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Abstract: Temperature-induced globule-to-coil transition in polymers has well been 

studied, and it is dependent strongly on temperature in their solutions due to 

significantly conformational changes of polymer molecules. In this study, a scaling 

framework is firstly developed to investigate stress-induced globule-to-coil transition 

in double-network (DN) hydrogels with an ultra-high stretchable strength. Free energy 

and globule radius functions are introduced to formulate the constitutive relationship of 

the DN hydrogels, in which stress-induced swelling and globule-to-coil transition are 

described for the hydrotropic and relatively hydrophobic networks, respectively. A 

cooperative free energy model based on the Flory-Huggins solution theory is then 

proposed for the DN hydrogels. The effectiveness of model is demonstrated by applying 

it to predict stress-induced globule-to-coil transitions in DN hydrogels and elastomers, 

where the theoretical results show good agreements with the experimental ones. We 

expect this study explores the scaling dynamics and provides an effective guidance on 

designing advanced ultra-high mechanical performance in DN hydrogel and elastomer.  
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1. Introduction 

Hydrogel is a network of polymer chains, which are connected by crosslinks and 

swollen by absorbing solvent when placed in an aqueous solution (solvation) [1,2]. The 

crosslinks may be neutral and ionic interactions between polyelectrolyte chains, 

therefore, the hydrogels are generally classified into two categories, i.e. neutral 

hydrogels and ionic hydrogels [3,4]. Hydrogel is one type of stimulus-responsive 

materials, which are featured by their highly stretchable behaviours through their 

absorbent polymeric networks, which contain over 90% water [5-8]. In terms of 

thermodynamics of polymer solution, hydrogels are normally rubbery-like soft matters, 

and thus respond to the external stress in an elastic manner [9-12]. Therefore, 

mechanical and thermomechanical behaviours of the hydrogels have been generally 

studied using the rubber elasticity theory and free energy equation [13-19]. A 

significant development has been achieved in this field to reveal the feasibility to 

reproduce the constitutive stress-strain relationships of the hydrogels using elastic and 

mixing free energy functions [20-24]. Good agreements between the theoretical 

prediction and experimental results for the hydrogels have been reported [25-31]. 

Recently, double-network (DN) hydrogels have been proposed and received great 

attention due to their ultra-high mechanical strength and toughness [16-19]. The 

conventional hydrogels are easily broken even at a low stress, and thus present soft and 

weak mechanical properties [26-31]. DN hydrogels are combinations of two types of 
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polymeric networks, in which one relatively hydrophobic network is able to resist to 

mechanical loading through breaking-up of network bonds, while the other hydrophilic 

network is highly stretchable [32-34]. Due to the opposite physical properties of these 

two types of networks, the DN hydrogels often undergo cooperative and complex 

conformational changes when they are under mechanical/mechanochemical loading 

[35-37]. However, the working mechanisms of mechanical deformations of the DN 

hydrogels have not been fully understood, and these are distinctly different from those 

of the conventional single-network ones. 

Due to the complexity of their thermodynamics, in this study, a cooperative and 

theoretical model for the DN hydrogels are proposed, in which the stress-induced 

globule-to-coil transition of the relatively hydrophobic network has been identified as 

the driving force for the mechanical deformation of the DN hydrogels. Free energy and 

globule radius functions are introduced to formulate the constitutive relationships of the 

DN hydrogels, which are incorporated from a hydrophobic network and a hydrophilic 

network or two hydrophobic networks. The constitutive stress-strain relationship and 

thermomechanical behaviour are both studied and discussed using the Flory-Huggins 

solution theory. Finally, the simulation results of the proposed models are compared 

and verified using the experimental data reported in literature.  

2. Stress-induced globule-to-coil phase transition in DN hydrogel 

2.1 Scaling dynamics and theoretical framework  

For DN hydrogels, the relatively hydrophobic and hydrophilic networks undergo 

distinct swelling behaviours, simultaneously. Therefore, it is necessary to investigate 
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the swelling effects of water on DN hydrogels. According to the Flory-Huggins theory 

[38], the free energy equation per unit volume of DN hydrogel can be written as,  

1 1 2 2 1 2( ln ln )MF RT n n n    = + +                  (1) 

where MF  is the mixing free energy per unit volume,   is the Flory-Huggins 

interaction parameter, 1n  and 1  represent the molar and volume fraction of water, 

respectively, 2n  and 2  represent the molar and volume fraction of gel, respectively, 

T  is the temperature.  

Meanwhile, the elastic free energy ( elF ) per unit volume of DN hydrogels can be 

expressed as [38], 

2/3

2

3 1
[( ) 1]

2

B
el

k T
F




 = −                        (2) 

where Bk  is Boltzmann constant and   refers to the number of chains.  

The free energy function of DN hydrogels should be the sum of these two terms, e.g., 

M elF F F =  +  , while 1 2

0

1
V

V V
 = − =

+
, 

3

0V V + =  and 
3

0 0V = . Finally, the 

energy function can therefore be obtained,  

3 3 3 3 3 3 3 2

0 0 0 0 0
1 3 3 3 3 3 2

0 0

3
[ln ln ( ) ] [ 1]

2

kT
F RTn B C

        


     

− −
 = − + + + + −    (3) 

where 0  is the initial elongation ratio,   is the final elongation ratio,   is molar 

volume ratio of polymer to water and R  is the gas constant.  

In DN hydrogels, the relatively hydrophobic network is assumed to undergo a 

globule-to-coil transition, while the hydrophilic network undergoes a swelling effect in 

response to the water, as shown in Figure 1. And the working mechanics of mechanical 

yielding is resulted from the stress-induced globule-to-coil transition of the relatively 
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hydrophobic network in DN hydrogels. Initially, the globule radius of relatively 

hydrophobic network is decreased due to the osmotic pressure of the hydrophilic 

network, which is more able to mix with the water molecules. The mixing equilibrium 

equation of DN gels and inner water is incorporated from swelling of the hydrophilic 

network and a shrinking of the relatively hydrophobic network. Consequently, the 

osmotic pressure applied on the relatively hydrophobic network is gradually decreased 

due to the externally mechanical loading. Finally, the globule-to-coil transition of the 

relatively hydrophobic network is then induced by the mechanical loading, resulting 

from the globule radius gradually increased. Here the working mechanics of yielding is 

originated from the stress-induced globule-to-coil transition of the relatively 

hydrophobic network in DN hydrogels.  

 

Figure 1. Schematic diagram of the globule-to-coil transition behaviours of the two 

networks in DN hydrogel.  

Consequently, it is necessary to investigate the globule-to-coil transition in DN 

hydrogels. According to the previous study [38], the function of globule radius ( br ) for 

the relatively hydrophobic network is expressed as,  
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2

23 ( / )b B ABr bN b T                         (4) 

where b  is the segment length, BN  is the monomer number, AB  is the interface 

energy between two networks and T  is temperature. On the other hand, we can use a 

thermodynamic parameter   to describe the hydrogel swollen due to the water, and 

it is determined by the volume fraction of water ( 2 ) as follows [38],  

( )2   10.5BB C N  = + =                     (5) 

where B  and C  are given material constants. Substituting equation (5) into (4), the 

function of the outer radius of the globule ( br ) is then obtained as, 

32/3 2/3
2/302

3

( )
( )

r r r
b

k k k
r

B C
B C
 



= = =
+

+

                (6) 

where rk  is a scaling constant for the globule of relatively hydrophobic network [39].  

If a uniform stress is applied on the globule and DN hydrogels. The change in globule 

radius ( br ) can be obtained by equation (6) [40],  

3

3

3 3

3 3

1 1 2 1 1 2

(1 ) 2 1 2 1
( )

1 1

b

b a
b b a

b b

a a

r

r r
r q q

r rE

r r

 

  

− −
+ +

+ + +
 = −

− −

               (7) 

where   is the Poisson's ratio which is taken as   00.49 [40], E   is the elastic 

modulus, br  is the outer radius of the DN hydrogel, ar  is the inner globule radius of 

the relatively hydrophobic network, aq  and bq  are the stresses applied on the 

globule and DN hydrogel, respectively. The swollen volume ratio ( micV ) of globule is 

obtained as:  
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The elastic free energy of globule is therefore expressed as [38],  

2/3

2/3

2

3 1
[ (1 ) 1]

2

mic B
el mic

k T
F V




 = +  −                  (9) 

In combination of equations (1) and (9), the free energy function of the DN hydrogel 

is finally obtained:  

3 3 3 3 3 3 3 2
2/30 0 0 0 0

1 3 3 3 3 3 2

0 0

3
[ln ln ( ) ] [ (1 ) 1]

2

mic

M el

mic

F F F

kT
RTn B C V

        


     

 =  + 

− −
= − + + + + +  −

(10) 

According to the equation (10), the constitutive stress-strain relationship of uniaxial 

tension can therefore be expressed:  

3 2 3 3 3

0 0 0 0
1 3 3 3 3 2 3 4

0 0 0

2/3

1 2

1 0

3(1 ) 3
[ 3 ln (6 3 ) ]

( ) ( )

3
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A

F
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RTn V L
N n

     
 

        

 



−
= = − + − +

 − −

+ +  +

    (11) 

where 
2

2/3 '

1 2

1 0

3
[(1 ) ]

2
mic

A

L RTn V
N n

 


= + . 

Based on the proposed model, the analytical results are obtained and have been 

plotted in Figure 2. All the parameters used in equation (11) are listed in Table 1. These 

analytical results reveal that the stress is dramatically increased from 0 MPa to 0.455 

MPa as a function of dimensionless elongation ratio, which is increased from 1 to 1.25, 

at a given constant of b ar r  05. Meanwhile, the yielding strength is increased from 

0.455 MPa to 0.655 MPa by increasing b ar r  from 5 to 9, at the same elongation ratio 

of  01.25. With an increase of the ratio of b ar r , a higher free energy is necessary to 

enable the DN hydrogel to swell, while the free energy of globule is kept a constant. 
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Here, a higher stress is therefore needed for the hydrogel to be maintained at the same 

elongation ratio, according to equations (10) and (11). These analytical results present 

a cooperative dynamics of DN hydrogels, in which there is a distinct difference in 

swelling behaviours of relatively hydrophobic and hydrophilic networks. Furthermore, 

the cooperative dynamics results in a complex mechanical behaviour of DN hydrogels.  

Table 1. Values of parameters used in equation (11) for Figure 2.  

0  B  C    
1RTn (MPa) 13 AN n  aq  E (MPa) L(MPa) ar  bq  

1 2 0.5 0.5 0.44 0.5 80 1 0.3 2 10 

 

Figure 2. Simulation results of stress as a function of elongation ratio of DN hydrogel, 

at given b ar r  ratios of 5, 6, 7, 8 and 9.  

On the other hand, the analytical results of the stress as a function of elongation ratio 

at a given molar fraction of water, i.e. 1n =1×10-4, 1.5×10-4, 2×10-4, 2.5×10-4 and 3×10-

4 mol, have been obtained and plotted in Figure 3. The obtained fitting data are 

presented in Table 2. The simulation results show that the yielding stress of the hydrogel 

is gradually increased from 0.35 MPa, 0.36 MPa, 0.38 MPa, 0.40 MPa to 0.42 MPa at 

a constant elongation ratio of  01.24, with the molar fraction increased from 1×10-4 
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mol, 1.5×10-4 mol, 2×10-4 mol, 2.5×10-4 mol to 3×10-4 mol. These simulation results 

reveal that the free energy of the gel is increased with the increase in molar fraction of 

solvent, thus resulting into an increase of the applied stress. Meanwhile, these analytical 

results also reveal that the minimum value of stress is decreased from 0.27 MPa to 0.17 

MPa with the molar fraction increased from 1×10-4 mol to 3×10-4 mol. These results 

also reveal that the stress is indeed decreased with the elongation ratio increased from 

 01.24 to  01.70, which is mainly resulted from the globule-to-coil transition of the 

relatively hydrophobic network in DN hydrogels. A two-stage globule and coil 

transitions in DN gels have well characterized and predicted using our newly proposed 

model. In the process of globule transition, a certain amount of mechanical energy of 

the DN hydrogel is used to cause the relatively hydrophobic network compact, thus 

resulting in decrease of the free energy and stress. However, the free energy and stress 

are increased in the process of coil transition, because the relatively hydrophobic 

network absorbs the water to swell.  

 

Figure 3. Analytical results of stress as a function of elongation ratio, at different molar 

fractions of water, i.e. 1n =1×10-4, 1.5×10-4, 2×10-4, 2.5×10-4 and 3×10-4 mol. 
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Table 2. Values of parameters used in equation (11) for Figure 3.  

0  rk  B  C    RT (j/mol) 3 AN (mol) aq  E (MPa) L(MPa) ar  bq  

1 15 2 0.5 0.5 2.5×103 8×10-6 80 1 0.3 2 10 

2.2 Experimental verification of mechanical behaviours of DN hydrogels  

To verify the proposed model, four groups of experimental data [35] of the DN0.1, 

PVA-DN0.1, DN0.6 and PVA-DN0.6 have been employed to compare with the 

analytical results. For the PVA/PAMPS DN gels, the PAMPS (PAMPS: poly(2-

acrylamido-2-methylpropanesulfonic acid)) network is synthesized in the presence of 

poly(vinyl alcohol) (PVA) gels by an UV polymerization for eight hours [35]. Here, 0.1 

and 0.6 are used to represent 0.1 and 0.6 in molar fractions of 2-oxoglutaric acid as the 

photoinitiator in the DN hydrogels. According to equation (11), the simulation results 

of stress as a function of elongation ratio were obtained and plotted in Figure 4. The 

stress of the DN hydrogel was gradually increased with the increase in tensile strain. 

All the parameters used in the equation (11) are listed in Table 3. After comparison, it 

was revealed that the simulation results were in well agreement with the experimental 

data of DN hydrogels. Furthermore, the yielding stresses were also predicted and 

characterized, where the stresses were  =0.79 MPa, 0.74 MPa, 0.58 MPa and 0.47 

MPa for the DN0.1, PVA-DN0.1, DN0.6 and PVA-DN0.6, respectively.  

Table 3. Values of parameters used in equation (11) for DN0.1, PVA-DN0.1, DN0.6 and 

PVA-DN0.6, where C 00.5, ar 02 and bq 010.  

 0  rk  B    
1RTn (MPa) 

1

3

AN n


 

aq  E (MPa) L(MPa) 

DN0.1 10.5 14.9 1.97 0.47 0.94 0.28 110 0.74 0.5 

PVA-DN0.1 10 15 2 0.46 0.8 0.23 109 0.75 0.41 
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DN0.6 9 14.8 2 0.75 0.6 0.28 102 0.69 0.53 

PVA-DN0.6 9 14.8 1.92 0.55 0.44 0.21 96 0.57 0.41 

 

Figure 4. Comparisons between numerical results using equation (11) and experimental 

data [35] of the DN and PVA-DN hydrogels.  

Furthermore, effect of water content ( WC ) on the mechanical behaviour of the DN 

hydrogel was also investigated, as it can be used to design and control of their 

mechanical behaviours by means of swelling effect. Figure 5 plots the constitutive 

stress-strain relationship of the hydrogel with various water contents. The obtained 

fitting data of equation (11) are presented in Table 4. Based on equation (11), it is found 

that the simulation results fit well with the experimental data of DN hydrogels with 

different water contents of 1.3M (molar), 1.5M and 1.7M [36]. With the water content 

increased from 1.3M, 1.5M to 1.7M, the yielding stresses were  =0.17 MPa, 0.13 

MPa and 0.16 MPa, respectively. Practically, we can use the control of water content 

to design the stress and strain of DN hydrogels. Based on these analytical and 

experimental results, the yielding stress is determined by the water content. Both stress 
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and strain are controlled by the water content in DN hydrogels, of which the mechanical 

properties are therefore designed by the water-induced swelling effect.  

Table 4. Values of parameters used in equation (11) for DN hydrogels incorporated of 

various water contents.  

 0  rk  B  C    
1RTn (MPa) 

1

3

AN n


 

aq  E (MPa) L(MPa) 

1.7M 34 25 9.2 0.8 0.5 0.017 11.6 23 0.35 -0.3 

1.5M 32 28 9.6 0.9 0.55 0.006 9.7 25 0.27 0.005 

1.3M 34 25 11.2 1 0.58 0.006 9.7 17 0.23 -0.07 

 

Figure 5. The comparison of simulation results and experimental data [36] for the stress 

as a function of tensile strain of DN hydrogel with various water contents.  

3. Stress-induced globule-to-coil phase transition in DN elastomers 

3.1 Stress-strain constitutive relationship  

As discussed above, the working mechanism of water-induced globule-to-coil phase 

transition in DN hydrogels has been presented. Furthermore, scaling dynamics of 

stress-induced globule-to-coil phase transition in DN elastomers is necessary to 

investigate. The water-induced globule-to-coil phase transition is originated from the 
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difference in Flory-Huggins interaction parameters (  ) of two networks with water in 

DN hydrogels. On the other hand, the stress-induced one is due to the difference in the 

mechanical properties of two networks. According to Flory-Huggins theory [38], the 

  is a dynamic parameter and determined by the weight fraction of polymer ( ), 

degree of polymerization ( ( )f  ) and temperature (T), 

( )( )
A

f B C
T

  = + +                        (12a) 

13 23

mic

el mcF F F F F = − − + +                    (12b) 

where subscripts 1, 2 and 3 denote two networks and stress within the DN elastomer, 

respectively, 
mcF  is the mechanochemical free energy function, subscripts 13 and 23 

denote the interactions between the two networks and stress, respectively. 

According to equations (1), (2), (9) and (12), the constitutive stress-strain 

relationship of DN elastomers under uniaxial tension can therefore be obtained: 

3 2 3

13 23 0 01
13 233 3 3 3 2

0 0 0

3 3
2/30 0

1 2 13 4 2

1 0

3(2 ) 3
[ 3( ) ln

2 ( ) ( )

3 3
( ( ) ( ))( 6 3 ) ] (1 )mic

A

RTnF

A
f f B C RTn V L

T N n

     
  

      

   
 

  

− −
= − = + +

 − −

− + + + + +  +

      (13) 

To verify the applicability of proposed equation (13), the numerical results of the 

model are plotted and compared with the experimental data [41] of EA0.5MA, EA1MA, 

EA2MA, EA1MA2, EA0.5MA2, EA0.5EA and EA0.5EA2 (EA: ethyl acrylate and MA: 

methyl acrylate) DN elastomers with various component contents of two networks. 

There are three mole concentrations of cross-linker in the first network, i.e. EA0.5 is 

crosslinked at 1.45 mole percent (mol %) of monomer, EA1 two times more (2.81 

mol %), and EA2 four times more (5.81 mol %). The single-network (SN), DN and 
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triple-network (TN) are used for EA1, EA1MA and EA1MA2. In the synthesis process, 

the first network is made from EA and cross-linker of butanediol diacrylate, and the 

second and third networks have been carried out with EA or MA. The parameters used 

in equation (13) are collected in Tables 5 and 6. As shown in Figure 6(a), the simulation 

curves fit well with the experimental data. And the mechanical stresses were  =4.98 

MPa and  =16.6 MPa for the EA0.5MA and EA0.5MA2 DN elastomers, respectively, 

at the temperature of T060oC and a given elongation ratio of  02.2. On the other hand, 

the stresses were  =1.97 MPa and  =15.1 MPa for the EA0.5EA and EA0.5EA2 DN 

elastomers, respectively, at the temperature of T020oC and a given elongation ratio of 

 02.2. These analytical and experimental results reveal that the mechanical stress is 

significantly enhanced by the component content of second network (MA component 

or EA component) from 2.81 mol% to 5.81 mol% in the DN elastomer. The presence 

of second network is able to decrease the elastic component of the free energy per unit 

volume, resulting in the first network stretched further. On the other hand, the 

polymerization of second network is helpful to loosely connect the networks with each 

other and enables an essential stress transfer between the networks [41]. Therefore, the 

same analytical results have been verified by the experimental ones of EA1MA and 

EA1MA2 DN elastomers, where the mechanical stress increases by a factor of up to 

4.75 (from 5.92 MPa to 28.1 MPa) with an increase in the component content of second 

MA network from 2.81 mol% to 5.81 mol%, as shown in Figure 6(b).  

Furthermore, the effect of the first network on the mechanical behaviour of DN 

elastomer was investigated to identify the working mechanism behind experimental 
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results. The analytical and experimental results of EA0.5MA, EA1MA and EA2MA DN 

elastomers have been plotted and compared in Figure 6(c). It was found that the 

maximum extensibility of DN elastomer was gradually decreased from  02.44, 

01.93 to  01.63, with an increase in the component content of first EA network from 

1.45 mol%, 2.81 mol% to 5.81 mol%. These analytical results present that the first 

network is able to limit the maximum extensibility of DN elastomer, resulting in the 

maximum elongation ratio is therefore decreased with an increase in the component 

content of the first network. Finally, the proposed model was applied to characterize the 

mechanical behaviour of the DN elastomer under step-cycle loading-unloading, as 

shown in Figure 6(d). By comparison, it is found that the analytical results fit well with 

the experimental ones, and the proposed model is able to characterize the cyclically 

mechanical behaviours of the DN elastomers.  

Table 5. Values of parameters used in equation (13) for Figures 6(a), 6(b) and 6(c), 

where 
rk =1000. 

 EA0.5MA EA1MA EA2MA EA1MA2 EA0.5MA2 EA0.5EA EA0.5EA2 

( )A K  133.4 133.4 133.4 133.4 133.4 117.4 117.4 

B  2 1.92 1.92 1.92 1.92 1.92 1.92 

( )13 23 2 +  0.4 0.4 0.3 0.35 0.35 0.35 0.46 

1RTn (MPa) 0.51 0.2 0.11 0.52 0.116 0.14 0.18 

13 AN n  3.8 12 14 10.8 10.2 11 11 

aq  236 180 174 161 161 168 154 

E (MPa) 0.546 1.769 1.77 1.484 0.793 0.511 1.07 

1L (MPa) -2.1 -2.3 -0.8 -3.8 -0.4 -1.9 -1.8 

1( )f   0.354 0.353 0.263 0.333 0.343 0.635 0.494 

2 ( )f   / / / 1.067 1.457 / 1.206 

 

 

Page 15 of 30 AUTHOR SUBMITTED MANUSCRIPT - SMS-110350.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Table 6. Values of parameters used in equation (13) for Figure 6(d), where A =133.4 K, 

rk =1000 and 1( )f  =0.408.  

 B  ( )13 23 2 +  
1RTn (MPa) 

13 AN n  
aq  E (MPa) 1L (MPa) 

2 ( )f   

1st cycle 1.92 0.46 0.22 11 154 1.314 -1.8 1.292 

2nd cycle 2 0.47 0.26 10.3 178 0.87 2 1.393 

3rd cycle 2 0.5 0.35 10 189 0.71 1.5 1.492 

4th cycle 2 0.54 0.35 9.8 201 0.56 2 1.591 

 

Figure 6. Comparison of analytical and experimental results [41] of the mechanical 

behaviours of DN elastomers. (a) Mechanical stresses of DN elastomers as a function 

of elongation ratio at temperatures of 20oC and 60oC. (b) Effect of component content 

of second network on the mechanical behaviour of DN elastomers. (c) Effect of 

component content of first network on the maximum extensibility of DN elastomers. 

(d) Step-cycle loading-unloading curves of EA0.5MA2 elastomer at 60°C. 
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3.2 Thermomechanical behaviour  

It is assumed that the weight fraction of first and second networks are equal to each 

other in the DN elastomer, i.e. 1 2 = 00.5 and 1 2 + 01, thus, the Maxwell equation 

of the DN elastomer can be re-written as [38],  

1 1 2

2 2

( )
d d

E E E
E dt E dt

   
 + = + +                   (15) 

where    is the viscosity, 1E   and 2E   are the moduli of the first and second 

networks, respectively, and t  is time. 
d

dt



 

and 
d

dt


 are the stress rate and strain rate, 

respectively.  

Based on the Maxwell principle [38], equation (13) can be rewritten by introducing 

a parameter ˆ i te   to replace  ,  

2 1 2

1 1

ˆ [ ( ) ]i td
e E E E i

E dt E

  
  + = + +                  (16) 

where 
1E


 = , ̂  is the referenced strain,   is the loading frequency and i 0 1− . 

Thus, the storage and the loss moduli of the DN elastomer can be obtained [38], e.g.,  

2 2

2 1 2

2 2

1

2 2

( )

1

1

E E E
E

E
E

 

 



 

 + +
 = +


  =
 +

                      (17) 

Both the moduli of the first and second networks are different from their original 

ones due to the changes in their weight fractions, which are resulted from the sacrificial 

bonds of first network, i.e. 1E 0 1 1E  and 2E 0 2 2E  . Here, the relaxation time of the 

newly formed DN elastomer can be expressed as,  

2 2 2 2 2 2

1 1

E E E

  
 

  
= = =  =                      (18) 
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Substituting equation (15) into (14), we can obtain,  

2 2 2

1 2 2 1 1 2 2

2 2 2

1

1

2 2

2

1

( )

1
1

E E E
E

E
E

     

  



 


 + +
 =

+



 =
 +


                (19) 

According to the time-temperature equivalence principle [42], the constitutive 

relationship of time (1  ) and transition temperature (
gT ) can be obtained,  

'

" " '

( , ) ( , )

( , ) ( , )

g g T

g g T

E T E T a

E T E T a

 

 

  =


=

                     (20) 

where '

gT  is the referenced transition temperature, Ta
 
is a shift factor ( Tf

Ta  =  in 

logarithmic sense), which can be determined using the temperature based on the 

Williams-Landel-Ferry (WLF) equation [42],  

'

'

17.44( )
lg

51.6 ( )

g g

T

g g

T T
a

T T

− −
=

+ −
                      (21)  

According to the equations (18), (19) and (20), the glass transition temperature ( gT ) 

can be expressed as,  

2 2
1

2 2
1

/
' 2

/

1

10

10
g g

C
T T

C

 

 
= +

+
                        (22) 

The analytical results of storage and loss moduli of the DN elastomer have been 

plotted as a function of frequency, and the results are shown in Figure 7. The parameters 

used in the equation (19) are 1E  02MPa, 2E  00.2MPa,   01.0110-6s and Ta  01. 

Figures 7(a), 7(b), 7(c) and 7(d) show the relationships among storage moduli, loss 

moduli and loading frequency for the DN elastomer with various weight fractions of 

the first network of 1 00.2, 1 00.4, 1 00.6 and 1 00.8, respectively. Furthermore, 

the analytical results of storage moduli as a function of weight fraction of the first 
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network and those of loss moduli are also plotted and compared as shown in Figures 

7(e) and 7(f), respectively. Both the storage and loss moduli of the DN elastomer are 

increased for the increased weight fraction of the first network. 

  

Figure 7. Analytical results of storage and loss moduli as a function of loading 

frequency at different weight fractions of first network. (a) 1 00.2. (b) 1 00.4. (c) 1

00.6 and (d) 1 00.8. (e) Analytical results of storage moduli and (f) tangent delta as a 

function of loading frequency at 1 00.2, 0.4, 0.5, 0.6 and 0.8, respectively.  
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To verify the proposed models in equations of (19), (20), (21) and (22), the analytical 

results were compared with the experimental data [43], which are shown in Figure 8. 

Experimental data of poly(phenyl ether acrylate-co-isobornyl acrylate) (P(PEA-co-

IBA)) and poly(methyl ether acrylate-co-isobornyl acrylate) (P(MEA-co-IBA)) DN 

elastomers [43] were used to compare with the analytical results of storage and loss 

moduli as shown in Figure 8(a), and the parameters used in equations (19), (20) and 

(21) are listed in Table 7. The analytical results of glass transition temperature as a 

function of weight fraction of first network were plotted in Figure 8(b), and the 

parameters used in the equation (22) were listed in Table 8. It is found that the 

simulation results obtained from our model fit well with the experimental data, and the 

thermomechanical behaviours of DN elastomers have been well described using this 

new model. Furthermore, these simulation results verified that the proposed models in 

equations of (19), (20), (21) and (22) provided effective approaches to design the 

thermomechanical behaviours of DN elastomers to achieve their designable mechanical 

performances. 

Table 7. Values of parameters used in equations (19), (20) and (21). 

 
1E (MPa)  (10-6s) 1  Tf  

2E (MPa) 

The storage modulus 149.99 0.1265 0.4 0.35 0.083 

The loss modulus 77.47 0.1265 0.4 0.53 / 

Table 8. Values of parameters used in equation (22). 

 C1 C2  (10-6s) 
'

gT (K) 

P(PEA-co-IBA) 16.1 76.4 0.5 279 

P(MEA-co-IBA) 18.2 118.2 0.5 237.5 
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Figure 8. (a) Comparisons of storage and loss moduli as a function of loading frequency 

between the experimental data [43] and simulation results using equation (19), (20) and 

(21). (b) Comparison of glass transition temperature as a function of volume fraction 

( 1 ) of DN elastomers between the experimental data [43] and simulation results using 

equation (22).  

4. Conclusion  

In this study, we propose a scaling model to study the mechanical and 

thermomechanical behaviours of DN hydrogels, in which network undergoes swelling-

induced and stress-induced globule-to-coil transition. Analytical results provide an 

effective approach to estimate and quantitatively separate the dependence of the stress-

strain relationship on the free energy, globule radius, water content and component 

fraction. Globule radius and stress-induced globule-to-coil transition are critical 

parameters to restrict the extension of network in hydrogels, resulting in the loading 

efficiency and stretchable strength efficiently improved. Finally, the proposed models 

have been verified using the experimental results, and good agreements between the 

simulation results and the experimental ones have been achieved. We expect this study 

provides an effective guidance on designing advanced DN hydrogels and elastomers 

with ultra-high stretchable and strength capabilities, which can be utilized in practical 

applications of soft robotics and artificial muscle.  
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Tables caption  

Table 1. Values of parameters used in equation (11) for Figure 2.  

Table 2. Values of parameters used in equation (11) for Figure 3.  

Table 3. Values of parameters used in equation (11) for DN0.1, PVA-DN0.1, DN0.6 and 

PVA-DN0.6, where C 00.5, ar 02 and bq 010.  

Table 4. Values of parameters used in equation (11) for DN hydrogels incorporated of 

various water contents.  

Table 5. Values of parameters used in equation (13) for Figures 6(a), 6(b) and 6(c), 

where 
rk =1000. 

Table 6. Values of parameters used in equation (13) for Figure 6(d), where A =133.4 K, 

rk =1000 and 1( )f  =0.408.  

Table 7. Values of parameters used in equations (19), (20) and (21). 

Table 8. Values of parameters used in equation (22). 
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Figures caption  

Figure 1. Schematic diagram of the globule-to-coil transition behaviours of the two 

networks in DN hydrogel. 

Figure 2. Simulation results of stress as a function of elongation ratio of DN hydrogel, 

at given b ar r  ratios of 5, 6, 7, 8 and 9. 

Figure 3. Analytical results of stress as a function of elongation ratio, at different molar 

fractions of water, i.e. 1n =1×10-4, 1.5×10-4, 2×10-4, 2.5×10-4 and 3×10-4 mol. 

Figure 4. Comparisons between numerical results using equation (11) and experimental 

data [31] of the DN and PVA-DN hydrogels. 

Figure 5. The comparison of simulation results and experimental data [36] for the stress 

as a function of tensile strain of DN hydrogel with various water contents. 

Figure 6. Comparison of analytical and experimental results [41] of the mechanical 

behaviours of DN elastomers. (a) Mechanical stresses of DN elastomers as a function 

of elongation ratio at temperatures of 20oC and 60oC. (b) Effect of component content 

of second network on the mechanical behaviour of DN elastomers. (c) Effect of 

component content of first network on the maximum extensibility of DN elastomers. 

(d) Step-cycle loading-unloading curves of EA0.5MA2 elastomer at 60°C. 

Figure 7. Analytical results of storage and loss moduli as a function of loading 

frequency at different weight fractions of first network. (a) 1 00.2. (b) 1 00.4. (c) 1

00.6 and (d) 1 00.8. (e) Analytical results of storage moduli and (f) tangent delta as a 

function of loading frequency at 1 00.2, 0.4, 0.5, 0.6 and 0.8, respectively. 

Figure 8. (a) Comparisons of storage and loss moduli as a function of loading frequency 
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between the experimental data [43] and simulation results using equation (19), (20) and 

(21). (b) Comparison of glass transition temperature as a function of volume fraction 

( 1 ) of DN elastomers between the experimental data [43] and simulation results using 

equation (22).  
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