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Abstract 35 

 36 

This investigation examined the effect of prior workload on high-intensity football match 37 

performance. Player load variables were recorded using a global positioning system and 38 

converted into composite variables: rolling season accumulated load (AL), exponentially 39 

weighted moving average acute, chronic and acute:chronic workload ratio (A:C). Match-play 40 

high-intensity performance-per-minute: accelerations (ACC), sprints, high-speed running 41 

(HSR) and high metabolic load (HMLd) distances; and situational and contextual variables 42 

were recorded for all games. Partial least squares modelling, and backward stepwise selection 43 

determined the most parsimonious model for each performance variable. Quadratic 44 

relationships of small to moderate effect sizes were identified for sprint AL and sprint 45 

performance, HSR AL and HSR performance, acute HMLd and HMLd performance, acute 46 

sprint load and ACC performance and A:C sprint load and ACC performance. Match 47 

performance was typically greatest between the mean and +1SD. High chronic HMLd, and 48 

combined acceleration and deceleration (ACC+DEC) load exerted small beneficial effects on 49 

HMLd and HSR performance, whereas high acute load exerted trivial to moderate negative 50 



effects. High sprint A:C exerted a small beneficial effect on sprint performance and playing 51 

position exerted small effects on HSR and HMLd performance. Prior workload has trivial to 52 

moderate effects on high-intensity match performance in professional players. 53 

 54 
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 58 

Introduction  59 

 60 

‘Load’ in professional Association Football (football) describes the cumulative physiological 61 

and psychological stress applied to a player from training and match play over time 1-3. 62 

Accordingly, ‘load management’ is the process of controlling external load (the work 63 

completed by the player) to mitigate the player’s internal (physiological) response. The 64 

incorporation of load management in football attempts to improve player ‘readiness’ (to accept 65 

new load) by optimising ‘fitness’ and dissipating ‘fatigue’ around games. Since readiness is 66 

associated with physical performance potential, injury and illness risk 1-5, effective player load 67 

management is critically important in football.  68 

 69 

In practice, load management is supported by the implementation of Global Positioning (GPS), 70 

micro electrical mechanical (MEMS), and / or in-stadia computerised tracking (CT) systems. 71 

These provide a wealth of data in the form of load monitoring variables to describe the volume 72 

and intensity of training and match play. Load variables are typically converted into composite 73 

values to reflect ‘acute’ (~ 7 d average load; analogous to player ‘fatigue’) and ‘chronic’ (~ 28 74 

d average load; analogous to player ‘fitness’) load and the acute : chronic (A:C) workload ratio 75 



6 to describe recent patterns in the distribution of load. Accordingly, a large number of 76 

workload indices are available to practitioners, creating a complex decision-making matrix, 77 

which is often challenging to interpret 7. 78 

 79 

There is a paucity of data available to describe the workload-performance relationship at the 80 

professional level of elite football. A number of studies have reported an equivocal effect of 81 

increased fixture density per se on match play physical performance 8-13. However, there are 82 

no studies available to report how specific measures of prior player load interact with 83 

subsequent measures of match play physical performance. Since load is known to correlate 84 

with player fatigue status 14 and modulate player recovery kinetics 15, it seems reasonable to 85 

hypothesise that prior load will influence subsequent match play physical performance.  86 

 87 

Analysis of player load data is challenging owing to the small sample size of teams and the 88 

problem of multicollinearity that often exists between load variables 7. Multicollinearity is 89 

particularly problematic in data derived from GPS, MEMS and CT technology 16, and needs to 90 

be controlled to avoid erroneous conclusions 7. Recently, Weaving and colleagues (2019) 91 

demonstrated merit in the use of the partial least squares correlation analysis (PLSCA) 92 

technique to overcome these problems. This successfully identified predictor variables for 93 

‘fitness’ development in professional rugby players from training load indices alone 7. 94 

Accordingly, this method might add value to other analyses of performance data. 95 

 96 

Situational and contextual variables (i.e. match location, match outcome, quality of opposition, 97 

fixture density and match goal deficit) can exert an influence on match play physical 98 

performance 17,18. Accordingly, where possible, these should be included as covariates in 99 

statistical models designed to determine the contributing factors of match play physical 100 



performance 17. Despite the influence that prior load might exert on match play physical 101 

performance in football; a comprehensive analysis of the effect of prior load on match play 102 

physical performance is yet to be completed. Match play high-intensity and high-speed running 103 

performance variables are of particular interest since they are strongly related to player training 104 

status 19,20, can have a decisive role during match play 21,22 and can partly contribute to match 105 

outcome 23. At present, however, practitioners lack clarity regarding the load quantification 106 

variables, both absolute and composite measures, that best relate to match play high-intensity 107 

and high speed-running performance. As such, their contributing factors warrant further 108 

investigation. Accordingly, the aim of this study was to investigate the effect that prior load 109 

has on high-intensity and high-speed running match play physical performance in elite-level 110 

professional football players. This was achieved using a PLSCA method to identify the 111 

strongest predictor variables of match play physical performance, including situational and 112 

contextual variables as covariates. 113 

 114 

Methods 115 

Study design 116 

Daily training load and match play physical performance indices were recorded in 18 senior 117 

professional male outfield players (age = 24  4 years; height = 181  7.0 cm, body mass = 118 

72.4  5.2 kg) from one English Championship team across a complete competitive season. Of 119 

these players, 3 were central defenders, 4 were wide defenders, 4 were central midfielders, 4 120 

were wide midfielders and 3 were forwards. The season consisted of 48 competitive fixtures 121 

(46 league and 2 domestic cup games). An ethics declaration was approved for this 122 

investigation by the Edith Cowan University (AU) Human Research Ethics Office. 123 

 124 

Training load 125 



Player training load was recorded for all training sessions across the pre-season and in-season 126 

phases. External load was measured using GPS and MEMS sensors (Statsports Viper 2, Belfast, 127 

Northern Ireland, UK), sampling at 10 Hz (GPS) and 100 Hz (tri-axial accelerometer, 128 

gyroscope and magnetometer). These devices are valid and reliable for the measurement of 129 

distance and instantaneous low-speed (jogging) and peak-speed running during 130 

multidirectional and linear running activities that replicate the demands of football 24. Typical 131 

error for distance and instantaneous speed are reported as < 3% (good) and < 2% (good) 24 132 

respectively. A software application (www.gnssplanning.com) 25, was used to identify a 133 

geographical point (ground station) based on the latitude and longitude coordinates of the team 134 

training facility. This determined the mean number of satellites and horizontal dilution of 135 

precision for GPS data across the sample period, which equated to 8.7 ± 1.0 and 0.66 ± 0.08 % 136 

respectively. This is in accordance with studies evaluating football demands using GPS 137 

systems 26 and indicates optimal conditions for satellite transmissions 27.  138 

 139 

Players wore the same GPS device for all training sessions. Devices were worn in a neoprene 140 

vest, positioned between the scapulae as per manufacturer guidelines. Player total distance 141 

(TD) – (total distance completed (m)); high-speed running distance (HSR) – (total distance 142 

completed between 5.5 m/s and 80% of individualised maximal linear running velocity (m)); 143 

high metabolic load distance (HMLd) – (distance covered when energy consumption per 144 

kilogram per second is > 25W/kg-1 (m)); number of sprints (total number of sprint efforts > 145 

80% of individualised maximal linear running velocity); and high intensity variables: total 146 

number of accelerations (ACC), decelerations (DEC) and changes to speed (ACC+DEC) were 147 

recorded. ACC and DEC efforts were identified according to the manufacturer’s guidelines, as 148 

a change in player velocity of > 0.5 m/s2 maintained for > 0.5 s. Efforts were zone-banded 149 

based on the peak magnitude of ACC or DEC with thresholds set at > 3 m/s2 and > -3 m/s2 150 



respectively. These thresholds are consistent with those used in previous research literature 28-151 

33 and have demonstrated sensitivity to match related fatigue in professional football players 152 

29,30. Training load data were extracted from GPS devices using manufacturer software 153 

(Statsports Viper, Belfast, Northern Ireland, UK). The authors did not extract any raw GPS 154 

data or apply filtering processes. Internal load was calculated using session rating of perceived 155 

exertion (sRPE) – (sRPE rating 34 multiplied by session duration (mins) (A.U.)). Session RPE 156 

data were collected within 30 min of the cessation of training. Variable selection was based on 157 

popularity of use in practice in professional football 6. All training load data collection and 158 

analysis was completed by the same investigator across the sample period. Typical workload 159 

distribution during single and double game week microcycles across the sample period are 160 

presented in Figure 1, below.  161 

 162 

***Insert Figure 1 Here*** 163 

 164 

Match load 165 

Player match load was recorded for all competitive home and away games across the season.  166 

External load variables were measured using 6 fixed semi-automated high definition motion 167 

cameras in-stadia (Chyronhego TRACKAB, London, UK). Following games, raw TRACKAB 168 

player position data were converted to equivalent training load variables using the 169 

manufacturer software (Statsports Viper, Belfast, Northern Ireland, UK). This method has been 170 

described previously 35, and is widely used in practice and research 4. Published data from elite-171 

level professional football match play indicate strong relationships between Statsports Viper 172 

and TRACKAB for TD (r2 = 0.98) and HSR (r2 = 0.98) 35. Our unpublished data from elite-173 

level professional football match play indicate a strong relationship for HMLd (r2 = 0.93), ACC 174 

(r2 = 0.94), DEC (r2 = 0.95) and number of sprints (r2 = 0.97) using this method. 175 



 176 

Workload indices 177 

Training and match load data were summated to establish total player workload indices across 178 

the season. For each load variable, 7 d absolute sum, 28 d absolute sum, rolling season absolute 179 

accumulated load (AL), exponentially weighted moving average (EWMA) acute load, EWMA 180 

chronic load and the EWMA acute : chronic workload ratio (A:C) were calculated. The EWMA 181 

method accounts for the decaying nature of fitness and fatigue effects over time and is a more 182 

sensitive method for assessing training load than the rolling average method 36 that has been 183 

used previously 4,5. EWMA indices were calculated using equations by Williams and 184 

colleagues 36: 185 

 186 

𝐸𝑊𝑀𝐴𝑡𝑜𝑑𝑎𝑦 =  𝐿𝑜𝑎𝑑𝑡𝑜𝑑𝑎𝑦 ∗  𝜆𝑎 + ((1 −  𝜆𝑎) ∗ 𝐸𝑀𝑊𝐴𝑦𝑒𝑠𝑡𝑒𝑟𝑑𝑎𝑦) 187 

 188 

Where 𝜆𝑎 represents the degree of time decay. Time decay was calculated using: 189 

 190 

𝜆𝑎 = 2/(𝑁 + 1) 191 

 192 

Where N is the chosen time decay constant. Decay factors representing time constants for 7 d 193 

(acute) and 28 d (chronic) were used. These equated to 0.25 and 0.069 respectively. 194 

 195 

Match play physical performance  196 

Four high-intensity and high-speed running match play physical performance variables were 197 

selected for analysis. Variable selection was based on current practice in professional football 198 

6. Selected variables were ACC / min, sprints / min, HSR m / min and HMLd m / min. Match 199 

play physical performance was calculated by dividing performance by match duration to 200 



provide a performance-per-minute value for each variable. Games in which players played less 201 

than 75 min were excluded from the analysis. There were no games in which ‘extra time’ was 202 

played. 203 

 204 

Data from 7 games in which a player was sent-off from either the sample team or their 205 

opposition were omitted from the analysis. Data from a further 3 games were omitted owing to 206 

technical error. In cases where players were injured, ill or required to train or play games for 207 

national teams, 7 d and 28 d workload - match interactions were omitted from the analysis until 208 

a 28 d period of full training for the reference team had been completed. For national team 209 

players, all AL data were omitted from the analysis owing to missing workload data from 210 

national team duty. Following these exclusions, data from 38 games (353 player match 211 

observations) and 4041 player training observations were included in the analysis. 212 

 213 

Situational and contextual variables 214 

The phase of the competitive season (season quarter (Q) 1, Q2, Q3 or Q4), current fixture 215 

density (number of games in the last 7 d), match location (home or away), match outcome (win, 216 

draw or loss), match goal deficit (positive value for a win, negative value for a loss) and quality 217 

of opposition were recorded for each match observation. To determine quality of opposition, 218 

teams were divided into high (top third, positions 1 - 8), intermediate (middle third, positions 219 

9 - 16) or low (bottom third, positions 17 - 24) groups based on end of season league position.  220 

 221 

Team Performance 222 

For context, the reference team finished the season in 9th (out of 24 teams) position in the league 223 

(‘middle’ league quality group): winning 19 games, drawing 8 games and losing 19 games. 224 

Season mean (± SD) goal deficit across the season was -0.01 ± 1.9. 225 



 226 

Statistical analysis 227 

All statistical analysis was conducted using R (version 3.5.1, R Foundation for Statistical 228 

Computing, Vienna, Austria). A two-stage data reduction process was used to determine the 229 

most parsimonious model for each high-intensity and high-speed running match play physical 230 

performance variable.  231 

 232 

The ‘multivariate methods with unbiased variable selection (‘MUVR’) algorithm for 233 

multivariate modelling 37 was used to identify the minimal-optimal candidate predictor 234 

variables for each of the selected match play physical performance variables. The MUVR 235 

package is an algorithm for multivariate modelling, aimed at finding associations between 236 

predictor data (an X matrix) and a response (a Y vector) via partial least squares modelling. 237 

MUVR is useful for handling data that has large numbers of variables and few observations, 238 

and constructs robust, parsimonious multivariate models that generalize well, minimize 239 

overfitting and facilitate interpretation of results 37.  240 

 241 

The candidate predictor variables identified for each match play physical performance measure 242 

were entered into a backward stepwise selection procedure to identify the best-fitting overall 243 

model 38. Quadratic polynomials and interaction effects between predictors were considered as 244 

part of this process. Player identity was included as a random effect to account for repeated 245 

observations within players. Effects were deemed to be statistically significant at an alpha level 246 

of P < 0.05. Data are presented as means and 95% confidence intervals (CI), alongside Cohen’s 247 

d effect sizes (ES) 39. Thresholds for ES were: 0.0-0.2 = Trivial; 0.2-0.6 = Small; 0.6-1.2 = 248 

Moderate; 1.2-2 = Large; >2 = Very Large. 249 

 250 



Results 251 

 252 

Team Match Play Physical Performance 253 

Team average match play physical performance data are provided in Table 1. 254 

 255 

***Insert Table 1 Here*** 256 

 257 

Load Variables Relating to Match Play Physical Performance 258 

Twenty load variables related to performance: AL, acute, chronic and A:C for: sprints, 259 

ACC+DEC, HSR, HMLd and sRPE (Table 2). 260 

 261 

***Insert Table 2 Here*** 262 

 263 

Predictors of Match Play Physical Performance 264 

Sprint performance 265 

Only sprint AL load was retained from the variable selection process (Table 3). A quadratic 266 

effect was identified for this relationship (P = 0.002; ES = Small) (Figure 2); performance was 267 

generally highest near the mean or ~1 SD above the mean for season accumulated load.  268 

 269 

***Insert Table 3 Here*** 270 

 271 

***Insert Figure 2 Here*** 272 

 273 

HMLd Performance  274 



Five variables were retained from the variable selection process (Table 4): playing position 275 

(using CD as the reference group): WM (P = 0.008; ES = Small ), CM (P = 0.133, ES = Small 276 

), F (P = 0.176, ES = Small ), WD (P = 0.134, ES = Small ); acute HMLd (P = 0.012, ES 277 

= Moderate ); chronic HMLd (P = 0.001; ES = Small ) and chronic sRPE (P = 0.042; ES = 278 

Trivial ). A quadratic effect was identified for acute HMLd (P = 0.012; ES = Moderate) 279 

(Figure 3), with HMLd performance generally highest at 2SDs above the mean value for acute 280 

HMLd. 281 

 282 

***Insert Table 4 Here*** 283 

 284 

***Insert Figure 3 Here*** 285 

 286 

HSR Performance  287 

Five variables were retained from the variable selection process (Table 5): playing position: 288 

CM (P = 0.146, ES = Small ); F (P = 0.068, ES = Small ); WD (P = 0.037, ES = Small ); 289 

WM (P = 0.001, ES = Small ); HSR AL (P = <0.001, ES = Moderate ); chronic ACC+DEC 290 

(P = 0.008, ES = Small ) and acute HMLd (P = 0.550, ES = Trivial ). A quadratic effect was 291 

identified for HSR AL (P = 0.002, ES = Small) (Figure 4), with HSR performance generally 292 

highest near the mean or ~1 SD above the mean for season accumulated HSR load. 293 

 294 

***Insert Table 5 Here*** 295 

 296 

***Insert Figure 4 Here*** 297 

 298 

ACC Performance  299 



Five variables were retained from the variable selection process (Table 6): acute sprints (P = 300 

0.074 ES = Small ); A:C sprints (P = 0.083; ES = Small ) and goal deficit (P = 0.004; ES = 301 

Trivial ). Quadratic relationships were identified for acute sprints (P = 0.042; ES = Small) 302 

(Figure 5) and A:C sprints (P = 0.003; ES = Small) (Figure 6), with performance values 303 

generally highest at higher levels of these load measures.  304 

 305 

***Insert Table 6 Here*** 306 

 307 

***Insert Figure 5 Here*** 308 

 309 

***Insert Figure 6 Here*** 310 

 311 

Discussion 312 

 313 

The aim of this study was to investigate the effect that prior load and situational and contextual 314 

variables had on high-intensity and high-speed running match performance in professional 315 

football players. Four performance variables were selected: ACC/min, sprints/min, HSR m/min 316 

and HMLd m/min and the most parsimonious predictive model for each was determined. 317 

Workload indices were identified as predictor variables for all performance variables, exerting 318 

trivial to moderate effects, indicating that prior workload influences high-intensity and high-319 

speed running match play physical performance in professional players. To the authors 320 

knowledge, this is the first investigation to report the effect of prior workload on match play 321 

physical performance in elite level professional football players. 322 

 323 



Importantly, the physical demands of match play reported in the current investigation are 324 

similar to other data reported from the English Championship 40,41. For example, the season 325 

team average total and high-speed running distances reported herein were 10,604  1180 m, 326 

and 752  237 m respectively (Table 1), which are similar to data reported by Bradley et al 40; 327 

(11,429  816 m and 803  227 m) and Di Salvo et al 41; (11,102  916 m and 750  222 m). 328 

Accordingly, it is apparent that match demands in the current investigation are representative 329 

of typical match demands in the English Championship.  330 

 331 

The most important result from this investigation was the quadratic relationship identified 332 

between sprint AL and match play sprint performance; indicating that excessively ‘high’ and 333 

‘low’ sprint AL might have compromising effects on match play sprint performance (Figure 334 

2). Athletic performance potential is considered a product of the positive (fitness) and negative 335 

(fatigue) responses to workload 42. Accordingly, our finding might reflect the influence that 336 

these factors have on match play physical performance. Further support for this notion is 337 

provided by the quadratic relationship also observed between HSR AL and HSR performance 338 

(Figure 4), in which excessively low and high values were associated with compromising 339 

effects. Collectively, this indicates that excessively low or high sprint and HSR AL workloads 340 

might compromise match play sprint and HSR performance. Excessive loading is known to 341 

induce player fatigue, non-functional overreaching and compromise player readiness to 342 

perform 1-3. Conversely, excessively low loading will likely limit the adaptive responses to 343 

training, compromise physical development and reduce capacity to perform high sprint and 344 

HSR loads during match play 1-3.  345 

 346 

The quadratic relationships between sprint AL and sprint performance (Figure 2) and HSR AL 347 

and HSR performance (Figure 4) infer an optimal ‘zone’ for player load exposure. For example, 348 



optimal match play sprint and HSR performances were achieved at approximately squad mean 349 

sprint, (Figure 2) and HSR (Figure 4) AL, with lesser performances observed around these 350 

values. Interestingly, a similar workload-performance relationship has been reported 351 

previously. Lazarus et al. 43 demonstrated optimal match performances when workload indices 352 

were within 1 SD of the squad mean in Australian Football Players (AFL). Collectively these 353 

data indicate the need to both adjust player training load according to match participation and 354 

ensure sufficient exposure to sprint and HSR load for players with limited game exposure. 355 

 356 

Interestingly, we also found that recently acquired sprint workload influenced match play ACC 357 

performance (Table 6). We observed non-linear relationships between acute sprint load and 358 

ACC performance (Figure 5) and between A:C sprint load and match play ACC performance 359 

(Figure 6). Indicating that exceptionally low and high acute sprint workloads can exert a small 360 

compromising effect on match play ACC performance. Our finding that exceptionally low 361 

acute sprint workloads reduce match play ACC performance might illustrate the importance of 362 

player ‘fitness’ in determining match play physical performance potential. That is, a minimal 363 

amount of sprint load is required to support high-intensity match performance 1-3. Our finding 364 

that excessively high acute sprint loads compromise match play ACC performance (Figure 5) 365 

is most likely a consequence of fatigue 1-3. Since sprinting is considered a dominant causal 366 

activity of neuromuscular fatigue 44, it is plausible that high sprint workloads in close proximity 367 

to games, compromise match play ACC performance. 368 

 369 

Another interesting finding from this investigation is the small linear relationship identified 370 

between chronic HMLd load and match play HMLd performance (Table 4). Specifically, our 371 

result is that high chronic HMLd load improves match play HMLd performance. HMLd is 372 

considered a ‘global’ measure of high-intensity performance; accounting for acceleration, 373 



deceleration, sprinting and HSR activity (in any combination). Therefore, our result indicates 374 

that a high chronic exposure to high-intensity activity per se can result in an increase in match 375 

play high-intensity actions. Since HMLd is widely used in practice 6, this result is likely to be 376 

of practical importance. Our result is consistent with other recent data that has associated high 377 

chronic workload indices with improved player performance. Recently, Hulin and colleagues 378 

45 reported a near perfect (R2 = 0.91) relationship between chronic workload and maximal 379 

running performance in Rugby League players. In addition, several other studies have 380 

demonstrated that high chronic workloads improve readiness in professional football players 381 

4,5,46, as indicated by a reduction in injury risk. Typically these findings are attributed to 382 

advanced physical qualities obtained from high chronic workloads 42. Indeed, our data indicate 383 

that a high chronic HMLd load might drive physiological and performance adaptations, which 384 

improve subsequent match play HMLd performances. 385 

 386 

Interestingly, acute HMLd workload shared a quadratic relationship with match play HMLd 387 

performance (Table 4). This demonstrates that exceptionally low and high acute HMLd 388 

workloads might result in superior match play HMLd performances compared to moderate 389 

workloads (Figure 3). Of note, periods of short term (~ 7 – 14 d) reductions in workload are 390 

known to improve physical performance in athletes 47. Likely, as a result of the dissipation of 391 

fatigue and the supercompensation achieved from preceding phases of training and competition 392 

47. Accordingly, the beneficial effect of exceptionally low acute HMLd workloads observed 393 

herein might be explained by a tapering effect in certain microcycles which improved 394 

subsequent match play HMLd performance.  395 

 396 

Our finding that high acute HMLd workloads improved match play HMLd performance 397 

(Figure 3) is somewhat surprising. Excessive acute HMLd workloads are known to 398 



compromise stress balance in professional players, as indicated by increases in salivary cortisol 399 

when HMLd workloads are high 48. Other researchers have reported that high acute workloads 400 

compromise physical performance in elite rugby players 45, and reduce readiness in football 401 

players 3-5,46. This is likely a consequence of fatigue or non-functional overreaching 1-3. As 402 

such, in the absence of a logical mechanistic explanation, we speculate that this result might 403 

be an artefact of the 7 d decay factor used to calculate acute workload in the present study. In 404 

some microcycles it is possible that an exceptionally high HMLd load is accrued ‘early’ in the 405 

training week (~ match day -5, -4 and -3) and an exceptionally low HMLd load was accrued 406 

immediately preceding match play (~ match day -2 and -1). Indeed, it was typical for the 407 

reference team to substantially reduce training load in the two days preceding match day (match 408 

day -2 and -1; Figure 1); consistent with football ‘tapering’ strategies that have been observed 409 

elsewhere in the research literature 49-51. Similar to previous observations 49-51, lower intensity 410 

and volume ‘tactical’ orientated football training sessions were typically delivered on the days 411 

immediately preceding match day (i.e. MD-1 and MD-2; Figure 1); and higher intensity and 412 

volume ‘physical’ orientated football training sessions were typically delivered at the 413 

beginning of the microcycle (i.e. MD-4, Figure 1). This scenario might give rise to a ‘high’ 7 414 

d load but still provide sufficient time for recovery prior to match play, such that match 415 

performance is not compromised. Alternatively, since relatively few observations were made 416 

at ~ 2 SD, these data might simply reflect unique responses in some players. 417 

 418 

Interestingly, though acute and chronic HMLd load variables were identified as predictor 419 

variables for match play HMLd performance (Table 4), HMLd A:C load was not selected. To 420 

determine match play HMLd performance potential, our finding indicates merit in the use of 421 

uncoupled (A, C) as opposed to coupled (A:C) acute and chronic load monitoring. This is in 422 

contrast to previous work in cricket, which demonstrated a strong relationship (R2 = 0.99) 423 



between coupled and uncoupled workload methods, and an equal capacity for either to 424 

determine relative injury risk 52. However, our result is consistent with other recent work in 425 

professional football, which report merit in the uncoupled method, albeit for injury prediction 426 

53. Accordingly, it appears that the sport differentiates the required monitoring method, with 427 

current evidence at least, supporting the use of the uncoupled method in football. 428 

 429 

Of the situational and contextual variables analysed, only playing position (for match play 430 

HMLd and HSR performance, Tables 5 and 6) and goal deficit (for ACC performance, Table 431 

6) were identified as predictors. High-intensity and high-speed running demands of match play 432 

are on average, greater for WD, WM and CM than CD and F 40. Therefore, it is not surprising 433 

that match play HMLd (Table 4) and HSR (Table 5) performances were greater in these 434 

positions. Moreover, since players are reported to perform more high-intensity activity during 435 

small, as opposed to large, goal deficits 18 our finding that goal deficit was a predictor for ACC 436 

performance is also unsurprising. However, the absence of quality of opposition as a predictor 437 

variable for match play physical performance is somewhat surprising, as players are reported 438 

to complete more high-intensity activity and high-speed running when playing against high- as 439 

opposed to low- quality opposition 54. This finding might reflect a more homogenous nature of 440 

quality of opposition in the English Championship; in comparison to other top European 441 

leagues. 442 

 443 

Practical Applications 444 

 445 

Sprint and HSR AL variables should form an integral part of the player monitoring process. 446 

Our finding indicates that sprint and HSR load should be increased or decreased in cases of 447 

excessively low and high values to keep players in an optimal zone of preparation for 448 



performance. This finding supports the utilisation of maximal velocity running sessions, which 449 

have recently gained popularity in contemporary training programmes; particularly for squad 450 

players lacking in game exposure. 451 

 452 

Practitioners should consider a linear physical development model for sprint and HSR during 453 

the preseason period and a concurrent physical development model during the in-season period. 454 

Players should be exposed to moderate to high loads across preseason (to develop ‘fitness’) 455 

but, where possible, maintain consistent (moderate) load exposure across the in-season phase, 456 

to mitigate the risk of ‘fatigue’. This distribution pattern might help to soften the inverted-U 457 

relationship observed in our data (Figures 2 and 4). 458 

 459 

Players should develop a high chronic HMLd load. HMLd is a global measure of high-intensity 460 

activity and we observed a small linear relationship between chronic HMLd exposure and 461 

match play HMLd performance (Table 4).  462 

 463 

Professional leagues should consider the performance consequences of scheduling games at 464 

high densities. English Championship teams are known to regularly play four games in 12 days 465 

or two games in three days during traditional periods. Since high acute loads generally exerted 466 

negative effects on match performance, high fixture densities will likely have negative 467 

implications on the performance level of players owing to limited recovery time. 468 

 469 

We defined a sprint as an effort > 80% of individualised maximal linear running velocity. Of 470 

note, the average maximal velocity for the cohort herein was 9.4 ± 0.2 m/s, equating to an 471 

average velocity at 80% of maximal speed of 7.5 ± 0.2 m/s. Accordingly, the individualised 472 

sprint threshold was 0.5 m/s (~7%) higher than the absolute (7 m/s) threshold widely used in 473 



other football literature 4,40. Since the threshold herein was predictive of match play sprint 474 

performance (Figure 2), we propose that there is merit in individualising speed workload 475 

monitoring thresholds to 80% of individualised maximal linear speed.  476 

 477 

Limitations 478 

 479 

The role of high-intensity activity in football match play is complex. For example, previous 480 

data indicates strong relationships between match play high-intensity performance and training 481 

status 19,20. However, other data indicate that highly successful teams might complete less high-482 

intensity activity during match play by virtue of being technically and / or tactically superior 483 

55, not necessarily owing to being less ‘fit’ or more ‘fatigued’ per se. Indeed, the authors 484 

acknowledge that a combination of player fitness, fatigue, pacing strategies 56, motivation and 485 

other situational and contextual variables might influence match play high-intensity 486 

performance. In addition, we acknowledge that there are a lack of supporting validity and 487 

reliability data available for measuring HMLd, HSR and number of sprints, ACC and DEC 488 

efforts using the GPS device employed herein. Though these metrics are widely used in 489 

practice, we acknowledge that this is a substantial limitation of the current investigation. 490 

Finally, this investigation reported number of sprint efforts and the authors acknowledge that 491 

sprint distance is an alternate measure of sprint performance that might also be of practical 492 

interest. 493 

 494 

Conclusion 495 

 496 

Prior workload can have trivial to moderate effects on high-intensity match performance in 497 

professional football players.  498 
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 664 

 665 

 666 

 667 



Tables and Figures 668 

 669 

 670 

Figure 1. Typical workload distribution during A) Single-game weeks and B) Double game 671 

weeks across the sample period. Player days ‘off’ were allocated on MD-3 (single game weeks) 672 

and MD+1 following game one during double game weeks. MD+1 and MD+2/-2 sessions 673 

constituted ‘off-feet’ recovery sessions. 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 



Table 1. Descriptive data for match-play physical performance parameters across the sample 684 

period in the reference team. Data are presented as mean ± SD with 95% CI. 685 

Match Performance Variable Mean ± SD CI 

Accelerations (number) 101 (25.6) 95.8 - 108 

Decelerations (number) 112 (28.5) 109 - 115 

Accelerations + Decelerations (number) 213 (51.9) 207 - 219 

Sprints (number)  8.8 (3.8) 8.39 – 9.21 

High-Speed Running (m) 752 (237.1) 726 - 778 

High Metabolic Load Distance (m) 2159 (387.1) 2120 - 2200 

Total Distance (m) 10604 (1180) 10500 - 10700 

 686 

 687 

Table 2. Minimal-optimal number of predictor variables for each performance measure. 688 
 689 

Performance measure 
Minimal-optimal number of candidate 

predictors 

R2 on holdout test 

set 

Sprints 6 24.9% 

HSR 7 42.0% 

HMLd  6 48.4% 

ACC 7 28.0% 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 



Table 3. Predictors of sprint performance.  698 

 699 

  Sprint Performance 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 0.07 
 

0.05 – 0.09 
 

<0.001 

Sprints AL 0.00 Small  0.00 – 0.00 0.17 – 0.91 0.005 

Sprints AL2 -0.00 Small -0.00 – -0.00 -0.94 – -0.22 0.002 

Random Effects 

σ2 0.00 

τ00 Player_ID 0.00 

ICC 0.43 

N Player_ID 14 

Observations 270 

Marginal R2  0.025  

Conditional R2 0.447 

 700 

 701 

 702 

 703 

 704 



 705 

Figure 2. Quadratic relationship (P = 0.002; ES = Small) between season sprint accumulated 706 

load and match play sprint performance. Data are presented as mean ± 95% CI bands. 707 
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 720 

 721 



Table 4. Predictors of HMLd Performance.  722 

 723 

  HMLd Performance 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 24.00 
 

18.75 – 29.25 
 

<0.001 

Wide Midfielders 5.16 Small  1.91 – 8.40 0.18 – 0.79 0.008 

Central Midfielders 2.40 Small  -0.48 – 5.29 -0.06 – 0.70 0.133 

Forwards 2.79 Small  -0.99 – 6.58 -0.07 – 0.48 0.176 

Wide Defenders 2.75 Small  -0.58 – 6.07 -0.07 – 0.76 0.134 

EWMA HMLd Acute -0.02 Moderate  -0.04 – -0.01 -1.24 – -0.16 0.012 

EWMA HMLd Acute2 0.00 Moderate 0.00 – 0.00 0.15 – 1.22 0.012 

EWMA RPE Chronic -0.02 Trivial  -0.03 – -0.00 -0.36 – -0.01 0.042 

EWMA HMLd Chronic 0.01 Small  0.00 – 0.02 0.13 – 0.50 0.001 

Random Effects 

σ2 3.40 

τ00 Player_ID 4.48 

ICC 0.57 

N Player_ID 18 

Observations 258 

Marginal R2 /  0.399 

Conditional R2 0.741 

 724 



 725 

Figure 3. Quadratic relationship (P = 0.012; ES = Moderate) between acute High Metabolic 726 

Load Distance workload and match play High Metabolic Load Distance performance. Data 727 

presented as mean ± 95% CI bands. 728 
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Table 5. Predictors of HSR Performance 741 

 742 

  HSR Performance 

Predictors Estimates ES CI Standardized CI p 

(Intercept) 2.80 
 

1.11 – 4.49 
 

0.003 

Central Midfielders 1.23 Small  -0.26 – 2.73 -0.06 – 0.61 0.146 

Forwards 2.74 Small  0.15 – 5.34 0.01 – 0.44 0.068 

Wide Defenders 2.19 Small  0.49 – 3.90 0.10 – 0.84 0.037 

Wide Midfielders 6.36 Small  3.52 – 9.20 0.19 – 0.51 0.001 

HSR AL 0.00 Moderate  0.00 – 0.00 0.28 – 0.92 <0.001 

HSR2 AL -0.00 Small -0.00 – -0.00 -0.82 – -0.19 0.002 

EWMA chronic ACC+DEC 0.04 Small  0.01 – 0.06 0.05 – 0.35 0.008 

EWMA acute HMLd -0.00 Trivial  -0.00 – 0.00 -0.16 – 0.08 0.550 

Random Effects 

σ2 1.79 

τ00 Player_ID 1.14 

ICC 0.39 

N Player_ID 14 

Observations 221 

Marginal R2 /  0.387 /  

Conditional R2 0.625 

 743 



 744 

Figure 4. Quadratic relationship (P = 0.002, ES = Small) between season accumulated high-745 

speed running workload and match play sprint performance. Data presented as mean ± 95% 746 

CI bands. 747 
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Table 6. Predictors of ACC Performance.  760 

 761 

  ACC Performance 

Predictors Estimates ES CI Standardized CI p 

(Intercept) 1.06 
 

0.96 – 1.17 
 

<0.001 

EWMA acute sprints 0.13 Small  -0.01 – 0.26 -0.04 – 0.88 0.074 

EWMA acute sprints2 -0.04 Small -0.09 – -0.00 -0.78 – -0.02 0.042 

EWMA A:C sprints -0.20 Small  -0.42 – 0.02 -0.78 – 0.05 0.083 

EWMA A:C sprints2 0.15 Small 0.05 – 0.25 0.20 – 0.94 0.003 

Goal Deficit -0.01 Trivial  -0.02 – -0.00 -0.21 – -0.04 0.004 

Random Effects 

σ2 0.02 

τ00 Player_ID 0.02 

ICC 0.54 

N Player_ID 18 

Observations 258 

Marginal R2 /  0.068 

Conditional R2 0.568 
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 767 

Figure 5. Quadratic relationship (P = 0.043; ES = Small) between acute sprint workload and 768 

match play acceleration performance. Data presented as mean ± 95% CI bands. 769 
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 771 

Figure 6. Quadratic relationship (P = 0.003; ES = Small) between sprint A:C workload and 772 

match play acceleration performance. Data presented as mean ± 95% CI bands. 773 


