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Abstract A nonlinear micro piezoelectric-electrostatic

energy harvester is designed and studied using mathe-

matical and computational methods. The system con-

sists of a cantilever beam substrate, a bimorph piezo-

electric transducer, a pair of tuning parallel-plate ca-

pacitors, and a tip-mass. The governing nonlinear math-

ematical model of the electro-mechanical system includ-

ing nonlinear material and quadratic air-damping is de-

rived for the series connection of the piezoelectric layers.

The static and modal frequency curves are computed to

optimize the operating point, and a parametric study is

performed using numerical methods. A bias DC voltage

is used to adapt the system to resonate with respect to

the frequency of external vibration. Furthermore, to im-

prove the bandwidth and performance of the harvester

(and achieve a high level of harvested power without
sacrificing the bandwidth) a nonlinear feedback loop is

integrated into the design.

Keywords Energy Generation · Nonlinearity ·
Piezoelectric · Electrostatic · Feedback control ·
Performance

1 Introduction

Sensors and actuators have been developed using micro-

electromechanical systems (MEMS) and powered by ex-

ternal (on board) power sources. As a result, the weight

of these systems increases as the power source needs to
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maintain a certain capacity. Therefore inventing self-

powered MEMS devices is strongly desirable especially

for medical applications. Vibration energy harvesting

systems may be miniaturized sufficiently to be inte-

grated into micro-electromechanical systems (MEMS)

to produce self-powered wireless sensors [10,42]. Hence,

many researchers are working on energy harvesting sys-

tems at the micro-scale.

Various structures and transduction methods are

used to convert the vibratory energy into electric en-

ergy [4,6]. Arnold [3] presented a comprehensive re-

view of magnetic power generation at the micro-scale,

Mitcheson et al. [29] described an electrostatic micro-

capacitor for power generation, and Liu et al. [24] pro-

posed a piezoelectric energy harvester. The reviews by

Beeby et al. [4] and Cook et al. [6] revealed that piezo-

electric energy harvesting is employed more than any

other transduction mechanism. There is also an ongo-

ing investigation into various structural configurations

and excitation mechanisms to realize an optimum (non-

linear) harvester. Leadenham and Erturk [21] presented

an M-shaped oscillator for broadband energy harvest-

ing and Lee et al. [23] introduced a zigzag shaped tor-

sional energy harvester. Benefiting from the asymmet-

ric nonlinear behaviour of the harvester, a broadband

behaviour was demonstrated under various excitation

levels. Cantilever structures are most commonly used,

and the early works by Jeon et al. [13] and Beeby et al.

[4] presented different cantilever structures for energy

harvesting. More recently, Jia and Seshia [15] studied

different cantilever structures, some as long as 2000µm,

and showed that the length of the micro-structure plays

a significant role in the power capacity of the structure.

A major challenge in designing energy harvesting

systems at both the macro- and micro-scale is to opti-

mize the performance of the system. Although the fre-
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quency content of environmental vibration is often scat-

tered over a wide range, the harvesting devices do not

generate their peak power for a such large range of input

excitation. One approach to overcome this challenge is

to design an adaptive system. To this end, Madinei et

al. [25,26] performed a preliminary study of a micro

energy harvester with parallel piezo layers benefiting

from tuning via an electrostatic actuator. A solution

to improve energy harvesting under wide-spectrum vi-

bration is to create a bistable system oscillating be-

tween the two stable states. Stanton et al. [39] and Fer-

rari et al. [9] designed cantilever beams carrying end

magnets operating in the nonlinear regime and demon-

strated bistable responses. Stanton et al. [38] examined

a different configuration using a pair of external mag-

nets to increase the bandwidth of the harvester. Kumar

et al. [17] proposed to use an asymmetric monostable

to overcome the high activation threshold of bistable

harvesters. Alevras et al. discussed the details of the

nonlinear dynamics of a magnetic levitation harvester

and showed that the additional resonant zones enhances

the energy harvesting capabilities of the harvester [2].

The excitation mechanism plays a significant role

in the system response and consequently in the effi-

ciency of power generation. Direct and parametric reso-

nances demonstrate different characteristics and there-

fore are desired for different reasons. Using a perturba-

tion approach Daqaq et al. [7] analyzed a cantilever

beam under base excitation and presented paramet-

ric resonance as a viable option for energy harvesting.

Abdelkafi et al. [1] presented a theoretical analysis of

a cantilever beam experiencing parametric resonance

and briefly discussed the effect of a quadratic damping

term on the behaviour of the reduced-model of the har-

vester. Auto-parametric resonance as well as paramet-

ric resonance demonstrates a promising potential for

energy harvesting for real applications [14]. Although

parametric resonance, in contrast to direct resonance,

is not limited by linear damping, its onset of activation

is negatively affected by increasing linear damping [16].

Therefore, ongoing research is investigating methods to

reduce the activation threshold. More recently, to si-

multaneously attack the shortcomings of conventional

energy harvesters, Hwang and Arrieta [12] proposed to

use 1D lattices of bistable elements. The proposed com-

plex design demonstrated promise.

To explain the bandwidth and amplitude require-

ments, we provide an insight into the physics of the har-

vester. The underlying oscillator is initiated under ex-

ternal excitation and the oscillation amplitude increases

once the energy accumulates above a certain threshold.

Various mechanisms provide damping and extract the

energy from the system, which negatively affects the

amplitude and bandwidth of the harvester. Develop-

ing self-sustaining oscillators is currently investigated

by different researchers, e.g. see [5] and the references

there. However, the presence of a feedback loop draw-

ing power from the harvester (or an external source) is

not desired. Different methods have been proposed and

are under consideration to improve the bandwidth and

signal-to-noise ratio of nonlinear resonators by various

research groups [18,20,33,34,35,41].

In this paper, we present the analysis and design of a

micro piezoelectric-electrostatic energy harvester. The

piezoelectric transduction mechanism is complemented

with an electrostatic tuning mechanism. Using a sym-

metric set of electrostatic electrodes provides a means

to adjust the effective natural frequency of the system

with minimum interference of the initial undeformed

configuration of the structure. The model of the system

is developed using an energy approach for a series con-

nection of piezoelectric layers; the extension to a par-

allel connection is straight forward. Considering the ef-

fects of varying base-frequency, base-acceleration, non-

linear damping, and electrical load resistance, a com-

prehensive parametric study of the system is performed.

The optimum electrical load resistance for maximum

power output is computed and shown to depend on

the base-acceleration level. We design a nonlinear feed-

back loop to further sustain the oscillations, increase

the bandwidth, improve the performance of the har-

vester, and increase the average harvested power.

2 Model of the energy harvester

The cantilever beam (substrate) carries a tip-mass en-
abling an initial tuning of the mechanical resonance.

An energy-based approach is employed to develop the

(mathematical) model of the system. The potential en-

ergy of the system includes the elastic energy of the sub-

strate and the piezoelectric layer(s), the electrostatic

potential energy due to the varying gap parallel-plate

capacitors, and the electric enthalpy of piezoelectric

material. The kinetic energy of the system is developed

for the moving substrate, the end-mass, and the piezo-

electric layer, although the latter is negligible due to

the relatively small thickness of the layer. The virtual

nonconservative work represents the linear and non-

linear mechanical damping and the energy dissipation

through the electrical load resistance (the harvester).

The structural, material, and electrical properties

of the micro-harvester are given in Tables 1 and 2. The

effective Young’s modulus is Es = Ês/(1 − ν2s ) (νs =

0.06 represents Poisson’s ratio) given that the thickness

of the substrate (beam) is significantly smaller than its

width [32].
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Table 1: Structural Properties (µm)

Ls 2500 Lp 2500 Lm 750
hs 5 (along z-axis) hp 2 hm 250
bs 500 (along y-axis) bp 500 bm 500

Table 2: Material and Electrical Properties

ρs 2330 kg/m3

ρp 7800 kg/m3

ρm 2330 kg/m3

Ês 169 GPa
νs 0.06
c11p 72 GPa
c1111p −72 × 107 GPa
εr 1 F/m
ε0 8.854 × 10−12 F/m
ε33 8.854 × 10−9 F/m
e31 −11.6 C/m2

e3111 −11.6 × 107 C/m2

The axial deformation (extension) of the cantilever

is characterized using the inextensibility principle. While

the stress-strain relationship is linear, the axial strain

caused by the transverse deformation, w(r, t) where r

is the position on the beam, is modeled using a cubic

function of the displacement. Therefore the axial stress

and strain are [30],

Tr(r, z, t) = EsSr(r, z, t) (1)

Sr(r, z, t) = −zκ (r, t) (2)

κ(r, t) ≈ w(r, t),r,r

(
1 +

1

2
w(r, t)2,r

)
(3)

φ(r, t) = arcsin
(
w(r, t),r

)
(4)

≈ w(r, t),r +
1

6
w(r, t)3,r (5)

where κ(r, t) and φ(r, t) indicate the curvature and

slope of the beam at r and (·),r and (·),r,r the first and

second partial differentiation with respect to the r. A

schematic of the micro-system for energy harvesting is

shown in Figure 1. For the series connection, the piezo-

electric layers are polarized in opposite directions [40];

the parallel connection, where the polarization is in the

same direction, is easily modeled if required. Thus, the

transverse electric fields in the piezoelectric layers con-

nected in series are modeled as

Eu3 (r, t) =
1

2hp
λ(r, t),t El3(r, t) = − 1

2hp
λ(r, t),t (6)

where λ is the electric flux linkage coordinate [39,22]

and (·),t the first partial differentiation with respect

to time t. Superscripts u and l indicate the two piezo-

electric layers. Given that strains above and below the

neutral axis have opposite signs, poling the two lay-

ers oppositely results in generating electric fields in the

Fig. 1: The schematic of the harvester under direct

base-excitation. The figure is not drawn to scale.

same direction [8]. The potential energy of the beam is

given by

Ps =
1

2
Es Is

∫ Ls

0

κ(r, t)2 dr (7)

and the electric enthalpy by [22,37,39]

Pp =

∫ b

0

∫ hp+
hs
2

hs
2∫ Lp

0

(
1

2
c11p Sr(r, z, t)

2 +
1

3
c111p Sr(r, z, t)

3

+
1

4
c1111p Sr(r, z, t)

4 − e31El3(r, t)Sr(r, z, t)

+
1

2
e311E

l
3(r, t)Sr(r, z, t)

2

− 1

3
e3111E

l
3(r, t)Sr(r, z, t)

3

−1

2
ε33E

l
3(r, t)El3(r, t)

)
dr dz dy

+

∫ b

0

∫ −hs2
−(hp+hs

2 )∫ Lp

0

(
1

2
c11p Sr(r, z, t)

2 +
1

3
c111p Sr(r, z, t)

3

+
1

4
c1111p Sr(r, z, t)

4 − e31El3(r, t)Sr(r, z, t)

+
1

2
e311E

u
3 (r, t)Sr(r, z, t)

2

− 1

3
e3111E

u
3 (r, t)Sr(r, z, t)

3

−1

2
ε33E

u
3 (r, t)Eu3 (r, t)

)
dr dz dy (8)

Meijs and Fokkema [27] discussed the importance of

fringing fields in parallel-pate capacitors and presented
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an accurate model of the varying parallel-plate capac-

itor including the fringing capacitance. Using their ca-

pacitance model, the electrical potential energy is [11]

Pe = −1

2
εoεr

∫ r2

r1

Ves(t)
2

(
1.54 +

bs
g2o − w(r, t)2

+

(
1.2625 bs
go − w(r, t)

)0.25

+

(
1.2625 bs
go + w(r, t)

)0.25

+

(
1.1236hs
go − w(r, t)

)0.5

+

(
1.1236hs
go + w(r, t)

)0.5
)

dr (9)

Expanding the capacitance terms about ws(r, t) = 0,

where w(r, t) = ws(r, t) + wd(r, t), using a Taylor’s se-

ries and truncating the fifth and higher order terms we

obtain an approximate electrostatic potential energy

expression. To this end, the dynamic transverse dis-

placement along the length of the end rigid-body is de-

scribed in the form of wd(r, t) = wd(Ls, t) + rw′d(Ls, t),

where wd(Ls, t) and w′d(Ls, t) represent the transverse

displacement and slope at the beam’s tip. The distance

variable r in this relationship varies between zero and

the length of the end rigid-body. Note that the sym-

metric configuration of electrodes eliminates the effect

of odd terms in the electrostatic energy expression.

The energy of the system is mainly dissipated through

the linear and nonlinear structural damping, the nonlin-

ear air damping, and the electrical load. The variation

of nonconservative work is described by

δWnc =−
∫ Ls

0

[
cl w(r, t),t − cnl w(r, t),t w(r, t)2

−ca w(r, t),t
∣∣w(r, t),t

∣∣] δw(r, t) dr

− 1

Rp
λ(r, t),t δλ(r, t) (10)

2.1 Kinetic energy

The kinetic energy is due to the distributed mass of the

beam (substrate), the distributed mass of the piezoelec-

tric layers, and the tip-mass. Assuming a uniform mass

per unit length along the substrate and the piezoelectric

layers (ms and mp) and including the mass (mt) and

rotary inertia (Jt) of the tip-mass, the kinetic energy

expression is, for base excitation z(t),

Ks =
1

2

∫ Ls

0

ρsAs
(
w(r, t) + z(t)

)2
,t

+ u(r, t)2,t dr

+
1

2

∫ Lp

0

ρpAp

((
w(r, t) + z(t)

)2
,t

+ u(r, t)2,t

)
dr

+
1

2
mt

((
w(Ls, t) + z(t)

)2
,t

+ u(Ls, t)
2
,t

)

+
1

2
Jtφ(Ls, t)

2
,t (11)

3 Reduced-order model of energy harvester

As mentioned earlier, the neutral axis of the beam is

inextensional. That is [36,31]

(1 + u(r, t),r)
2 + w(r, t)2,r = 1

⇒ u(r, t) =

∫ r

0

(√
1− w(r, t)2,r − 1

)
dr

u(r, t) ≈ −1

2

∫ r

0

w(r, t)2,r dr (12)

and

u(r, t),t ≈ −
1

2

d

dt

∫ r

0

w(r, t)2,r dr (13)

Substituting Equations (2) - (6) and (13) into (8)-(11),

the mathematical model (i.e. the differential equations)

describing the response of the system is obtained using

the Rayleigh-Ritz method (or the method of assumed

modes) [28]. A modal expansion of the structure’s re-

sponse (the deflection of the structure) is described by

w(r, t) =

N∑
n=1

ψn(r) qn(t) (14)

where N is the number of linear modes, ψn(r). The lin-

ear modes are obtained by solving the linear eigenvalue

problem for a clamped-free beam carrying the tip-mass

and can be found in various references, e.g. [19]. Substi-

tuting Equation (14) into energy and non-conservative
work expressions, and applying Lagrange’s equations

[28] results in the governing differential equations. Here,

a single mode approximation is used.

The Lagrangian of the system, expressed in the form

L = Ks − Ps − Pp − Pe, is substituted into the Euler-

Lagrange equations,

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Qi (15)

where i = 1, 2 and q1 = q(t), q2 = λ(t). The general-

ized forces are

Qq =− clq̇(t)− cnlq(t)2q̇(t)− caq̇(t)
∣∣q̇(t)∣∣ (16)

Qλ =
1

Rp
λ(r, t),t (17)

where q̇ represents the time-derivative of the modal-

coordinate, q. The time-derivatives of flux linkage, λ̇

and λ̈, are replaced with voltage Vp(t) and its derivative

V̇p(t), respectively, to obtain, by discarding higher than

third-order terms,
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(
ml +mnq(t)

2
)
q̈(t) +mnq(t)q̇(t)

2

+
(
kl − γlVes(t)2 + 2hql

)
q(t)

+
(
cl + cnq(t)

2 + ca
∣∣q̇(t)∣∣) q̇(t)

+
(

2kn + 4hqn − 2γnVes(t)
2
)
q(t)3

+
(
hλl + 3hλnq(t)

2
)
Vp(t) = −flF̈ (t) (18)

2CpV̇p(t) +
Vp(t)

Rp
=
(
hλl + 3hλnq(t)

2
)
q̇(t) (19)

The preceding equation describes the coupled electro-

mechanical model of a nonlinear piezoelectric-electrostatic

energy harvester including nonlinear damping, inertial,

stiffness, forcing, and energy harvesting terms. The co-

efficient parameters are introduced in the Appendix.

4 Static and modal analysis

To compute the static fixed (equilibrium) points of (18)-

(19), the velocity and acceleration terms are set to zero,

therefore at the equilibrium point

q̈(t) ≡ 0, q̇(t) ≡ 0, V̇p(t) ≡ 0

resulting in Vp(t) ≡ 0. The nontrivial (static) equilib-

rium points are found by solving(
2kn + 4hqn − 2γnV

2
es

)
q2s

+
(
kl − γlV 2

es + 2hql

)
= 0 (20)

Therefore there are two equilibrium points (other than

qs = 0) for

2kn + 4hqn − 2γnV
2
es 6= 0

and

−
(
kl − γlV 2

es + 2hql

)
/
(

2kn + 4hqn − 2γnV
2
es

)
> 0.

For the proposed design in Table 1, the static equilib-

rium points are computed and plotted in Figure 2 and

the bifurction point where the nontrivial equilibrium

points disappear are computed to be 23.986, 36.619,

and 59.430 Volts for hp = 0.5µm, hp = 2µm, and

hp = 4µm, respectively. Representing the system in

(18)-(19) in state-space form and expanding and lin-

earizing the solution around the equilibrium, the Jaco-

bian matrix is found and used to identify the stability

of each branch. For small vibration around any static

equilibrium, the equation of motion is linearized by sub-

stituting q(t) = qs + qd(t) and Equation (20) into the
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Fig. 2: Static equilibrium points. The horizontal black

line indicates the trivial stable equilibrium. (Red: hp =

0.5µm, Green: hp = 2µm, Blue: hp = 4µm)
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Fig. 3: Effective modal frequency around the unde-

formed configuration for hs = 4µm, go = 30µm. (Red:

hp = 0.5µm, Green: hp = 2µm, Blue: hp = 4µm).

equation of motion. Thus(
ml +mnq

2
s

)
q̈d(t)

+

(
2hql + q2s

(
12hqn + 6kn − 6γnV

2
es

)
+ kl − γlV 2

es

)
× qd(t) = 0 (21)

Therefore, the linearized, undamped, unforced equation

of motion around the trivial static equilibrium (qs = 0)

is given by

mlq̈d(t) +
(

2hql + kl − γlV 2
es

)
qd(t) = 0 (22)

and the small vibration frequency is

ω2
e =

(
kl − γlVes2 + 2hql

)
ml

(23)

The thickness of piezoelectric harvester affects both the

stationary points and the effective modal frequency.

Figure 3 shows the variation in effective small vibration

(natural) frequency as the DC voltage is increased.
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5 Dynamic and nonlinear analysis

To compute the response characteristic, the steady-state

response is sought and computed by integrating equa-

tions of motion for a sufficiently large time-span. For

this particular design and integration method, the gov-

erning equations, equations (18)-(19), the equation of

motion is initially integrated for 400 cycles, and the

response is sampled for the last period. To further fol-

low the steady state solution the variable of interest

(base frequency/base amplitude/circuit resistance) is

varied (increased/decreased) and the next solution is

computed. The amplitude is estimated by taking the

absolute average of the difference between the maxi-

mum and minimum of the response.

The quality factor is set to 100 (equivalent to cl =

5.839 × 10−3 Ns/m) and the electrical load resistance

in the harvesting circuit is initially set to Rp = 1 MΩ.

The base acceleration is described in the form F̈ (t) =

ab cos(2πωbt) where ab and ωb indicate the base- accel-

eration and the base-frequency, respectively. In all fig-

ures, the forward-sweep curve is indicated with a thicker

line than the backward-sweep curve to further clarify

the jump phenomena in the response.

Figures 4a to 4d show the amplitude of tip dis-

placement (the frequency-response curve), the phase-

portrait at ωb = 205.7 Hz, the normalized RMS of volt-

age drop across the resistor, and the normalized av-

erage harvested power, respectively, for a varying base-

excitation frequency. Nevertheless, the system is able to

safely harvest up to 18 nW/g along the stable dynamic

equilibrium. Note that the resistance of the harvest-

ing circuit is set to 1 MΩ, the DC voltage to 10 V, the
quality factor to 100 , and the material-damping equal

to zero. The coefficient of modal air damping ca is in-

creased from 0 (red curve) to 15 (blue curve), 30 (green

curve), and to 45 (black curve) Ns2/m2 and all four

sets of curves are plotted in Figures 4a to 4d. By in-

creasing the air damping the jump frequencies decrease

and move to the right. Once the air damping is large

enough the response becomes linear and single-valued

(the forward- and backward-sweep curves completely

overlap).

Figures 5a to 5d show the normalized amplitude of

tip displacement (or the frequency-response curve), the

normalized RMS of displacement, the normalized RMS

of voltage drop across the resistor, and the normal-

ized average harvested power, respectively, for a vary-

ing base-excitation frequency as the nonlinear damping

coefficient is increased. Note that the resistance of the

harvesting circuit is set to 1 MΩ, the DC voltage to

10 V, the quality factor to 100 , and the air-damping

equal to zero. While the cubic nonlinearity affects the

unstable equilibrium points, it does not affect the sta-

ble equilibrium points (the thick line). Therefore, prac-

tically speaking it would be beneficial to increase the

cubic nonlinear damping while keeping the air damping

to a minimum.

Figures 6a to 6d show the amplitude of the tip-

displacement, the RMS of the tip-displacement, the av-

erage harvested power, and the amplitude of voltage

drop across the resistor, for a varying base-excitation

amplitude. Figures 6e and 6f show the phase-portrait

(both stable and unstable orbits) for two sets of air-

damping and base-excitation parameters. The modal

air damping ca is increased from 0 to 15, 30, and to

45 Ns2/m2 and all four sets of curves are plotted in

red, blue, green, and black colors, respectively. Simi-

lar to frequency-response curves in Figures 4a to 4d,

increasing the quadratic (air) damping suppresses the

multi-valued response and once the air damping is large

enough the response becomes linear and single-valued.

The harvesting circuit plays a crucial role in opti-

mizing the output of the device. We have employed a

simple circuit to harvest the vibration energy, however

other components, such as capacitors and inductances,

may be introduced into the circuit to further meet the

requirements of the application. Nevertheless, in this

simple circuit optimizing the resistance is important.

To demonstrate the significance of a varying resistance,

the load resistance (Rp) is varied between 10 kΩ and

1000 kΩ and the response is computed for three cases

where the DC voltage is increased from 5, to 10, and

15 V, and the base excitation frequency and accelera-

tion are set to ωb = 225 Hz and ab = 0.12 g, respectively.

The quadratic and cubic damping coefficients are set to

zero.

In Figures 7a-7d, we plot the normalized response of

the harvester. As the DC (tuning) voltage is increased

the optimal resistance for maximum power increases

from 35.9 kΩ, to 129 kΩ, and finally to 572 kΩ. The

larger the tuning DC voltage is, the larger the resistance

needs to be for the peak voltage to approach a relatively

constant value. For Ves = 5 V, the response is nonlin-

ear and multivalued between 21.7 kΩ and 35.9 kΩ. The

maximum scavenged power occurs at Rp = 35.9 kΩ and

is equal to 20.88 nW/g. To further reveal the details of

the transition of the response, in Figure 7c we plot the

variation of RMS Voltage for a smaller resistance range.

The resolution of each curve is 100Ω.

6 Nonlinear feedback mechanism

To improve the performance of the energy harvester, a

feedback is designed and a nonlinear signal proportional

to q(t)q̇(t)2 is fed back into the energy harvester, see
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(b) Phase Portrait at ωb = 205.7 Hz
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Fig. 4: The response for a varying base-excitation frequency (ab = 0.2 g). Increasing the air damping (ca) qualita-

tively and quantitatively modifies the response. (ca = 0 (red), 15 (blue), 30 (green) and 45 Ns2/m2 (black)).

Figure 8. Mathematically, the modified governing equa-

tions are described by adding cg q(t)q̇(t)
2 and cg q(t)q̇(t)

2

to the right hand side of the governing equations (18)-

(19) where cg represents the control gain. To compute

control power, we note that control power is equal to

Powercontrol =
1

∆T

∫ T2

T1

w(L, t),tGw(L, t)w(L, t)2,t dt

(24)

= Gψ4 1

∆T

∫ T2

T1

q̇(t) q(t) q̇(t)2 dt (25)

where ∆T = T2 − T1. And, the modal control gain

is equal cg = ψ3G. Varying the modal control gain

and setting the gain equal to 0, 3 × 108, 6 × 108, and

10 × 108 we compute the response of the closed-loop

system and plot the tip displacement amplitude, the

largest stable and unstable orbits, power spectrum of

for cg = 10 × 108, ωb = 198.65 Hz, the averaged har-

vested power, and the averaged consumed mechanical

control power shown in Figures 9a-9h. Note that the red

curves show the result of open-loop (uncontrolled) re-

sponse. To avoid subtracting power, the absolute terms

are used to compute power, therefore, |Powercontrol| =

Gψ4 1
∆T

∫ T2

T1
|q̇(t)| |q(t)| q̇(t)2 dt. The harvested power is

increased up to 191.1 nW from the stable branch and

up to 463.5 nW from the unstable branch by expending

up to 20.94 nW and 36.14 nW control power.

Increasing the nonlinear feedback gain, the frequency-

response curve bends to the left (the backbone curve

further moves downward), Figure 9a, and further limits

the control power, Figure 9h. Therefore, using a larger

gain is of value for larger base excitations. Changing the

sign of control signal, response is computed and plot-

ted in Figures 10a-10d. The hardening behaviour would

further increase the harvested power and provide an op-

portunity to harvest up to an order of magnitude higher

than the positive feedback.

7 Conclusions

A cantilever bimorph structure has been investigated

to study the advantages of incorporating a control DC

voltage and a nonlinear feedback on system performance.

Static curves showed two unstable branches and a sta-
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(b) Phase Portrait at ωb = 205.7 Hz
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Fig. 5: The response for a varying base-excitation frequency (ab = 0.2 g). Increasing the nonlinear damping (cn)

affects the response. (cn = 0 (red), 5× 109 (blue), 10× 109 (green) and 5× 1010 Ns/m3 (black)).

ble branch intersect at a subcritical pitchfork bifurca-

tion point. The effective natural frequency curve was

generated to help the designers find the desired oper-

ating point based on the application requirement. The

DC voltage is used to tune the resonance frequency of

structure and offer a potentially adaptable harvester to

widen the range of optimum operation. The DC volt-

age may also be used to restrict the maximum dynamic

response and reduce the probability of device failure.

Varying nonlinear and air-damping, nonlinear material

damping, the harvesting circuit parameters, and the

external excitation, we offer a general framework for

achieving the desired performance.

Furthermore, through designing a nonlinear feed-

back loop we have significantly improved the bandwidth

and performance of the harvester and achieve a high

level of harvested power without sacrificing the band-

width. Using negative gains is advantageous over pos-

itive gains, and hardening behaviour is accompanied

with high level of harvested power and large band-

width. In the future, we will study the parallel con-

nection case and further develop an averaging model of

the system to provide a clear understanding of the vari-

ous parameters. Furthermore, other possible excitation

mechanisms and feedback loops are under investigation.
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(e) Phase Portrait for ca = 0 Ns2/m2 at ab = 0.136 g
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(f) Phase Portrait for ca = 15 Ns2/m2 at ab = 0.177 g

Fig. 6: The response for a varying base-acceleration. Increasing the air damping (ca) qualitatively and quantitatively

modifies the response (ωb = 225 Hz). (ca = 0 (red), 15 (blue), 30 (green) and 45 Ns2/m2 (black)).
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Fig. 7: The response, harvested power, and voltage ver-

sus the resistance of the harvesting circuit and the DC

bias voltage (ab = 0.12 g, ωb = 225 Hz). (Ves = 5 (red),

10 (blue), and 15 V (green) ).

Fig. 8: Feedback loop to enhance the performance of

the harvester. The figure is not drawn to scale.
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(b) Phase Portrait: Largest Stable Orbits
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(c) Phase Portrait: Largest Unstable Orbits
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(d) Power Spectrum for cg = 10 × 108, ωb = 198.65 Hz
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Fig. 9: The effect of the positive nonlinear feedback mechanism: the displacement response and the average har-

vested power for varying base frequency (ab = 0.1 g, Rp = 20 kΩ, Ves = 5 V, ca = 15). (cg = 0 (red), 3×108 (blue),

6× 108 (green), and 10× 108 (black) ).
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Appendix: Parameter Expressions

In the following equations, prime ( )′ represents the spatial
derivative,

kl = EsIs

∫ Ls

0

ψ′′(r)2 dr (26)

kn = EsIs

∫ Ls

0

ψ′(r)2ψ′′(r)2 dr (27)

ml = mp

∫ Lp

0

ψ(r)2 dr +ms

∫ Ls

0

ψ(r)2 dr

+mtψ (Ls)
2 + Jtψ

′ (Ls)
2 (28)

mn = mt

(∫ Ls

0

ψ′(r)2 dr

)2

+ Jtψ
′(Ls)

4

+mp

∫ Lp

0

(∫ r

0

ψ′(r)2 dr

)2

dr

+ms

∫ Ls

0

(∫ r

0

ψ′(r)2 dr

)2

dr (29)

fl = mp

∫ Lp

0

ψ(r)z(r) dr +ms

∫ Ls

0

ψ(r)z(r) dr

+mtψ (Ls) z (Ls) (30)

fn = mtz(Ls)
2 +mp

∫ Lp

0

z(r)2 dr

+ms

∫ Ls

0

z(r)2 dr (31)

hql =
1

12
bc11p hp

(
4h2
p + 6hphs + 3h2

s

)∫ Lp

0

ψ′′(r)2 dr (32)

hλl = −
1

2
be31(hp + hs)

∫ Lp

0

ψ′′(r) dr (33)

hλn = −
1

4
be31(hp + hs)

∫ Lp

0

ψ′(r)2ψ′′(r) dr

−
1

24
be3111

(
2h3
p + 4h2

phs + 3hph
2
s + h3

s

)
×
∫ Lp

0

ψ′′(r)3 dr (34)

hqn =
1

12
bc11p hp

(
4h2
p + 6hphs + 3h2

s

)∫ Lp

0

ψ′(r)2ψ′′(r)2 dr

+
1

160
bc1111p hp

×
(

16h4
p + 40h3

phs + 40h2
ph

2
s + 20hph

3
s + 5h4

s

)
×
∫ Lp

0

ψ′′(r)4 dr (35)

Cp = −
bLpε33

4hp
(36)

γl =
ε0εr

g3

(
2bs + 0.33125

(
b0.25s + h0.25

s

)
g0.75

)
×
∫ Lm

0

(ψ(Ls) + rψ′(Ls))
2 dr (37)

γn =
ε0εr

g5

(
2bs + 0.201856

(
b0.25s + h0.25

s

)
g0.75

)
×
∫ Lm

0

(ψ(Ls) + rψ′(Ls))
4 dr (38)
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