

SJU (0, 6) (0, 5) (0, 5) (0, 6) (1, 5) (0, 5) (1, 32)
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TABLE 4 BIC values of GARCH

models of order (p, q), p, q = 1, 2
CAC 40

S-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.86 0.86 0.85 0.86 0.85

(1, 2) 0.86 0.86 0.86 0.87 0.86

(2, 1) 0.86 0.86 0.86 0.87 0.86

(2, 2) 0.87 0.87 0.87 0.87 0.87

GJR-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.82 0.82 0.82 0.83 0.82

(1, 2) 0.83 0.83 0.83 0.83 0.83

(2, 1) 0.83 0.83 0.83 0.84 0.83

(2, 2) 0.84 0.84 0.84 0.84 0.84

E-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.80 0.80 0.80 0.81 0.80

(1, 2) 0.81 0.81 0.81 0.81 0.81

(2, 1) 0.81 0.81 0.81 0.82 0.81

(2, 2) 0.81 0.82 0.82 0.82 0.82

T-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.81 0.81 0.81 0.82 0.81

(1, 2) 0.81 0.81 0.81 0.82 0.81

(2, 1) 0.81 0.81 0.81 0.82 0.81

(2, 2) 0.81 0.81 0.81 0.82 0.81

DAX 30

S-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.95 0.94 0.95 0.96 0.95

(1, 2) 0.96 0.95 0.96 0.96 0.96

(2, 1) 0.96 0.95 0.96 0.96 0.96

(2, 2) 0.97 0.96 0.96 0.97 0.96

GJR-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.93 0.92 0.93 0.93 0.93

(1, 2) 0.94 0.93 0.93 0.94 0.93

(2, 1) 0.94 0.94 0.94 0.95 0.94

(2, 2) 0.95 0.94 0.95 0.95 0.95

E-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.92 0.91 0.92 0.92 0.92

(1, 2) 0.93 0.92 0.92 0.93 0.92

(2, 1) 0.93 0.92 0.93 0.93 0.93

(2, 2) 0.94 0.93 0.94 0.94 0.94

T-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.92 0.92 0.92 0.93 0.92

(1, 2) 0.92 0.92 0.92 0.93 0.92

(2, 1) 0.92 0.92 0.92 0.93 0.92

(2, 2) 0.92 0.92 0.92 0.93 0.92
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TABLE 5 BIC values of GARCH

models of order (p, q), p, q = 1, 2
FTSE 100

S-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.51 0.51 0.51 0.51 0.51

(1, 2) 0.52 0.52 0.51 0.52 0.51

(2, 1) 0.51 0.52 0.51 0.52 0.51

(2, 2) 0.52 0.52 0.52 0.53 0.52

GJR-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.48 0.48 0.48 0.49 0.48

(1, 2) 0.49 0.49 0.49 0.49 0.49

(2, 1) 0.49 0.50 0.49 0.50 0.49

(2, 2) 0.50 0.50 0.50 0.51 0.50

E-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.47 0.48 0.47 0.48 0.47

(1, 2) 0.48 0.48 0.48 0.49 0.48

(2, 1) 0.48 0.48 0.48 0.49 0.48

(2, 2) 0.49 0.49 0.49 0.50 0.49

T-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.47 0.47 0.47 0.48 0.47

(1, 2) 0.47 0.47 0.47 0.48 0.47

(2, 1) 0.47 0.47 0.47 0.48 0.47

(2, 2) 0.47 0.47 0.47 0.48 0.47

NASDAQ

S-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.07 1.06 1.07 1.08 1.07

(1, 2) 1.08 1.07 1.08 1.08 1.08

(2, 1) 1.07 1.07 1.07 1.08 1.07

(2, 2) 1.08 1.07 1.08 1.08 1.08

GJR-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.05 1.05 1.05 1.06 1.05

(1, 2) 1.06 1.06 1.06 1.07 1.06

(2, 1) 1.06 1.06 1.06 1.07 1.06

(2, 2) 1.07 1.06 1.06 1.07 1.06

E-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.05 1.05 1.05 1.06 1.05

(1, 2) 1.06 1.05 1.06 1.06 1.06

(2, 1) 1.05 1.05 1.05 1.05 1.05

(2, 2) 1.05 1.05 1.05 1.06 1.05

T-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.06 1.05 1.06 1.06 1.06

(1, 2) 1.06 1.05 1.06 1.06 1.06

(2, 1) 1.06 1.05 1.06 1.06 1.06

(2, 2) 1.06 1.05 1.06 1.06 1.06
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TABLE 6 BIC values of GARCH

models of order (p, q), p, q = 1, 2
NIKKEI 225

S-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.34 1.34 1.34 1.34 1.33

(1, 2) 1.35 1.35 1.34 1.35 1.34

(2, 1) 1.35 1.35 1.34 1.35 1.34

(2, 2) 1.35 1.35 1.35 1.35 1.35

GJR-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.33 1.32 1.32 1.33 1.32

(1, 2) 1.33 1.33 1.33 1.34 1.33

(2, 1) 1.34 1.33 1.33 1.34 1.33

(2, 2) 1.34 1.34 1.34 1.35 1.34

E-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.32 1.31 1.31 1.32 1.31

(1, 2) 1.32 1.32 1.32 1.33 1.32

(2, 1) 1.32 1.32 1.32 1.33 1.32

(2, 2) 1.33 1.32 1.33 1.33 1.33

T-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 1.31 1.31 1.31 1.32 1.31

(1, 2) 1.31 1.31 1.31 1.32 1.31

(2, 1) 1.31 1.31 1.31 1.32 1.31

(2, 2) 1.31 1.31 1.31 1.32 1.31

S&P 500

S-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.51 0.50 0.51 0.51 0.51

(1, 2) 0.52 0.51 0.52 0.52 0.52

(2, 1) 0.51 0.51 0.51 0.52 0.51

(2, 2) 0.52 0.51 0.52 0.52 0.52

GJR-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.48 0.48 0.48 0.49 0.48

(1, 2) 0.49 0.48 0.49 0.50 0.49

(2, 1) 0.50 0.49 0.49 0.50 0.49

(2, 2) 0.50 0.49 0.49 0.50 0.49

E-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.47 0.47 0.47 0.48 0.47

(1, 2) 0.48 0.47 0.48 0.48 0.48

(2, 1) 0.47 0.47 0.47 0.48 0.47

(2, 2) 0.49 0.48 0.48 0.49 0.49

T-GARCH / order Skewed t- Skewed GED NIG GHYP JSU

(1, 1) 0.49 0.48 0.48 0.49 0.48

(1, 2) 0.49 0.48 0.48 0.49 0.48

(2, 1) 0.49 0.48 0.48 0.49 0.48

(2, 2) 0.49 0.48 0.48 0.49 0.48
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exceedance residuals. Tables 3 summarizes the results of
the tests, where L and B give the total number of rejec-
tions in the LB test and Bootstrap test respectively among
the six levels. For example, for the CAC40 return series,
we have (L, B) = (0, 1) for our model. Then the number 0
shows that the standardized residuals on all six levels are
iid, and the number 1 indicates that except for one level,
the exceedance residuals have a zero mean. Hence, a
lower number of rejections in both tests corresponds to a
better model for conditional ES estimation.

The final column of Table 3 gives the total number of
rejections for each back-test among the six return series.
So the results for our model are very good because there
is only one Bootstrap rejection that occurred for CAC40
at a single level only.

Several findings can be seen from Table 3: (i) Our
model outperforms all benchmark models regarding the
post-sample ES estimation at all levels considered in this
paper, which provides further evidence on the robustness

of the proposed model as it performed very well through-
out the observation period including the financial crisis
period. (ii) Among the benchmark GARCH models, the
overall performance of the skewed t-distribution is better
than all other standard distributions, which provides
some support to the used of skewed t-distribution in prac-
tice. (iii) The empirical method did not reject the null of
the Bootstrap test but the standardized residuals could be
correlated. (iv) The ES estimates obtained from most
benchmark GARCH models and the E-QR models
rejected the null hypothesis of the Bootstrap test, which
suggests that the ES estimates obtained from these
models could be biased.

Some possible reasons for the satisfactory perfor-
mance of our model are discussed below. One is that the
ES estimates from our model can take account of more
information about the tails of the conditional distribution
of yt, but such information is not considered by bench-
mark models. Another possible reason could be that our

TABLE 7 MSEs between the true

level τ0 and the estimated coverage

probability of ^VaRtτ0 for all models and

all data sets

CAC40 DAX30 FTSE100 NASDAQ NIKKEI225 S&P500

Our model 0.001 0.000 0.000 0.001 0.000 0.001

E-QR 0.000 0.000 0.000 0.000 0.000 0.000

S-GARCH

Skewed t 0.000 0.000 0.000 0.000 0.000 0.000

Skewed GED 0.000 0.000 0.000 0.000 0.000 0.000

NIG 0.000 0.000 0.000 0.000 0.000 0.000

HGYP 0.000 0.000 0.000 0.000 0.000 0.000

JSU 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH

Skewed t 0.000 0.000 0.000 0.000 0.000 0.000

Skewed GED 0.000 0.000 0.000 0.000 0.000 0.000

NIG 0.000 0.000 0.000 0.000 0.000 0.000

HGYP 0.000 0.000 0.000 0.000 0.000 0.000

JSU 0.000 0.000 0.000 0.000 0.000 0.000

E-GARCH

Skewed t 0.000 0.000 0.000 0.000 0.000 0.000

Skewed GED 0.000 0.000 0.000 0.000 0.000 0.000

NIG 0.000 0.000 0.000 0.000 0.000 0.000

HGYP 0.000 0.000 0.000 0.000 0.000 0.000

JSU 0.000 0.000 0.000 0.000 0.000 0.000

T-GARCH

Skewed t 0.000 0.000 0.000 0.000 0.000 0.000

Skewed GED 0.000 0.000 0.000 0.000 0.000 0.000

NIG 0.000 0.000 0.000 0.000 0.000 0.000

HGYP 0.000 0.000 0.000 0.000 0.000 0.000

JSU 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE 8 p-values of the back-test

for ES—CAC40
Our model E-QR Empirical

τ LB Bootrap LB Bootrap LB Bootrap

.01 .44 .01 .80 .33 .84 .31

.025 .08 .01 .53 .05 .02 .19

.05 .09 .00 .43 .32 .00 .03

.95 .89 .09 .85 .04 .61 .10

.975 1.00 .08 .95 .00 .94 .31

.99 .98 .14 .98 .01 .95 .66

GJR-GARCH S-GARCH E-GARCH T-GARCH

Skewed t- LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .35 .90 .55 .56 .63 .97 .32 .81

.025 .45 .25 .92 .65 .08 .42 .29 .26

.05 .35 .04 .99 .08 .63 .28 .90 .03

.95 .90 .59 .96 .74 .06 .91 .63 .62

.975 .73 .42 .57 .38 .99 .71 .89 .48

.99 .90 .70 .56 .79 .66 .96 .70 .91

Skewed GED LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .71 .00 .95 .05 .37 .00 .21 .00

.025 .25 .00 .98 .00 .55 .00 .56 .00

.05 .29 .00 .36 .00 .60 .00 .59 .00

.95 .83 .00 .55 .00 .97 .00 .88 .00

.975 .76 .00 .58 .00 .67 .00 .09 .00

.99 .98 .01 .52 .03 .18 .00 .68 .00

NIG LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .61 .00 .67 .06 .70 .00 .47 .00

.025 .35 .00 .98 .00 .64 .00 .35 .00

.05 .56 .00 .39 .00 .28 .00 .53 .00

.95 .64 .00 .98 .00 .80 .00 .88 .00

.975 .94 .00 .64 .00 .94 .00 .20 .00

.99 .80 .01 .54 .03 .02 .00 .45 .00

GHYP LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .74 .01 .83 .06 .30 .00 .11 .00

.025 .26 .00 .98 .00 .32 .00 .26 .00

.05 .12 .00 .57 .00 .84 .00 .85 .00

.95 .74 .00 .96 .00 .48 .00 .91 .00

.975 .63 .00 .63 .00 .95 .00 .47 .00

.99 .98 .00 .21 .03 .19 .00 .18 .00

JSU LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .76 .00 .83 .06 .39 .00 .24 .00

.025 .19 .00 .99 .00 1.00 .00 .83 .00

.05 .89 .00 .41 .00 .11 .00 .20 .00

.95 .14 .00 .96 .00 .99 .00 .80 .00

.975 .52 .00 .64 .00 .87 .00 .63 .00

.99 .74 .00 .55 .02 .72 .00 .62 .00
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TABLE 9 p-values of the back-test

for ES—DAX30
Our model E-QR Empirical

τ LB Bootrap LB Bootrap LB Bootrap

.01 .01 .06 .32 .14 .17 .49

.025 .56 .02 .45 .00 .90 .14

.05 .02 .01 .66 .00 .07 .06

.95 .16 .07 .99 .03 .09 .21

.975 .13 .03 .98 .36 .40 .83

.99 .90 .02 .80 .00 1.00 .58

GJR-GARCH S-GARCH E-GARCH T-GARCH

Skewed t- LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .16 .49 .00 .00 .70 .26 .24 .78

.025 .83 .06 .79 .90 .86 .09 .58 .12

.05 1.00 .43 .99 .04 .64 .11 .66 .03

.95 .25 .02 .53 .18 .66 .86 .30 .19

.975 .69 .03 .00 .08 .15 .27 .85 .09

.99 .38 .00 .56 .19 .70 .03 .23 .11

Skewed GED LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .51 .02 .64 .07 .62 .00 .42 .01

.025 .83 .00 .98 .00 .40 .00 .74 .00

.05 .98 .00 .91 .00 .94 .00 .56 .00

.95 .15 .00 .94 .00 .91 .00 .41 .00

.975 .03 .00 .53 .00 .27 .00 .71 .00

.99 .42 .00 .38 .00 .53 .00 .73 .00

NIG LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .96 .04 .66 .07 .81 .01 .48 .01

.025 .69 .00 1.00 .00 .57 .00 .77 .00

.05 .58 .00 .95 .00 .71 .00 .69 .00

.95 .18 .00 .77 .00 .87 .00 .32 .00

.975 .91 .00 .73 .00 .31 .00 .83 .00

.99 .68 .00 .79 .00 .40 .00 .84 .00

GHYP LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .90 .02 .79 .08 .39 .01 .35 .00

.025 1.00 .00 .99 .01 .83 .00 .65 .00

.05 .31 .00 .97 .00 .58 .00 1.00 .00

.95 .07 .00 .99 .00 .54 .00 .98 .00

.975 .05 .00 .77 .00 .47 .00 .72 .00

.99 .55 .00 .46 .00 .39 .00 .73 .00

JSU LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .91 .03 .73 .08 .62 .01 .40 .01

.025 .71 .00 1.00 .00 .58 .00 .88 .00

.05 .96 .00 .84 .00 1.00 .00 .84 .00

.95 .23 .00 .99 .00 .83 .00 .82 .00

.975 .27 .00 .81 .00 .26 .00 .91 .00

.99 .59 .00 .80 .00 .22 .00 .70 .00
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TABLE 10 p-values of the back-

test for ES—FTSE100
Our model E-QR Empirical

τ LB Bootrap LB Bootrap LB Bootrap

.01 .41 .01 .18 .62 .76 .19

.025 .16 .02 .84 .18 .02 .28

.05 .62 .01 .04 .11 .00 .30

.95 .87 .12 .99 .11 .99 .12

.975 .89 .09 .88 .00 .66 .15

.99 .77 .02 .22 .00 .80 .09

GJR-GARCH S-GARCH E-GARCH T-GARCH

Skewed t- LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .88 .47 .54 .56 .83 .60 .79 .70

.025 .96 .50 .88 .21 .96 .52 .98 .74

.05 .99 .26 .81 .26 .28 .35 .95 .25

.95 .97 .78 .82 .06 .28 .66 .74 .65

.975 .85 .38 .98 .06 .93 1.00 .99 .72

.99 .97 .10 .52 .62 .99 .06 .99 .02

Skewed GED LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .89 .00 .95 .00 .99 .00 .98 .00

.025 .77 .00 .96 .00 .77 .00 .91 .00

.05 .66 .00 .15 .00 .75 .00 .71 .00

.95 .94 .00 .58 .00 .59 .00 .73 .00

.975 .09 .00 .83 .00 .78 .00 .98 .00

.99 .70 .00 .84 .01 .97 .00 .96 .01

NIG LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .93 .00 .62 .00 1.00 .00 .93 .00

.025 .90 .00 .98 .00 .99 .00 .72 .00

.05 .79 .00 .57 .00 .95 .00 .69 .00

.95 .83 .00 .98 .00 .86 .00 .60 .00

.975 .75 .00 .88 .00 .99 .00 .58 .00

.99 .95 .00 .84 .01 .98 .00 1.00 .00

GHYP LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .96 .00 .99 .00 .93 .00 .89 .00

.025 .93 .00 .97 .00 .85 .00 .54 .00

.05 .66 .00 .02 .00 .88 .00 .88 .00

.95 .76 .00 .83 .00 .27 .00 .77 .00

.975 .01 .00 .90 .00 .99 .00 .49 .00

.99 .41 .00 .83 .00 .93 .00 .90 .00

JSU LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .94 .00 .89 .00 .98 .01 .95 .01

.025 .93 .00 .82 .00 .93 .00 .74 .00

.05 .90 .00 .37 .00 .88 .00 .53 .00

.95 .54 .00 .59 .00 .68 .00 .35 .00

.975 .01 .00 .67 .00 .96 .00 .81 .00

.99 .90 .00 .84 .00 .95 .00 .98 .00
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TABLE 11 p-values of the back-

test for ES—NASDAQ
Our model E-QR Empirical

τ LB Bootrap LB Bootrap LB Bootrap

.01 1.00 .16 .03 .72 .79 .32

.025 1.00 .04 .39 .27 .25 .04

.05 .97 .01 .79 .59 .00 .05

.95 .36 .18 1.00 .02 .02 .01

.975 1.00 .51 .92 .00 .82 .09

.99 .99 .36 1.00 .00 .86 .33

GJR-GARCH S-GARCH E-GARCH T-GARCH

Skewed t- LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .45 .04 .38 .06 .66 .58 .16 .69

.025 .96 .01 .43 .30 .59 .54 .90 .31

.05 .37 .01 .20 .24 .85 .03 .82 .03

.95 .81 .06 .60 .01 .84 .03 .75 .01

.975 .42 .00 .81 .03 .97 .02 .11 .05

.99 .31 .00 .04 .33 .03 .01 .06 .00

Skewed GED LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .72 .00 .28 .00 .51 .00 .82 .00

.025 .79 .00 .27 .00 .71 .00 .28 .00

.05 .92 .00 .58 .00 .56 .00 1.00 .00

.95 .59 .00 .99 .00 .63 .00 .91 .00

.975 .25 .00 .84 .00 .66 .00 .83 .00

.99 .95 .00 .53 .00 .98 .00 .59 .00

NIG LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .29 .00 .24 .00 .64 .00 .35 .00

.025 .57 .00 .20 .00 .52 .00 .55 .00

.05 .54 .00 .08 .00 .96 .00 .80 .00

.95 .22 .00 .77 .00 .71 .00 .98 .00

.975 .16 .00 .46 .00 .13 .00 .14 .00

.99 .75 .00 .37 .00 .41 .00 .91 .00

GHYP LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .91 .01 .05 .01 .18 .00 .61 .00

.025 .01 .00 .19 .00 .80 .00 .91 .00

.05 .88 .00 .58 .00 .92 .00 .69 .00

.95 .88 .00 .52 .00 .24 .00 .96 .00

.975 .77 .00 .68 .00 .98 .00 .30 .00

.99 .85 .00 .52 .00 .87 .00 .78 .00

JSU LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .44 .00 .60 .00 .81 .00 .82 .00

.025 .14 .00 .13 .00 .46 .00 .77 .00

.05 .77 .00 .78 .00 .95 .00 .77 .00

.95 .95 .00 .84 .00 .99 .00 .98 .00

.975 .30 .00 .77 .00 .70 .00 .77 .00

.99 .89 .00 .28 .00 .28 .00 .29 .00
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TABLE 12 p-values of the back-

test for ES—NIKKEI225
Our model E-QR Empirical

τ LB Bootrap LB Bootrap LB Bootrap

.01 .73 .06 .22 .30 .21 .33

.025 .03 .02 .22 .20 .02 .03

.05 .02 .01 .00 .62 .00 .10

.95 .40 .11 1.00 .04 .82 .04

.975 .52 .20 .73 .00 .98 .22

.99 .53 .82 .74 .00 .98 .68

GJR-GARCH S-GARCH E-GARCH T-GARCH

Skewed t- LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .65 .88 .75 .11 .38 .50 .10 .80

.025 .45 .96 .68 .28 .67 .37 .69 .47

.05 .20 .62 .12 .57 .33 .92 .59 .70

.95 .20 .34 .07 .05 .00 .36 .11 .53

.975 .02 .00 .43 .00 .08 .00 .15 .00

.99 .24 .03 .34 .00 .70 .82 .72 .46

Skewed GED LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .77 .00 .64 .00 .49 .01 .97 .01

.025 .07 .00 .74 .00 .99 .00 .94 .00

.05 .88 .00 .47 .00 .04 .00 .24 .00

.95 .11 .00 .74 .00 .00 .00 .12 .00

.975 .47 .00 .25 .00 .19 .00 .28 .00

.99 .06 .01 .76 .00 .17 .01 .06 .01

NIG LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .90 .00 .56 .00 .31 .02 .68 .01

.025 .03 .00 .12 .00 .34 .00 .61 .00

.05 .99 .00 .31 .00 .28 .00 .27 .00

.95 .32 .00 .60 .00 .00 .00 .20 .00

.975 .31 .00 .35 .00 .28 .00 .76 .00

.99 .03 .00 .89 .01 .18 .00 .32 .00

GHYP LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .87 .00 .57 .00 .47 .01 .39 .02

.025 .73 .00 .35 .00 .66 .00 .88 .00

.05 .83 .00 .27 .00 .27 .00 .23 .00

.95 .57 .00 .89 .00 .05 .00 .00 .00

.975 .80 .00 .39 .00 .26 .00 .38 .00

.99 .05 .00 .89 .05 .17 .00 .32 .00

JSU LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .88 .00 .86 .00 .65 .02 .55 .01

.025 .62 .00 .47 .00 .79 .00 .91 .00

.05 .90 .00 .24 .00 .31 .00 .13 .00

.95 .13 .00 .28 .00 .00 .00 .00 .00

.975 .13 .00 .92 .00 .67 .00 .03 .00

.99 .03 .00 .71 .00 .18 .00 .24 .00
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TABLE 13 p-values of the back-

test for ES—S&P500
Our model E-QR Empirical

τ LB Bootrap LB Bootrap LB Bootrap

.01 1.00 .18 .05 .13 .95 .06

.025 1.00 .05 .43 .68 .09 .05

.05 1.00 .01 .69 .63 .00 .01

.95 .93 .66 1.00 .01 .04 .02

.975 .97 .18 1.00 .00 .96 .09

.99 .52 .06 1.00 .26 .92 .12

GJR-GARCH S-GARCH E-GARCH T-GARCH

Skewed t- LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .00 .00 .00 .00 .73 .00 .15 .00

.025 .11 .00 .76 .00 .61 .12 .19 .05

.05 .47 .00 .47 .00 .21 .01 .83 .00

.95 .00 .00 .09 .00 .31 .00 .00 .00

.975 .60 .00 .91 .00 .55 .00 .77 .00

.99 .66 .00 .10 .00 .26 .02 .06 .00

Skewed GED LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .14 .00 .80 .00 .41 .00 .86 .00

.025 .19 .00 .08 .00 .40 .00 .60 .00

.05 .08 .00 .67 .00 .48 .00 .17 .00

.95 .02 .00 .50 .00 .39 .00 .38 .00

.975 .80 .00 .51 .00 .71 .00 .68 .00

.99 .38 .00 .70 .00 .10 .02 .34 .08

NIG LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .00 .00 .63 .00 .45 .00 .59 .00

.025 .50 .00 .06 .00 .79 .00 .99 .00

.05 .00 .00 .27 .00 .98 .00 1.00 .00

.95 .00 .00 .10 .00 .31 .00 .16 .00

.975 .10 .00 .07 .00 .95 .00 .96 .00

.99 .69 .00 .46 .00 .14 .00 .62 .02

GHYP LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .33 .00 .47 .00 .61 .00 .00 .00

.025 .21 .00 .62 .00 .68 .00 .00 .00

.05 .29 .00 .37 .00 .64 .00 .00 .00

.95 .00 .00 .06 .00 .18 .00 .00 .00

.975 .60 .00 .20 .00 .34 .00 .00 .00

.99 .15 .00 .08 .00 .70 .02 .00 .00

JSU LB Bootrap LB Bootrap LB Bootrap LB Bootrap

.01 .00 .00 .51 .00 .50 .00 .48 .00

.025 .71 .00 .08 .00 .57 .00 .63 .00

.05 .03 .00 .09 .00 .65 .00 .84 .00

.95 .00 .00 .01 .00 .00 .00 .07 .00

.975 .70 .00 .06 .00 .87 .00 .95 .00

.99 .57 .00 .53 .00 .48 .00 .39 .01
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model estimates the threshold, while the benchmark T-
GARCH models fix the threshold at value 0, representing
a zero return. However, Yu et al. (2010) pointed out that
the threshold value could be slightly greater or less than
0, which suggests that a small amount of variation
around 0 in financial returns may not be significant
enough to change their volatility dynamics. Hence, esti-
mating rather than fixing the threshold value would be
more reasonable. Our results provide some further sup-
port to this argument.

6 | CONCLUDING DISCUSSIONS

This paper proposed a novel quantile function T-GARCH
model for estimating ES of financial returns. Different from
the GARCH models defined by standard distributions, the
proposed model defines the conditional distribution of
financial returns by using the GLD. We found that the ES
estimates obtained from our model are significantly better
than those obtained from the benchmark models consid-
ered in this paper. Our results show that, apart from the
overall shape of the distribution of returns, it is also impor-
tant to take account of specific features about the tails of
the distribution when estimating the ES of returns.

It is also worth reemphasizing that the GLD is
defined via a quantile function as its other equivalent
functions do not have an explicit mathematical expres-
sion. There are many other distributions that are also
defined by quantile functions. It is certainly worth fur-
ther investigations on the use of quantile functions to
build up useful models for financial analysis.
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APPENDIX A.

Proof of Proposition 1.
For μ(η), we have

μ ηð Þ=E etð Þ=
ð1
0
Q τ,ηð Þdτ

=
1
η1

ð1
0
τη1 −1ð Þdτ− 1

η2

ð1
0

1−τð Þη2 −1f gdτ

=
1
η1

1
η1 + 1

−1

	 

−

1
η2

1
η2 + 1

−1

	 

=

1
η2 + 1

−
1

η1 + 1
:

For σ(η), first note that

E e2t
� �

=
ð1
0
Q2 τ,ηð Þdτ=

ð1
0

τη1 −1
η1

−
1−τð Þη2 −1

η1

� �2

dτ

=
ð1
0

τη1 −1ð Þ2
η21

+
1−τð Þη2 −1f g2

η22
−2

τη1 −1ð Þ 1−τð Þη2 −1f g
η1η2

 !
dτ

=
1
η21

1
2η1 + 1

−
2

η1 + 1
+ 1

� �
+

1
η22

1
2η2 + 1

−
2

η2 + 1
+ 1

� �

−
2

η1η2

ð1
0
τη1 1−τð Þη2dτ− 1

η1 + 1
−

1
η2 + 1

+ 1

� �
:

Hence

σ ηð Þ2 =E e2t
� �

−μ ηð Þ2

=
1
η21

1
2η1 + 1

−
1

η1 + 1ð Þ2
 !

+
1
η22

1
2η2 + 1

−
1

η2 + 1ð Þ2
 !

−
2

η1η2
B η1,η2ð Þ− 1

η1 + 1ð Þ η2 + 1ð Þ
	 


,

where B η1,η2ð Þ= Ð 10 τη1 1−τð Þη2dτ . It is seen that both μ(η) and σ(η) are continuous functions of η on the closed set
[3
i,j=1 Ωi ×Ω j

� �
. Hence, they are finite on this set as required. This completes the proof.

APPENDIX B.

Proof of Proposition 2.
First we show that the quantile function of εt is given by Qεt τ,ηð Þ= Q τ,ηð Þ−μ ηð Þf g=σ ηð Þ. It follows from the defini-

tion of a quantile function that, for any τ� (0, 1) we have

τ =P et ≤Q τ,ηð Þ½ �
=P et−μ ηð Þf g=σ ηð Þ≤ Q τ,ηð Þ−μ ηð Þf g=σ ηð Þ½ �
=P εt ≤ Q τ,ηð Þ−μ ηð Þf g=σ ηð Þ½ �:

Hence, by definition, the quantile function of εt is given by Qεt τ,ηð Þ= Q τ,ηð Þ−μ ηð Þf g=σ ηð Þ as required.
Moreover, we have
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τ =P εt ≤ Q τ,ηð Þ−μ ηð Þf g=σ ηð Þ½ �
=P

ffiffiffiffi
ht

p
εt ≤

ffiffiffiffi
ht

p
Q τ,ηð Þ−μ ηð Þf g=σ ηð Þjyt−1

h i
=P yt ≤

ffiffiffiffi
ht

p
Qεt τ,ηð Þjyt−1

h i
:

Therefore, by definition, the conditional quantile function of yt is given by.
Qyt τjyt−1,β,η,γ1,dð Þ= ffiffiffiffi

ht
p

Qεt τ,ηð Þ as required.

APPENDIX C.

Proof of Proposition 3.
When τ ≤ 0.5, we have

EStτ =E ytjyt ≤VaRτð Þ= 1
τ

ðτ
0
Qyt τjyt−1,β,η,γ,df gdτ

=

ffiffiffiffi
ht

p
τσ ηð Þ

ðτ
0
Q τ,ηð Þ−μ ηð Þð Þdτ
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−τ

� �
−

1
η2

−
1−τð Þη2 + 1

η2 + 1
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1
η2 + 1

−τ

 !
−μ ηð Þτ

( )
:

It follows from Proposition 1 that μ(η) = 1/(η2 + 1) − 1/(η1 + 1) and hence

EStτ =

ffiffiffiffi
ht

p
τσ ηð Þ

τη1 + 1−τ

η1 η1 + 1ð Þ +
1−τð Þη2 + 1− 1−τð Þ

η2 η2 + 1ð Þ

( )
:

Similarly, when τ > 0.5, we have

EStτ =E ytjyt≥VaRτð Þ= 1
1−τ

ð1
τ
Qyt τjyt−1,β,η,γ,df gdτ

=

ffiffiffiffi
ht

p
1−τð Þσ ηð Þ

ð1
τ
Q τ,ηð Þ−μð Þdτ

=

ffiffiffiffi
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1−τð Þσ ηð Þ
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η1 + 1
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τη1 + 1
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− 1−τð Þ
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 !
−μ ηð Þ 1−τð Þ

( )
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1−τð Þσ ηð Þ

τ−τη1 + 1

η1 η1 + 1ð Þ +
1−τð Þ− 1−τð Þη2 + 1

η2 η2 + 1ð Þ

( )
:

This completes the proof.

APPENDIX D.

Proof of Proposition 4.
Let ξ represents the vector of parameters. Then we need to show that

Ð
Ωπ(β, γ, η, d| yT)dξ < ∞.

First note that τη1−1 + 1−τð Þη2−1≥1 for all η1, η2�Ω and τ� (0, 1). Moreover, for any ξ�Ω, we haveffiffiffiffi
ht

p
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j=1m0I γ j−1 ≤ yt−d < γ j

� �r
. Hence,
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τη1−1 + 1−τð Þη2−1� � ffiffiffiffi
ht

p
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j=1

m0I γ j−1 ≤ yt−d < γ j

� �vuut ≥m0:

On the other hand, it follows from Proposition 1 that σ(η)2 < ∞ for any η1 and η2 in Ω. Therefore, as
Ð
Ωπ(β, η, γ, d)

dξ < ∞, we see that

ð
Ω
π β,γ,η,djyTð Þdξ=M�

ð
Ω

YT
t= d0 + 1

σ ηð Þffiffiffiffi
ht

p
τη1−1
t + 1−τtð Þη2−1

n oπ β,η,γ,dð Þdξ

≤M� σ ηð Þ
m0

	 
T−d0ð
Ω
π β,η,γ,dð Þdξ<∞,

where M* is the normalizing constant of the posterior density function. Therefore, the posterior density function is well
defined on Ω as required. This completes the proof.

APPENDIX E.

Prior density functions:

π α0j
� �

=
ffiffiffiffiffi
2π

p
σ0jα0j

n o−1
e− ln2α0j=2σ20j

ðM
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σ1jα1j
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e− ln2α1j=2σ21j

ða
0

ffiffiffiffiffi
2π
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σ1jα1j

n o−1
e− ln2α1j=2σ21j dα1j

	 
−1
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lna
σ1j

� � ffiffiffiffiffi
2π
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σ1jα1j


 �−1

e− ln2α1j=2σ21j

π β1j
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2π
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e− ln2β1j=2s

2
1j

ða−α1j

0

ffiffiffiffiffi
2π
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e− ln2β1j=2s

2
1j dβ1j
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e− ln2β1j=2s
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π −ηvð Þð Þ

=
ffiffiffiffiffi
2π
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λv −ηvð Þ
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e− ln2 −ηvð Þ=2λ2v
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ffiffiffiffiffi
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n o−1
e− ln2 −ηvð Þ=2λ2v d −ηvð Þ

( )−1

where j = 1, …, J and v = 1, 2.
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APPENDIX F.

MCMC method.
Let β, γ, η and d be the current parameter values, and β', γ', η' and d' the proposed values. For simplicity, let σ' = σ(η')

and σ = σ(η). Then our MCMC algorithm consists of the following several steps.
Step 1. Obtain the proposed value ln(−ηv) by simulating ln −η

0
v

� ��N ln −ηvð Þ,~λv
� �

such that ηv�[3
ℓ=1Ωℓ , where v =

1, 2.
Calculate σ ' = σ(η') using Proposition 1.
Step 2. Obtain the proposed value lnα

0
0j �N lnα0j,~σ20j

� �
such that lnm0 ≤ lnα

0
0j < lna;

Obtain the proposed value lnα
0
1j �N lnα1j,~σ21j

� �
such that lnα

0
1j < lna; where j = 1, …, J.

Step 3. Obtain the proposed value lnβ
0
1j �N lnβ1j,~s

2
1j

� �
such that lnβ

0
1j < ln a−α

0
1j

� �
, where j = 1, …, J.

Step 4. Obtain the proposed value d' � U{1, …, d0}.
Step 5. Obtain the proposed thresholds γ' as follows:
• Let a1 = ymin, b = ymax.
• For j = 1, …, J − 1, simulate γ

0
j �N γ j,ξ

2
j

� �
such that γ

0
j� a j,b
� �

. That is:
- Simulate u � U(0, 1).
- Let c0 = (aj − γj)/ξj, c1 = (b − γj)/ξj.
- Let w = u(Φ(c1) − Φ(c0)) + Φ(c0).
- Let γ

0
j = ξ jΦ−1 wð Þ+ γ j.

- Let a j+1 = γ
0
j.

Then γ
0
j are random samples from N γ j,ξ

2
j

� �
and ymin < γ

0
1 < γ

0
2 < � � �< γ

0
k−1 < ymax.

Step 6. Calculate h
0
t for t = d0 + 1, …, T:

h
0
t =
XJ
j=1

α
0
0j + α

0
1jy

2
t−1 + β

0
1jh

0
t−1

� �
I γ

0
j−1 ≤ y

0
t−d < γ

0
j

� �
:

Step 7. Accept the proposed value with probability min{AB, 1}, where A and B are given below.
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0
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0
,η

0
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0 jyT
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where
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where
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0
j
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as d is uniformly distributed on D, where γ0 = γ
0
0 = ymin and q(z! z') represents the probability density function of z'

conditional on z.

APPENDIX G.

Proof of Proposition 5.
If τ0 ≤ 0.5,

EStτ0 =E ytjyt ≤VaRtτ0ð Þ=E ytjyt ≤ σtQεt τ0ð Þ� �
=
ð
ytf ytjyt ≤ σtQεt τ0ð Þ� �

dyt

=
σt
τ0

ðτ0
0
Qεt τð Þdτ

as required. Similarly we have EStτ0 =
σt

1−τ0

Ð 1
τ0
Qεt τð Þdτ if τ0 > 0.5 as required.

APPENDIX H.

Proof of Proposition 6.
For the proposed model, it follows from Proposition 3 that EStτ0 =

ffiffiffiffi
ht

p
f τ0,ηð Þ if τ0≤ 0.5 and EStτ0 =

ffiffiffiffi
ht

p
g τ0,ηð Þ other-

wise, where

f τ0,ηð Þ= 1
τ0σ ηð Þ

τη1 + 1
0 −τ0

η1 η1 + 1ð Þ +
1−τ0ð Þη2 + 1− 1−τ0ð Þ

η2 η2 + 1ð Þ

( )
,
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and

g τ0,ηð Þ= 1
1−τ0ð Þσ ηð Þ

τ0−τη1 + 1
0

η1 η1 + 1ð Þ +
1−τ0ð Þ− 1−τ0ð Þη2 + 1

η2 η2 + 1ð Þ

( )
:

Hence, Rt = yt−EStτ0ð Þ= ffiffiffiffi
ht

p
= εt− f τ0,ηð Þ if τ0≤ 0.5 and Rt = yt−EStτ0ð Þ= ffiffiffiffi

ht
p

= εt−g τ0,ηð Þ otherwise. As εt are iid
random variables, we see that Rt are also iid.

Furthermore, it follows from the proof of Proposition 3 that f(τ0, η) is the ES of εt when τ0 ≤ 0.5 and g(τ0, η) is the
ES of εt when τ0 > 0.5. Let ESεttτ0 be the ES of εt at level τ0. Then when τ0≤ 0.5, we have

E Rtjyt ≤VaRtτ0ð Þ=E εt−ESεttτ0 jεt ≤Qεt τ0,ηð Þ
n o

=0 by the definition of ES. Similarly, when τ0 > 0.5, we have

E Rtjyt≥VaRtτ0ð Þ=E εt−ESεttτ0 jεt≥Qεt τ0,ηð Þ
n o

=0 as required.

Similarly, for the benchmark GARCH models, it can also be shown that Rt are iid with zero mean. This completes
the proof.

APPENDIX I.

Tables
Tables 4-6 give the BIC values for all benchmark GARCH models. These BIC values show that the minimum value

of BIC always corresponds to a model of order (1, 1) in each case.
Table 7 gives the MSE values between the true level τ0 and the estimated coverage probability of ^VaRtτ0 for all

models and all data sets.
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