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Abstract 

  A recent unsymmetric 4-node, 8-DOF plane finite element US-ATFQ4 is generalized to hyperelastic 

finite deformation analysis. Since the trial functions of US-ATFQ4 contain the homogenous closed 

analytical solutions of governing equations for linear elasticity, the key of the proposed strategy is how 

to deal with these linear analytical trial functions (ATFs) during the hyperelastic finite deformation 

analysis. Assuming that the ATFs can properly work in each increment, an algorithm for updating the 

deformation gradient interpolated by ATFs is designed. Furthermore, the update of the corresponding 

ATFs referred to current configuration is discussed with regard to the hyperelastic material model, and 

a specified model, neo-Hookean model, is employed to verify the present formulation of US-ATFQ4 

for hyperelastic finite deformation analysis. Various examples show that the present formulation not 

only remain the high accuracy and mesh distortion tolerance in the geometrically nonlinear problems, 

but also possess excellent performance in the compressible or quasi-incompressible hyperelastic finite 

deformation problems where the strain is large. 
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1. Introduction 

  How to correctly simulate the incompressible limit state is one of the most challenging issues for 

finite element methods, in which conventional low-order element models often perform very poorly 

in those problems involving nearly incompressible materials [1-3]. Therefore, researchers have to 

make great efforts to develop the advanced low-order elements that are free of volumetric locking. In 

earlier time, within the geometrically linear range, Pian et al. [4] and Simo et al. [5] proposed the 

assumed stress formulations and the enhanced assumed strain methods, respectively, that can well 

solve the nearly incompressible problems of linear elasticity. Actually, robust low-order elements may 

be more significant for nonlinear and large deformation analysis. Related developments can be found 

in various literatures, such as the mixed variational methods developed by Simo et al. [6], the mixed 

u/p formulations proposed by Sussman and Bathe [7], the geometric nonlinearity extension of the 

enhanced assumed strain elements of Simo et al. [8]; the F-bar method proposed by de Souza Neto et 

al [9, 10], and so on. Recently, new approaches for hyperelastic materials with regard to finite element 

analysis can still be found in various literartures. For example, Schröder et al. proposed a new mixed 

finite element based on a modified Hu-Washizu principle, which shows lower mesh distortion 

sensitivity than the F-bar method [11]; Müller et al. studied a Least-Squares mixed variational 

formulation for hyperelastic deformations based on approximating stresses and displacements [12]; 

Wulfinghoff et al. proposed a hybrid discontinuous Galerkin quadrilateral element formulation which 

is free of shear and volumetric locking for hyperelastic finite deformation analysis [13]; Hollenstein et 

al. proposed a Macro-Cosserat Point Element for isotropic and anisotropic hyperelastic materials [14]; 

Gültekin et al. systematically studied an three-field Hu-Washizu mixed finite element formulation for 

anisotropic hyperelastic materials [15]; and others work including the study of stability can be found 

in references [16-19]. 

  The unsymmetric finite element method originally proposed by Rajendran et al. also exhibits some 

advantages to solve the incompressible problems as well as improve the distortion tolerance of 
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elements [20-22] in both geometrically linear and nonlinear situations. However, these elements still 

possess some inherent defects, such as direction dependence, interpolation failure and ineffectiveness 

for low-order elements, so that they are not suitable for the practical applications [23]. By introducing 

the analytical trial function (ATF) method and the generalized conforming technique [24], Cen et al. 

proposed a series of new unsymmetric elements [25-31] that can overcome all original defects and 

greatly improve precisions. The unsymmetric finite element method employs two different sets of 

interpolation (test function and trial function) for displacement fields, just like the Petrov-Galerkin 

formulations. Similar to the Trefftz methods [32], the ATF method used in the new unsymmetric finite 

element method employs the homogenous solutions of governing equations of linear elasticity as the 

trial functions for finite element discretization. Due to the merits of these techniques, the resulting 

models possess high precisions as well as avoid many locking problems. For example, a recent low-

order unsymmetric 4-node, 8-DOF plane solid element, denoted by US-ATFQ4 [26], exhibits better 

performance than most existing 4-node plane element models. It can strictly pass both the constant 

stress/strain (first-order) patch test and second-order patch test for pure bending, which has been 

proved impossible for other symmetric 4-node, 8-DOF plane element [33, 34], and is free of volume 

locking and other tricky problems. The key for the success is the employment of the homogenous 

solutions of governing equations of linear elasticity as the trial functions.  

  However, some researchers believe that those finite element models, which employ the solutions of 

governing equations of linear elasticity as trial functions, will be limited to the applications of linear 

elastic situations [35]. Actually, these analytical trial functions (ATFs) can work well in the 

geometrically nonlinear problems if an appropriate update strategy is adopted, as shown in reference 

[29]. This fact also verifies that the proposed assumption that the ATFs can properly work in each 

increment. On the other hand, it should be noted that the strategy proposed in reference [29] is only 

limited to the geometrically nonlinear problems where the strain is still small, in which the material 

parameters remain constant during the update procedure for the corresponding ATFs. As for 

hyperelasticity problems with large strains, both geometric and material nonlinearity must be 

considered simultaneously. The geometrically nonlinear scheme for small strain problem cannot be 

directly and easily generalized to hyperelasticity problem with large strains, because the material 

parameters in ATFs are not constants any more. 
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In present paper, a new strategy is proposed to solve the hyperelastic finite deformation problems 

where strain is large, and the linear low-order unsymmetric plane element US-ATFQ4 is generalized 

to hyperelastic finite deformation analysis according to the proposed strategy. The paper is organized 

as follows. At the beginning of Section 2.1, the computation for the internal nodal force vector of the 

unsymmetric element US-ATFQ4 is reviewed. Then, an algorithm for updating the deformation 

gradient, which is interpolated by ATFs, is designed in Section 2.1.1. Furthermore, the update of the 

corresponding ATFs referred to current configuration is discussed in Section 2.1.2. With regard to the 

hyperelastic material model, a specified model, neo-Hookean model, is used to illustrate and verify 

the present formulation in Section 2.1.3. The numerical implementation is introduced in Section 2.2. 

In the following Section 3, various examples are tested to evaluate the present formulation, which 

show that the present formulation not only remain the high accuracy and mesh distortion tolerance in 

the geometrically nonlinear problems, but also possess excellent performance in the compressible or 

quasi-incompressible hyperelastic finite deformation problems where the strain is large.  

Note: in order to clarify the notation types that appear in following sections, the tensors are denoted 

only by bold alphabets, while the matrices and vectors in finite element formulations are denoted by 

bold alphabets together with    and   , respectively. 

2. The formulation of unsymmetric elements for hyperelastic finite deformation 

2.1 The internal nodal force vector computation of the unsymmetric element US-ATFQ4 

As shown in Figure 1, a body experiences a large deformation motion. The equilibrium conditions 

of a system of finite elements at time t+t can be expressed as: 

     ext int 0t t t t+ +− =F F ,                                (1) 

where  ext

t t+ F  and  int

t t+
F  are the element external and internal nodal force vector, respectively. 

The general approach to this nonlinear equation is an incremental step-by-step solution, in which the 

solutions for the discrete time t are known and the solutions for the discrete time t+t need to be 

determined. Then Equation (1) can be written as: 
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     ext int

t t t t

T

+   = − K q F F ,                           (2) 

where  q  is the incremental nodal displacement vector; 
t

T
  K  is the tangent stiffness matrix 

and defined by: 

   ( )
 

ext int

t t t

t

T t

+ −
  = 



F F
K

q
,                            (3) 

which means the tangent stiffness matrix is the derivative of the right-hand-side vector of Equation (2) 

with respect to the nodal displacement vector  t q  . Generally,  ext

t t+ F   is assumed to be 

independent of the deformation, and the Newton-Raphson iteration scheme for the solution of Equation 

(1)-(3) is necessary. In order to obtain the accurate and reasonable solutions of Equation (1), the proper 

and effective approximations of the internal nodal force vector are essential. 

  In the nonlinear formulation of the unsymmetric elements, the internal nodal force vector at time t 

can be written as [29]: 

   
T

int
ˆ d

t
e

t t t t

t t L
V

V =  F B σ ,                            (4) 

where the left subscript t of  int

t

t F  means it is referred to the configuration at time t;  ˆtσ  is the 

Voigt notation of Cauchy stress tensor ˆt
σ  at time t, which is calculated by the displacement field 

interpolated by ATFs; 
t

t L
  B  is the linear strain-displacement transformation matrix and defined by 

the conventional isoparametric shape functions: 

1, 4,

1, 4,

1, 1, 4, 4,

0 ... 0

0 ... 0

...

t t

t t

t t t t

x x

t

t L y y

y x y x

N N

N N

N N N N

 
 
   = 
 
  

B ,                       (5) 

with  

( )( ) ( )
1

1 1 , 1,2,3,4
4

I I IN I   = + + = ,                   (6) 

and ( ),I I   are the nodal isoparametric coordinates. 

2.1.1 An algorithm for calculating the deformation gradient interpolated by the ATFs 

  For general nonlinear problems, the Cauchy stresses can be calculated by the deformation gradient 



6 

 

by means of constitutive models. In the case of hyperelastic materials, the Cauchy stress tensor ˆt
σ  at 

time t can be treated as a function of 
t
F  and expressed by: 

( )ˆt tf=σ F .                                      (7) 

in which 
t
F   is the deformation gradient tensor at time t. So, how to calculate the deformation 

gradient using the ATFs is the key work of present study. However, the whole displacement field cannot 

be interpolated straightly by the analytical trial functions [29]. The strategy we proposed is to 

interpolate the incremental displacement field  u   with the assumption that the analytical trial 

functions can properly work in each increment, and we have: 

    

1

2/2 /2 /2 /2

7 8

3/2 /2 /2 /2

7 8

8

1 0 0 0

0 1 0 0

t t t t t t t t
x

t t t t t t t t
y

u x y U U

u x y V V









+ + + +

+ + + +

 
 
       

 = = =    
      

 
  

u P α ,    (8) 

where i (i=1~8) are eight undetermined coefficients;
/2

7

t t U+
, 

/2

7

t t V+
,

/2

8

t t U+
 and 

/2

8

t t V+
 are the 

linear displacement solutions for plane pure bending in arbitrary direction and in terms of the second 

form of quadrilateral area coordinates (QACM-II) (S, T) [26] (see Appendix A) at time t+t/2, and 

their detailed expressions are as follows:  

2 2 3 2 2 2 2

7 1 2 2 1 11 1 2 22 1 12 1 2 1 12 21 663

2 2 3 2 2 2 2 4 4

1 16 2 1 16 61 1 2 1 26 62 2 1 11 1 2 22

2 2 3

1 2 1 12 21 66 1 2 1 16

3 ˆ ˆ ˆ ˆ ˆ ˆ{[ (4 ) 16 ( )
16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ16 ( ) ( )] [2 2

ˆ ˆ ˆ ˆ2 ( ) 2 (

t t

t t

U c c A b c C b b C b A C b b c C C C
A

c A C b c C C b b c C C S b c C b b C

b b c C C C b b c C

+

+

= − − + − + +

− + + + + + +

+ + + − 3 2 2

61 1 2 1 26 62

4 5 3 2 2 3 4 2 2

1 1 11 1 22 1 1 12 21 66 1 1 16 61 1 1 26 62

ˆ ˆ ˆ) 2 ( )]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] }

t t t t

t t

C b b c C C S T

b c C b C b c C C C b c C C b c C C T

+ +

+

+ − +

+ − − − + + + + + +

,     (9) 

2 3 2 2 2 2 2

7 1 2 11 1 2 1 2 22 1 21 1 1 2 12 21 663

2 3 2 2 2 2 2 4 4

1 26 1 2 26 62 1 1 2 16 61 1 2 11 1 2 22

2 2 3

1 1 2 12 21 66 1 1 2 1

3 ˆ ˆ ˆ ˆ ˆ ˆ{[ (4 ) 16 ( )
16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ16 ( ) ( )] [2 2

ˆ ˆ ˆ ˆ2 ( ) 2 (

t t

t t

V c c C b b A b c C c A C b c c C C C
A

b A C b c C C b c c C C S c c C b c C

b c c C C C b c c C

+

+

= − − + + − + +

− + + + + + +

+ + + − 3 2 2

6 61 1 1 2 26 62

5 4 2 3 4 3 2 2 2

1 11 1 1 22 1 1 12 21 66 1 1 16 61 1 1 26 62

ˆ ˆ ˆ) 2 ( )]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] }

t t t t

t t

C b c c C C S T

c C b c C b c C C C b c C C b c C C T

+ +

+

+ − +

+ − − − + + + + + +

,    (10) 
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2 4 5 3 2 2 3 4

8 2 2 11 2 22 2 2 12 21 66 2 2 16 61 2 2 263

2 2 4 4 2 2 3

62 1 2 11 1 2 22 1 2 2 12 21 66 1 2 2 16 61

3 2 2

1 2 2 26 62

3 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{[ ( ) ( ) (
16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ)] [2 2 2 ( ) 2 ( )

ˆ ˆ2 ( )]

t t

t t

t t t t

U b c C b C b c C C C b c C C b c C
A

C S b c C b b C b b c C C C b b c C C

b b c C C S

+

+

+ +

= − − − + + + + +

+ + + + + + − +

− + 2 2 3 2

1 2 1 2 11 1 2 22 2 12

2 2 2 2 3 2 2 2 2

1 2 2 12 21 66 2 16 1 2 16 61 1 2 2 26 62

ˆ ˆ ˆ[ (4 ) 16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 16 ( ) ( )] }t t

T c c A b c C b b C b A C

b b c C C C c A C b c C C b b c C C T+

+ − + − +

− + + − + + + +

,    (11) 

2 5 4 2 3 4 3 2

8 2 11 2 2 22 2 2 12 21 66 2 2 16 61 2 2 263

2 2 4 4 2 2 3

62 1 2 11 2 1 22 2 1 2 12 21 66 2 1 2 16 61

3 2 2

2 1 2 26 62

3 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{[ ( ) ( ) (
16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ)] [2 2 2 ( ) 2 ( )

ˆ ˆ2 ( )]

t t

t t

t t t t

V c C b c C b c C C C b c C C b c C
A

C S c c C b c C b c c C C C b c c C C

b c c C C S

+

+

+ +

= − − − + + + + +

+ + + + + + − +

− + 2 3 2 2

1 2 11 1 2 2 1 22 2 21

2 2 2 3 2 2 2 2 2

2 1 2 12 21 66 2 26 2 1 26 62 2 1 2 16 61

ˆ ˆ ˆ[ (4 ) 16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 16 ( ) ( )] }t t

T c c C b b A b c C c A C

b c c C C C b A C b c C C b c c C C T+

+ − + − +

− + + − + + + +

,    (12) 

where, the parameters 11Ĉ , 12Ĉ … are referred to Equation (19); other parameters can be found in 

Appendix A. The derivations of expressions of 0

7U , 0

7V  , 0

8U  and 0

8V  referred to the initial 

configuration are given in reference [26]. 

Substitution of nodal coordinates and nodal displacement increments into Equation (8) yields: 

   /2 ˆt t+  = 
 

u N q ,                                 (13) 

which means the ATFs of configuration at time t+t/2 are used to interpolate the incremental 

displacement field. 

Then, as shown in Figure 1, the incremental deformation gradient matrix is defined as: 

 
 

 
 

 

t t

t t

t t

+

+
  

  = = + 
 

x u
f I

x x
,                         (14) 

where  I  is the identity matrix. Substitution of Equation (13) into Equation (14) yields: 

 
 

 
/2 ˆt t

t t

t

+

+
 
   = +  


N
f I q

x
.                          (15) 

After some trivial manipulations, Equation (15) can be rewritten as: 

 
 

 
 

 

1
/2 /2

/2 /2

ˆ ˆ
1

2

t t t t

t t

t t t t

−
+ +

+

+ +

       
        = +  −       

   

N N
f I q I q

x x
.            (16) 

  Consequently, the deformation gradient matrix at time t+t can be calculated by multiplying the 

incremental deformation gradient matrix by the deformation gradient matrix at time t ： 

t t t t t+ +     =     F f F .                            (17) 
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Thus, based on Equation (16) and (17), an algorithm of calculating the deformation gradient 

interpolated by the ATFs is proposed. 

 

2.1.2 The update of the corresponding analytical trial functions (ATFs) 

  In the linear elastic element US-ATFQ4 formulation, the following strain-stress relation is used to 

calculate the analytical solutions of strains [26]: 

   

11 12 1611 11

22 21 22 26 22

12 1261 62 66

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ= = =

ˆ ˆ ˆ

C C C

C C C

C C C

 

 

 

    
           
    

     

ε C σ ,                   (18) 

where ˆ 
 
C  is the elasticity matrix of compliances. Then, the linear displacement solutions ( 0

7U , 0

7V  ,

0

8U  and 0

8V ) can be obtained, which are used to form the ATFs. However, in the case of finite strain 

problems, the following equation is proposed to calculate the corresponding analytical trial functions 

at time t: 

11 12 1611 11

22 21 22 26 22

12 1261 62 66

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ2

t t tt t c

t t t t t c

t t ct t t

C C CD

D C C C

D C C C













    
    

=     
    
     

,                        (19) 

where 
t

ijD   and 
t c

ij


  ( , 1, 2i j =  ) are components of the rate-of-deformation tensor and Lie 

derivative of Kirchhoff stress tensor, respectively. Then, we have  

:t c t t =τ C D .                                    (20) 

Therefore, the shape function formed by ATFs is also the function of 
t
C , and can be expressed by: 

( )ˆ ,t t tg=N x C ,                                   (21) 

where t
C  is the fourth-order tensor of elastic moduli which are assumed to be constant for the small 

strain case, including the geometrically nonlinear problems [29]. While in the case of finite strain 

problems, t
C  should be consistent to the spatial elasticity tensor (the fourth elasticity tensor) [36, 

37], i.e. 
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t t 
C C ,                                       (22) 

where the spatial elasticity tensor t 
C  is the relation between the Lie derivative of Kirchhoff stress 

tensor vL τ  and the rate-of-deformation tensor D  with the definition: 

= :t t c t t

vL τ τ C D .                                 (23) 

Consequently, Equation (21) can be rewritten as: 

( )ˆ ,t t tg =N x C .                                   (24) 

 

2.1.3 Hyperelastic matrial model example: neo-Hookean material 

For the hyperelastic materials, it is easy to derive the spatial elasticity tensor from the specified 

hyperelastic models. Here, the neo-Hookean material model is chose to illustrate the calculation of 

Equation (24). The stored energy function for a compressible neo-Hookean material is given as follow: 

( )
2 1 1

ln 3
4 2 2

t
t t tJ
W G J G tr




−  
= − + + − 

 
C ,                    (25) 

where   and G  are the Lamé constants of the linearized theory; t
C  is the right Cauchy–Green 

deformation tensor and dett tJ  =  F . Then, the spatial elasticity tensor can be obtained by pushing 

forward the material elasticity tensor t SE
C : 

2

4
t

t SE

t t

W
=

 
C

C C
,                                  (26) 

t t t t t t SE

ijkl im jn kp lq mnpqC F F F F C = ,                              (27) 

( ) ( )2 21 1
2

t t t

ijkl ij kl ik jl il jkC J J 
       



 
= + + − + 

 
.                 (28) 

And the Cauchy stress tensor is given by 

( )
2 1

ˆ
2

t
t t t T

t

J
G

J


−
= +  −σ I F F I                              (29) 

Based on the major symmetry and minor symmetries of the spatial elasticity tensor, it is convenient to 
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calculate the ATFs using its Voigt notation based on Equation (19)-(21). Finally, the proposed 

computational procedures of internal nodal force vector are schematically illustrated in Box 1. 

 

2.2 Numerical implementation 

As described in Section 2.1, the tangent stiffness 
t

T
  K  matrix is the derivative of the right-hand-

side vector of Equation (2) with respect to the nodal displacement vector  t q  . Owing to the 

complicated form of the internal nodal force vector of element US-ATFQ4, the derivation of tangent 

stiffness matrix is completed with the help of the automatic differentiation program AceGen developed 

by Korelc [38]. 

The implementation of present formulation of element US-ATFQ4 for hyperelastic finite 

deformation is via the user element subroutine (UEL) of commercial software SIMULIA Abaqus [39]. 

The computation flowchart is given in Figure 3 in reference [29]. The postprocessings of results are 

also completed in Abaqus with some instructions in reference [40]. All terms of the element 

formulation are evaluated by using a 2×2 Gauss integration scheme. And the incremental-iterative 

Newton-Raphson scheme is employed to solving the nonlinear problems. 

 

3. Numerical examples 

  Six examples are tested to evaluate the performance of the present formulation of US-ATFQ4 for 

the hyperelastic finite deformation problems. Results obtained by some other 2D 4-node solid elements, 

as listed below, are also given form comparison. 

⚫ CPE4H: the 4-node bilinear, hybrid plane strain element with constant pressure in Abaqus [39]. 

⚫ CPE4IH: the 4-node bilinear, incompatible and hybrid plane strain element with linear pressure in 

Abaqus [39]. 

⚫ CPE8H: the 8-node biquadratic, hybrid plane strain element with linear pressure in Abaqus [39]. 

⚫ Q1: the 4-node bilinear standard isoparametric plane element [41]. 
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⚫ Q1/P0: the 4-node mean dilatation plane element proposed by Simo et al. [6]. 

⚫ Q1/E4: the 4-node enhanced strain plane elements with four enhanced strain modes proposed by 

Simo et al. [8]. 

⚫ Q1/Fbar: the 4-node bilinear plane element with the F-bar technique proposed by de Souza Neto 

et al. [9]. 

⚫ Q1SP: the 4-node enhanced strain plane elements with stabilization technique proposed by Reese 

et al. [41] 

Note: a plane strain state with is assumed in all the following examples. 

 

3.1 Cook’s membrane problem. 

  This example is a standard test frequently employed to evaluate the element performance in bending 

dominated linear elastic problems. In the case of hyperelastic finite deformation, it is also a popular 

numerical example to test the element performance in compressible and quasi-incompressible 

situations [8, 9, 41]. The geometric parameters and boundary conditions are depicted in Figure 2. Here, 

a neo-Hookean material model is used with the strain energy function given by Equation (25). The 

material parameters 400888.8 = , 80.1938G = , which represents a quasi-incompressible situation. 

As shown in Figure 3, the vertical displacement of Point A is calculated using various numbers of 

elements (2×2, 4×4, 8×8… ) and with 20 equal increments. It can be seen that element US-ATFQ4 

presents relatively better results even using the coarsest mesh (2×2) and possesses the best convergence, 

which means the performances of the present formulation are superior to those of other elements that 

are developed specially for the quasi-incompressible situations, such as Q1/E4 [8], Q1/Fbar [9], and 

Abaqus element CPE4H [39].  

Furthermore, two distorted coarse mesh cases are given in Figure 4 to test the mesh distortion 

tolerance of the present formulation. The loading force F is increased to 384 to enlarge the deformation, 

and the reference solutions of vertical displacement of point A is obtained using a fine mesh (64×64) 

of CPE4IH, which is consistent with that of reference [42]. As shown in Table I, the present element 

US-ATFQ4 can give much better results those obtained by CPE4H and CPE4IH using both distorted 

coarse meshes under very large loading force. On the other hand, the sensitivity test for the present 
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formulation with respect to the total number of increments (NINC) is given in Figure 5, which shows 

that the present formulation are insensitive to the total number of increments as long as NINC is enough 

large (such as 10 in present example). This insensitivity is unexpected considering the assumption we 

proposed in Section 2.1.1 and Equation (8), and it indicates that the present formulation for the 

hyperelastic finite deformations are not only accurate but also robust.  

3.2 Angle frame problem 

  The following example is often employed to test the element performances in geometrically 

nonlinear problems where strain is still small [29]. Here, as shown in Figure 6, it is modified as the 

problem involving both geometric and material nonlinearity, in which the quasi-incompressible neo-

Hookean material model is adopted. The material parameters 
105.0 10 = , 

71.0 10G =  , and the 

load F is increased to 
53.0 10 . Actually, the modified example will experience a moderate strain state 

after a large rotation. Two coarse mesh cases given in Figure 6 are considered: regular and distorted 

mesh with 9 elements. The reference results are obtained by using element CPE4H with a fine mesh 

(304 rectangular elements). The horizontal displacement of point A and the vertical displacement of 

point B with respect to the loading process are given in Figure 7. 

  It can be found that the results obtained by both the present element US-ATFQ4 and element 

CPE4IH can agree very well with the reference results using the regular mesh. However, for distorted 

mesh case, CPE4IH cannot present satisfied results, especially during the large rotation state. But US-

ATFQ4 presents a relative insensitive performance with respect to the distorted mesh. The reason why 

US-ATFQ4 cannot give accurate results of point B in Figure 7 (d) mainly comes from the geometry 

discretization error due to the coarse mesh. On the other hand, both CPE4H and Q1/Fbar cannot 

provide good results using both mesh cases.  

3.3 Hyperelastic beam problems 

3.3.1 Slender cantilever beam 

  This example is also often used for testing element performance in the geometrically nonlinear 



13 

 

analysis. From reference [41], it can be found that those elements behaving well for Cook’s membrane 

problem may perform poorly in extreme bending situations, such as the bending of a slender cantilever 

beam. So, it is necessary to evaluate the element performance by employing this example. As shown 

in Figure 8, the geometric parameters and boundary conditions for a slender cantilever beam are given. 

Here, the compressible neo-Hookean material model with 24000 =  and 6000G =  is considered. 

In order to compare with the results given in [41], five regular mesh cases: 1×10, 2×20, 4×40, 8×80 

and 16×160 meshes, are used. The convergence curves for the vertical displacement of point A are 

plotted in Figure 9. It can be seen that the present element US-ATFQ4 performs as well as element  

Q1/E4 [8], and better than Q1SP [41]. In fact, almost the same results can also be obtained by the 

element US-ATFQ4 even when only single layer elements are allocated along the beam height. 

Furthermore, it should be noted that the performance of present formulation is also consistent with the 

high-performance geometrically nonlinear element US-ATFQ4 proposed in reference [29], especially 

for bending behaviors. 

3.3.2 Curved beam  

  As shown in Figure 10, a curved beam subjected to a concentrated force with clamped ends is 

considered. In this example, the beam is made of the Mooney-Rivlin material with the following stored 

energy function: 

( ) ( ) ( )
2

1 1 2 23 3 ln
2

t t t tK
W C I C I J= − + − +

,                   (30) 

with  

( ) ( )( )2
2

1 iso 2 1 iso

1
tr ,

2

t t t t tI I I tr= = −B B ,                    (31) 

( )
2

T3
iso dett t t t

−

= F F FB ,                           (32) 

and material parameters 1 210, 30, 400000KC C == = , which can represent a quasi-incompressible 

situation. One coarse mesh (1×10 elements) is employed to evaluate the performance of present 

formulation, and the reference results are obtained by using CPE4IH with a fine mesh (4×40 elements). 

The load-displacement curves of point A are plotted in Figure 11 (a), and the final deformation shape 
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using present formulation is given in Figure 11 (b). It can be concluded that the present element US-

ATFQ4 shows a highly accurate and robust performance in this hyperelastic beam problems in which 

another material model is used, and much better than the element CPE4H. Since the shapes of 

deformed elements are still regular, the element CPE4IH performs as well as present element US-

ATFQ4.  

 

3.4 Compression tests 

It has been observed that the instability problems will arise in the enhanced strain elements in the 

large compression situation [43, 44]. Therefore, it is necessary to evaluate the stability of the present 

formulation using large compression examples.  

3.4.1 Symmetric compression 

  The geometry and boundary conditions of a solid block are given in Figure 12. Owing to the 

symmetry, only one half of the model is considered. The block is made of quasi-incompressible neo-

Hookean material model, and its material parameters are the same as those given in Section 3.1. Two 

unstructured coarse meshes and two structured fine meshes given in Figure 13 are employed. The 

convergence curves for three different load cases (P=200, P=400 and P=600) are shown in Figure 14, 

which shows that both the US-ATFQ4 and CPE4H exhibit excellent performances. Furthermore, the 

final deformation shapes of present formulation using mesh II and mesh III are also given in Figures 

15 and 16 in comparison with those of CPE4H under the last two load cases (P=400 and P=600).  

  Although the vertical displacements of point A obtained by present formulation and CPE4H under 

three different load cases are almost same, a few different shapes of deformed elements can be found 

under the largest load case (P=600), as shown in Figure 15 (b) (d) and Figure 16 (b) (d). In the case of 

largest load case, the compression of point A is around 65%, where the shapes of few upper layer 

elements become non-convex shapes using the present element US-ATFQ4, however, the shapes of all 

CPE4H elements maintain the convex shapes. This phenomenon indicates that the US-ATFQ4 

elements using present formulation seem to be more flexible and can work well even in extremely 
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distorted mesh, which is also consistent with the highly distortion-tolerant performance of its linear 

formulation [26]. Some other enhanced strain elements, such as Q1SP, also lose their convex shapes 

in above situation, but the results of these elements are undesirable. For example, the upper middle 

node moves up in relation to the neighbouring nodes, as reported in [41]. On the contrary, the deformed 

non-convex shapes do not affect the accuracy and stability of the present formulation, as shown in 

Figure 14. 

  Furthermore, we try to figure out why few elements become non-convex shapes using the present 

formulation in the case of largest load case. First, the vertical displacement of point B in mesh III, as 

shown in Figure 13, is tracked. The reference value -2.302 is obtained by using CPE4H (the element 

CPE4IH cannot work properly in this example due to the seriously distorted mesh) with a 100×100 

fine mesh, and the results using present formulation and CPE4H with mesh III are -2.193 and -2.412, 

respectively, which means that both vertical displacement of point B obtained by present formulation 

and CPE4H are not accurate enough. It is interesting that, the reference value is just at the mid between 

the values obtained by above two element formulations. So, one of the reasons that causes the non-

convex element shapes is that the convergence path of the present formulation is opposite to that of 

CPE4H. In addition, it should be noted that there is no any stabilization technique used in the present 

formulation. 

3.4.2 Unsymmetric compression 

  As shown in Figure 17, another indentation of a rubber block is considered. This example has been 

employed in references [10] to investigate the low-order element formulations for elastic large strain 

problems under high compressive strains. Here, the material parameters are the same as the previous 

example, which enforce a quasi-incompressible situation. One 5×8 regular mesh is employed, and the 

final deformations obtained by US-ATFQ4, CPE4H and CPE4IH are given in Figure 18. It can be 

remarked that, the present formulation does not exhibit the instability problems that have been 

associated with many enhance strain elements under high compression without corresponding 

stabilization techniques [10, 43, 44], while CPE4IH seems to show the spurious hourglass patterns and 

failed to converge at around 0.50 step time (the whole step time is 1). In addition, a refined mesh 

(10×16) is also used to evaluate the performances of element US-ATFQ4 and CPE4H. Unfortunately, 
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CPE4H failed to converge at around 0.79 step time in this refined mesh, while US-ATFQ4 still works, 

as shown in Figure 19, which indicates that US-ATFQ4 is more robust when the elements in mesh are 

severely distorted. 

 

4. Conclusions 

  In this paper, the strategy for hyperelastic finite deformation analysis with the unsymmetric finite 

element method containing homogeneous solutions of linear elasticity is proposed, and a new 

nonlinear low-order unsymmetric plane element US-ATFQ4 is developed to illustrate it. Based on the 

assumption that the analytical trial functions (ATFs) can properly work in each increment, which has 

been verified in the small strain geometrically nonlinear analysis [29], an algorithm for updating the 

deformation gradient which is interpolated by ATFs is designed. The present work can be called the 

first attempt for the materially nonlinear analysis. Furthermore, the update of the corresponding ATFs 

referred to current configuration is discussed with regard to the hyperelastic material model, and a 

specified model, neo-Hookean model, is used to illustrate and verify the present formulation of US-

ATFQ4 for hyperelastic finite deformation analysis. 

  Various examples are employed to test and evaluate the performance of the present formulation. In 

the first four examples with the neo-Hookean and Mooney-Rivlin material model, it can be concluded 

that the present formulation is superior to many existing advanced elements in compressible and quasi-

incompressible hyperelastic problems, with respect to accuracy, robust and mesh distortion tolerance. 

Two compression tests show that the present formulation without any stabilization technique does not 

show the instability problems under high compression. Although the non-convex shapes are observed 

during the extremely high compression in comparison with Abaqus element CPE4H, the results of 

present formulation seem to be unaffected by these non-convex shapes.  

The present hyperelastic finite deformation (large strain) analysis with the unsymmetric finite 

element method containing homogeneous solutions of linear elasticity is indeed a brand-new strategy. 

First, as far as authors know, there is no such formulation for the hyperelastic analysis before where 

the closed-form solutions of linear elasticity are employed. Second, the extension of the unsymmetric 
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finite elements based on ATFs to hyperelastic analysis (material non-linearity) is not straightforward, 

although the formulation for geometric non-linearity (material linearity) has been derived before [29]. 

The updating algorithm for geometric non-linearity given by paper [29] is simple and only limited to 

the small strain state where material linearity is still considered. But the strategy for element containing 

linear ATFs in hyperelastic analysis is quite different. Therefore, an algorithm for updating the 

deformation gradient interpolated by ATFs is designed in present paper, which is also valid for 

geometric non-linearity (material linearity) analysis. Furthermore, the Equation (24) is proposed to 

update the corresponding ATFs in hyperelastic analysis. The present work shows the ability and 

advantage of the unsymmetric elements based on ATFs within the hyperelastic finite deformation 

situation. The analysis of 3D and inelastic problem is the next goal using the unsymmetric elements 

based on ATFs. The application into the elastic-plastic finite deformation problems will be reported in 

the near future. 
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APPENDIX A. THE SECOND FORM OF QUADRILATERAL AREA 

COORDINATES (QACM-II) [26] 

As shown in Figure A, Mi (i=1,2,3,4) are the mid-side points of element edges 23 , 34 , 41  and 

12 , respectively. Then, the position of an arbitrary point P within the quadrilateral element 1234  can 

be uniquely specified by the area coordinates S and T (QACM-II), which are defined as: 

1 24 , 4S T
A A

 
= = ,                                   (A.1) 

where A is the area of the quadrilateral element; 1 and 2 are the generalized areas of PM2M4 and 

PM3M1, respectively. The values of generalized areas 1 and 2 can be both positive and negative: 

for PM2M4 (or PM3M1), if the permutation order of points P, M2 and M4 (or P, M3 and M1) is 

anticlockwise, a positive 1 (or 2) should be taken; otherwise, 1 (or 2) should be negative.  

Two shape parameters 1g  and 2g  are defined here as: 

Δ123 Δ124
1

Δ234 Δ123 Δ124 Δ123
2

A A
g

A

A A A A A
g

A A

−
=


− − − = =



,                      (A.2) 

in which A123, A124 and A234 are the areas of 123, 124 and 234, respectively. Different values of 

these shape parameters mean different shapes of a quadrangle. Thus, the local coordinates of the corner 

nodes and mid-side points can be written as:  

1 1 2 1 2 2 2 1

3 3 2 1 4 4 2 1

1 2

3 4

node1: ( , ) ( 1 , 1 ); node 2 : ( , ) (1 ,1 );

node3: ( , ) (1 ,1 ); node 4 : ( , ) ( 1 , 1 );

M : (1, 0); M : (0,1);

M : ( 1, 0); M : (0, 1).

S T g g S T g g

S T g g S T g g

= − + − + = − −

= + + = − − − −

− −

         (A.3) 

Above coordinate values are only small modifications for isoparametric coordinates: 

2

1

S g

T g

 

 

= +


= +
.                                        (A.4) 

And the relationship between QACM-II and the Cartesian coordinates is 
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 

 

3 1 3 1 3 1 1 1 1 1 1

4 2 4 2 4 2 2 2 2 2 2

1 1
( ) ( ) ( )

1 1
( ) ( ) ( )

S a a b b x c c y g a b x c y g
A A

T a a b b x c c y g a b x c y g
A A


 = − + − + − + = + + + 


  = − + − + − + = + + + 

,       (A.5) 

where  

1 3 1 1 3 1 1 3 1

2 4 2 2 4 2 2 4 2

, , ,

, , ,

a a a b b b c c c

a a a b b b c c c

 = − = − = −


= − = − = −
                             (A.6) 

, , ,

( 1, 2,3,4; 2,3,4,1; 3,4,1,2)

i j k k j i j k i k ja x y x y b y y c x x

i j k

= − = − = −

= = =
                          (A.7) 

in which (xi, yi) (i=1, 2, 3, 4) are the Cartesian coordinates of the four corner nodes.  
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