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ABSTRACT
Through smartphones and smart speakers, intelligent personal as-
sistants (IPAs) have made speech a common interaction modality.
With linguistic coverage and varying functionality levels, many
speakers engage with IPAs using a non-native language. This may
impact mental workload and patterns of language production used
by non-native speakers. We present a mixed-design experiment,
where native (L1) and non-native (L2) English speakers completed
tasks with IPAs via smartphones and smart speakers. We found
significantly higher mental workload for L2 speakers in IPA in-
teractions. Contrary to our hypotheses, we found no significant
differences between L1 and L2 speakers in number of turns, lexical
complexity, diversity, or lexical adaptation when encountering er-
rors. These findings are discussed in relation to language production
and processing load increases for L2 speakers in IPA interaction.

CCS CONCEPTS
•Human-centered computing→ User studies; Natural language
interfaces; HCI theory, concepts and models.
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1 INTRODUCTION
Intelligent personal assistants (IPAs) like Google Assistant have
increased the popularity of speech as an interaction modality [9].
Primarily used on smart speakers and smartphones [34], these assis-
tants can be used in a number of different languages, but coverage
and functionality across these languages is not comprehensive [27],
requiring many users to interact using a non-native language. This
includes those using English as a second language, hereby referred
to as L2 speakers. Interacting with IPAs in this way is likely to be
significantly more challenging than the interaction experienced by
those using English as their native language (L1 speakers). For in-
stance, L2 speakers tend to experience difficulty in lexical retrieval
[21, 43], because of an incomplete knowledge of the language being
used [47], with production being less automatized when compared
to L1 users [15]. Alongside increased demands in processing and
planning utterances in a second language, this means L2 users may
experience a significantly higher mental workload [14, 47] when
engaging with IPAs. These factors may also lead them to approach
the interaction differently [40, 48]. Our research explores this em-
pirically, by comparing the mental workload and language choices
made by L1 and L2 speakers when interacting with IPAs across
smart speakers and smartphones.

Our study identified significant differences in cognitive demand
between the two speaker groups. Specifically, we found L2 speakers
experience significantly higher levels of mental workload when
interacting with IPAs in their non-native language compared to
L1 speakers. Contrary to expectations, L1 and L2 speakers did not
significantly vary in the number of commands needed to complete
tasks, number of words used per command, the diversity of their
lexicon, nor their levels of adaptation when they experienced errors
during interaction. Our findings are the first to focus on the cogni-
tive and linguistic aspects in L2 IPA use. We discuss the findings
in relation to the cognitive mechanisms that may be present when
interacting with IPAs as an L2 speaker.
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2 RELATEDWORK
2.1 Language production in speech interface

interaction
Current work on language production in speech interface interac-
tion almost universally observes the language choices of L1 speak-
ers. Even then, the volume of work on this topic is limited [9], with
a focus on comparing language production in interactions between
human-machine and human-human interlocutors. Such work finds
that users tend to vary significantly in how they interact with sys-
tems compared to how they interact with humans [2], although
similar mechanisms may influence language production [11, 12].
People tend to use fewer topic shifts, use more words, as well as
use fewer anaphora and fillers when interacting with computers as
opposed to human partners. Similarly, people tend to use more ba-
sic lexical choices and grammatically simpler utterances [7] when
interacting with computers compared to other people [26].

This tendency to vary speech choices based on partner type is
thought to be driven by the perception of a computer’s competence
as a dialogue partner (i.e., a user’s partner model), whereby people
see voice user interfaces as at-risk listeners [36]. This is similar
to the mechanisms for adaptation proposed in psycholinguistics
literature, which highlight the tendency for partners to select their
language with the perceptions of their audience in mind, termed
audience design [6]. A similar effect has recently been shown to
operate on lexical choice in speech interface interaction, whereby
participants interacting with a US-accented system were signifi-
cantly more likely to use US lexical terms than when interacting
with an Irish-accented system [12].

2.2 L2 speakers and speech interfaces
Recent work comparing IPA use by both L1 and L2 speakers has
focused on user experience as opposed to observing their interac-
tion from a cognitive and linguistic perspective. L2 speakers see
IPAs as more difficult to use than do L1 speakers [39, 40]. Recent
work has also found that L2 speakers perceive difficulties in trying
to use the right sentence structures or retrieving the right lexi-
cal terms [48] when speaking to IPAs, with L2 speakers feeling
they have to rephrase utterances, causing frustration [40]. Research
on L2 language production offers potential explanations for these
perceived difficulties. It is widely acknowledged that L2 speakers
tend to have an incomplete knowledge of the non-native language
being used when compared to L1 speakers [15, 47]. Along with a
comparative lack of automatisation of the cognitive processes for
language production within a second language [15], this means
L2 users must resort to specific production strategies to mitigate
these production barriers. These include replacing lexical items,
reducing message complexity or describing the meaning of words
that are hard to retrieve [15]. Paired with the need to process non-
native speech when in dialogue, this means L2 speakers experience
considerable cognitive load when having to converse in a second
language [14, 47].

Accented speech and the need for longer planning time may
also lead to L2 users experiencing difficulties in commands being
understood, with the system either not recognising commands
or interrupting the user before commands are complete [25, 48].
When they encounter communication breakdowns in IPA use, L2

speakers tend to use common strategies to repair commands such as
repeating and rephrasing utterances [33]. Yet, the effective planning
of error repair may depend on the type of device being used. For
example, L2 speakers have emphasised the benefit of using visual
feedback [40], allowing them to use further visual information
(e.g., transcriptions of the conversation) to diagnose errors in their
commands as well as process system prompts, making them more
effective when using IPAs [33, 48].

3 RESEARCH AIMS & HYPOTHESES
Although a number of users engage with IPAs in their non-native
language, research on cognitive concepts such as the mental work-
load and the language they produce in interaction is scant. It is
therefore critical that we widen research to include the experiences
of non-native speakers [39, 40]. Our study focuses on linguistic
and cognitive aspects of L2 speaker interaction. We focus on the
mental workload experienced by L2 IPA users in comparison to L1
users, while also exploring the differences in language production
between the two groups when completing tasks with an IPA.

We hypothesise that, due to planning, generating and processing
speech utterances in a different language, L2 speakers are likely to
experience significantly higher mental workload in IPA interaction
compared to L1 speakers (H1). We also hypothesise that, due to
speech recognition and planning time difficulties [48], L2 speakers
may need significantly more turns when conducting a task than L1
speakers (H2). Due to lexical retrieval and knowledge constraints
compared to L1 speakers, we also hypothesise L2 speakers will have
significantly fewer words per utterance (H3), lower lexical diversity
than L1 speakers in interaction (H4) and may vary in their levels of
adaptation in comparison to L1 speakers when experiencing errors
(H5).

Based on work emphasising the importance of visual modalities
in supporting L2 speaker IPA use [40, 48], we also hypothesise
that these effects may vary significantly by device. Specifically,
the visual feedback afforded by Google Assistant on a smartphone
may lead to reduced mental workload for L2 speakers due to visual
output supporting error diagnosis and system query understanding
(H6). As visual support helps users diagnose and correct errors, we
also hypothesise that using a smartphone may significantly affect
the number of commands per turn (H7) and the number of words
per command (H8), while also impacting lexical diversity (H9) and
levels of adaptation (H10) for L2 speakers.

4 METHOD
To investigate these hypotheses, we designed a study that enabled
us to quantitatively compare the cognitive workload and linguistic
properties of L1 and L2 speakers in their interaction with IPAs.
The study received ethical approval through the university’s ethics
procedures for low risk projects.

4.1 Participants
A sample of 33 participants (F=14, M=18, Prefer not to say=1) with a
mean age of 28.1 years (SD=9.8 years) took part in the study. These
were all recruited from students and staff at a European university
via email, campus-wide posters, and snowball sampling. One par-
ticipant was removed due to technical difficulties in recording their
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utterances, leaving 32 participants in the sample. 16 (F=8, M=7,
Prefer not to say=1) were native English speakers, and 16 (F=6,
M=10) were native Mandarin speakers, who used English as their
non-native language. These Mandarin speakers self-reported their
English proficiency as moderate (7 point Likert Scale: 1 = Not at
all proficient; 7 = Extremely proficient; Mean=4.21, SD=0.7). 78.1%
(N=25) of our sample had used IPAs before, with 9.4% (N=3) using
IPAs frequently or very frequently. For those that had used IPAs
before, Siri (56%) was most commonly used, followed by Amazon
Alexa (36%) and Google Assistant (12%). Each participant was given
a €10 voucher as an honorarium for taking part.

4.2 Device type
The study included two device conditions. Participants interacted
with Google Assistant, using both a Moto G6 smartphone (Smart-
phone condition) and a Google Home Mini smart speaker (Smart
speaker condition) in a within-subjects design. We selected Google
Assistant because it is commonly used on both smartphones and
on smart speakers [34], minimising potential variation due to dif-
ferences in the IPAs being used across devices. The order of device
interaction was fully counterbalanced across L1 and L2 speaker
groups.

4.3 Task
Participants used Google Assistant to complete a total of 12 tasks
(6 with each device) across the experimental session. Experimental
tasks focused on 6 common IPA tasks [3, 17]: 1) playing music, 2)
setting an alarm, 3) converting values, 4) asking for the time in a
particular location, 5) controlling device volume and 6) requesting
weather information. To reduce practice effects, two versions of
each task were generated, creating two sets of six tasks. Each set of
tasks was used in only one of the device conditions. To eliminate
the influence of written tasks on user utterances, and the potential
confound of written tasks increasing L2 speaker cognitive load, all
tasks were delivered to participants as pictograms (see Figure 1 -
all pictograms are included in supplementary material). The order
of task sets were arbitrarily assigned, ensuring they were counter-
balanced as much as possible across device and speaker conditions.
Task order was randomised within sets for each participant.

4.4 Measures
4.4.1 Mental Workload: To assess participants’ mental workload
during interaction with each of the devices, participants completed
the NASA-TLX [24] after completing each task set. The NASA-
TLX is a 6-item Likert scale (20 point scale per item) questionnaire,
measuring 6 constituent factors of mental workload: Mental De-
mand, Physical Demand, Temporal Demand, Performance, Effort, and
Frustration. Scores on the questionnaire were summed to create an
overall workload (Raw TLX) score (Range: 0-120, see [23]).

4.4.2 Language production in interaction: To assess language pro-
duction in interaction, user task commands were transcribed. From
these transcripts, a number of measures were derived. These mea-
sures include: Number of commands per task, Lexical complexity,
Lexical diversity per task, Dynamic lexical adaptation, Lexical adap-
tion from initial command.

Number of commands per task is defined as the number of ut-
terances, starting with a wake phrase (i.e. "Hey Google" or "OK
Google"), that a participant used to complete a task.

Lexical complexity (measured through word count per command)
was derived by dividing the total word count used to complete a
task by the number of turns taken. This measure represents the
complexity of the utterance, and follows measures of L2 linguis-
tic complexity used in text-based research [35]. As commands to
speech interfaces tend to be concise, formulaic statements [19, 26],
we used word count per command rather than measuring numbers
of clauses as is done in other L2 complexity research [35].

Guiraud’s index of lexical diversity [22] was also calculated to
identify the number of unique words used when completing a task
(Lexical diversity per task). This measure compares unique words in
a command to the root of total words in a command. It is considered
to be a robust alternative to diversity measures that use a direct
ratio of unique words to total words, as these measures tend to
inflate diversity as utterance lengths increase [45].

To gauge levels of lexical adaptation for tasks that required mul-
tiple utterances to complete, we measured the Guiraud index of
lexical diversity for each pair of consecutive commands within a
task (Dynamic lexical adaptation). We also measured the Guiraud
index of lexical diversity for each utterance paired with the first
utterance of a task to determine how much participants varied their
lexical choices away from their initial command (Lexical adaption
from initial command). Both measures of adaptation were used so
that different styles of adaptation would be detected. For instance,
participants may make a command, try a different phrasing, then
return to their original phrasing. This would result in high dynamic
lexical adaptation but low lexical adaptation from initial command.
Participants may alternatively adapt by changing few words across
many commands, resulting in low dynamic lexical adaptation but
high lexical adaptation from initial command as each utterance
increasingly departs from the first attempt. Using both measures
allow us to detect these differences.

4.5 Procedure
Upon arrival, participants were welcomed by the experimenter,
given an information sheet with details about the experiment and
asked to give written consent to take part in the study. Participants
then completed a demographic questionnaire, giving information
about their age, sex, nationality, native language, experience with
IPAs and speech interfaces, and their self-reported level of English
proficiency. Participants were then given instructions for the study.
Within these, they were asked to also look at 6 practice pictograms
with the same visual structure as those in the experimental session
but different in the information requested, and write what they
would say to the IPA to complete the task depicted. From these
responses, experimenters ensured they were interpreting the pic-
tograms correctly before conducting the experimental tasks. They
were then asked to complete a number of tasks with Google As-
sistant on two devices - a smartphone and a smart speaker. These
tasks were displayed on a laptop, one at a time. Participants were
asked to complete a task using the Assistant and once they felt they
had done so, were asked to move to the next task. After completing
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Figure 1: Example set of task pictograms

a set of 6 tasks with one of the devices, participants then com-
pleted the NASA-TLX. This was then repeated for the next 6 tasks,
wherein they interacted with Google Assistant through the other
device. After finishing all tasks with both devices, participants then
completed a short post-interaction interview and were then fully
debriefed as to the aims of the study, and thanked for participation.
To capture participant utterances, the sessions were recorded using
Audacity v. 2.3.0.

5 RESULTS
Out of the total of 384 tasks, 315 were successfully completed (82%)
with 14 partially completed (3.6%) (i.e., participants completed the
task but varied the information requested). 45 tasks (11.7%) were
not successfully completed, of which 24 (6.2%) were not completed
due to technical errors. Unsuccessful and technical error tasks were
excluded from the dataset analysed. Before analysis, all data was
screened for outliers, with these being replaced by values of the
mean ± 3 SDs as suggested in [18]. Descriptive statistics for all
measures included in the study are shown in Table 1.

5.1 Mental Workload
Due to violation of the assumption of normal distribution (p<.05),
a robust mixed ANOVA with 10% trimmed means was run using
the WRS2 package (Version 1.0) [30] in R (Version 3.6) [41]. There
was a statistically significant main effect of speaker on the mental
workload experienced, whereby L1 speakers reported significantly
lower NASA-TLX scores (Mean=27.0; SD=19.07) than L2 speakers
(Mean=42.0; SD=14.37) [Q=11.74, p=.002] (see Figure 2). This sup-
ports our first hypothesis (H1). However, there was no statistically
significant main effect of device type [Q=0.28, p=.60] or interaction
between speaker type and device type [Q=0.81, p=.37] on mental
workload. H6 was therefore not supported.

5.2 Language production in interaction
5.2.1 Analysis Approach: To analyse the language production data,
linear mixed-effects models (LMM) were run using the lme4 pack-
age (Version 1.1.21) [5] in R (Version 3.6) [41]. This type of analysis
allows for the modelling of fixed (i.e., device and speaker type)
and random (i.e., participant and task variations) effects on spe-
cific outcomes such as lexical diversity. LMMs also allow us to
model individual differences through random intercepts, as well
as differences in how the fixed effects vary by participant and by
task through modelling random slopes. We take the approach of
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Figure 2: Mean Raw TLX scores (10% trimmed means with
trimmed standard error) for each speaker group

modelling the maximal random effect structure determined by the
experiment [4], reducing the complexity of random effects by re-
moving higher order random slopes to facilitate convergence. We
report LMM results in the text, following recent best-practice guide-
lines [31] by also reporting all LMM analyses fully. These appear
in the supplementary material. We include fixed and random ef-
fect results as well as reporting all model syntax to improve model
reproducibility.

5.2.2 Number of commands per task: Across the data set there was
a total of 933 user commands. The LMM run showed no statistically
significant effect of speaker [Unstandardized 𝛽=-0.39, SE 𝛽=0.37,
95% CI [-1.12,0.34], t=-1.06, p=.29], device [Unstandardized 𝛽=0.12,
SE 𝛽=0.27, 95% CI [-0.41,0.63], t=0.43, p=.67] or speaker and device
interaction [Unstandardized 𝛽=0.33, SE 𝛽=0.38, 95% CI [-0.41,1.07],
t=0.88, p=.38] on the number of user commands per task. Thismeans
that our hypotheses (H2 and H7) were not statistically supported.

5.2.3 Lexical complexity: Across the dataset there were 7112
words used to command the IPAs, with an average of 7.62 words
per command. There was no statistically significant effect of
speaker [Unstandardized 𝛽=-0.65, SE 𝛽=0.59, 95% CI [-1.83,0.53],
t=-1.11, p=.27], device [Unstandardized 𝛽=0.50, SE 𝛽=0.34, 95%
CI [-0.17:1.18], t=1.45, p=.15] or speaker and device interaction
[Unstandardized 𝛽=-0.45, SE 𝛽=0.49, 95% CI [-1.41,0.51], t=-0.92,
p=.36] on the number of words used per command. Therefore our
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Table 1: Descriptive statistics by speaker and device type

NASA-TLX
score

(10% trimmed)

Number of
commands
per task

Lexical
complexity

Lexical
diversity
per task

Dynamic
lexical

adaptation

Lexical
adaptation
from initial
command

Speaker Device Type Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

L1
Smart speaker
Smartphone
Total

27.36
29.00
27.50

18.59
13.38
14.13

2.24
2.35
2.29

2.18
2.14
2.15

8.08
8.57
8.32

2.87
3.07
2.97

2.61
2.58
2.60

0.53
0.58
0.56

2.12
2.24
2.19

0.67
0.61
0.66

0.98
0.80
0.88

0.96
0.91
0.93

L2
Smart speaker
Smartphone
Total

47.00
40.64
43.23

12.20
8.69
8.11

1.84
2.30
2.07

1.28
2.02
1.70

7.39
7.43
7.42

2.58
2.11
2.55

2.45
2.55
2.50

0.60
0.53
0.57

2.05
1.96
2.00

0.66
0.71
0.68

0.71
0.88
0.80

0.93
0.89
0.91

Total Smart speaker
Smartphone

36.89
35.27

16.16
10.25

2.04
2.33

1.79
2.07

7.74
8.01

2.74
2.69

2.53
2.57

0.57
0.56

2.09
2.10

0.66
0.67

0.85
0.84

0.95
0.90

hypotheses in relation to lexical complexity (H3 and H8) were not
statistically supported.

5.2.4 Lexical diversity per task: The LMM model showed no statis-
tically significant effect of speaker type on levels of lexical diversity
per task [Unstandardized 𝛽=-0.15, SE 𝛽=0.11, 95% CI [-0.38,0.07], t=-
1.38, p=.18], speaker type [Unstandardized 𝛽=-0.01, SE 𝛽=0.08, 95%
CI [-0.16,0.14] ,t=-0.19, p=.85] and speaker device interaction [Un-
standardized 𝛽=0.12, SE 𝛽=0.11, 95% CI [-0.09,0.33] ,t=1.14, p=.26].
Therefore our hypotheses in relation to lexical diversity (H4 and
H9) were not statistically supported.

5.2.5 Dynamic lexical adaptation: Over the 315 successful tasks,
116 required more than one command to complete. Tasks that par-
ticipants only used one turn to complete (N=199) were excluded
from the dataset. There was no statistically significant effect of
speaker [Unstandardized 𝛽=-0.04, SE 𝛽=0.16,95% CI [-0.36,0.28],
t=-0.28, p=.78], device [Unstandardized 𝛽=0.14, SE 𝛽=0.14, 95% CI
[-0.14,0.42], t=0.98, p=.32] or speaker and device interaction [Un-
standardized 𝛽=-0.24, SE 𝛽=0.20, 95% CI [-0.64,0.16], t=-1.20, p=.23]
on the level of lexical diversity from a preceding turn. Therefore,
L1 and L2 speakers did not vary in their levels of lexical adaptation
from a previous utterance when having to use more than one com-
mand to complete a task. There was also no impact of device type
on levels of lexical adaption from previous command, so H5 and
H10 were not supported.

5.2.6 Lexical adaptation from initial command: Again, tasks where
participants only used one utterance to complete the task were
excluded from analysis. The LMM showed no statistically signif-
icant effect of speaker [Unstandardized 𝛽=-0.26, SE 𝛽=0.18, 95%
CI [-0.61,0.10], t=-1.43, p=.16], device [Unstandardized 𝛽=-0.17, SE
𝛽=0.17, 95% CI [-0.51,0.17], t=-1.01, p=.32] or speaker and device
interaction [Unstandardized 𝛽=0.33, SE 𝛽=0.25, 95% CI [-0.15,0.82],
t=1.35, p=.18] on the level of lexical diversity from the first turn.
It seems that both L1 and L2 speakers tend to use similar levels
of lexical adaptation from their first turn, with this adaptation not
being influenced by device type. This means that again H5 and H10
were not supported.

6 DISCUSSION
Our work set out to identify how using IPAs in a non-native lan-
guage impacted mental workload and language production. We
found L2 speakers experienced significantly higher mental work-
load than L1 speakers in IPA interactions across both smart speakers
and smartphone devices. Although there were significant levels
of workload for L2 users, there were no significant differences be-
tween L1 and L2 speakers in terms of the number of turns, words
used and diversity of lexical choice. They also did not vary in the
level of lexical adaptation from their initial utterances. They also
did not vary in their level of lexical adaptation when comparing to
a preceding turn. We discuss the interpretations of these findings
below.

6.1 Linguistic retrieval, synthesis processing &
workload

Our work highlights that, even though they may show similar types
of language use, L2 speakers experience significantly higher mental
workload than L1 users in IPA interaction. Reasons for this are
likely to involve the increased load in producing and processing
utterances in a non-native language [14, 15]. Efforts needed for
lexical retrieval in production and processing may be of particular
influence. Multilingual speakers store significantly more words in
their mental lexicon when compared to monolinguals, to facilitate
accurate word retrieval in processing and production when using
other languages. This is thought to lead to less frequent access
of words across their lexicon, making activation lower and thus
leading to difficulties in recall and retrieving these lexical items
[15, 21, 43]. The lack of automatisation of language production
processes [15], is also likely to contribute to this load.

In addition to production issues, many L2 speakers also find
it more cognitively challenging to process and understand non-
native synthetic speech [46]. Non-native speakers find synthesis in
a non-native language significantly less intelligible than do native
speakers [1, 42, 46]. This is proposed to derive from L2 speak-
ers’ comparative unfamiliarity with their non-native language’s
phonological system, common syntactic structures and lexicon,
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which may increase cognitive load when interpreting and process-
ing speech output [46]. In real world IPA use, this mental work-
load may be even higher as background noise negatively affects
non-native speakers’ ratings of intelligibility compared to native
speakers [42]. A challenge for future HCI research is to investigate
ways to mitigate this load for L2 users.

6.2 Lexical adaptation and limited potential for
diversity

Contrary to our hypotheses, number of commands, lexical adapta-
tion, complexity and diversity did not vary across speaker groups or
device types. There may be a number of reasons for this. Although
L2 users may experience more load in lexical retrieval, IPA interac-
tion still tends to be lexically constrained. Consequently, complex
and diverse lexical choices may not be a priority, as IPAs are often
seen as basic dialogue partners [8, 10, 32]. This is contrasted by
more open-ended interactions in which people have been shown
to use conversational and complex linguistic structures (e.g., with
automotive interfaces [28, 29]). L1 and L2 speaker variance may be
more stark in these types of interaction.

The opportunity for lexical variation may be further limited by
the requirement to use the wake word at the start of commands,
reducing the potential for variability. Additionally, although adap-
tation has been noted as a common strategy for error repair in
human-machine dialogue [26, 36], it may be that lexical adaptation
in this instance is not the primary adaptation strategy for users.
Although L2 users have suggested they may use lexical strategies
in IPA use (e.g., substitution or describing the meaning of words
they cannot retrieve) [48], adaptation of pronunciation is much
more strongly emphasised by L2 speakers in previous work [40, 48].
L2 speakers tend to vary significantly from L1 speakers in other
speech dimensions like tempo, rate of hesitations (e.g., filled pauses,
repetitions and corrections [47]) while also adapting syntactically
or semantically [37]. Our findings suggest that, at a lexical level, L2
speakers and L1 speakers do not vary in the limited lexical context
of IPA interaction. Future work should look to explore other forms
of adaptation as well as other linguistic cues in language production
with IPAs across these user groups.

6.3 Proficiency and automaticity
Although we found no significant difference between speakers in
lexical diversity and complexity, this may be due to proficiency
of the participants recruited. L2 participants rated themselves as
moderately proficient and all attended an English-speaking uni-
versity. These factors, together with the relative simplicity of the
commands required for IPA use, may explain the lack of effect in
our analysis. Increased proficiency significantly improves IPA user
experience for L2 language speakers [39, 40]. Increased fluency in a
second language is also linked to the proceduralisation of syntactic
and lexical knowledge of that language [44]. Although we found no
effect in our sample, there may be differences between beginner and
more advanced L2 speakers. Future work should look to identify
the role that this proficiency has on language production within
IPA interactions.

7 LIMITATIONS
Along with L2 users being recruited from a European university
where English is the primary language, all L2 users were native
Mandarin speakers, which may influence the wider generalisability
of results to other native and non-native language combinations.
It may be that cognitive effects seen in our work vary based on
similarities and differences of the languages being used, such as the
phonetic or structural similarity of a non-native language to partic-
ipants’ native tongue. This means that L2 speakers whose native
languages are more closely related to English may experience even
less evident language production effects than Mandarin speakers.
It is therefore important that future work explores whether similar
effects are seen for L2 speakers with different native languages, as
well as differing levels of language ability mentioned above. It is
also important to note that future work should look to increase
sample size so as to identify whether the findings are replicated
across larger samples of users.

To increase ecological validity, participants were able to control
when to move on to the next task. This meant that participants
could complete the tasks at their own pace andmaymore accurately
reflect how many attempts participants are willing to give a task
before abandoning it. Individual differences in this willingness are
likely to influence the number of commands users made. Some were
willing to try several times in order to successfully complete tasks,
whereas others preferred to skip to the next task after relatively few
attempts, even if they were not successful at completing the task
(although we note only 5.5% of tasks in our data were abandoned by
participants). Although the experimenters encouraged participants
to try as many times as necessary, they had the freedom to move
on before a successful response, which could have influenced the
number of commands recorded per task.

In relation to ecological validity, it is also important to note that
our research was lab based. This allowed us to minimise potential
confounds such as background noise and user distraction. Yet this
context may have also made users aware that they were being
recorded. Real-world IPA use is likely to vary on these dimensions
in comparison to a lab based environment. Future work should
therefore aim to replicate our findings in a real-world deployment.

Rather than using text based task instructions, we used pic-
tograms to inform participants what to complete during the study.
This was to ensure that the processing of non-native language in
task instructions for L2 users did not confound any mental work-
load effects. The use of pictograms also ensured that text-based
instructions did not influence subsequent language used when mak-
ing commands. Future studies with L2 speakers should investigate
the mental workload and language production impact of delivering
written tasks experienced by speakers in such studies.

Our findings are limited to a relatively constrained linguistic task
of IPA interaction. IPAs are generally designed to perform simple
tasks [3, 13] through question-answer adjacency pair dialogues [20,
38], rather than being designed for more conversational or open-
ended speech tasks [10, 16]. It is important that future research
considers the nature of L2 speech behaviours in these more open-
ended scenarios.
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8 CONCLUSION
Although IPA use has grown, fuelled by their inclusion on smart
speakers and smartphones, not all languages are fully supported,
leading some users to interact in a non-native language. Our study
focused on these non-native (L2) speakers to understand differ-
ences in their experience of IPAs from native (L1) speakers from
a cognitive and linguistic perspective. We found that L2 speakers
experienced significantly higher mental workload than L1 speakers,
irrespective of the device they are using. Even though they experi-
ence higher load in producing and interpreting the language from
the IPA, they did not vary in the way they interacted linguistically
with the IPAs, showing similar number of commands, lexical com-
plexity, lexical diversity and lexical adaptation to L1 speakers. Our
work sheds light on this under-researched set of users. CUI-based
research needs to study this group in more detail to identify ways
to support their IPA interactions, reducing the cognitive burden
they experience.
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