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Abstract

We study the changing relationship between Brent oil prices and geopolitical risk, condi-
tional on physical oil market conditions. We conduct the analysis at three frequencies,
medium (1-3 years), high (2-3 months), and very high (daily), using three complementary
techniques at the different levels (respectively, continuous wavelet partial coherence,
VAR and GARCH-MIDAS) over the period April 1993 to the end of 2018. At the annual
frequency, we find evidence of a sustained positive relationship between oil prices and
geopolitical risk over the past decade – with geopolitical risk leading during the Arab
Spring, resulting in a substantial geopolitical risk premium, and lagging thereafter by
about two months, as oil markets first reacted to and then anticipated geopolitical events.
At the monthly frequency, we find the same positive correlation with oil prices antici-
pating geopolitical risk in both parts of the sample and find that realized geopolitical
strife has not led to higher prices in either subsample. At the daily frequency, we find
that geopolitical risk has had a positive effect on oil price volatility in later days during
the second half of the sample (2005 to 2018). Our findings suggest that some financial
market speculators, such as macro hedge funds and algorithmic traders, may amass long
positions in Brent in anticipation of geopolitical threats that might potentially lead to oil
disruptions.

Keywords: Oil price cycle, geopolitics, economic activity, oil inventories.

1. Introduction

Understanding oil price movements is vital for oil exporters and importers alike, and
the broader effects on the global economy have been well documented for several
decades. Persistent and unexpected changes in oil prices can lead to heightened risks
and disrupted investment and production activities. Such changes feed uncertainty
and economic instability and can thus curtail world economic growth. Since the 1970s,
the global oil market has been characterized by periods of heightened fluctuations in
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nominal oil prices. This volatility appears to have accelerated in recent years, creating an
increased interest in its drivers and influences.

Economists have shown that there is close linkage between economic activity and oil use.
There is an extensive economic literature that relates oil price fluctuations to macroeco-
nomic variables (Chen and Chen, 2007; Basher et al., 2016) and stock markets (Basher
et al., 2018; Thorbecke, 2019). As economies in Asia expanded at unprecedented lev-
els of economic development and wealth creation, a new specter of demand-driven
shocks to oil prices emerged (Kilian, 2009). Studies provide evidence that specific supply-
demand disequilibria, as well as market sentiment, can influence oil price movements
(Deeney et al., 2015; Caldara et al., 2019). Still, geopolitical factors also offer compelling
explanatory power for larger discontinuities. Over the decades, global oil trade has been
interrupted by wars, cartels, revolutions, sanctions, and tariffs, which have had varying
degrees of influence on oil prices.

An emerging literature is taking these broader considerations of global uncertainty and
geopolitical risks into consideration and studying their role in determining the direction
and magnitude of oil price changes (Abdel-Latif and El-Gamal, 2019a; Cunado et al.,
2019). In the authors’ own research, El-Gamal and Jaffe (2018) have analyzed the coupled
self-perpetuating cycles of oil prices, financial crises, and geopolitical risk. In this regard,
El-Gamal and Jaffe (2018) allowed for non-stationarity of oil production series by employ-
ing discrete wavelet decomposition of oil output series in various countries to identify
the role that war and regime change may have played in altering oil supply patterns.
The study found that change of government, including by revolutionary force, is not
dispositive to shifting the supply curve of national oil production downward in a lasting
manner. However, if coupled with violence against infrastructure, such disruptions can
have dramatic longer-term impacts. Abdel-Latif and El-Gamal (2019a,b) extended this
work on the trivariate cycle by investigating the joint dynamics of oil prices, financial
liquidity, and geopolitical risk, using global vector autoregression models that presume
a certain degree of covariance stationarity.

We now build on this literature to consider whether geopolitical factors could be weigh-
ing more heavily on oil price formation in recent years than in past decades. Such
information is important to central banks who may seek to ameliorate the negative
consequences of gyrating oil prices via monetary policy. It is also instructive to decision
makers overseeing policies connected to national strategic oil stockpiles and to senior of-
ficials fashioning international diplomacy both in the context of major international fora
such as the G-20 and engaging in diplomacy aimed to bring improvement of conditions
in conflict prone regions. Understanding the role of geopolitics in oil price formation
could be helpful to policy makers who regulate commodity futures markets and must
consider appropriate policies for exchange-based trading amidst unusual circumstances
of extreme events or in light of rising volume of speculative activity.

There have been many suggestions for why oil prices fluctuations appear to have become
more pronounced in recent years. One theory is that the shorter development cycle of
unconventional oil production from shale has hastened the supply response to changes
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in prices created by other market forces. In addition, there have been no shortage of
geopolitical forces at play in recent years, including steady deterioration of stable po-
litical structures in multiple oil-exporting economies, intensification of conflicts across
the Middle East, a rise in the use of economic sanctions by the United States against
several very large oil producing states, and a loosening of the ability of the Organization
of Petroleum Exporting Countries (OPEC) to defend its market share.

In this study, we use a variety of methodologies to provide new evidence that the struc-
ture of correlation patterns between oil prices and geopolitical risk has been changing
over time. We use U.K. Brent crude as our proxy for oil prices because it is considered the
widely traded benchmark most influenced by global trends. Brent crude is waterborne,
meaning that it is sold in the spot, or non-contract, cargo market where oil can be freely
moved by ship from one location to another. This makes the benchmark less susceptible
to parochial regional inland trends than West Texas Intermediate crude, another highly
visible benchmark grade. Our aim is to study the persistence of significant epochs or
trends and related causal relationships. We utilize both identification of patterns of
correlation and Granger-causation (in the sense of temporal succession) during extended
periods and try to strike a balance between the two sets of results. We take this approach
to retain some ability to appeal to stationarity, while allowing for changes in those pat-
terns, which requires allowing for substantial and consequential non-stationarity. Our
analysis identifies three periods during which we find statistically significant positive
correlation between oil prices and a well-established geopolitical risk index: the period
around the 2003 Iraq War; the initial phase of the Arab Spring; and finally, an extended
period from the end of Arab Spring protests and violence until 2019.

Our starting point in this paper is a continuous wavelet transform analysis that builds
on the methods developed and first used in studying the relationship between oil prices
and macroeconomic activity in Aguiar-Conraria and Soares (2011b). The advantage
of this method is that it does not require time-localized correlation (as measured by
coherence) and causation patterns and lags (as measured by phase shifts) to persist for
any significant epoch. Nonetheless, we may discover such persistence (local stationarity)
in some epochs at some frequencies, without imposing them on the data in our statistical
methodology, which makes the discovery of such patterns illuminating. In this regard, a
number of recent studies have identified significant non-stationarity in oil price regimes.
For example, Kaufmann and Connelly (2019) have found nine oil price regimes between
1938 and 2018, including four after 2004. Ansari and Kaufmann (2019); Ansari (2017)
emphasize, most recently, the importance of OPEC’s change in strategy to accommodate
tight oil. A number of earlier studies have used continuous wavelet coherence analysis
to examine causal relationships between oil prices and energy stocks, exchange rates
and other energy commodities, (Roberdo et al., 2017; Roberdo and Rivera-Castro, 2013;
Vacha and Barunik, 2012, respectively). The closest analogue to our continuous wavelet
transform analysis, using partial coherence to condition on variables, such as aggregate
economic activity and inventories in our study, is that of Dong et al. (2019), although
they conditioned on one variable at a time. We were able in this study to calculate
partial coherence conditional on two variables without increasing computational time
unreasonably.
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Our results are consistent with the hypothesis that some financial market speculators
amass Brent oil futures contract holdings in anticipation of geopolitical threats that could
potentially disrupt oil supplies. We find that in the one to three-year time horizon,
oil price movements consistently lead in the direction of changes in geopolitical risk
predating actual geopolitical events by roughly two months. Our study finds evidence
that a start in the higher correlation between threats of risk and oil prices coincided with
the worsening of the political crisis in Venezuela that cut off oil supplies temporarily in
2002. It is possible that the Venezuelan crisis altered perceptions about the importance
of geopolitical risk to oil price formation and was sustained by the Iraq war and Arab
Spring events. The persistence of a geopolitical risk factor to oil prices amid higher than
usual oil price volatility in recent years informs industry and policy makers alike about
the importance of policies that ameliorate perceptions of the threat to supplies, including
strategic stocks. It also provides additional data for future updated studies on the role of
speculation in exchange based oil trading.

We proceed by outlining our methodology and summarizing the results in stages. In
Section 2, we outline the medium-term one to three-year frequency analysis via partial
wavelet coherence, highlighting the main result of oil prices leading geopolitical events
by about two months. We then follow with short-term time domain analysis via vector
autoregression to study Granger causality and impulse response functions between oil
prices and geopolitical risk (Section 3). In Section 4, the paper then proceeds with a model
of very-short-term oil price volatility using a variant of the GARCH-MIDAS model to
account for structural breaks in the short-term volatility component. We end with a
summary of results and concluding remarks in Section 5.

2. Medium-Term (2–3 Year) Frequency Analysis via Partial Wavelet Coherence

We begin our data analysis in this section by studying the time-changing partial-correlation
analogue (partial coherence) between Brent oil prices and geopolitical risk as measured
by Caldara and Iacoviello (2018). This index is constructed from the frequencies of geopo-
litical risk keyword occurrences in eleven leading newspapers. The partial coherence
is calculated for different frequencies and over time, conditional on global economic
activity, as measured by Kilian’s index – c.f. Kilian (2009); Kilian and Zhou (2018); Kilian
(2019) – and global oil storage, as retrieved from data from Energy Intelligence Group,
publisher of Petroleum Intelligence Weekly. All series in this initial analysis are monthly,
extending from March 1993 to end of 2018. The first two series are plotted in Figure 1,
and the latter two series are plotted in Figure 2. We present the wavelet approach in
subsection 2.1 and the results in subsection 2.2 below.

2.1. Wavelet Analysis

We analyze time- and frequency-localized covariance between Brent oil price returns
(measured as first-difference in log prices) and the Geopolitical Risk (GPR) Index of
Caldara and Iacoviello (2018), using continuous wavelet partial coherence at different
times and frequency bands. Continuous wavelet methods aim to replace Fourier analysis,
which relies on approximation of time series by cyclical sine and cosine waves, with
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Figure 1: Brent Oil Prices and Caldara & Iacoviello Geopolitical Risk Index
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Figure 2: Kilian Index of Global Economic Activity and PIW Global Oil Inventories
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local wavelets that allow fluctuations at various frequencies to vary over time. The
building block of wavelet analysis is a mother wavelet ψ(t), which is square integrable∫ ∞
−∞

ψ2(t)dt < ∞, and integrates to zero
∫ ∞
−∞

ψ(t)dt = 0. The mother wavelet is used to
generate daughters with amplitude (dilation; frequency domain) s and location (time
domain) τ

ψτ,s(t) =
1
√
|s|
ψ
( t − τ

s

)
Similar to Fourier transform analysis, these basis functions are used to produce a contin-
uous wavelet transform (CWT) of time series x(t) by convolution, producing the wavelet
power function at time τ and frequency s

Wavelet Power(τ, s) =
1
s

Wx;ψ(τ, s)2,

where
Wx;ψ(τ, s) =

∫ ∞

−∞

x(t)
1
√

s
ψ?

( t − τ
s

)
dt ≈

∑
t

xt
1
√

s
ψ?

( t − τ
s

)
In our CWT analysis reported in this section, we used a slightly adapted version of
Aguiar-Conraria and Soares’s GWPackage, which is an R adaptation of their Matlab
ASToolbox.1 The mother wavelet used in our analysis is the Morlet Wavelet,

ψ(t) = π−1/4eiωte−t2/2.

This wavelet, which, at ω = 6 reduces to ψ(t) = e−t2/2 cos(6t), is plotted below.
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Figure 3: Example Morlet Mother Wavelet with ω = 6

Given two time series x(t) and y(t), the cross wavelet is defined by

Wxy = WxW?
y .

The cross-wavelet power, measuring local covariance at each time and frequency is
defined as XWPxy = |Wxy| Smoothing the CWTs of x and y and the cross-wavelet power,

1Both packages are available at https://sites.google.com/site/aguiarconraria/
joanasoares-wavelets/the-astoolbox. A full summary of the method described in this section is
provided in Aguiar-Conraria and Soares (2011a, 2014).
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we can define the wavelet coherency measure

Rxy =
|S (Wxy)|√

S (|Wx|
2)

√
S (|Wy|

2)

Phase lead of x over y is measured by phase-difference between −π and π. In plots of
phase difference (Figures 4 –7 below), we write for each range of phi which series is
leading and whether the two series are “in phase” (the cross-wavelet version of positively
correlated), or “out of phase” (the cross-wavelet version of negatively correlated).

φxy = arctan
(
Im

(
S (Wxy)

)
Re

(
S (Wxy)

) )
The four regions for φxy are as follows:

• 0 < φxy < π/2: the series are in-phase, with x leading

• −π/2 < φxy < 0: the series are in-phase, with y leading

• π/2 < φxy < π: the series are out-of-phase, with y leading

• −π < φxy < −π/2: the series are out-of-phase, with x leading

When we have p time series x1, . . . , xp, we can compute every smoothed pairwise co-
herency between xi and x j, denoted S i j = S (Wi j). Collect elements in matrix S, and let
Sd

i j denote the cofactor of the element

S
d
i j = (−1)(i+ j) detS j

i ,

where S j
i is the sub-matrix without row i and column j Now we can define the partial

wavelet coherency, allowing for other series

ρ1 j = −
Sd

j1√
Sd

11S
d
j j

, r1 j =
|Sd

j1|√
Sd

11S
d
j j

, φ
p
1 j = arctan

(
Im(ρ1 j)
Re(ρ1 j)

)

The partial phase difference is φp
1 j, with the same four-quadrant interpretations for in- or

out-of-phase and which series leads as φ.

2.2. Results from Wavelet Analysis

Using continuous wavelet transform partial coherence and phase-difference estimates,
we study the partial coherence between oil prices and geopolitical risk conditional on
physical market conditions at a medium frequency corresponding to a period of one to
three years, and to a lesser extent at the slightly higher frequency of 6 to 12 months. The
partial coherence diagram is shown in Figure 4, with a heat map indicating higher partial
coherence (partial correlation at each time and frequency), and with black periphery
indicating time-frequency combinations at which the partial coherence was statistically
significant at the 5% level, using 500 simulated ARMA(4,4) surrogates. At the medium
frequency of one to three years, shown in Figure 7, we find that partial coherence be-
tween oil prices and geopolitical risk have been in-phase (positively correlated) for the
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entire sample, but statistically significant only in three episodes: a brief one around the
2003 Iraq war, another relatively brief one around the period of the Arab Spring, and a
prolonged one from the end of the Arab Spring to the end of 2019. With the exception
of the Arab Spring period, when geopolitical risk was leading oil price movements,
the relationship has been one in which financialized oil prices have led/anticipated
geopolitical risk as measured by newspaper coverage in Caldara and Iacoviello (2018).

As we can see in Figures 5 and 6, the partial coherence structure is qualitatively similar
at higher frequencies of six to twelve months and three to six months. Of particular
interest for the last part of the sample, during the period after the Arab Spring, is the
same phase shift behavior. In particular, the phase shifts for one to three year and six to
twelve month frequencies both indicate that oil price movement have led same-direction
movements in geopolitical risk by about two to three months.2 Unfortunately, the phase
shift and significance of partial coherence oscillate too much once we get to monthly
frequency. Therefore, to understand behavior at this higher frequency, we switch to a
different method, which imposes stationarity assumptions over different but sufficiently
long epochs to uncover patterns that we can interpret in terms of the positive or negative
correlation as well as the direction of Granger causality.

Figure 4 shows the partial coherence between Brent prices and the GPR Index of Caldara
and Iacoviello (2018), given Kilian’s Index of Global Economic Activity and the PIW
measure of Global Oil Inventories. It is evident that for all frequency bands, the partial
coherence has been in phase, with Brent price leading most of the time, except in the
short period of the Arab Spring, when geopolitical risk was leading. There were also two
brief episodes after financial crises of 2000 and 2007 when the partial coherence at annual
frequency was slightly out-of-phase, again with geopolitical risk leading. The results
at medium frequency of one to three years (Figure 7) and six to twelve months (Figure
6) show that following the Arab Spring, oil prices have been leading same-direction
movements of geopolitical risk by about two months (see approximate calculation in
Footnote 2, with phase shift approximately equal π/6 in Figure 7, and slightly below π/2
in Figure 6).

2The calculation is rather straight forward. timelead = phaseshi f t(deg)×period/360). Of course, interpretation
of phase-shift is determined by the arbitrary/parsimonious convention of taking the smaller lead/lag (π/6 is
the same angle/phase-shift as −11π/6), as cosine curves, the building blocks of Fourier analysis for stationary
time series, repeat every 2π. In Figure 7, we can see the steady lead of Brent ahead of geopolitical risk by
approximately (24 months × 30 degrees /360 degrees = 2 months). Likewise, the lead for most of the same
period in Figure 6 is approximately (9 months × 80 degrees/360 degrees = 2 months).
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Figure 4: Partial Wavelet Coherence Brent prices and Global Political Risk Index given Kilian Index of Global
Economic Activity and PIW Global Oil Inventories (significant at α = 0.05 in black)
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Figure 5: Phase Difference at 3 to 6 month Frequency (significant at α = 0.05 in red)
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Figure 6: Phase Difference at 7 to 12 month Frequency (significant at α = 0.05 in red)
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3. Short-Term (2–3 Month) Time-Domain Analysis via Vector Autoregression

3.1. Granger Causality and VAR Modeling Approach

In order to understand the relationship better at higher frequency of two to three month
periods, we use traditional vector autoregression (VAR) methods, which we had used
in Abdel-Latif and El-Gamal (2019a,b), but allowing for a structural break around the
end of 2004. F-tests suggest a break around August 2004, but we chose to make the
two subsamples more balanced by placing the break at the end of 2004. There is also
evidence that the Venezuelan crisis of 2002 fundamentally changed market perceptions
of the importance of geopolitical risk in oil markets and drove an inventory-based rally
in oil prices by late 2004, c.f. Billig (2004). The impulse response functions reported in
Section 3 (Figures 9–10) suggest that at this monthly frequency, oil price movements
have Granger-caused (led, by about two months) geopolitical risk movements in the
same direction. This agrees with our analysis in Section 2, which shows positive partial
coherence, with oil prices leading geopolitical risk for most of the sample, especially
following the Arab Spring. In the meantime, Granger causality tests fail to reject the
null hypothesis that changes in geopolitical risk do not lead to significant changes in oil
prices.

3.2. Granger Causality and VAR Model Results

In this section, we report results from Vector Autoregression (VAR) analysis of Brent
prices and GPR conditioning on Kilian’s Index of Global Economic Activity and PIW’s
Global Oil Inventories. Tables 1–3 and Figure 8 report, respectively, estimates for the
Brent price and GPR VAR equations, Granger tests for both directions of causation, and
impulse response functions (IRFs) for the two variables. The results show that oil price
changes Granger cause same-direction movements in geopolitical risk, but the latter does
not Granger cause oil price movements.

Table 1: VAR Results Brent Eq.- Full Sample

Estimate Std. Error t value Pr(>|t|)
Brent.l1 1.256 0.056 22.382 0.000
GPR.l1 -0.013 0.007 -1.809 0.071

Kilian.l1 0.022 0.016 1.336 0.183
Inventory.l1 0.002 0.004 0.450 0.653

Brent.l2 -0.293 0.055 -5.287 0.000
GPR.l2 0.005 0.007 0.750 0.454

Kilian.l2 -0.014 0.017 -0.834 0.405
Inventory.l2 0.000 0.004 0.044 0.965

const -6.809 3.624 -1.879 0.061
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Table 2: VAR Results GPR Eq. - Full Sample

Estimate Std. Error t value Pr(>|t|)
Brent.l1 0.907 0.452 2.007 0.046
GPR.l1 0.875 0.057 15.408 0.000

Kilian.l1 -0.204 0.132 -1.550 0.122
Inventory.l1 -0.012 0.031 -0.388 0.698

Brent.l2 -1.004 0.447 -2.247 0.025
GPR.l2 -0.118 0.057 -2.070 0.039

Kilian.l2 0.187 0.133 1.404 0.161
Inventory.l2 0.024 0.031 0.779 0.436

const -33.610 29.189 -1.151 0.250

Table 3: Granger Causality Tests - Full Sample

H0 Statistic p-value
A Granger causality H0: Brent do not Granger-cause GPR Kilian Inventory 5.518 0
B Granger causality H0: GPR do not Granger-cause Brent Kilian Inventory 1.099 0.361

Figure 8: IRF shock = GPR, response = Oil (left) and shock = Oil, response = GPR (right)

Tables 4–6 and Figure 9 show the same estimation results, test results, and IRFs for the
subsample to end of 2004. We fail to reject that changes in geopolitical risk granger
causes (later) movements in Brent oil prices, but reject strongly the null hypothesis that
movements in oil prices do not Granger cause geopolitical risk changes. The right panel
of Figure 9 shows that the impact of a standard deviation positive shock in oil prices has
a significant positive effect on geopolitical risk two months after the shock.

Table 4: VAR Results Brent Eq.- Sample to End 2004

Estimate Std. Error t value Pr(>|t|)
Brent.l1 0.929 0.089 10.479 0.000
GPR.l1 -0.009 0.004 -2.388 0.018

Kilian.l1 0.004 0.020 0.196 0.845
Inventory.l1 0.002 0.004 0.409 0.683

Brent.l2 0.003 0.094 0.027 0.978
GPR.l2 0.008 0.004 2.187 0.031

Kilian.l2 0.004 0.020 0.216 0.829
Inventory.l2 0.000 0.004 0.055 0.957

const -6.393 5.039 -1.269 0.207
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Table 5: VAR Results GPR Eq. - Sample to End 2004

Estimate Std. Error t value Pr(>|t|)
Brent.l1 5.853 1.875 3.122 0.002
GPR.l1 0.959 0.082 11.629 0.000

Kilian.l1 -0.601 0.425 -1.414 0.160
Inventory.l1 -0.167 0.083 -2.023 0.045

Brent.l2 -4.373 1.980 -2.209 0.029
GPR.l2 -0.205 0.081 -2.528 0.013

Kilian.l2 0.426 0.430 0.990 0.324
Inventory.l2 0.179 0.081 2.198 0.030

const -64.933 106.518 -0.610 0.543

Table 6: Granger Causality Tests - Sample to End 2004

H0 Statistic p-value
A Granger causality H0: Brent do not Granger-cause GPR Kilian Inventory 3.446 0.002
B Granger causality H0: GPR do not Granger-cause Brent Kilian Inventory 1.369 0.225

Figure 9: IRF shock = GPR, response = Oil (left) and IRF shock = Oil, response = GPR (right)

Finally, Tables 7–9 and Figure 10 show the same estimation results, test results, and
IRFs for the subsample from beginning of 2005. Again, we fail to reject that changes in
geopolitical risk granger causes (later) movements in Brent oil prices, but reject strongly
the null hypothesis that movements in oil prices do not Granger cause geopolitical risk
changes. However, the right panel of Figure 10 shows that the impact of a positive
standard deviation shock in oil prices on geopolitical risk two months after the shock is
not statistically significant as it was in the first subsample, although the Granger causality
test rejects the null of no effect just as strongly.
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Table 7: VAR Results Brent Eq.- Sample from 2005

Estimate Std. Error t value Pr(>|t|)
Brent.l1 1.253 0.077 16.339 0.000
GPR.l1 -0.026 0.016 -1.575 0.117

Kilian.l1 0.025 0.023 1.088 0.278
Inventory.l1 0.000 0.006 0.014 0.989

Brent.l2 -0.315 0.075 -4.181 0.000
GPR.l2 -0.010 0.017 -0.594 0.553

Kilian.l2 -0.022 0.023 -0.937 0.350
Inventory.l2 0.001 0.006 0.237 0.813

const 0.606 10.315 0.059 0.953

Table 8: VAR Results GPR Eq. - Sample from 2005

Estimate Std. Error t value Pr(>|t|)
Brent.l1 0.417 0.372 1.121 0.264
GPR.l1 0.572 0.079 7.216 0.000

Kilian.l1 -0.166 0.111 -1.501 0.135
Inventory.l1 0.035 0.028 1.264 0.208

Brent.l2 -0.511 0.366 -1.395 0.165
GPR.l2 0.073 0.080 0.905 0.367

Kilian.l2 0.165 0.113 1.461 0.146
Inventory.l2 -0.014 0.027 -0.518 0.605

const -73.552 50.095 -1.468 0.144

Figure 10: IRF shock = GPR, response = Oil (left) and IRF shock = Oil, response = GPR (right)

4. Very High Frequency (daily) Conditional Heteroscedasticity — GARCH-MIDAS

To complete the picture, and utilize the availability of Brent prices at daily frequency,
we follow earlier studies in the literature that have used Mi(xed) Da(ta) Sampling (MI-
DAS) methods to study the relationship of oil prices with variables measured at lower
frequency, c.f. Baumeister et al. (2013); Guérin and Marcellino (2011). At the daily fre-
quency, we are more interested in studying the effect of geopolitical risk on oil price
returns volatility, allowing for stochastic volatility as specified in a GARCH models, in
the tradition of Antonakakis and Filis (2013); Sadorsky (1999). In particular, following
Nguyen and Walther (2018), we use the GARCH-MIDAS model of Engle et al. (2013), in
which the generalized autoregressive process for oil price conditional volatility is broken
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Table 9: Granger Causality Tests - Sample from 2005

H0 Statistic p-value
A Granger causality H0: Brent do not Granger-cause GPR Kilian Inventory 3.444 0.002
B Granger causality H0: GPR do not Granger-cause Brent Kilian Inventory 1.095 0.364

into short-term and long-term components. We fall short of following Pan et al. (2017) in
using a regime-switching GARCH-MIDAS model, but follow our analysis in Section 3 by
breaking the sample into two subsamples at end of 2004. Because the GARCH-MIDAS
model is estimated using maximum likelihood, simple likelihood ratio tests of parameter
constancy are possible, and they strongly support the hypothesis of regime switching
at end 2004. The unconditional analysis shows that geopolitical risk had a positive
effect on oil price volatility mainly in the second subsample (see Tables 10–12), and the
same result holds when conditioning on inventories (Tables 13–15) and conditioning on
global economic activity (Tables 16–18). Not surprisingly, the latter two factors contribute
negatively to oil price volatility. Therefore, this GARCH-MIDAS analysis complements
the results in Sections 2 and 3, which had shown at lower frequencies that oil prices are
positively correlated with and lead geopolitical risk over much of the past decade. In
contrast, the results of Section 4 show that realized geopolitical risk contributes positively,
while higher inventories and greater resiliency of oil demand contribute negatively, to
shorter-term oil price volatility.

4.1. GARCH-MIDAS Model

To utilize the availability of daily price data, we model daily oil price volatility using
a variant of the GARCH-MIDAS model, which was initially proposed by Engle et al.
(2013) and modified by Pan et al. (2017) to account for structural breaks in the short-
term volatility component. Following Engle et al. (2013), the conditional variance of the
oil price series is multiplicatively decomposed into two components: The short-term
(GARCH) component is estimated primarily based on high frequency data, while the
long-term (MIDAS) component integrates both higher and lower frequency series. This
strategy is particularly useful because financial data, including crude prices, are available
at relatively high (daily) frequency, while macroeconomic and geopolitical data are only
available at monthly frequency (for example, we use Kilian (2009) monthly index of
aggregate economic activity as our primary measure of oil demand and the Caldara and
Iacoviello (2018) index as our main measure of geopolitical risk).

Let t = 1, . . . ,T denote months and i = 1, . . . ,Nt denote the days within month t. The
conditional mean of the daily Brent oil price returns (first difference of log prices) series
is modeled as follows

OilReti,t = µ + ζi,t, (1)

where

ζi,t =
√

hi,tτtZi,t (2)

where Zi,t is i.i.d with zero mean and variance normalized to one, hi,t denotes the short-
term component of the conditional variance of the series and τt denotes the long-term
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component. The short-term component of the conditional variance of oil prices is further
modeled as GARCH(1,1):

hi,t = (1 − α − β) + α
ζ2

i−1,t

τt
+ βhi,t (3)

where α > 0, β ≥ 0 and α + β < 1. The long-term component of the conditional variance
depends on explanatory variables at different frequencies:

log τt = m + θ ΣK
k=1φk(ω1, ω2)Xt−k, (4)

where Xt denotes the explanatory variables and φk(ω1, ω2) a given weighting scheme
which can take the following Beta form:

φk(ω1, ω2) =
(k/(K + 1))ω1−1 × (1 − k/(K + 1))ω2−1

ΣK
j=1( j/(K + 1))ω1−1 × (1 − j/(K + 1))ω2−1

(5)

The weights φk(ω1, ω2) ≥ 0, k = 1, . . . ,K, sum to one. Following Engle et al. (2013), the
GARCH-MIDAS model is estimated in straight forward fashion by quasi-maximum
likelihood.

4.2. GARCH-MIDAS Results

Estimates for the entire sample are shown in Table 10, while estimates for the two subsam-
ples to end of 2004 and from beginning of 2005 are shown, respectively, in Tables 11 and
12. The estimate of θ, the long-term effect of geopolitical risk on Brent price conditional
volatility, is positive and statistically significant for the full sample. Splitting the sample
into two halves, before and after Jan 1, 2005, we see that the geopolitical influence on
prices is strongly pronounced in the second subsample (θ = 0.07 and statistically very
significant), but has the wrong sign and is statistically insignificant in the first. The gain
in log likelihood when we split the sample in two yields very significant rejection in the
likelihood ratio test of the null of no regime break.

Table 10: GARCH-MIDAS Estimation - Model 0

Coef. SE p-value
mu 0.015 0.026 0.563

alpha 0.036 0.007 0.000
beta 0.938 0.001 0.000

gamma 0.037 0.010 0.000
m 0.709 0.321 0.027

theta 0.008 0.003 0.002
w1 3.158 1.268 0.013
w2 4.749 2.040 0.020

Log Likelihood -12942.3
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Table 11: GARCH-MIDAS Estimation - Model 0 Before 2005

Coef. SE p-value
mu 0.039 0.057 0.486

alpha 0.040 0.018 0.024
beta 0.949 0.019 0.000

gamma 0.022 0.016 0.175
m -1.071 0.727 0.141

theta -0.010 0.012 0.397
w1 2.038 1.010 0.044
w2 6.374 9.532 0.504

Log Likelihood -6060.227

Table 12: GARCH-MIDAS Estimation - Model 0 After 2005

Coef. SE p-value
mu -0.016 0.028 0.569

alpha 0.017 0.000 0.000
beta 0.962 0.000 0.000

gamma 0.042 0.000 0.000
m -5.781 0.355 0.000

theta 0.071 0.002 0.000
w1 1.157 0.370 0.002
w2 1.343 0.437 0.002

Log Likelihood -5345.438
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We repeat the analysis for the full sample and two subsamples, adding inventories as
a long-term determinant of oil price volatility. The same pattern emerges as before:
The geopolitical effect is statistically significant overall in Table 13, but the gain in log
likelihood strongly supports the hypothesis of regime change. In the first subsample,
until the end of 2004, Table 14 shows that the effects of geopolitical risk and inventory
levels are statistically insignificant. However, for the second subsample, starting in 2005,
Table 15 shows that geopolitical risk has a very strong positive effect on conditional
volatility of oil prices, while inventories have a very strong negative effect on the same.

Table 13: GARCH-MIDAS Estimation - Model 2

Coef. SE p-value
mu 0.016 0.030 0.591

alpha 0.036 0.010 0.000
beta 0.938 0.002 0.000

gamma 0.037 0.010 0.000
m 0.834 2.363 0.724

theta 0.009 0.004 0.047
w2 1.679 1.057 0.112

theta.two -0.021 0.277 0.941
w2.two 2.349 17.115 0.891

Log Likelihood -12943.78

Table 14: GARCH-MIDAS Estimation - Model 2 Before 2005

Coef. SE p-value
mu 0.035 0.038 0.354

alpha 0.075 0.016 0.000
beta 0.876 0.002 0.000

gamma 0.043 0.026 0.091
m -1.558 33.402 0.963

theta 0.003 0.002 0.174
w2 2.806 1.275 0.028

theta.two 0.355 3.981 0.929
w2.two 1.006 4.877 0.837

Log Likelihood -6058.663

Table 15: GARCH-MIDAS Estimation - Model 2 After 2005

Coef. SE p-value
mu -0.019 0.028 0.500

alpha 0.014 0.000 0.000
beta 0.965 0.000 0.000

gamma 0.041 0.001 0.000
m -0.160 0.814 0.844

theta 0.065 0.016 0.000
w2 1.194 0.285 0.000

theta.two -0.597 0.078 0.000
w2.two 4.168 5.594 0.456

Log Likelihood -5345.82
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Finally, we repeat the analysis adding Kilian’s index of global economic activity as a
long-term determinant of oil price volatility, instead of inventories. For the full sample,
Table 16 shows that neither geopolitical risk nor the Kilian index has a statistically sig-
nificant effect on oil price volatility. The same insignificance results hold for the first
subsample, as shown in Table 17. However, splitting the sample into two halves results
in a very significant positive effect of geopolitical risk on oil price volatility in the second
subsample (Table 18), as we have seen in earlier specifications, while strong demand, as
measured by high values of the Kilian index, results in lower oil price volatility.

Table 16: GARCH-MIDAS Estimation - Model 3

Coef. SE p-value
mu 0.035 0.030 0.239

alpha 0.035 0.011 0.001
beta 0.947 0.012 0.000

gamma 0.036 0.010 0.000
m -1.318 0.667 0.048

theta 0.001 0.007 0.909
w2 3.261 3.627 0.369

theta.two -0.000 0.002 0.799
w2.two 5.438 10.719 0.612

Log Likelihood -12941.39

Table 17: GARCH-MIDAS Estimation - Model 3 Before 2005

Coef. SE p-value
mu 0.038 0.057 0.502

alpha 0.049 0.029 0.089
beta 0.938 0.033 0.000

gamma 0.024 0.019 0.198
m -1.161 0.874 0.184

theta -0.003 0.011 0.798
w2 3.052 2.643 0.248

theta.two 0.007 0.009 0.457
w2.two 1.000 0.618 0.105

Log Likelihood -6062.596

Table 18: GARCH-MIDAS Estimation - Model 3 After 2005

Coef. SE p-value
mu -0.020 0.028 0.468

alpha 0.015 0.000 0.000
beta 0.963 0.000 0.000

gamma 0.043 0.000 0.000
m -4.478 0.055 0.000

theta 0.063 0.000 0.000
w2 1.154 0.300 0.000

theta.two -0.004 0.002 0.014
w2.two 20.114 22.023 0.361

Log Likelihood -5342.215
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5. Conclusion and Directions for Further Research

We have conducted our analysis of the relationship between oil prices and geopolitical
risk, conditional on aggregate economic activity and inventory levels at multiple fre-
quencies. The latter corresponds to the time horizons of various investors in oil markets –
physical exploration and production companies, refineries, etc. at the lowest frequency,
longer term investors at intermediate frequencies, and short-term financial speculators
at the highest frequency. Continuous Wavelet Analysis of partial coherence paints a clear
picture for lower and intermediate frequencies, respectively, of one to three years and
six months to one year. The partial coherence (partial correlation analog at a particular
frequency band and a particular time) between oil prices and geopolitical risk given
economic activity and inventory levels has been positive throughout the sample, with
geopolitical risk leading oil for a short episode during the Arab Spring. At the medium
frequency of one to three years, in particular, the pattern post the Arab Spring has been
remarkably consistent, with movement in oil prices leading same direction movements
in geopolitical risk by approximately two months.

This one-to-three-year result is the strongest and most interesting in our study, especially
because it emerges without imposing any additional stationarity assumptions on the
data. At higher frequencies, the CWT phase shift changes too quickly for meaningful
results to emerge – although the results at the six months to a year frequency agree
qualitatively with the one-to-three-year results (of oil leading geopolitics, in phase, by
about two months). At monthly frequency and higher, we had to impose some addi-
tional stationarity assumptions – estimating VAR models at the monthly frequency, and
GARCH-MIDAS models at the daily frequency. At the monthly frequency, we find the
same positive correlation with oil prices anticipating geopolitical risk in both parts of
the sample and find that realized geopolitical strife has not led to higher prices in either
subsample. At the daily frequency, we find that geopolitical risk has had a positive effect
on oil price volatility in later days during the second half of the sample. We conclude that
while purely financial speculative traders may base their trading reactions on geopolitical
events, more sophisticated investors with longer time horizons anticipate geopolitical
events successfully, and trade two months in advance of those events – resulting in
higher prices two months prior to heightened geopolitical risk, and vice versa.

Our main result – that oil price movements lead same-direction geopolitical risk move-
ments by two months – is consistent with the hypothesis that some financial market
speculators, such as macro hedge funds and algorithmic traders, may amass long po-
sitions in Brent in anticipation of geopolitical threats that might potentially lead to oil
disruptions. Under the hypothesis, such traders would build long positions based on
initial news reports regarding a possible geopolitical event, thus contributing to the
advance rise in oil futures prices, and would take profits once the events materialize. For
example, the Trump administration advised European allies in July 2017, when Brent
prices had averaged $48.48 a barrel, to abandon new business plans with Iran as rumors
surfaced that the U.S. intended to withdraw from the Iran nuclear deal and reimpose oil
sanctions. Through fall 2017, Brent prices rose progressively as additional news made
it more apparent that the U.S. was indeed planning to decertify the Iranian deal: In
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September, President Trump delivered his speech at the United Nations, and oil prices
reached $52.95 Brent. Official decertification followed in October, driving Brent price to
$54.92 a barrel. When the United States formally withdrew from the Iran accord, in May
2018, Brent prices had reached $73.43, and the price continued to rise to above $80 by
October 2018. Then, in November, when the final announcement that sanctions were
being reinstated but some temporary exceptions would be made, prices receded back to
$64.75.

A similar pattern was observed around the collapse of Libya’s government. In August
2009, when the first protests broke out at Zawiya, Brent prices were averaging around
$72 a barrel. By the time violent protests broke at Benghazi, and government troops
began firing on protesters in February 15, 2011, oil prices had risen to $102. Libyan oil
production was first shut down on February 23, 2011, pushing oil prices to $106. Prices
continued to rise, reaching $114 on the day the NATO campaign began on March 19,
2011. However, on the day that Qaddafi fell, Brent prices had fallen to $108.

Those anecdotal examples suggest that markets have, indeed, moved ahead of some
of the most important geopolitical events in our sample, but they also show how the
geopolitical risk events have themselves evolved over time, with multiple advance
warnings on which speculative investors can trade. In order to study these effects more
systematically, we plan to augment the analysis in future research with information
about (i) geopolitical risk threats vs realized events, using the subcomponents of the
Caldara & Iacoviello Index, and (ii) activity in financial markets, including returns on
other asset classes competing for speculative investors’ attention, as well as the cost of
funding, especially in junk bond markets that helped to fund shale oil investors’ ventures
in the United States. Including the latter information on financial market behavior has
become particularly important as oil market fundamentals have played a smaller role in
light of the glut that ensued in 2019 and early 2020.
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